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ABSTRACT

Reinforcement learning (RL) has been pivotal to the recent success of large lan-
guage models (LLMs) across a broad spectrum of tasks. However, RL optimiza-
tion often suffers from inherent stability challenges, particularly when compared
to supervised fine-tuning (SFT). In this work, we investigate the stability gap be-
tween SFT and RL from a gradient-based perspective. We identify a property of
the cross-entropy loss with softmax in SFT, which we term logits convexity, char-
acterized by local convexity with respect to logits. Our theoretical analysis shows
that logits convexity induces smoother gradient magnitudes during optimization,
thereby enhancing stability. In contrast, the policy gradient objectives of widely
used algorithms such as PPO and GRPO lack this property. Motivated by this
insight, we propose Logits Convex Optimization (LCO), a simple yet effective
policy optimization strategy to align the policy distribution with a carefully de-
signed target distribution via KL divergence to emulate the stabilizing effects of
logits convexity. Empirical results demonstrate that LCO improves stability and
consistently outperforms conventional RL methods on both reasoning and non-
reasoning benchmarks. Code and datasets will be made publicly available.

1 INTRODUCTION

Reinforcement learning (RL) has become a cornerstone for aligning large language models (LLMs)
with human preferences (Ouyang et al.| 2022; Bai et al., 2024) and enhancing complex capabilities
such as reasoning (Guo et al., 2025} Yang et al., [2025a)). Despite these advances, RL training often
suffers from inherent instability (Rafailov et al., [2024). Existing approaches attempt to address
this issue through variance reduction in advantage estimation (Schulman et al., [2015b), clipping
strategies that constrain parameter updates (Schulman et al., 2017; |Yu et al., 2025), and KL-based
penalties that regulate policy shifts (Ouyang et al., 2022} Shao et al.,[2024). Although these solutions
mitigate instability to some extent, they do not fully resolve it (Team et al.,|2025;|Zhu et al.| 2025a).
This motivates a deeper understanding of the underlying causes of RL instability in LLMs.

In this work, we analyze RL instability from a gradient-based perspective. We observe that the
loss functions in widely used RL algorithms, such as PPO (Schulman et al., |2017), often exhibit
large fluctuations or explosions in gradient magnitude as training progresses (Figure [T[a)). These
fluctuations can induce excessive parameter updates, potentially leading to training collapse (Figure
[[[b)). By contrast, supervised fine-tuning (SFT) typically demonstrates more stable optimization
throughout training (Wu et al., 2025 |He et al., 2025; |Liu et al.l [2025)). This observation naturally
raises the question: what accounts for the greater stability of SFT compared to RL methods?
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optimum. While SFT loss exhibits logits convexity, which ensures stable gradient updates, RL ob-
jectives such as REINFORCE (Williams} [1992) and PPO (Schulman et al., [2017)) lack this property,
making them susceptible to large gradient fluctuations and training instability.

Building on this property, we propose Logits Convex Optimization (LCO), an RL optimization
objective that preserves logits convexity and promotes stable training. LCO works by aligning the
policy distribution with a carefully designed target distribution through KL divergence. This target
distribution preserves the core objective of policy gradient methods: it encourages the policy to in-
crease the probability of beneficial actions while suppressing the probability of undesirable actions.
LCO can be seamlessly incorporated into existing RL algorithms like PPO. With this integration,
LCO produces stable gradient updates (Figure [I(a)) and delivers consistent performance improve-
ments (Figure [T(b)). Empirical evaluations on both reasoning and non-reasoning tasks show that
LCO achieves superior stability and performance compared to standard RL baselines. Furthermore,
our analysis yields three key findings. First, we identify a primary source of training instability
in standard RL: excessively large gradient norms arising from negative samples in non-convex loss
regions. Second, we reveal that sampled actions with low probability can cause sudden spikes in
gradient updates, which affect the stability of methods such as PPO and GRPO. Third, we show
that preserving logit convexity during optimization leads to stable and diminishing gradient updates
as training approaches convergence, which mitigates RL training instability.

2 PRELIMINARY
2.1 NOTATION AND SUPERVISED FINE-TUNING

We define the state s; at time step ¢ as the combination of the prompt tokens and all tokens gener-
ated up to that step. An action a; ; at time step ¢ corresponds to selecting the ¢-th token from the
vocabulary A. Given state s;, the probability that the policy 7y generates action a; ; is denoted by
7o (ay,i|s¢). In this work, we consider the policy 7y to be a language model with a softmax output:

exp zg(a¢ i|st)
. = 4 1
mo(arilst) >k €xXp zo(arklse)’ M

where zg(a ;|s¢) is the logit corresponding to the i-th action at time step ¢, parameterized by 6. In
the following, we use ¢ to denote the index of a sampled action a; ;, j the index of a non-sampled
action a; ;, and k the index of an arbitrary action ay .

Supervised fine-tuning (SFT) trains language models to maximize the likelihood of target tokens
given input text. Given context s; and target token a, ; at time step ¢, the loss function is defined as:

ﬁgFT = —log mo(ar,q|st). 2)

2.2 PoLICY GRADIENT

Policy gradient (PG) methods are a class of RL algorithms that optimize policy 7y by estimating the
gradient of the expected return. At time step ¢, the standard PG loss function is defined as:

L = =Wy log mo(a,q|se), (3)
where WU, ; represents either the return or the advantage for sampled action a; ; at time step ¢. RE-

INFORCE (Williams| [1992) is a canonical example of a PG method.

2.3 PoLICY GRADIENT WITH IMPORTANCE SAMPLING

Policy gradient with importance sampling (denoted PG-IS) methods mitigate the sample inefficiency
inherent in standard PG methods. By introducing importance sampling weights, these methods allow
policy updates to reuse samples generated by an older policy 7y,,, rather than relying on samples
from the current policy. At time step ¢, the loss function is defined as:

Logs = — Vs molasils).
= — 7 .
' Weo]d(at:i|st)

“4)

A representative PG-IS method is proximal policy optimization (PPO) (Schulman et al., 2017).
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Figure 2: Training dynamics of supervised fine-tuning (SFT). (a) Average (Avg) gradient norm,
Vo Lier|l, decreases as training progresses while average target token probability (prob) on train-
ing samples increases. (b) Target token logit gradient: OLLe/0zg(atq|s:) = mo(ar|s:) — 1.
As mg(asi]se) — 1, this gradient approaches 0. (¢) Non-target token logit gradient:
OLer/0z0(ar j5¢) = mo(ar j|st). As mo(ar,;|s¢) — O, this gradient also approaches 0.

