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ABSTRACT

Incremental learning (IL) aims to acquire new knowledge from current tasks
while retaining knowledge learned from previous tasks. Replay-based IL methods
store a set of exemplars from previous tasks in a buffer and replay them when
learning new tasks. However, there is usually a size-limited buffer that cannot store
adequate real exemplars to retain the knowledge of previous tasks. In contrast, data
distillation (DD) can reduce the exemplar buffer’s size, by condensing a large real
dataset into a much smaller set of more information-compact synthetic exemplars.
Nevertheless, DD’s performance gain on IL quickly vanishes as the number of
synthetic exemplars grows. To overcome the weaknesses of real-data and synthetic-
data buffers, we instead optimize a hybrid memory including both types of data.
Specifically, we propose an innovative modification to DD that distills synthetic
data from a sliding window of checkpoints in history (rather than checkpoints
on multiple training trajectories). Conditioned on the synthetic data, we then
optimize the selection of real exemplars to provide complementary improvement
to the DD objective. The optimized hybrid memory combines the strengths of
synthetic and real exemplars, effectively mitigating catastrophic forgetting in Class
IL (CIL) when the buffer size for exemplars is limited. Notably, our method can
be seamlessly integrated into most existing replay-based CIL models. Extensive
experiments across multiple benchmarks demonstrate that our method significantly
outperforms existing replay-based baselines. Our source code is available at
https://anonymous.4open.science/r/DD4CIL-510C/.

1 INTRODUCTION

Incremental Learning (IL) Wu et al. (2019); Gepperth & Hammer (2016); Douillard et al. (2022);
Xie et al. (2022) is an emerging technique that emulates the human ability to continuously acquire
new knowledge in an ever-changing world. However, the key challenge is that IL always suffers
from catastrophic forgetting McCloskey & Cohen (1989), which means the model drastically forgets
previously acquired information upon learning new tasks. Thus, how to mitigate catastrophic
forgetting in IL remains a significant challenge.

In this work, we primarily focus on a particularly challenging scenario known as class incremental
learning (CIL) Douillard et al. (2020); Zhu et al. (2021); Wang et al. (2022b;a). CIL aims to learn new
and disjoint classes across successive task phases and then accurately predicts all classes observed
thus far in each phase, without prior knowledge of task identities. A common approach to enhance
CIL performance is the use of replay, which stores a subset of exemplars from old tasks and revisits
them when learning new tasks. Storing real exemplars can significantly enhance the performance of
CIL Rebuffi et al. (2017); Chaudhry et al. (2019); however, the performance will be affected by the
limitation of the exemplar buffer size. To decrease the dataset size, recent studies have explored data
distillation (DD) Loo et al. (2022); Du et al. (2023) to distill compact synthetic exemplars from real
datasets. However, Yu et al. (2023) indicates that the effectiveness of synthetic exemplars declines as
their quantity increases. Motivated by these findings, we aim to develop a new hybrid memory that
combines the advantages of both real and synthetic exemplars for replay-based CIL methods.
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Figure 1: Performance comparison between the
real memory as used by the original CIL meth-
ods and our hybrid memory across multiple base-
lines: iCaRL Rebuffi et al. (2017), BEEF Wang
et al. (2022a), and FOSTER Wang et al. (2022b),
all with the same exemplar buffer size on CIFAR-
100 Krizhevsky & Hinton (2009).

In this paper, we introduce a novel hybrid memory
that optimizes a limited number of both synthetic
and real exemplars for replay-based CIL methods.
A key challenge is enabling these limited exem-
plars to capture adequate information from data
samples of previous tasks. To address this chal-
lenge, we aim to introduce data distillation (DD)
into CIL, which condenses large datasets into a
small set of representative samples. However, clas-
sical DD techniques are not directly applicable to
replay-based CIL due to the requirement of check-
points on multiple training trajectories. To address
this challenge, we first propose an innovative Con-
tinual Data Distillation (CDD) method that adapts
DD for replay-based CIL, extracting informative
synthetic exemplars from previous tasks’ datasets.
Interestingly, experiments in Sec. 3 across differ-
ent limited exemplar buffer sizes reveal that while
memory relying solely on synthetic exemplars ini-
tially outperforms memory using only real exem-
plars, its performance becomes less effective than
the memory only with real exemplars as the buffer
size increases. To address this issue, we further de-
velop conditional real data selection that chooses
optimal real samples to complement synthetic data.
As a result, the interplay between selected real ex-
emplars and synthetic data enhances model performance within a limited exemplar buffer size. As
illustrated in Fig. 1, our proposed hybrid memory significantly outperforms the original real exemplars
across various replay-based CIL methods. Finally, in Sec. 5, we evaluate our approach by integrating
it into several existing replay-based CIL models and compare their performance against baseline
models. The results validate that our hybrid memory consistently leads to superior performance.

Our contributions are four-fold: 1) to our best knowledge, we are the first to synergize limited syn-
thetic and real exemplars to boost replay-based CIL performance; 2) we develop a novel conditional
real data selection that optimally chooses real exemplars, which can complement the synthetic data
effectively; 3) our approach can be inserted into many existing replay-based CIL models to improve
their performance; and 4) extensive experiments demonstrate that our method can significantly
outperform existing replay-based CIL approaches with a limited number of saved exemplars.

2 RELATED WORK

Class Incremental Learning. Existing works of CIL can be categorized into three types:
regularization-based methods, architecture-based methods, and replay-based methods.

