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Fig. 1: Visual comparison between the proposed method and baseline methods.

Abstract—In this paper, we propose PO-RTIntra, a perception-
oriented learned image compression framework built upon the
DCVC-RT intra model, together with a higher-capacity variant,
PO-RTIntraPro. The strong compression performance and effi-
ciency of the DCVC-RT intra model provide a solid backbone for
PO-RTIntra, while PO-RTIntraPro increases the capacity of key
modules to further enhance modeling capacity. We adopt a multi-
stage progressive training schedule and incorporate a composite
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Foundation of China under contract No. 62036005. Corresponding author:
Zhenzhong Chen (Email: zzchen@whu.edu.cn).

perceptual loss together with a Relativistic PatchGAN discrimi-
nator to improve perceptual fidelity. In addition, we introduce a
Human-Perception-weighted Integer Linear Programming (HP-
ILP) formulation for bitrate allocation, and an ROI-based Latent
Rate–Distortion-Optimized (ROI-LRDO) inference strategy to
further improve reconstruction quality. Experiments demonstrate
that, compared with state-of-the-art image compression methods,
our approach produces more realistic, detail-rich reconstructions.

Index Terms—Learned image compression, perceptual quality
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Fig. 2: Network architectures of the proposed PO-RTIntra and PO-RTIntraPro. Dashed-line blocks indicate components exclusive
to PO-RTIntraPro. DC Block indicates the depth-wise convolution block from DCVC-RT [1].

I. INTRODUCTION

Image compression is fundamental to the efficient storage
and transmission of visual data. Traditional codecs (e.g.,
HEVC [2], VVC [3]) deliver strong rate–distortion perfor-
mance, yet their modular, hand-engineered pipelines limit
joint optimization across components and adapt poorly to
diverse image content. Moreover, these systems are typi-
cally tuned for objective fidelity measures such as PSNR,
which are often misaligned with human visual perception.
In contrast, learning-based image compression enables end-
to-end optimization, flexible content adaptivity, and the direct
incorporation of perceptual objectives. Building on the intra-
frame model from recent work [1], we propose a perception-
oriented framework, PO-RTIntra, along with its high-capacity
variant, PO-RTIntraPro. To enhance perceptual fidelity, we
introduce a multi-stage progressive training schedule that com-
bines a composite perceptual loss with a Relativistic Patch-
GAN discriminator. Beyond training, we design a Human-
Perception-weighted Integer Linear Programming (HP-ILP)
strategy for content-aware bitrate allocation and a Region-of-
Interest Latent Rate–Distortion–Optimized (ROI-LRDO) in-
ference procedure that emphasizes visually critical regions
without sacrificing global coherence. Extensive experiments
show that our approach produces reconstructions that are
more visually realistic and richer in detail than state-of-the-
art learned and conventional codecs at comparable bitrates.

II. METHODOLOGY

In this section, we first present the architectures of the
proposed PO-RTIntra and PO-RTIntraPro models and clarify
their differences. We then describe the multi-stage progressive
training schedule and our carefully designed loss functions.
Finally, we introduce the human-perception-weighted integer
linear programming algorithm for rate allocation and the ROI-
based latent rate–distortion–optimized inference strategy.

A. Network Architecture

Our approach is built upon the DCVC-RT intra model [1],
chosen for its strong compression performance and efficiency,
and its network architecture is shown in Fig. 2. Specifically, on

the encoder side, the input image x is first downsampled by a
factor of 8 via a Patchfy operation, and then transformed by the
main encoder ga into a compact latent representation y. Quan-
tization and entropy coding then produce the bitstream. On the
decoder side, the reconstructed latent ŷ is obtained by entropy-
decoding the bitstream and then passed through the main
decoder gs followed by an Unpatchfy operation to produce the
reconstructed image x̂. The latent y and the hyperprior z are
modeled using a Quadtree Partition–based Entropy Model and
a QP-customized Factorized Entropy Model, respectively. In
addition, the proposed models support variable-rate capability,
adopting a variable-rate scheme similar to DCVC-FM [4].