3 GRADIENT DYNAMICS

In this section, we empirically analyze the different gradient dynamics of Lgr, Lhg, and Lhg 5. We
then demonstrate how gradient dynamics relate to logits gradients and affect training stability.

3.1 GRADIENT DYNAMICS OF SFT

We first provide the gradient of SFT loss L4z, with respect to parameters 6:
| A

oL

t — E SFT

vg‘CSFT = {8;;9(% k‘8t> VQZQ((It7k‘St) , (5)
k. ’

where |A] is the size of the vocabulary. For a logit zg(at i |s¢), the gradient of L with respect to
zg(ax,k|s¢) is given by (refer to Appendix [F.1]for a detailed derivation):

OLpr

__U&SFT Y 6
azg(at’klst) Trg(at,k‘|5t) ik ( )

where i denotes the index of the target token a; ;, kK denotes the index of an arbitrary token a; j in

the vocabulary, and d,, is the Kronecker delta, defined as d;; = 1 if ¢ = k and §;; = 0 otherwise.

t
The logit gradient for a target token ay ; is azﬁﬂ mo(a t7i| s¢) — 1, whereas for a non-target

atilse)
token a; ; (j # 1), it is %}Fﬁ&) = mp(ay,;|s). Figure a) illustrates the overall gradient dy-
namics, while Figures [2(b) and (c) depict the logit gradient dynamics. During training, target token
probabilities increase and gradient norms decrease. A similar trend is observed in the logit gradients:
as target token probabilities approach 1 and non-target probabilities approach 0, the corresponding
logit gradient magnitudes diminish, reflecting convergence. This behavior aligns with the intuition
that as model nears optimality and loss decreases, the parameter updates naturally become smaller.

3.2 GRADIENT DYNAMICS OF POLICY GRADIENT

For a logit zg(a ,|s:), the gradient of L} with respect to zg(at i |s¢) is given by:

O _ g, (my(anslse) — o) )
- N s ik)-
O0zp(ark|st) ’
The detailed derivation is provided in Appendix Since the scalar U; ; only scales the gradients
without changing their direction, its magnitude does not affect our analysis. Therefore, for ¥, ; > 0,
we set ¥, ; = 1 for simplicity. Under this setting, Equationreduces to Equation@ In other words,
when U, ; is positive, L5 exhibits gradient dynamics analogous to those of Ligr: as training pro-
gresses, the probability of the sampled action increases while that of non-sampled actions decreases,
leading to a reduction in the overall gradient norm. When ¥, ; < 0, we set ¥, ; = —1 for simplicity.

t
In this case, the logit gradient of the sampled action a;; becomes % =1 — mp(arq|st),
. . . " . oL ' . .
while for any non-sampled action a; ; (j # %) it becomes W;ilsi) = —7g(as,;|5¢). We visualize

the overall gradient dynamics in Figure [3(a), and the logit gradient dynamics in Figures [3[b) and
(c). A counterintuitive phenomenon emerges: as training progresses, the loss decreases while
the gradient norms grow. Likewise, as the probability of the sampled action decreases and the
probability of the non-sampled action increases, the magnitude of the logit gradients increases.

3
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Figure 3: Policy gradient (PG) training dynamics on negative actions (¥, ; < 0). (a) For neg-
ative actions, gradient norm ||[VyLhs|| oscillates as training progresses while sampled action
probabilities decrease. (b) Sampled action logit gradient: OLL;/0zg(ari|st) =1 — mo(as,i|st).
As mg(ar|s¢) — 0, this gradient magnitude increases. (¢) Non-sampled action logit gradient:

+ ) _ ] ] . . . .
OLLG/0zg(ay j|st) = —mo(ay,j|st). As mg(as,j|s¢) — 1, this gradient magnitude also increases.
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Figure 4: Training dynamics of policy gradient with importance sampling (PG-IS). (a) For pos-
itive actions (¥;,; > 0), gradient norm ||VyLhg || decreases as training progresses while sam-
pled action probabilities increase. (a-1) Sampled action logit gradient: 9Lhq s/0z¢(ar|st) =
wo(a,i|se)(mo(aei|st) — 1). As mo(ae|s¢) — 1, this gradient approaches 0. (a-2) Non-sampled ac-
tion logit gradient: OLhg 1s/0z0(ar ;|s¢:) = mo(ati|s:)mo(ar j|st). Asmg(as ;|s¢) — 0, this gradient
approaches 0. (b) For negative actions (¥, ; < 0), gradient norm exhibits an initial increase followed
by a decrease as training progresses, while sampled action probabilities decrease. (b-1) Sampled ac-
tion logit gradient: 0Lk 1s/0z0(ari|st) = mo(ari|se)(1 — mo(as,ilst)). As mo(as,ilst) — 0, this
gradient magnitude exhibits an initial increase followed by a decrease. (b-2) Non-sampled action
logit gradient: dLhq 15/0z0(ar,;|5t) = —mao(ar,ilse)mo(ar j|st). As mg(asj|si) — 1, the gradient
value initially decreases before gradually increasing, while its magnitude exhibits the opposite trend.

3.3 GRADIENT DYNAMICS OF POLICY GRADIENT WITH IMPORTANCE SAMPLING

For policy gradient with importance sampling (PG-IS), the gradient of L} s with respect to the
logit zg(a¢|s¢) is given by (derivation in Appendix [F.3):
OLpoas  _ Vi

Ozo(arklse)  Tou(aslse

)ﬂe(at,¢|5t)(7re(at,k\8t) — 0ik) 8

For simplicity, we absorb 7, (as ;|s¢) into U, ; and analyze two cases: (1) For ¥, ; > 0, we set

t
U, ; = 1. Then the logits gradient of sampled action is % = mo(ayi|s¢)(ma(arilst) — 1),

. .. oLt
while for a non-sampled action, it is 329(¢

ey = o (a,i|s¢)mo(ar,j]5¢). As shown in Figure a),
gradient norm decrease as training progress, while magnitude of logit gradients decrease (Fig-
ures Eka—l) and (a-2)). (2) For ¥;; < 0, we set ¥; ; = —1. In this case, the gradient dynamics
behave differently. Figure b) shows that gradient norm of L} ;s exhibits initial increase followed
by decrease as training progresses. A similar phenomenon can also be observed in logit gradients
(Figure [4[b-1) and (b-2)). Gradient magnitude spikes typically occur for sampled actions with low
probabilities (near 0.5), causing large parameter updates that can destabilize training.