(i) Regularization-based methods seek to mitigate catastrophic forgetting by incorporating explicit
regularization terms to balance the knowledge from old and new tasks Li & Hoiem (2017); Kirkpatrick
et al. (2017); Lee et al. (2017); Liu et al. (2018); Ahn et al. (2019). However, only using regularization-
based methods often proves inadequate for preventing catastrophic forgetting. Therefore, these
methods often collaborate with the replay-based methods to boost performance. (ii) Architecture-
based methods try to mitigate catastrophic forgetting by either dynamically expanding the model’s
parameters to accommodate new tasks Mallya & Lazebnik (2018); Ahn et al. (2019); Douillard
et al. (2022) or by learning new tasks in parallel using task-specific sub-networks or modules Rusu
et al. (2016); Fernando et al. (2017); Henning et al. (2021). However, these approaches often
require substantial memory to store the expanded network or multiple sub-networks and typically
depend on task identities to determine the appropriate parameters or sub-networks for a given task.
Consequently, their applicability is significantly limited. (iii) Replay-based methods are designed to
mitigate catastrophic forgetting by preserving a small subset of old task exemplars for replay while
learning new tasks. One line of these methods Rebuffi et al. (2017); Douillard et al. (2020); Wang et al.
(2022b;a) maintains a limited memory for storing real exemplars from old tasks. However, due to data
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privacy concerns and inherent memory constraints, the number of real exemplars stored is typically
small, significantly affecting performance in applications. Another line Shin et al. (2017); Ostapenko
et al. (2019); Lesort et al. (2019); Rios & Itti (2018) employs generative models, such as Variational
Autoencoders (VAE) and Generative Adversarial Networks (GAN), to create synthetic exemplars of
old tasks for replay. However, these methods often face challenges with label inconsistency during
continual learning Ayub & Wagner (2020); Ostapenko et al. (2019), and is closely related to continual
learning of generative models themselves Wang et al. (2023). In contrast, this paper aims to condense
dataset information into a few synthetic exemplars without training additional models.

Data Distillation. Data distillation (DD) aims to condense the information from a large-scale dataset
into a significantly smaller subset. This process ensures that the performance of a model trained on
the distilled subset is comparable to that of a model trained on the original dataset. Existing DD
methods can be grouped into three categories based on the optimization objectives: performance
matching Loo et al. (2022); Zhou et al. (2022), parameter matching Cazenavette et al. (2022); Zhao
& Bilen (2021); Du et al. (2023), and distribution matching Zhao & Bilen (2023); Sajedi et al. (2023).
While a few studies Zhao & Bilen (2023); Sajedi et al. (2023) have applied DD to a simple specific
IL application like GDumb Prabhu et al. (2020), they cannot be directly applied to the general
replay-based CIL methods. This is because traditional DD techniques require training a set of models
randomly sampled from an initialization distribution. However, for typical replay-based CIL, the
initial model parameters for each task are derived from the weights trained on the previous task. Thus,
directly applying existing DD techniques to CIL introduces significant computational costs, as it
requires training an additional set of models to get multiple trajectories. To address this issue, we
introduce the Continual DD (CDD) technique to suit replay-based CIL.

3 WHY HYBRID MEMORY?

In this section, we mainly introduce the rationale behind the need for hybrid memory in CIL by
comparing real, synthetic, and bybrid memory.
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Figure 2: Performance evaluation of iCaRL Re-
buffi et al. (2017) using different exemplar buffer
sizes for real memory, synthetic memory, and
our hybrid memory. “real memory” refers to
buffers containing only real exemplars selected
by iCaRL. “synthetic memory” contains only
synthetic exemplars generated by CDD.

To address catastrophic forgetting in CIL, general
replay-based methods attempt to store real exem-
plars from previous tasks in a limited exemplar
buffer. Intuitively, saving high-quality exemplars
from old tasks can enhance the performance of
replay-based CIL. However, a size-limited exem-
plar buffer cannot store adequate real exemplars to
retain the knowledge of previous tasks. To address
this challenge, we introduce a Continual Data Dis-
tillation (CDD) to compress important information
from each task’s dataset into a limited number of
synthetic exemplars, replacing the need to store
real exemplars in the buffer.

However, synthetic exemplars alone are not al-
ways sufficient. As their number increases, per-
formance tends to plateau due to the inevitable
information loss that occurs during the distillation
process. As shown in Fig. 2 and Appendix E, we
evaluate various replay-based CIL methods with
buffers containing either only real exemplars or
only synthetic exemplars generated by CDD across different buffer sizes on CIFAR-100 Krizhevsky
& Hinton (2009). We can observe that synthetic memory performs better than real memory when
the buffer size is small, suggesting that synthetic exemplars capture more information per exemplar
when storage is constrained. However, as the buffer size increases, synthetic exemplars become less
effective than real exemplars, likely due to the inherent important information loss in the distillation
process. Motivated by these observations, we propose to construct a hybrid memory that combines
the conditionally selected real exemplars with the synthetic ones for complementing each other. In
the following Sec. 4, we will detail the proposed method.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 3: The framework of the proposed hybrid memory system for replay-based CIL. We first
leverage the current real data with the hybrid memory for former classes to update the model. Then we
use Continual Data Distillation (❶) to extract synthetic exemplars and conditional real data selection
(❷) to choose optimal exemplars conditioned on synthetic data. Finally, the synthetic exemplars and
selected real exemplars are combined to update the hybrid memory.

4 PROPOSED HYBRID MEMORY

In this section, we first present the problem of using hybrid memory in replay-based CIL. Then we
detail the proposed hybrid memory to mitigate the catastrophic forgetting in CIL.

4.1 PROBLEM FORMULATION

This work aims to build a high-quality hybrid memory to mitigate the catastrophic forgetting problem
in CIL, which involves sequentially learning distinct tasks, each consisting of disjoint groups of
classes. Specifically, the real dataset for task-t is denoted asRt ≜ {(xi, yi)}nt

i=1, where yi belongs to
the label spaceCt of task-t, and nt represents the number of instances. Unlike traditional replay-based
methods that store only limited real exemplars, our approach maintains a hybrid memory with a
limited number of hybrid exemplars from learned tasks’ classes. The hybrid memory is represented
as H1:t−1 ≜

⋃t−1
i=1Hi, where Ht ≜ {St,Rt[At]} represents the hybrid memory for task-t. Here,

St comprises synthetic exemplars for the classes in task-t, and At ⊆ Vt (Vt = {1, 2, · · · , |Rt|} is
the ground set) indexes a subset of real samples selected from Rt. The model f(x; θ) trained on
H1:t−1 ∪Rt is required to predict probabilities for all former classes, including the current task-t,
denoted as C1:t ≜

⋃t
i=1 Ci, for any given input x. We define the important notations used in this

work in Appendix A.

4.2 OVERVIEW OF THE PROPOSED HYBRID MEMORY

Fig. 3 presents the framework of the proposed hybrid memory system for CIL, comprising two key
components: (i) model update and (ii) memory update. The model update refines the CIL model
by leveraging a hybrid memory composed of both synthetic and real exemplars. Instead of trivially
merging synthetic and real data, our memory update jointly optimizes the two by selecting real
exemplars based on the optimized synthetic data. As the memory update is central to our method, we
first elaborate on this component below.