We introduce two architectures with similar designs but
different complexities to participate in the two competition
tracks: PO-RTIntra (low complexity, for the CPU track) and
PO-RTIntraPro (high complexity, for the GPU track). Specif-
ically, PO-RTIntra is nearly identical to the DCVC-RT intra
backbone, except that the number of supported quantization
parameter (QP) points per model is reduced from 64 to 24. PO-
RTIntraPro builds on PO-RTIntra by increasing the number of
DC blocks and the widths of intermediate channels in both
the main transform and the hyperprior transform networks,
thereby increasing model capacity. The overall architectural
differences, computational complexity, and decoding time for
PO-RTIntra and PO-RTIntraPro are summarized in Table I.

B. Training Schedule

To fully train the model and obtain high-perceptual-quality
reconstructions, we adopt a multi-stage progressive training
schedule. An overall schematic is shown in Fig. 3, and per-
stage details are summarized in Table II.
Stage 1 (basic capability). We endow the model with fun-
damental compression–reconstruction capability and variable-
rate control. Training is first conducted at the highest bitrate
point and then continued across all bitrate points. The objective
is the standard rate–distortion loss in Eq. 1, where R denotes
the rate term and λ balances rate and distortion:

L1 = R+ λMSE(x, x̂) (1)



TABLE I: Comparison of Architecture, Complexity, and Decoding Time between PO-RTIntra and PO-RTIntraPro.

Model Track
Number of DC Blocks Number of Channels Complexity Dec Time (s)

ga gs ha hs ga gs ha hs y z MACs (K) Params (M) gs (fp32) gs (fp16)

PO-RTIntra CPU 7 13 1 4 368 368 128 128 256 128 486.4 45.5 25 19

PO-RTIntraPro GPU 11 13 2 6 512 512 192 192 256 192 948.4 78.7 32 22
* Dec Time (s) denotes the total time, in seconds, to decode the CLIC 2025 Image Validation dataset (32 2K images) on a single NVIDIA L4 GPU.
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Fig. 3: The overall schematic of the multi-stage progressive
training schedule.

Stage 2 (compression performance). To ensure strong com-
pression performance, we continue training across all bitrate
points with the same objective in Eq. 1, while increasing the
patch size and applying a gradually decaying learning rate.
Stage 3 (perceptual fidelity). To improve perceptual quality,
we train over all bitrate points using a composite perceptual
loss that combines MSE and LPIPS [5], as in Eq. 2. The weight
w2 is normalized to match the scale of the MSE term:

L2 = R+ λ(w1MSE(x, x̂) + w2V GG(x, x̂)) (2)

Stage 4 (sharpness and detail). To obtain sharp, detail-
rich reconstructions, we continue training across all bitrate
points and augment the objective with the Style loss [6] and
a relativistic PatchGAN term [7], as specified in Eq. 3. Here,
x denotes the real image, x̂ the reconstructed image, B(·)
the BCEWithLogitsLoss, Op(·) the discriminator’s patch-wise
logits output, and E[·] the mean over all patches.

LD = 1
2 E[B

(
Op(x)−Op(x̂), 1

)
+ B

(
Op(x̂)−Op(x), 0

)
]

LG = E[B
(
Op(x̂)−Op(x), 1

)
]

L3 = R+ λ(w1MSE(x, x̂) + w2V GG(x, x̂)

+ w3Style(x, x̂) + w4LG)

(3)

TABLE II: Detailed settings for the multi-stage progressive
training schedule.

Stage Epoch PS QP Loss w1 w2 w3 w4

1
60 256 23 L1 1.0 0.0 0.0 0.0

40 256 0-23 L1 1.0 0.0 0.0 0.0

2 80 512 0-23 L1 1.0 0.0 0.0 0.0

3 60 512 0-23 L2 0.5 0.5 0.0 0.0

4 60 512 0-23 L3 0.3 225 1000 300

* PS denotes the patch size; QP denotes the set of trainable bitrate points.

C. Inference Strategy

To achieve the best overall perceptual quality under a
target-bitrate constraint, we design an inference pipeline
(Fig. 4) comprising a human-perception-weighted integer lin-
ear programming (HP-ILP) rate-allocation algorithm, an ROI-
based latent rate–distortion–optimized (ROI-LRDO) online-
inference algorithm, and several engineering refinements (e.g.,
half-precision decoding and pre-/post-resampling). The details
are as follows:

HP-ILP. The task is to determine a per-image bitrate
allocation that maximizes overall perceptual quality under a
prescribed bitrate budget. Enforcing such a constraint with a
model trained with a single λ is often difficult on content-
diverse datasets. Fortunately, our models are variable-rate,
allowing us to cast the problem as a constrained optimization.
A key challenge, however, is choosing a metric that faithfully
reflects human visual quality. Prior work [8] uses LPIPS as
a perceptual proxy in a linear program, but LPIPS does not
perfectly align with human perception—and, to date, no single
metric fully captures subjective quality. To bridge this gap,
we propose a human-perception-weighted integer linear pro-
gram (HP-ILP) that augments the LPIPS-based objective with
human-perception priors, thereby improving overall subjective
quality at the target bitrate. Let πqp

i := LPIPS(M(xi, qp), xi)
and rqpi := R(M(xi, qp), xi) denote the precomputed LPIPS
and bitrate (e.g., in bpp) for image i at bitrate point qp. The
HP-ILP is

min
{fqp

i }

N∑
i=1

QP−1∑
qp=0

wi π
qp
i fqp

i

s.t.
1

N

N∑
i=1

QP−1∑
qp=0

rqpi fqp
i ≤ T,

QP−1∑
qp=0

fqp
i = 1, ∀i ∈ {1, . . . , N},

fqp
i ∈ {0, 1}, ∀i, qp.

(4)

Here, N and QP are the numbers of images and supported
bitrate points, respectively; xi is the i-th image; M(·) is
the proposed model; fqp

i indicates whether the qp-th bitrate
is selected for image i; and T is the target bitrate (in this
challenge, one of {0.075, 0.15, 0.3}). Finally, wi > 0 is the
human-perception weight for image i obtained from subjective
assessment. For example, if increasing the bitrate for image
i yields a substantial improvement in perceived quality while
the LPIPS reduction is small, then wi > 1; conversely, wi < 1
when LPIPS overstates the perceptual improvement.
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Fig. 4: Inference strategy of the proposed method. (opt) denotes the optional operation.

Algorithm 1: ROI-based latent rate-distortion-
optimized inference strategy.

Input : Input image x; encoder E ; decoder D;
saliency detector S; arithmetic encoder AE

Output: Reconstructed image x̂; bitstream bits
1 αr, αn (αr≫αn): Coefficients for ROI/non-ROI;
2 N : RDO iterations;
3 m, y0 ← S(x), E(x);
4 for i← 0 to N − 1 do
5 ỹi ← SGA(yi);
6 x̂i ← D(ỹi);
7 Ri ← R(ỹi);
8 msei ←MSE(x̂i, x);
9 lpipsi ← V GG(x̂i, x);

10 mseroii ← αr ·m ·msei + αn · (1−m) ·msei;
11 lpipsroii ← αr ·m · lpipsi + αn · (1−m) · lpipsi;
12 Li ← Ri + λ(w′

1 ·mseroii + w′
2 · lpipsroii );

13 yi+1 ← yi − η∇yi
Li;

14 end
15 x̂, bits← D(round(yN )), AE(round(yN ));

ROI-LRDO. Due to the amortization gap, a model trained
on large-scale data does not necessarily yield an optimal
solution for any single image, particularly on content-diverse
test sets [9]. Moreover, human visual attention varies across re-
gions within an image (e.g., in Fig. 4, faces tend to attract more
attention than the background). To compensate for this amor-
tization gap and improve intra-image bitrate allocation, we
propose an ROI-based latent rate-distortion-optimized online
inference algorithm, as shown in Algorithm 1. Specifically,
we first obtain an ROI mask m for the input image x using a
saliency detection method (e.g., RMFormer [10]) or manual
annotation. We then optimize the latent representation via
Stochastic Gumbel Annealing (SGA) [9] under the objective
in Eq. 5, where w′

1 and w′
2 are the weights of the distortion

terms, and Lroi
mse and Lroi

lpips denote the MSE and LPIPS losses
computed with pixel-wise weighting by the ROI mask:

L = R+ λ(w′
1 · Lroi

mse + w′
2 · Lroi

lpips) (5)

Engineering Refinements. Beyond the HP-ILP and ROI-

LRDO algorithms described above, we introduce several engi-
neering refinements to improve overall perceptual quality and
accelerate decoding. These include half-precision decoding
and pre-/post-resampling. For half-precision decoding, we cast
computations in the decoder gs from float32 to float16,
yielding substantial speedups with negligible impact on both
objective metrics and perceived quality. As shown in Table I,
half-precision decoding reduces the time to decode the CLIC
2025 image validation set (32 2K resolution images) by 6
s for PO-RTIntra and by 10 s for PO-RTIntraPro. For pre-
/post-resampling, given an input image, we first scale it by a
factor β in height and width (e.g., β = 0.9), run the inference
pipeline to obtain the selected bitrate and reconstruction, and
finally upsample the result back to the original resolution. This
technique is particularly effective for images with cluttered
fine textures—which often consume many bits—since mild
resampling can save bits for other images without perceptual
degradation.