4 ON THE CONVEXITY OF LOGITS

Previous analysis shows that, compared to L&gr, Lh; and Lhg ¢ are more susceptible to unstable
training. In this section, we conduct a deeper investigation and identify an important property: the
convexity exhibited at the logits level plays a critical role in ensuring smooth and stable convergence.
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4.1 DEFINITION OF LOGITS CONVEXITY

Definition 1 (Logits Convexity). Let L : R™ — R be a twice-differentiable loss function that takes
logits zg € R™ parameterized by 6 as input. We say that L is logits convex if and only if the Hessian
matrix of L with respect to zy is positive semi-definite.

To further illustrate the property of logits convexity, we first present two fundamental propositions.

Proposition 1. Let £ : R™ — R be a twice-differentiable loss function taking logits zg € R"
parameterized by 0 as input. Let z; € R"™ be the optimal logits. If L is logits convex, then:

lim ||VoL| = 0. 9)
zZo—rz;

Proof. See Appendix O

Proposition [I] highlights a key property of logits convexity: as the logits approach their optimal
values, the gradient converges to zero, which can help prevent gradient divergence during training.

Proposition 2. Let £ : R™ — R be a twice-differentiable loss function that takes logits zg € R"
parameterized by 0 as input. Let zg ; denote the i-th element of zg. Let z , and z} ; be two values

on the same side of the optimal value 2} ,, with z; ; closer to z}; , than z ,:
1 * ! *
|z(,’i — Zé‘,i| < ‘z(,’i — 297i| . (10)

If L is logits convex, then the logit gradient magnitudes satisfy the following relationship:

oL oL
. 11
3z(’,’,i - 82’9,i an
Proof. See Appendix O

Proposition |2 shows that the logit gradient magnitude decreases monotonically as logits approach
their optimal values. Since the parameter gradient norm can be written as:

H oL oL

=— V2o o
’ 82’9 i

Vozg.i
82’9’1' *

)

(12)
scaling factor

the logit gradient serves as a global scaling factor that modulates the magnitude of parameter up-
dates. Consequently, logits convexity ensures that parameter gradients decrease smoothly during
optimization, thereby reducing the risk of sudden gradient spikes or unstable updates.

Below, we present a series of propositions to analyze the logits convexity of different loss functions.

Proposition 3. The supervised fine-tuning loss function L.y, as defined in Equation |2} is logits
convex at each time step (Proof. See Appendix|[]).

Proposition 4. The policy gradient loss function Lhg, as defined in Equation (3| is logits convex at
time steps where U, ; > 0, but not logits convex when ¥, ; < 0 (Proof. See Appendix @)

Proposition 5. The policy gradient loss function with importance sampling Lh s, as defined in
Equation[d} is not logits convex at any time step (Proof. See Appendix|[.3).

Taken together, these propositions suggest that L4 promotes smooth and stable gradient behavior,
whereas L} and Lhg s exhibit potential gradient instability, consistent with the oscillations ob-
served in practice. Furthermore, by leveraging the general consequences of logits convexity, Propo-
sition addresses the issue of gradient divergence in L} during convergence, while Proposition
mitigates the risk of gradient magnitude spikes in Lhg 5. These insights motivate the design of a
new RL objective that explicitly enforces logits convexity to achieve more stable training.

4.2 LoGITS CONVEX OPTIMIZATION

Motivated by the above analysis, we introduce Logits Convex Optimization (LCO), a training objec-
tive that stabilizes gradient dynamics in reinforcement learning. The key idea is to construct a target
distribution that guides the policy model to encourage beneficial actions while suppressing undesir-
able ones, aligning with the core goal of policy gradient methods. Concretely, LCO minimizes the
KL divergence between the policy distribution 7y (-|s;) and a target distribution 7’ (+|s;).
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Figure 5: Training dynamics of LCO. (a) Gradient norm ||V L} || for positive actions (¥, ; > 0).
(b) Gradient norm ||V L! - |/for negative actions (¥;; < 0). (a-1) & (b-1) Sampled action logit
gradient: L] ~o/0zp(ari|st) = mo(ar,ilst) — 7' (ari|se). (a-2) & (b-2) Non-sampled action logit
gradient: 9L o /0z0(ar j|st) = mo(ar,j|se) — 7' (ar j|s¢). The 7' (+|s;) is the target distribution.

Estimation for Target Distribution To specify the desired update for the probability of a sampled

action a. ;, we first define the ratio p, ; of the target probability to the current policy probability:

é W/(at7i|8t)
mo(ari|st)

If W, ; > 0, then the probability of a; ; should be increased, which implies p;; > 1. If ¥, ; < 0,

then the probability of a; ; should be suppressed, which implies p; ; < 1.

Pt,i 13)

Next, we introduce a logit adjustment Az, ; so the updated probability of a; ; equals 7’(ay ;|s;). For
simplicity, we apply the adjustment only to the sampled action, with its target probability given by:

exp(zo(aqi|st) + Az ;)

7' (ay;|s¢) = . 14
(ar,ilse) Zk# exp 2o (at,k|5¢) + exp(zo(arq|se) + Azy ;) (14)
We derive Az ; by combining p; ; with Equation [14](derivation in Appendix [J]):
1— )
Ae = log prs + log ——m0(wilst) (15)
1 — primo(arqilse)
For non-sampled action a;_;, the probability is proportionally reallocated using softmax:
exp zg(as j|s

m (ar 3]5¢) = b zo{0e15%) (16)

D ki €XD 2o (ask|st) + exp(zg(arilst) + Az ;) '
By constructing the target distribution via direct logit adjustments, LCO ensures the policy updates

align with the core goal of policy gradient methods while staying close to the current policy. This
proximity prevents large distribution shifts and excessive updates.

LCO Objective ~ With the target distribution 7’(+|s;) defined, the LCO objective minimizes the
KL divergence between mg(+|s;) and 7' (+|s;), with | ¥y ;| regulating the update strength:
| A]

7' (a; 1|s
Lico = Vil Y '(ask|s:)log LACRICH) (17)
k

To(ark|st)”
Proposition@ establishes that minimizing £{ -, produces a logits-convex objective, ensuring stable
gradient behavior during RL training. This objective is applicable across different RL methods.

Proposition 6. The logits convex optimization loss function L}, as defined in Equation is
logits convex at each time step (Proof. See Appendix[[.4).