4.3 MEMORY UPDATE

According to Section 3, we propose to obtain an optimal hybrid memoryH⋆
t for task-t by optimizing

the following objective,

H⋆
t ∈ argmin

Ht

L(Ht,Rt), Ht ≜ {St;Rt[At]}, (1)

4
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where L(·, ·) measures the distance between the hybrid memory Ht and the real dataset Rt. The
hybrid memory minimizing L(·, ·) is expected to achieve comparable performance asRt when used
to train the model.

However, jointly optimizing both the synthetic exemplars St and the subset At of real exemplars
at the same time is challenging, as the optimization of St is a continuous process while selecting
real exemplars Rt[At] requires combinatorial optimization. To address this problem, we adopt an
alternating optimization strategy to optimize the hybrid memory, as illustrated on the right side of
Fig. 3. Below, we detail our method for constructing an effective hybrid memory.

❶ Continual Data Distillation (CDD). First, we aim to optimize the synthetic exemplars S⋆t for
hybrid memory. Traditional DD methods can condense dataset information into a few synthetic
exemplars, but they cannot be directly applied to replay-based CIL methods. This is because
existing DD methods distill synthetic data from multiple training trajectories (with different random
initialization) while most CIL methods only produce one trajectory per task. To address this issue, we
introduce a novel Continual Data Distillation (CDD) technique, which distills St from checkpoints
on task-t’s training trajectory θ1:N , where N represents the total number of cached checkpoints θ
in the history of learning task-t. We do not need multiple trajectories because the replay of St in
the next task will only start from θN instead of random initializations.

Specifically, to distill synthetic exemplars from the real dataset (❶) after training the model on task-t,
we will minimize the distance (L(·, ·) in Eq. 1) between synthetic exemplars and the real data from
task-t. To effectively solve this equation, we propose CDD to adapt the original DD optimization
objective into CIL below,

S⋆t ∈ argmin
St

L(St,Rt) = E
θ∼θ1:N

[ℓ(St,Rt; θ)] , (2)

where ℓ(·, ·; ·) in Eq. 2 is a DD objective from any existing DD methods. It aims to measure the
distance between the synthetic exemplars St and the real dataRt using the sampled model parameters
θ. In Appendix D, we present a detailed description of several optimization objectives for CDD
in CIL.

To keep a constant and smaller memory of model checkpoints, we can instead apply a sliding window
version of CDD of window size τ ≪ N , i.e., updating St only based on the most recent τ checkpoints.
Specifically, after each epoch-j + 1 of task-t, we update the synthetic data St as St,j+1 below.

St,j+1 = St,j − η∇St,j

(
E

θ∼θj−τ+2:j+1

[ℓ(St,j ,Rt; θ)]

)
, (3)

where η is the learning rate for updating the synthetic exemplars St,j+1. Hence, we only need to
store τ checkpoints in any step but the final St at the end of each task is a result of DD on all the N
checkpoints. The final S⋆t ← St,N .

❷ Conditional Real Data Selection. While synthetic exemplars effectively capture rich information
from previous tasks, their impact tends to plateau as their quantity increases (see Sec. 3). To overcome
this limitation, we select a subset of real data complementary to S∗t at the end of each task t to further
reduce the gap between the memoryHt andRt (refer to ❷ in Fig. 3). Guided by Eq. 1, the objective
is to find an optimal subset A⋆

t ⊆ Vt such that the selected real dataRt[A
⋆
t ], in conjunction with the

distilled synthetic exemplars S⋆t , minimize the DD objective below:

A⋆
t ∈ argmin

At⊆Vt,|At|≤k

ℓ([Rt[At];S⋆t ],Rt; θt), (4)

where θt denotes the model parameters trained on Rt ∪ H1:t−1, task-t’s real data Rt combined
with the hybrid memory H1:t−1 for the former classes. The DD optimization objective ℓ(·, ·; ·) is
kept consistent with the one in Eq. 2. Since the conditional subset selection problem in Eq. 4 is
an NP-hard combinatorial optimization problem, we apply the greedy algorithm to approximately
optimize the subset At.

Algorithm. To select some ideal real exemplars, we employ a greedy algorithm within our selection.
This approach involves iteratively selecting the locally optimal real exemplars from the current task,
guided by the objective in Eq. 4. The core idea is to approximate a globally optimal selection,
designated as Rt[A

⋆
t ], through these successive local optimizations. The detailed algorithm is

summarized in Appendix B.
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Theoretical Analysis. We also theoretically analyze the performance of the model trained on the
proposed hybrid memory, showing that it can achieve performance comparable to a model trained
on the real dataset for all tasks in CIL. We begin our analysis with learning CIL tasks jointly, which
serves as the performance benchmark for CIL. In this scenario, the training data for task-t is written
as R1:t ≜

⋃t−1
i=1Ri ∪ Rt and the model for task-t can be obtained by the maximum likelihood

estimation below
θR1:t

= argmax
θ

(logP (R1:t−1|θ) + logP (Rt|θ)). (5)

Given that the absence of R1:t−1 leads to catastrophic forgetting in CIL, our objective is to con-
struct a smaller hybrid memory,H1:t−1, with limited exemplars that enable the network to achieve
performance comparable to that obtained when trained onR1:t−1.
Definition 1. The optimal model trained on task-t’s hybrid memory is θHt

= argmax
θ

logP (Ht|θ).

Definition 2. The optimal model trained on task-t’s real data is θRt
= argmax

θ
logP (Rt|θ).

Definition 3. The optimal model trained on the hybrid memory of all prior tasks from 1 to t is
denoted by θH1:t

= argmax
θ

ht(θ) = argmax
θ

logP (H1:t|θ).

Definition 4. The optimal model trained on the real data of all tasks from 1 to t is defined as
θR1:t

= argmax
θ

rt(θ) = argmax
θ

logP (R1:t|θ).

Assumption 1. Based on our objective of the proposed hybrid memory, we assume that the
model trained on the hybrid memory for one task can achieve comparable performance to that
of the model trained solely on real data for the same task, we can express this formally as
∃ϵt ∈ [0, 1), logP (Rt+1|θHt+1

) ≥ (1− ϵt) logP (Rt+1|θRt+1
).

Assumption 2. Assume that the performance of the model trained on the hybrid memory of all prior
tasks till task-t and the performance of the optimal model trained on the hybrid memory of task-t+ 1
can be bonded as ∃ρ, ρ ∗ rt+1(θR1:t+1

) ≥ rt(θH1:t
) + logP (Rt+1|θHt+1

).