III. EXPERIMENTS

A. Experimental Setting
Training. We construct the training set with a total of

105,899 images drawn from the ImageNet validation set [11],
the CLIC 2020 training set [12], DIV2K [13], Flickr2K [14],
Flicker2W [15], and the first six shards of LSDIR [16].
We employ the Adam optimizer [17] to minimize the rate-
distortion loss. For the learning rate, we keep 1 × 10−4

fixed in Stage 1; in the remaining stages it is initialized
at 1 × 10−4 and decayed to 1 × 10−6. Stage-wise loss
weights and other training hyperparameters are summarized in
Table II. For PO-RTIntra and PO-RTIntraPro, we train three
models each to cover the three target bitrate points; the corre-
sponding λ ranges are [0.0003, 0.0022], [0.0015, 0.0100], and
[0.0080, 0.0275], respectively. All experiments are conducted
on NVIDIA GeForce RTX 3090 GPUs.

Evaluation. We evaluate the proposed method on the CLIC
2025 Image Test dataset, which contains 30 diverse 2K images.
We assess performance from two perspectives: perceptual
metrics and visual quality. For perceptual metrics we report
LPIPS [5] and DISTS [18]; as baselines we include the state-
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Fig. 5: Rate-distortion curves of the proposed method and
baseline methods.
of-the-art conventional codec VTM [19] and the state-of-the-
art learned image compression method HPCM [20].

Inference details. In the ROI-LRDO objective, the λ value
is aligned with the training-phase λ for the corresponding
bitrate (with optional per-image fine-tuning). We set w′

1 =
w′

2 = 0.5 and normalize Lroi
lpips to match the magnitude of

Lroi
mse.For pre-/post-resampling, we use simple bicubic down-

/up-sampling to avoid additional decoding time; this technique
is applied only at the lowest bitrate for highly textured images
(e.g., 9374...3286.png in the CLIC 2025 Image Test set).

B. Quantitative Results
Fig. 5 shows the perceptual compression performance of our

method against baseline methods. Our approach substantially
outperforms VTM and HPCM, and PO-RTIntraPro further
surpasses PO-RTIntra, owing to its larger model capacity. No-
tably, the PO-RTIntra and PO-RTIntraPro curves in Fig. 5 were
obtained without latent rate-distortion optimization, which
would be expected to further improve perceptual metrics.

C. Qualitative Results
Fig. 1 shows the qualitative results of our method against

baseline methods. From fine-grained comparisons (e.g., the
textures around the eye corners), it is evident that, compared
with VTM and HPCM, the proposed method produces sharper,
more detail-rich reconstructions. Considering variants of our
method (without LRDO, with LRDO, and with ROI-LRDO),
LRDO further increases texture detail via online latent-space
fine-tuning, whereas ROI-LRDO allocates more bits to the ROI
and yields better perceptual quality.

IV. CONCLUSIONS

In this paper, we presented PO-RTIntra, a perception-
oriented learned image compression framework built upon
the DCVC-RT intra model, and its higher-capacity variant
PO-RTIntraPro. A multi-stage progressive training schedule,
coupled with a composite perceptual loss and a Relativis-
tic PatchGAN discriminator, consistently improves percep-
tual fidelity. Beyond training, a Human-Perception–weighted
Integer Linear Programming (HP-ILP) formulation enables
content-aware bitrate allocation, while an ROI-based La-
tent Rate–Distortion–Optimized (ROI-LRDO) inference strat-
egy further refines visually critical regions. Together with
lightweight engineering refinements (e.g., half-precision de-
coding and pre-/post-resampling), the proposed system
achieves strong perceptual quality at comparable bitrates and

practical decoding efficiency. Extensive experiments indicate
that our approach produces reconstructions that are more
realistic and richer in detail than state-of-the-art learned and
conventional codecs under the same bitrate constraints.
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