4.3 GRADIENT DYNAMICS OF LCO

In this section, we analyze the gradient dynamics of £} . For a logit zg(a¢ x|s;), the gradient of
L} o with respect to zg(ar,|s¢) is given by (see Appendix for the derivation):

oLt !
LCO ) — |\I/t7i|(ﬂ'0(at,k|8t) - (at,k|5t))- (18)

0z (a k|t

Since the magnitude of ¥, ; does not affect our analysis, we set |¥, ;| = 1 for simplicity. Figure
visualizes the gradient dynamics of £} ,. As training converges, the magnitude of the parameter
gradients smoothly diminishes to zero, indicating stable gradient dynamics.

6
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5 EXPERIMENTAL SETUP

Training Data We first introduce the datasets utilized for RL training. We combine the original
training instructions from GSM8K|Cobbe et al.|(2021), MATH (Hendrycks et al.,|2021b), and AIME
(1983-2023) to construct our RL training dataset, which contains around 20k instruction data points.
We prompt DeepSeek-R1 (Guo et al.,2025)) to generate responses for these instructions. From these,
we randomly select 1k instructions and filter them to ensure each has a correct response, which are
then used for SFT warm-up training. The remaining 19k instructions are reserved for RL training.

Baselines To assess the effectiveness of our approach, we substitute the original loss functions in
three widely used RL algorithms, REINFORCE/PPO/GRPO, with the proposed LCO, yielding RE-
INFORCE/PPO/GRPO+LCO. Furthermore, our baselines include RFT (Yuan et al., 2023), trained
solely on positive samples, and W-REINFORCE (Zhu et al.| |2025b)), which reduces the weighting of
positive samples in REINFORCE. We also include recently prominent baselines DAPO (Yu et al.,
20235), GSPO (Zheng et al., 2025), and CISPO (Chen et al. [2025a). To ensure consistency, all
baseline settings adhere to the configurations recommended in their original papers.

RL Training To achieve comprehensive validation across models with varying foundational ca-
pabilities, we utilize Qwen-2.5-7B, known for its strong performance, alongside the less capable
Llama-2-7B in our experiments. We also incorporate the larger-scale Qwen-2.5-32B to investigate
the impact of model size. Following the setting in |Guo et al.|(2025)), we assign a rule-based reward
of 41 for correct responses and —1 for incorrect ones. Before RL training, we perform warm-up
SFT training on the policies to enhance their initial reasoning capabilities. For the LCO methods, we
set the learning rate to 5e-6 to ensure effective training. We treat p; ; as a hyperparameter and adjust
it based on the polarity of W, ;. Specifically, we set p, ; = 1.8 when ¥, ; > 0, and p; ; = 0.9 when
W, ; < 0. The experimental justification for this hyperparameter selection is provided in Appendix
Additional experimental configurations are provided in Appendix [C]

Evaluation Tasks For mathematical reasoning evaluation, we assess models on benchmarks
of varying difficulty. The more capable Qwen-2.5-7B is tested on challenging tasks, including
MATHS500, AMC23, MinervaMath (Lewkowycz et al., [2022), OlympiadBench (He et al.| [2024),
OmniMath (Gao et al.| [2024), and AIME2024/2025. In contrast, the less capable Llama-2-7B is
evaluated on simpler tasks such as GSM8K, SVAMP (Patel et al., 2021), ASDiv (Miao et al.,|2021)),
and MultiArith (Koncel-Kedziorski et al. |2016). To evaluate generalization beyond mathematical
reasoning, we conduct experiments on out-of-distribution tasks. This includes the complex reason-
ing task BBH (Suzgun et al.,2022) and the multi-task language understanding benchmarks MMLU
(Hendrycks et al.,[2021a), MMLU-Pro (Wang et al.,2024), and MMLU-Redux (Gema et al.| [2025).

6 RESULTS AND ANALYSIS

6.1 MAIN RESULTS

Mathematical Reasoning We present results on math reasoning tasks in Table [I] and Table [2
using Pass@1 and Pass@8 as the evaluation metrics. Compared to the baseline methods, (e.g.,
RFT, W-REINFORCE, DAPO, GSPO, and CISPO), the LCO series, which leverages Qwen-2.5-7B
as the backbone, achieves improved performance across most benchmarks, including MATH500,
AMC23, MinervaMath, and OmniMath. Specifically, REINFORCE+LCO achieves the highest
Pass@1 scores on MATHS500 (64.80%) and OmniMath (17.21%), as well as the best Pass@8 scores
on MinervaMath (31.62%). Similarly, GRPO+LCO demonstrates exceptional performance, achiev-
ing the highest Pass@1 on MinervaMath (23.16%) and tying for the best Pass@1 on OmniMath
(17.21%). Furthermore, PPO+LCO achieves the best Pass@1 on AMC23 (47.50%), showcasing the
versatility of LCO in enhancing performance across various RL settings.

Table 1: Main results of Qwen-2.5-7B on challenging mathematical reasoning tasks, aligned with
its capabilities. Best performances are shown in bold, while suboptimal ones are underlined.

Methods MATHS500 AIME2024 AIME2025 AMC23 MinervaMath OlympiadBench OmniMath

- Pass@1 Pass@8 | Pass@l Pass@8 | Pass@l Pass@8 | Pass@l Pass@8 | Pass@] Pass@8 | Pass@1 Pass@8 | Pass@1 Pass@8
SFT 51.80 74.60 333 6.67 333 333 27.50 62.50 14.34 29.78 15.58 29.53 13.46 24.89
RFT 60.40 75.80 10.00 13.33 333 10.00 30.00 60.00 16.91 29.78 17.80 31.60 16.51 26.40
‘W-REINFORCE 56.40 77.00 3.33 10.00 333 10.00 25.00 70.00 14.34 25.74 15.43 29.23 13.75 25.52
DAPO 59.20 77.60 333 10.00 6.67 10.00 36.00 62.50 17.71 30.15 15.00 32.94 14.18 25.52
GSPO 61.60 79.20 6.67 16.67 3.33 6.67 30.00 72.50 16.54 29.41 18.55 34.42 15.94 26.81
CISPO 59.60 78.60 6.67 13.33 6.67 6.67 30.00 65.00 18.38 29.78 16.91 33.09 15.42 26.94
REINFORCE 58.60 76.40 6.67 13.33 333 333 4250 62.50 16.91 28.68 17.80 33.28 15.09 25.81
REINFORCE+LCO  64.80 78.00 13.33 13.33 6.67 10.00 40.00 65.00 19.12 31.62 21.07 33.38 17.21 26.54
PPO | 56.40 74.80 6.67 6.67 3.33 6.67 | 32.50 72.50 15.81 28.31 14.39 32.49 14.36 26.13
PPO+LCO 62.80 74.40 10.00 133,388 238 10.00 47.50 67.50 17.65 28.31 19.88 30.91 16.92 24.13
GRPO | 58.80 74.40 6.67 16.67 3.33 10.00 | 34.40 67.50 16.13 30.51 16.17 30.42 13.96 25.09
GRPO+LCO 64.60 72.80 10.00 16.67 6.67 10.00 45.00 65.00 23.16 26.10 21.07 28.34 17.21 23.13
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Compared to REINFORCE, PPO, Table 2: Results of Llama-2-7B on simpler math reasoning
and GRPO, incorporating LCO tasks, aligned with its capabilities. Best performances are
shows consistent advantages. Specif- shown in bold, while suboptimal ones are underlined.