Theorem 1 (Performance Approximation). Based on the above Assumptions 1 and 2, when ϵt+1 ≥
ρ

1−ϵt
, we can derive that the model trained on the hybrid memory of all previous tasks achieves

performance comparable to that of the model trained on the real dataset of all previous tasks,

logP (R1:t|θH1:t
) ≥ (1− ϵt) logP (R1:t|θR1:t

). (6)

We provide the detailed proof of Theorem. 1 in Appendix. C.
Remark. According to Theorem 1, when ϵt and ρ are small, Eq.6 is well bounded. In other words, if
the proposed hybrid memory is optimized using L(·, ·) in Eq.1 for each task in CIL, the performance
of the model trained on the hybrid memory across all tasks can achieve results comparable to those
of a model trained on a real dataset for all tasks.

4.4 MODEL UPDATE

Next, we describe the model update based on the updated hybrid memory. After optimizing the
hybrid memoryHt for the task-t, the hybrid memory is then updated as follows:

H1:t ← H1:t−1 ∪ {S⋆t ,Rt[A
⋆
t ]} . (7)

We then combine the updated hybrid memory,Rt+1, which contains data from previous tasks, with
the real exemplars,Rt+1, to train the CIL model for task-t+1. As illustrated on the left side of Fig.3,
to achieve the optimal model trained on the hybrid memory of all prior tasks, i.e., θH1:t in Eq. 6, we
adopt an alternating model update strategy based on the data and hybrid memory of task-t.

Finally, we detail the training pipeline for task-t in Algorithm 1.

5 EXPERIMENTS

In this section, we first compare the performance of the proposed hybrid memory with the replay-
based baselines in CIL. We then demonstrate that the integration of the hybrid memory can enhance

6
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Algorithm 1: Training with Hybrid Memory on Task-t
input :Epochs: N ; sliding window: τ ; real data for classes Ct: Rt; number of synthetic

exemplars per class: k; hybrid memory from previous tasks: H1:t−1

1 Randomly select k samples per class fromRt as St,0;
2 for j ∈ {1, . . . , N} do
3 update the model as θj onRt ∪H1:t−1 using a specified CIL objective and cache θj ;
4 if j > τ then
5 remove the cached checkpoint θj−τ ;
6 update synthetic data St,j using Eq. 3;
7 else
8 St,j ← St,j−1;

9 St ← St,N ;
10 optimize At in Eq. 4 using Algorithm 2 to obtain the selected real exemplars asRt[At];

output :Hybrid MemoryH1:t ← H1:t−1 ∪ {St,Rt[At]}

the performance of some existing replay-based CIL methods. Additionally, we investigate the ratio
of synthetic exemplars within the hybrid memory. Finally, we examine the effectiveness of our
conditional real data selection in choosing ideal real exemplars.

Datasets. We evaluate the proposed method on two commonly used benchmarks for class incremental
learning (CIL), CIFAR-100 Krizhevsky & Hinton (2009) and TinyImageNet Yao & Miller (2015).
CIFAR-100: CIFAR-100 contains 100 classes, the whole dataset includes 50, 000 training images
with 500 images per class and 10, 000 test images with 100 images per class. TinyImageNet:
TinyImageNet contains 200 classes, the whole dataset includes 100, 000 training images with 500
images per class and 10, 000 test images with 50 images per class.

Protocol. To evaluate the performance of our method, we apply two commonly used protocols Zhou
et al. (2023) for both datasets. 1) zero-base: For the zero-base setting, we split the whole classes into
5, and 10 tasks (5, and 10 phases) evenly to train the network incrementally. 2) half-base: For the
half-base setting, we train half of the whole classes as the first task and then split the rest half of the
classes into 5, and 10 tasks (5, and 10 phases) evenly to train the network incrementally. To ensure a
fair comparison across different replay-based methods, we maintain a fixed memory capacity that
stores 20 exemplars per class for training.

Baselines. We compare some replay-based methods that incorporate our proposed hybrid memory
with other established replay-based approaches, including iCaRL Rebuffi et al. (2017), BiC Wu
et al. (2019), WA Zhao et al. (2020), PODNet Douillard et al. (2020), FOSTER Wang et al. (2022b),
and BEEF Wang et al. (2022a). We assess the performance of these methods using two commonly
used metrics in CIL: Average Accuracy (AA) Chaudhry et al. (2018), which represents the overall
performance at a given moment, and Average Incremental Accuracy (AIA) Rebuffi et al. (2017),
which captures historical performance variations.

Experiments Setting. In our experiments, we insert our hybrid memory into various replay-based
CIL methods: iCaRL Rebuffi et al. (2017), FOSTER Wang et al. (2022b), and BEEF Wang et al.
(2022a). All methods are implemented with PyTorch Paszke et al. (2017) and PyCIL Zhou et al.
(2021), which are well-regarded tools for CIL. We use ResNet-18 He et al. (2016) as the feature
extractor for all methods, with a uniform batch size of B = 128. For iCaRL, we employ the SGD
optimizer Ruder (2016), with a momentum of 0.9 and a weight decay of 2e-4. The model is trained
for 170 epochs, starting with an initial learning rate of 0.01, which is then reduced by a factor of 0.1 at
the 80th and 120th epochs. For FOSTER Wang et al. (2022b), we use SGD with a momentum of 0.9.
The weight decay is set at 5e-4 during the boosting phases and 0 during the compression phase. The
model is trained for 170 epochs during the boosting phases and 130 epochs during the compression
phase. The learning rate starts at 0.01 and follows a cosine annealing schedule that decays to zero
across the specified epochs. For BEEF Wang et al. (2022a), we adopt SGD with a momentum of 0.9.
The weight decay is 5e-4 during the expansion phase and 0 during the fusion phase. The model is
trained for 170 epochs in the expansion phase and 60 in the fusion phase, with an initial learning rate
of 0.01, decaying to zero according to a cosine annealing schedule. The detailed hyper-parameter
settings for FOSTER and BEEF can be found in the original papers. For the specific data distillation
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algorithm for CDD, we adapt DM Zhao & Bilen (2023), a distribution matching DD method, as the
objective ℓ(·, ·; ·) in Eq. 2. For the window size τ in the sliding window version CDD, we use τ = 4.
For DM, we use the SGD optimizer with a momentum of 0.5 to learn the synthetic exemplars. The
learning rate η in Eq. 3 is set to 0.1 for CIFAR-100 and 1 for TinyImageNet. For both datasets, we
train the synthetic exemplars for 10,000 iterations. All experiment results are averaged over three
runs. We run all experiments on a single NVIDIA RTX A6000 GPU with 48GB of graphic memory.

5.1 MAIN RESULTS

First, we compare the performance of the proposed hybrid memory with various replay-based CIL
methods on CIFAR-100 and TinyImageNet datasets under zero-base settings with 5 and 10 phases
and half-base settings with 5 and 10 phases, storing 20 exemplars per class. To demonstrate the
effectiveness and applicability of our approach, we integrate it into three replay-based CIL models:
the classical method iCaRL, and the recent methods FOSTER and BEEF. In this experiment, we adopt
the DM as our CDD technique to extract synthetic exemplars for the hybrid memory, denoted by
H. Our hybrid memory comprises 10 synthetic exemplars generated by CDD and 10 real exemplars
selected through the proposed conditional real data selection.

Tables 1 and 2 show the comparison of the performance achieved by iCaRL, BEEF, and FOSTER
using hybrid memory against different baselines under two different settings. The experimental
results are averaged over three runs. Regarding the zero-base setting, as shown in Table 1, the
FOSTER integrated with our hybrid memory, which achieves the best performance among our three
methods in AIA and the last average accuracy (LAA), outperforms the best baseline FOSTER by
a large margin on CIFAR-100 under both 5-phase and 10-phase settings. Likewise, the FOSTER
with our method achieves higher AIA than the best baseline FOSTER on TinyImageNet for the same
settings and also performs the best in LAA on TinyImageNet under the 10-phase setting.

For the half-base setting, as shown in Table 2, the BEEF incorporated with our method surpasses
the best baseline (FOSTER) with a large margin in AIA and LAA on CIFAR-100 under the 5-phase
setting, and on TinyImageNet under both 5-phase and 10-phase settings. Similarly, the FOSTER
integrated with the proposed hybrid memory outperforms the best baseline FOSTER in AIA and
LAA on CIFAR-100 under the 10-phase setting.

The reason why our method performs well is that the optimized hybrid memory, combining the
strengths of synthetic and real exemplars, can retain more useful knowledge of previous tasks. In
sum, the experimental results demonstrate the effectiveness of our hybrid memory in improving CIL
performance. Due to limited space, we present more detailed results in Appendix F.

Table 1: AIA (average incremental accuracy) and LAA (the last task’s average accuracy) of the
three replay-based methods with the proposed hybrid memory and baselines on both CIFAR-100 and
TinyImageNet under zero-base 5 and 10 phases with 20 exemplars per class. “w H” denotes using
our proposed hybrid memory with distribution matching (DM).

Method (20 exemplars per class) CIFAR-AIA [%]↑ CIFAR-LAA [%]↑ Tiny-AIA [%]↑ Tiny-LAA [%]↑
b0-5 b0-10 b0-5 b0-10 b0-5 b0-10 b0-5 b0-10

BiC Wu et al. (2019) 66.57 56.34 51.90 33.33 60.20 42.12 47.41 18.22
WA Zhao et al. (2020) 68.02 64.44 57.84 50.57 60.21 45.92 47.96 30.94
PODNet Douillard et al. (2020) 64.87 52.07 49.97 37.14 49.33 39.77 30.33 22.21
iCaRL Rebuffi et al. (2017) 63.26 57.03 48.70 44.44 56.79 47.15 38.55 30.29
BEEF Wang et al. (2022a) 75.21 67.73 68.17 53.49 69.02 62.98 60.11 50.96
FOSTER Wang et al. (2022b) 78.15 75.00 70.76 65.12 68.60 65.37 57.60 52.70
iCaRL w H (Ours) 69.47 60.00 56.21 45.23 62.97 50.78 47.44 34.42
BEEF w H (Ours) 76.66 71.04 68.48 59.62 69.54 64.06 62.91 52.13
FOSTER w H (Ours) 78.79 76.01 70.93 66.63 70.28 68.55 60.24 56.93

5.2 EFFECTIVENESS OF HYBRID MEMORY

In this section, we demonstrate the overall effectiveness of the proposed hybrid memory in enhancing
the performance of some existing replay-based CIL methods. In this experiment, we adapt the original
DM objective in CDD, denoted as ℓ(·, ·; ·) in Eq. 2, to generate synthetic exemplars, which make up
the synthetic memory (S). We then conditionally select the optimal real exemplars based on these
synthetic exemplars to construct the hybrid memory (H). To validate its general effectiveness, we
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Table 2: AIA and LAA of the three replay-based methods with the proposed hybrid memory and
baselines on both CIFAR-100 and TinyImageNet under half-base (train half of the whole classes as
the first task) 5 and 10 phases with 20 exemplars per class. “w H” denotes using our proposed hybrid
memory with distribution matching (DM).

Method (20 exemplars per class) CIFAR-AIA [%]↑ CIFAR-LAA [%]↑ Tiny-AIA [%]↑ Tiny-LAA [%]↑
half-5 half-10 half-5 half-10 half-5 half-10 half-5 half-10

BiC Wu et al. (2019) 64.91 58.11 49.48 41.48 51.48 44.29 36.41 25.98
WA Zhao et al. (2020) 71.90 68.08 63.34 56.30 52.55 45.32 38.45 29.07
PODNet Douillard et al. (2020) 64.84 58.81 54.09 47.46 41.84 33.05 29.80 22.88
iCaRL Rebuffi et al. (2017) 61.91 55.73 45.62 40.87 44.38 33.02 28.86 17.50
BEEF Wang et al. (2022a) 68.57 69.27 61.56 60.90 58.39 54.69 51.52 48.05
FOSTER Wang et al. (2022b) 73.34 69.51 65.80 60.30 60.94 54.67 52.10 43.60
iCaRL w H (Ours) 64.13 57.58 51.02 41.60 49.16 34.91 33.23 19.99
BEEF w H (Ours) 76.31 73.25 70.52 61.80 63.76 60.76 56.89 52.27
FOSTER w H (Ours) 75.70 74.37 68.53 64.95 63.60 58.57 55.67 48.73

integrate both the synthetic memory and hybrid memory into three replay-based CIL methods: iCaRL,
FOSTER, and BEEF. We evaluate the performance of these methods on CIFAR-100 under two
configurations: zero-base (5 and 10 phases) and half-base (5 and 10 phases), using 20 exemplars per
class. The performance comparison between the original methods and those using our hybrid memory,
as shown in Table 3, indicates that integrating hybrid memory significantly enhances performance
across all three replay-based CIL methods. Especially, under the half-base setting, our hybrid memory
improves iCaRL by 2.22% and 1.85%, BEEF by 7.74% and 3.98%, and FOSTER by 2.36% and
4.86% in AIA for the 5-phase and 10-phase settings. Comparing the performance of the three methods
integrated with our hybrid memory (w H) against the original methods with real memory and with
synthetic memory (w S), our hybrid memory consistently outperforms both the synthetic and original
real memory across different CIL methods and settings, all while maintaining the same exemplar
buffer size.