ically, relative to REINFORCE,

- . Methods ~ GSMSK ~ SVAMP ~ASDiv _ MultiArith

REINFORCE+LCO aChleVCS im- Pass@1 Pass@8 | Pass@1 Pass@8 | Pass@l Pass@8 | Pass@l Pass@8
. SFT 2047 5853 | 33.60 7800 | 3387 7822 [ 4889 9833

provements of 6.20 and 6.66 points RFT 2901 5974 | 4650 8230 | 5328 7956 | 7556  98.89
. W-REINFORCE 2447 5823 | 3590 7840 | 39.87 7879 | 5667  98.89
in Pass@1 scores on MATHS500 and DAPO 2472 6232 | 4080 7990 | 4500 7922 | 6L11 9722
. S GSPO 2585 6490 | 4030 8260 | 4830  80.56 | 6278  98.89

AIME2024, respectively. Similarly, cgpo 2525 6262 | 4120 8160 | 4596 8042 | 6444 99.44
PPO+LCO and GRPO+LCO out- REINFORCE 2441 5679 | 3530 7400 | 3804 7676 | 6222 9833

REINFORCE+LCO | 3245 65.88 48.40 84.30 55.05 80.85 80.00 99.44

i o1 i PPO 2592 5656 | 3400 7590 | 4114 7978 | 5778  99.44
perform their orlglngl algorlthms by PPO+LCO 3434 6543 | 4760 7960 | 5625 7925 | 8167  97.78
15.00 and 7.03 points in Pass@1 GRPO 2608 6247 | 3840 8170 | 4562 8071 | 59.44  98.89

GRPO+LCO 3525 6122 4660 8140 | 5558 7440 | 8444 9944

scores on AMC23 and MinervaMath,
respectively. Even with the less capable Llama-2-7B backbone, LCO-based methods outperform
their counterparts. For example, GRPO+LCO achieves Pass@1 score gains of 9.17 and 25.00
points over the GRPO on GSM8K and MultiArith, respectively. Likewise, REINFORCE+LCO and
PPO+LCO deliver improvements of 13.1 and 15.11 points on SVAMP and ASDiv, respectively,
underscoring the effectiveness of LCO across diverse foundational models with varying capabilities.

Multitask Understanding & Complex Reason- Table 3: Results for Qwen-2.5-7B on out-of-
ing We evaluate the out-of-distribution (OOD) distribution tasks. Best performances are shown

performance of the LCO methods on multitask in bold, while suboptimal ones are underlined.
language understanding benchmarks, including

Methods | MMLU | MMLU-Pro | MMLU-Redux | BBH

MMLU, MMLU-Pro, and MMLU-Redux, as =gxrorcs [ 7396 B2 | 7093 6731
1 - REINFORCE+LCO 74.26 49.19 68.48 68.12

w;ll as complex reasoning task BBH. As de-  RED Bxi e | o 6.2
tailed in Table 3] LCO-based methods exhibit su-  pro+Lco 73.46 49.49 7035 66.29
. : GRPO | 71.00 40.90 | 67.15 67.64
perior accuracy compared to their counterparts.  grposrco 75.12 5037 69.83 67.69

GRPO+LCO achieves the highest accuracy of
75.12% and 50.37% on MMLU and MMLU-Pro, respectively, outperforming GRPO’s 71.00% and
40.90%. Additionally, REINFORCE+LCO and PPO+LCO achieve 68.12% and 70.35% accuracy on
BBH and MMLU-Redux, compared to 67.31% and 67.16% for REINFORCE and PPO, respectively.
These results highlight the strong OOD generalization and robustness of LCO-based approaches.

6.2 TRAINING DYNAMICS ANALYSIS

To investigate how LCO stabilizes the RL training process, we compare the training dynamics of
Lh s and L -, which are both implemented on top of the REINFORCE algorithm as the base RL
framework. Additionally, the clipping mechanism is applied to Lhg 5. Unless specified otherwise,
the experimental settings for Lhg 5 and L} -, are kept consistent throughout the following sections.
The training dynamics of Lhq s and L}, are presented in Figure 6| Additionally, the training
dynamics of L are provided in Figure Efin the Appendix.

Gradient Norms The gradient norm dynamics of Lhq s and L} are illustrated in Figures @a)
and (b). As training progresses, Lh ;s remains relatively stable during the early stages but begins to
oscillate after approximately 6K steps. In contrast, the gradient norm of L! ., consistently decreases
throughout the entire training process. Similar trends are observed for both positive and negative
gradients, as shown in Figures [6{a-1) and (b-1). Here, the positive gradient reflects contributions
from action gradients where ¥, ; > 0, while the negative gradient corresponds to ¥, ; < 0. These
results indicate that LCO effectively smooths the gradients, promoting stable training.

Entropy and Action Probabilities We further analyze the dynamics of policy entropy and sam-
pled action probabilities, which directly reflect the exploration capability and expected behavior of
policy. As shown in Figure E] (a-2), L5 s exhibits a sharp drop in the sampled action probabili-
ties and an entropy explosion during later training stages, aligning with oscillations in the gradient
norms. This indicates increased uncertainty in the output of policy, confirming the occurrence of
collapse phenomenon. However, £ -, (b-2) maintains stable entropy and action probabilities, pre-
serving exploration capacity while ensuring effective policy optimization.