Table 3: AIA and LAA of the three replay-based methods with the proposed hybrid memory, synthetic
exemplars, and baselines on CIFAR-100 under zero-base and half-base 5 and 10 phases with 20
exemplars per class. “w S” denotes using the synthetic memory achieved by CDD with distribution
matching (DM).

Method (20 exemplars per class) CIFAR-AIA [%]↑ CIFAR-LAA [%]↑ CIFAR-AIA [%]↑ CIFAR-LAA [%]↑
b0-5 b0-10 b0-5 b0-10 half-5 half-10 half-5 half-10

iCaRL 63.26 57.03 48.70 44.44 61.91 55.73 45.62 40.87
iCaRL w S (Ours) 68.32 59.34 54.77 43.67 63.78 55.89 50.74 37.45
iCaRL w H (Ours) 69.47 60.00 56.21 45.23 64.13 57.58 51.02 41.60
BEEF 75.21 67.73 68.17 53.49 68.57 69.27 61.56 60.90
BEEF w S (Ours) 76.42 69.23 67.97 57.25 74.64 70.50 68.61 59.36
BEEF w H (Ours) 76.66 71.04 68.48 59.62 76.31 73.25 70.52 61.80
FOSTER 78.15 75.00 70.76 65.12 73.34 69.51 65.80 60.30
FOSTER w S (Ours) 77.73 73.51 70.32 64.07 75.25 71.97 68.45 62.25
FOSTER w H (Ours) 78.79 76.01 70.93 66.63 75.70 74.37 68.53 64.95

5.3 IMPACT OF THE RATIO IN HYBRID MEMORY

We also study the impact of varying the ratio of synthetic exemplars in the hybrid memory under
a limited exemplar buffer size. Using grid search, we empirically determine the optimal ratio of
synthetic exemplars in the hybrid memory. In this experiment, we apply our hybrid memory to
the replay-based CIL method iCaRL on CIFAR-100, using the zero-base 10-phase setting with 20
exemplars per class, and evaluate its performance at different synthetic-to-real exemplar ratios. As
shown in Fig. 4, the performance peaks when the ratio is 0.5. This result suggests that synthetic
exemplars and real exemplars are equally important, with both contributing to improved performance.

5.4 EFFECTIVENESS OF CONDITIONAL REAL DATA SELECTION

To verify the effectiveness of our proposed conditional real data selection, we compared it with
random sampling. Specifically, we apply the conditional real data selection in Eq.4 to choose optimal
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Figure 4: LAA and AIA of iCaRL with proposed
hybrid memory at different synthetic exemplar
ratios. “LAA” refers to the last average accuracy,
“AIA” refers to the average incremental accuracy.
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Figure 5: Performance comparison of the hybrid
memory using different selection methods with
iCaRL, BEEF, and FOSTER on CIFAR-100, all
using the same exemplar buffer size.

real exemplars based on the synthetic exemplars by CDD, and then combine selected real exemplars
with synthetic ones to construct a hybrid memory. For a fair comparison, we also construct a
hybrid memory by randomly selecting real exemplars and combining them with synthetic exemplars.
These hybrid memories are individually integrated into different replay-based CIL methods, iCaRL,
FOSTER, and BEEF. We evaluate the performance using AIA on CIFAR-100 under a zero-base
setting with 10 phases, with each class containing 20 exemplars. The hybrid memory maintains a
balance of 10 synthetic and 10 real exemplars, while the original method utilizes 20 real exemplars.
As shown in Fig.5, the hybrid memory with our conditional real data selection not only outperforms
the original method but also demonstrates a significant advantage over hybrid memories with random
selection. Notably, the performance comparison of FOSTER with different memory types reveals
that random sampling can affect the effectiveness of the generated synthetic exemplars.The superior
performance of our proposed hybrid memory is attributed to the conditional real data selection’s
ability to optimally choose real exemplars that complement the synthetic exemplars.

6 CONCLUSION AND LIMITATIONS

In this work, we introduced a hybrid memory that stores a limited number of real and synthetic
exemplars for improving the CIL performance. Specifically, we devised a new Continual Data
Distillation (CDD) technique that can adapt most existing DD methods into CIL to generate optimal
synthetic exemplars for the general replay-based CIL models. To further complement synthetic data,
we proposed a conditional real-data selection to choose optimal real exemplars based on synthetic
exemplars. As a result, the combination of synthetic and real exemplars significantly enhanced the
CIL performance. Extensive experimental results on two benchmarks demonstrated that our hybrid
memory can improve the performance of the original methods and other baselines. A limitation of
our method is that the ratio between synthetic and real exemplars in the hybrid memory is currently
set as an empirical hyper-parameter. In future work, we plan to develop an adaptive algorithm to
automatically determine the optimal ratio for hybrid memory.
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A NOTATION LIST.

Table 4 describes the important notations used in our work.