Evaluation Results We evaluate the performance of L s and L! -, on the MATH500 test set
during training. As shown in Figure [éja-3), Lhq s experiences a performance drop in the later
training stages due to the training collapse. In contrast, Lf -, exhibits steady performance improve-
ments and ultimately outperforms Lhg s in terms of Pass@1 score (Figure |6(b-3)). This finding
demonstrates that £} -, enhances policy performance while maintaining training stability.
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Figure 6: Training dynamics of L} s and Lf .. The analysis covers four key metrics: gradient
norms, policy entropy, action probabilities, and evaluation performance.

6.3 TRAINING WITH DIFFERENT LEARNING RATES

We evaluate the performance trajectories of Lbg, Lhg s and L -, under different learning rates
across training iterations. All three methods are implemented on top of the REINFORCE frame-
work. As shown in Figure [7} performance is highly sensitive to the learning rate in non-convex
optimization methods such as PG and PG-IS, where higher learning rates often lead to unstable
training dynamics. In contrast, LCO exhibits robust adaptability across different learning rates,
achieving stable improvements and reaching its best performance with a larger learning rate.
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Figure 7: MATH500 Pass@1 across learning rates during training of Lhg, Lhg s and Lf . PG and
PG-IS become unstable at higher rates, whereas LCO remains stable with increasing performance.

6.4 PG-IS PERFORMANCE ON LOW-PROBABILITY POSITIVE SAMPLES

Based on Figure F_i}a—l), our analysis suggests that training on low-probability positive actions may
also destabilize Lpg . To verify this, during the policy rollout phase, we selected the top 50% of
positive samples with the highest perplexity. As illustrated in Figure[8] this leads to unstable train-
ing dynamics, with oscillating gradient norms and fluctuating action probabilities. Consequently,
entropy oscillates and evaluation performance declines during the later stages of training. These
results show that low-probability positive samples destabilize learning. Therefore, the LCO method
should be applied to positive-sample gradients alongside negative samples to maintain stability.
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Figure 8: Training dynamics of L} 15 on positive samples with low probabilities. Training collapse
still occurred in the later stages, indicating that applying LCO to positive samples is also necessary.

7 CONCLUSION

In this work, we analyzed the sources of reinforcement learning (RL) instability in LLMs and iden-
tified logits convexity as a key property underlying stable gradient behavior. We demonstrated that
while supervised fine-tuning exhibits inherent stability due to logits convexity, standard RL ob-
jectives lack this property, leading to large gradient fluctuations and training collapse. Leveraging
this insight, we proposed Logits Convex Optimization (LCO), a RL objective that preserves log-
its convexity, mitigates sudden gradient spikes, and can be seamlessly integrated into existing RL
algorithms. Empirical results show that LCO delivers consistently stable training and improved per-
formance across both reasoning and non-reasoning tasks. Our findings provide both a theoretical
explanation for RL instability and a practical framework for more reliable optimization of LLMs.
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Our work focuses on improving the training stability of reinforcement learning algorithms, which
we believe does not inherently raise significant ethical concerns. We have taken care to ensure that
our methodologies and applications align with responsible research practices. The datasets used
in this study are publicly available and widely recognized within the research community, and we
have verified that their use complies with all associated terms and conditions. Additionally, we
have adhered to all relevant legal and ethical standards throughout the research process. Finally, we
confirm that no conflicts of interest or sponsorships have influenced the outcomes of this work.

REPRODUCIBILITY STATEMENT

Full experimental details, including data processing and training configuration, are provided in Sec-
tion[5|and Appendix [C} The implemented code and data are included in the supplementary materials
and will be made publicly available. Proofs for the core theoretical results (Proposition [I)and Propo-
sition [2)) are provided in Appendix [G] and Appendix [H] respectively. These proofs assume the loss
function is twice-differentiable over the real numbers.
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A STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

In this work, we utilize large language models solely for the purpose of polishing the manuscript.
Specifically, they are employed to improve clarity and precision of phrasing, ensure grammatical
correctness and spelling accuracy, and provide suggestions to enhance overall coherence and read-
ability. The core research problem, conceptual framework, methodologies, analysis, and results are
entirely developed by the authors. Our use of LLMs is strictly confined to improving the efficiency
and quality of academic writing without influencing the intellectual contributions of this work.

B RELATED WORK

Recent research in reinforcement learning has increasingly focused on improving the stability of
policy training. These efforts can be broadly categorized into three groups.

The first category aims to reduce the variance or bias in advantage estimation. A seminal work
in this line is the GAE (Schulman et al., 2015b)), which combines Monte Carlo returns and a value
model to balance bias and variance. Extending GAE, VC-PPO (Yuan et al.|[2025) identifies a failure
mode where the value model exhibits bias during training, resulting in large errors in advantage
estimation. To address this, they propose a pretraining procedure for the value model, and decouple
the A in GAE for the policy and value model computations. [Zhang et al.| (2025) identify outliers
caused by the imbalance in the advantage distribution. They propose StableReinforce, which applies
an advantage filter to retain only those advantages that fall within three standard deviations for stable
training. By simplifying the advantage estimation process, RLOO (Ahmadian et al.,2024) employs
a leave-one-out baseline across multiple completions to produce an unbiased advantage estimate for
a single prompt. Similarly, |Shao et al.|(2024) introduce GRPO, which standardizes sequence-level
rewards by subtracting the mean and dividing by the standard deviation, thereby reducing bias and
variance. Extending GRPO, |Yu et al.| (2025) propose DAPO, which re-weights token-level losses to
prevent longer responses from being underrepresented in gradient updates.

The second category stabilizes training by constraining policy updates through a Kullback-Leibler
(KL) divergence penalty relative to a reference model. For example, TRPO (Schulman et al.| 2015a)
aims to find a policy that increases the probability of advantageous actions while limiting the di-
vergence from the previous policy using a KL constraint, ensuring stable training. Building upon
PPO, |Ouyang et al.[ (2022); Hu et al.[ (2025)) add a token-level KL penalty to the reward function,
which constrains the policy at each generation step to remain close to the reference SFT model.
GRPO (Shao et al.| 2024)) modifies this approach by applying the KL constraint directly to the pol-
icy loss rather than the reward, which allows for more targeted optimization. KL-Cov (Cui et al.,
20235])) advances this idea by analyzing policy entropy, showing that entropy change is driven by the
covariance between action probabilities and advantages, and applying KL penalties selectively to
high-covariance tokens to prevent entropy collapse and improve stability.

The third category employs clipping mechanisms to stabilize policy updates. PPO and GRPO con-
strain the importance sampling ratio between current and previous policies within fixed upper and
lower bounds to prevent excessively large policy updates. However, such bounds can limit training
efficiency and unduly constrain specific updates. To address this, DAPO (Yu et al.| 2025)) proposes
a decoupled clip-higher method that relaxes the upper clipping bound to improve training efficiency
while maintaining stability. Building upon the same idea, DCPO (Yang et al.,[2025b) addresses the
limitation in DAPO, where the same clip range is set for different positions. It further introduces
a dynamic clipping method that adaptively adjusts the clipping bounds based on the token-specific
probabilities from previous iterations, thereby mitigating the drawbacks of fixed clipping bounds.
Chen et al| (2025a)) identify a key limitation in PPO/GRPO: clipping can prematurely drop high-
advantage tokens from contributing to off-policy gradients. They introduce CISPO, which clips
importance sampling weights without clipping token updates to stabilize training. Extending this
covariance analysis, [Cui et al.| (2025) propose Clip-Cov, which applies clipping selectively to up-
dates on high-covariance tokens to further enhance training stability.

Unlike previous work, our study is inspired by the stable training of SFT and provides a theoretical
analysis of RL instability from a gradient perspective. We identify a property, termed logits con-
vexity, which induces smoother gradient updates during optimization and ensures more stable RL
training. Building on this insight, we propose a simple yet effective policy optimization strategy.
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Table 4: Ablation study on KL divergence variation for p; ; in LCO methods. Configurations that
achieve the closest match to the KL divergence (between the policy distributions before and after
one update step) compared to their corresponding original methods are highlighted in bold.

Method . O”“\P” <o| KL |AKL| | Method | omdw,,, ~o| KL [AKL| | Method v s 0/” T‘I’M Zo| KL JAKL|
REINFORCE N/A N/A_ ] 00264 0.0000 | PPO N/A N/A_ ] 0.0216 0.0000 | GRPO N/A N/A_ [ 00324 0.0000
18 08 | 0.0336 0.0072 18 08 | 0.0314 0.0098 18 08 | 0.0487 00163
18 09 | 00273 0.0009 18 09 | 00241 0.0025 18 09 | 00368 0.0044
REINFORCE+LCO | 1.8 095 | 00134 00130 | PPO+LCO | 138 095 | 0009 00120 | GRPO+LCO | 18 095 | 00216 0.0108
19 09 | 00281 00017 19 09 | 00263 0.0047 19 09 |00396 00072
1.7 09 | 00236 00028 1.7 09 | 00183 0.0033 17 09 | 00314 0.0010

C ADDITIONAL EXPERIMENTAL SETUP

To initialize the policies with basic instruction-following and reasoning capabilities while avoiding
overfitting, we perform SFT warm-up training for only 1 epoch. For RL methods, we set the rollout
batch size to 2,048, with 4 responses generated per instruction. The update batch size is set to
256, following [Zhu et al.| (2025b). A sampling temperature of 0.6 and a top-p value of 0.95 are
consistently applied across all policies to control the diversity and quality of generated responses.

To ensure reproducibility, all baseline configurations strictly follow the settings in their original
papers. These configurations are further supplemented by the default parameters from the TRL
reposito a widely used library for training language models with reinforcement learning.

All experiments utilize bfloat16 precision to optimize memory usage and computational efficiency.
Evaluations are performed in a zero-shot setting. Consistent with training, a sampling temperature
of 0.6 and a top-p value of 0.95 are used during evaluation, as recommended by |Guo et al.| (2025).

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 ABLATION STUDY ON p; ;

In this section, we present a comprehensive ablation study ~Table 5: Ablation study of p,; in the
on the hyperparameter p; ; in the LCO framework, using REINFORCE+LCO method.
Qwen-2.5-7B as the base model. Individually tuning p; ;

Pti
at each time step ¢ is computationally prohibitive, so we Method Wi >0 W <0 | PO
instead treat p; ; across all steps as a unified parameter. s P
For ¥, ; > 0, we consider values greater than 1, and for 17 08 61.20
W, ; < 0, values smaller than 1. Accordingly, we search  ggrorcEscO| '8 038 63.60
within constrained ranges: p;; € {1.2,1.7,1.8,1.9} :2 (S:S gjjgg
when ¥, ; > 0 and p,; € {0.7,0.8,0.9,0.95} when 1.9 09 | 63.40
U, ; < 0, to identify the optimal update magnitude. As 17 05 | 6240

shown in TableE], the configuration p; ; = 1.8 for ¥; ; > 0 and p; ; = 0.9 for ¥, ; < 0 consistently
delivers the best performance, achieving a Pass@1 of 64.80% on the evaluation set. This setting
strikes a balance: p,; = 1.8 amplifies beneficial actions, while p; ; = 0.9 suppresses undesirable
ones without introducing gradient instability.

We further evaluate the KL divergence between policy distributions before and after a single training
update for REINFORCE, PPO, GRPO, and their LCO-augmented counterparts. The objective is to
find p; ; values that align the KL divergence of LCO-augmented methods with their baselines. As
reported in Table [4 the same configuration (p;; = 1.8 for ¥,; > 0, pr; = 0.9 for ¥;; < 0)
in REINFORCE+LCO and PPO+LCO yields the closest KL divergence to the original methods.
Considering both Pass@1 and KL divergence, we adopt this configuration as the default for LCO.

g PG Positive & Negative Gradient Norm Entropy & Action Probability 2 06 MATH500 Pass@1
E 8 —— Gradient Norm 13 8 s POSItive Gradient 2 s ’T‘"""] E .
s e Negative Gradient j g S —o4
3 6 o 6 1 z 6 —— Entropy I+ (%
G4 g4 ! ﬂ I > 44— Action Prob R I
5 1.l g g &9
g2 "m 22 ; Lk 52 a
go ©od o £ . o 0k 00
z (a) (b) (c) v (d)——
0 2500 5000 7500 0 2500 5000 7500 0 2500 5000 7500 0 2000 4000 6000 8000
Training Steps Training Steps Training Steps Training Steps

Figure 9: Training dynamics of Lhg. The analysis covers four key metrics: gradient norms, policy
entropy, action probabilities, and evaluation performance.

'https://github.com/huggingface/trl
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D.2 TRAINING DYNAMICS ANALYSIS FOR PG

As an extensive experiment of Section[6.2] we show the training dynamic of L in Figure[9} Follow-
ing the settings of Lhq s and Lf -, L 1s also implemented on top of the REINFORCE algorithm
as the base RL framework.