Table 4: Summary of Notations.
Notation Definition
t The current task ID
R1:t ≜

⋃t−1
i=1Ri ∪Rt The real data for tasks from 1 to t− 1

Rt ≜ {(xi, yi)}nt
i=1 The real data for task-t

xi The real data sample
yi The label of the real data sample xi
nt The number of real instances in task-t
Ct The whole label space for task-t
H1:t−1 ≜

⋃t−1
i=1Hi The hybrid memory for tasks from 1 to t− 1

Ht ≜ {St,Rt[At]} The hybrid memory for the task-t
St The synthetic exemplars for the task-t
St,j The updated synthetic exemplars for the task-t after epoch-j

of task-t in sliding window version of CDD
τ The window size (the number of cached checkpoints) for

sliding window version of CDD
η The learning rate for updating the synthetic exemplars St,j by

sliding window version of CDD
At ⊆ {1, 2, · · · , |Rt|} The indexes of subset chosen from the real datasetRt

f(·; θ) The whole model, with parameters θ
θHt

The optimal model trained on task-t’s hybrid memory
θRt The optimal model trained on task-t’s real data
θR1:t

The optimal model trained on the real data of all tasks from 1
to t

θH1:t
The optimal model trained on the hybrid memory of all prior
tasks from 1 to t

ϵt The scalar value bounding the performance of θH1:t onR1:t

by the performance of θR1:t onR1:t.
ρ The scaling factor that bounds the sum of the performance of

θH1:t
onR1:t and the performance of θHt+1

onRt+1.

B ALGORITHM OF CONDITIONAL REAL DATA SELECTION

As described in Sec. 4.3, we employ a greedy algorithm for our proposed conditional real data
selection. The details of this algorithm are provided below,

Algorithm 2: Conditional Real Data Selection (Greedy Algorithm)
input :Real data for classes Ct: Rt; synthetic exemplars: St; number of selected exemplars

per class: k
initialize :Selected subset At ← ∅, minimum distance dmin ← +∞

1 while |At| < |Ct| × k do
2 for i ∈ Vt\At do
3 A′

t ← At ∪ {i};
4 compute the objective value in Eq. 4 as d, where At is set to A′

t;
5 if d < dmin and |{j ∈ At : yj = yi}| < k then
6 Update minimum distance: dmin ← d;
7 i∗ ← i;

8 Update subset At ← At ∪ {i∗};
output :Selected exemplarsRt[At]

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C THE PROOF FOR THEOREM 1.

Here we provide the detailed proof for Theorem 1.

Theorem 1 (Performance Approximation). Based on the above Assumptions 1 and 2, when ϵt+1 ≥
ρ

1−ϵt
, we can derive that the model trained on the hybrid memory of all previous tasks achieves

performance comparable to that of the model trained on the real dataset of all previous tasks,

logP (R1:t|θH1:t) ≥ (1− ϵt) logP (R1:t|θR1:t). (6)

Proof. According to the Definition 4, the θR1:t
is the optimal solution of rt(θ), thus we can get

rt(θR1:t
) ≥ rt(θR1:t+1

). And according to the Definition 2, the θRt+1
is the optimal solution of

logP (Rt+1|θ), thus we can get logP (Rt+1|θRt+1
) ≥ logP (Rt+1|θR1:t+1

).

According to the Mathematical Induction:

Base Case (t = 1):

logP (R1:1|θH1:1
) = logP (R1|θH1

), logP (R1:1|θR1:1
) = logP (R1|θR1

)

∃ϵ ∈ [0, 1), logP (R1|θH1) ≥ (1− ϵ) logP (R1|θR1)

According to the Assumption 1, the base case holds true.

Inductive Hypothesis: Assume that the formula holds for ϵt at task-t:

logP (R1:t|θH1:t
) ≥ (1− ϵt) logP (R1:t|θR1:t

)

Inductive Step: We will prove that the formula holds for ϵt+1 at task-t+ 1:

logP (R1:t+1|θH1:t+1
) = logP (R1:t|θH1:t+1

) + logP (Rt+1|θH1:t+1
)

= rt(θH1:t+1
) + logP (Rt+1|θH1:t+1

)

= rt+1(θH1:t+1
)

logP (R1:t+1|θR1:t+1) = logP (R1:t|θR1:t+1) + logP (Rt+1|θR1:t+1)

= rt(θR1:t+1
) + logP (Rt+1|θR1:t+1

)

= rt+1(θR1:t+1
)

rt+1(θR1:t+1)− rt+1(θH1:t+1) ≤ rt(θR1:t+1) + logP (Rt+1|θR1:t+1)

≤ rt(θR1:t) + logP (Rt+1|θRt+1)

≤ 1

1− ϵt
(
rt(θH1:t) + logP (Rt+1|θHt+1)

)
≤ ρ

1− ϵt
rt+1(θR1:t+1

)

≤ ϵt+1rt+1(θR1:t+1
)

Thus, by the principle of mathematical induction, the formula holds for all ϵt of task-t.

Discussion. We discuss the performance boundary of the model trained with the proposed hybrid
memory. According to Theorem 1, the performance of the optimal model trained on the hybrid
memory for all tasks which is denoted as rt(θH1:t), is bounded by the performance of the optimal
model trained on the real dataset for all tasks, scaled by 1− ϵt, when ϵt+1 ≥ ρ

1−ϵt
. It is evident that

ϵt can converge to ϵt =
1±

√
1−4ρ
2 if ρ ≤ 1

4 , ensuring that ϵt remains within the bounds ϵt ∈ [0, 1).
Therefore, if the initial ϵt ≤ 1±

√
1−4ρ
2 , the performance will be well bounded. We also illustrate how

ϵt changes iteratively over 100 tasks with different values of ρ and initial ϵt in Fig. 6.
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Figure 6: Visualization of ϵt in 100 iteration with different ρ and different initial ϵt.

D CDD OPTIMIZATION OBJECTIVES.

We present a detailed description of several optimization objectives for our CDD approach.

CDD with DM. First, we describe the adaptation of DM Zhao & Bilen (2023) as the optimization
objective for CDD, as outlined below,

E
θ∼θ1:N

[ℓDM (St,Rt; θ)] = E
θ∼θ1:N

[
∥E[ψ(St; θ)]− E[ψ(Rt; θ)]∥2

]
, (8)

where N in Eq. 8 represents the total number of cached checkpoints θ in the history of learning task-t,
ψ(·; θ) is the function to extract the embedding of the input samples. The objective of Eq. 8 aims to
measure the distance between the mean vector of the synthetic exemplars and the mean vector of the
real dataset.
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CDD with FTD. We also adapt the FTD Du et al. (2023) as the optimization objective for CDD as
follows,

E
θ∼θ1:N

[ℓFTD(St, {Rt,H1:t−1}; θ)] = E
θ∼θ1:N

∥(θ(n)S − θ(m))∥22
∥(θ − θ(m))∥22

,

θ
(0)
S = θ, θ

(n)
S = θ

(n−1)
S + η∇L(St; θ(n−1)

S ),

θ(0) = θ, θ(m) = θ(m−1) + η∇L({Rt,H1:t−1}; θ(m−1)), (9)

where N in Eq. 9 represents the total number of cached checkpoints θ in the history of learning
task-t. The parameter vectors θ(n)S and θ(m), which originate from the initial model parameters
θ, are iteratively trained on the synthetic dataset St and the data Rt ∪ H1:t−1 of the current task,
respectively, for n and m steps with learning rate η. The function L(·; ·) is the loss function used for
training the network across different CIL methods. The objective in Eq. 9 focuses on quantifying the
difference between two sets of parameter vectors: θ(n)S and θ(m). Here θ(n)S is derived from the initial
parameters θ, which are trained with synthetic exemplars St for n steps, while θ(m) originates from
the same initial parameters but is trained with real dataRt ∪H1:t−1 for m steps.

CDD with DSA. Additionally, we also adapt the DSA Zhao & Bilen (2021) as the optimization
objective for CDD as follows,

E
θ∼θ1:N

[ℓDSA(St,Rt; θ)] = E
θ∼θ1:N

< ∇L(St; θ),∇L(Rt; θ) >

∥∇L(St; θ)∥2, ∥∇L(Rt; θ)∥2
, (10)

where N in Eq. 10 represents the total number of cached checkpoints θ in the history of learning
task-t. The function L(·; ·) is the loss function used for training the network across different CIL
methods. The objective in Eq. 10 focuses on quantifying the cosine similarity between the gradient
of the synthetic exemplars St and the gradient of the real datasetRt, both computed on the sampled
parameters θ with the loss function L(·; ·).
CDD with DataDAM. Furthermore, we adapt the DataDAM Sajedi et al. (2023) as the optimization
objective for CDD as follows,

E
θ∼θ1:N

[ℓDataDAM (St,Rt; θ)] = E
θ∼θ1:N

[LSAM (St,Rt; θ) + λLMMD(St,Rt; θ)] , (11)

where N in Eq. 10 represents the total number of cached checkpoints θ in the history of learning
task-t. The objective in Eq. 11 focuses on attention matching and quantifying the distributions
between synthetic exemplars and real datasets by objectives LSAM (·, ·; ·) and LMMD(·, ·; ·).
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Figure 7: Results of different CDD optimization
objectives on CIFAR-100 with zero-base 10 phases
setting. S(·) means synthetic memory generated
by a specific objective.

Furthermore, we validate the wild applicabil-
ity of our CDD in adapting the data distilla-
tion methods into CIL. In this experiment, we
adapt different DD algorithms, DM, FTD, DSA,
and DataDAM above as CDD optimization ob-
jectives. These objectives with CDD are in-
tegrated into iCaRL, and their performance is
evaluated on the CIFAR-100 dataset with zero-
base 10 phases setting. In the experiment, each
CDD is used to generate 10 synthetic exem-
plars per class, denoted as S(DM), S(FTD),
S(DSA), and S(DataDAM). These are com-
pared against the original iCaRL method, which
selects 10 and 20 real exemplars per class using
herdingWelling (2009), as described inRebuffi
et al. (2017). As illustrated in Fig. 7, iCaRL with
10 synthetic exemplars per class outperforms the
original method which uses 10 real exemplars
per class (black curve). In addition, using just
10 synthetic exemplars per class as S(FTD) achieves comparable performance to iCaRL configured
with 20 real exemplars per class (blue dash curve).
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Figure 8: Performance evaluations of FOSTER and BEEF across different exemplar buffer sizes for
real memory, synthetic memory, and our hybrid memory. “real memory” refers to buffers containing
only real exemplars selected by iCaRL. “synthetic memory” contains only synthetic exemplars
generated using CDD.

E EFFECTIVENESS OF HYBRID MEMORY ACROSS DIFFERENT EXEMPLAR
BUFFER SIZES

To further validate the assumption from Sec. 3 that synthetic exemplars alone are not always sufficient,
we explore the effectiveness of the hybrid memory across different exemplar buffer sizes with several
different replay-based CIL methods. In addition to the iCaRL results shown in Fig. 2, we compare
the performance of hybrid memory with both synthetic and real memory on two other replay-based
CIL methods, BEEF and FOSTER, across various buffer sizes. The experiments were conducted on
CIFAR-100 under the zero-base 10-phase setting, the same setting used for iCaRL in Fig. 2.

As shown in Fig. 8, the performance of synthetic memory generated by CDD significantly improves
at smaller buffer sizes but quickly diminishes as the number of synthetic exemplars increases in
both FOSTER and BEEF. In contrast, our proposed hybrid memory leverages the strengths of both
synthetic and real exemplars, consistently outperforming synthetic and real memory across different
exemplar buffer sizes.

F ADDITIONAL RESULTS

To demonstrate the superior performance of our approach, we also compare the average accuracy
curves for each task against the baselines. As described in Sec. 5.1, we here present the average
accuracy (AA) for each task corresponding to Table 1 and Table 2. As shown in Fig. 9, a comparison
between the solid curves (representing methods with our proposed hybrid memory) and the dashed
curves of the same color (representing the original methods) shows that our hybrid memory consis-
tently enhances the performance of replay-based CIL methods, even with a limited exemplar buffer
size, across different dataset scales and experimental settings.

G VISUALIZATION

In this section, we provide visualizations of the synthetic and selected exemplars from CIFAR-100
and TinyImageNet. As shown in Fig. 10, we randomly select three different classes and compare the
synthetic exemplars generated by our CDD with the corresponding selected exemplars conditioned
on these synthetic exemplars. By comparing the upper and bottom rows, we observe that the selected
exemplars are chosen based on the given synthetic exemplars and provide complementary information
that the synthetic exemplars alone do not capture.
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(g) Tiny-half-5
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Figure 9: Accuracy comparison of different methods on CIFAR-100 and TinyImageNet under
different settings. It can be observed that our hybrid memory can improve the performance of
repla-based methods in terms of accuracy. “zero-5,10” means “zero-base-5,10 phases” setting and
“half-5,10” means “half-base-5,10 phases” setting.

(a) Synthetic Exemplars (CIFAR-100) (b) Synthetic Exemplars (TinyImageNet)

(c) Select Exempalrs (CIFAR-100) (d) Select Exempalrs (TinyImageNet)

Figure 10: Visualization of select exemplars and synthetic exemplars, the latter generated by CDD
with DM, from CIFAR-100 and TinyImageNet.
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