The gradient norm dynamics of Lh are shown in Figure Eka). As training progresses, the gradient
norm diverges significantly, with similar trends observed for both positive and negative gradients,
as illustrated in Figure[9(b). Additionally, we analyze the dynamics of policy entropy and sampled
action probabilities. As depicted in Figure Ekc), L} exhibits a sharp decline in sampled action
probabilities at approximately 4K steps, coinciding with oscillations in the gradient norms. Concur-
rently, policy entropy fluctuates in a similar manner. Furthermore, we evaluate Lh;’s performance
on the MATHS500 test set during training. As shown in Figure[9(d), a performance drop is observed
around 4K steps, which aligns with the oscillations in the gradient norms.

Table 6: Additional results for Qwen-2.5-7B on challenging mathematical reasoning tasks, aligned
with its capabilities. Best performances are shown in bold, while suboptimal ones are underlined.

Methods MATHS500 AIME2024 AIME2025 AMC23 MinervaMath OlympiadBench OmniMath
Pass@1 Pass@8 | Pass@l Pass@8 | Pass@l Pass@8 | Pass@l Pass@8 | Pass@] Pass@8 | Pass@l Pass@8 | Pass@1 Pass@8

NFT 54.80 75.80 333 10.00 333 10.00 27.50 65.00 12.87 30.15 16.02 30.86 13.82 2593
NSR 53.20 75.80 0.00 6.67 3.33 13.33 22.50 57.50 15.07 26.84 16.77 30.56 14.00 25.56
OREAL 56.80 78.40 6.67 13.33 0.00 10.00 32.50 62.50 15.81 27.94 15.13 31.01 14.32 26.20
RLOO 57.60 78.00 333 20.00 3.33 6.67 32.40 67.50 15.24 29.78 17.95 31.75 15.15 26.54
REINFORCE+LCO  64.80 78.00 13.33 1333 6.67 10.00 40.00 65.00 19.12 31.62 21.07 33.38 17.21 26.54
PPO+LCO 62.80 74.40 10.00 1359 43 10.00 47.50 67.50 17.65 28.31 19.88 30.91 16.92 24.13
GRPO+LCO 64.60 72.80 10.00 16.67 6.67 10.00 45.00 65.00 23.16 26.10 21.07 28.34 17.21 23.13

Table 7: Additional results for Llama-2-7B on simpler mathematical reasoning tasks, aligned with
its capabilities. Best performances are shown in bold, while suboptimal ones are underlined.

Methods GSMSK SVAMP ASDiv MultiArith
Pass@1 Pass@8 | Pass@] Pass@8 | Pass@1 Pass@8 | Pass@] Pass@8

NFT 26.62 56.86 34770 78.90 42.03 79.32 57718 97.22
NSR 21.38 57.24 32.90 76.80 37.48 79.61 58.89 97.22
OREAL 26.99 61.03 38.30 79.40 42.60 78.55 58.33 98.33
RLOO 26.38 62.02 41.50 81.40 44.81 81.62 66.11 96.67
REINFORCE+LCO | 3245 65.88 48.40 84.30 55.05 80.85 80.00 99.44
PPO+LCO 34.34 65.43 47.60 79.60 56.25 79.25 81.67 97.78
GRPO+LCO 35.25 61.22 46.60 81.40 55.58 74.40 84.44 99.44

D.3 ADDITIONAL BASELINES COMPARISON

Additionally, we compare our method against a broader set of baselines, including RLOO (Ahma-
dian et al., 2024)), NSR (Zhu et al.| |2025b)), NFT (Chen et al., 2025b), and OREAL (Lyu et al.,[2025).
Results on the test sets of various mathematical reasoning tasks are presented in Tables[6|and[7] with
Pass@1 and Pass@S§ as the evaluation metrics. Whether using the more powerful Qwen-2.5-7B
model or the less advanced Llama-2-7B backbone, the LCO series methods consistently enhance
performance across different baselines in most mathematical reasoning tasks.

D.4 IMPACT OF MODEL SIZE

To investigate the impact of model size on LCO, we adopt Qwen-2.5-32B as the policy backbone
and compare three training approaches: SFT, REINFORCE, and REINFORCE+LCO. Performance
is evaluated using the Pass@1 metric on the MATH500 benchmark. As shown in Figure [[0} LCO
consistently outperforms both SFT and REINFORCE when scaling the policy model to 32B param-
eters. These results demonstrate the robustness and scalability of LCO, confirming its effectiveness
not only for smaller models such as 7B but also for substantially larger ones.

A SFT REINFORCE BER REINFORCE+LCO

0.8
0.6
o
©
7 0.4
o
a
o ‘R I m B
0.0 o [

MATHsoo AIMEZOz AIM52025 AMC23 "’ervalv/ y"’pladBe,, h 'hmMath

Figure 10: Performance of SFT, REINFORCE, and REINFORCE+LCO using Qwen-2.5-32B.
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E GRADIENT OF THE SOFTMAX FUNCTION

Consider the output of the softmax function, denoted as mg(ay ;|s¢), which is defined as:

exp zg(at,i|st)
i = 2 . 19
Wa(at, ‘St) Zk' exp 2 (at,k’ ‘St) ( )

The gradient of the softmax function with respect to the logits zg(a; x|s;) can be derived in two
cases. The first case is when i # k:

Omg(at;

st) _ _ expzg(ari|st) exp zg(as k|st)
0zp(as,k|5t) (>4 exp zg(ag i 15¢))? (20)

= —mg(ai|st)me(ark|st)-

The second case is when ¢ = k:
Omo(at,i|st) _ o exp zo(arilst)  expze(asi|st) exp zo(askst)
Ozp(arklse) Xy exp zo(asw|st) (X exp zo(agp|se))? 1)

= ﬁg(at7i|5t)(1 - We(at,k: St))'

To unify these two cases, we introduce the Kronecker delta function, defined as 6,5 = 1if i = k,
and §;; = 0 otherwise. Using this definition, the gradient can be written as:

Ome(az,ilst)
IR St 1l ., ; 51_ _ . ”
G () "0 @0l ik = To(ar]s1)) o~
F DERIVATION OF LOGITS GRADIENT

F.1 LOGITS GRADIENT OF SUPERVISED FINE-TUNING

We provide the derivation for Equation[6] The SFT loss at time step ¢ is:

Ligr = —log mo(ax,q|s). (23)

For a logit zg(as,i|s¢), we compute the partial derivative using Equation

aﬁén _ 7810g770(at,i|st) aﬁﬂ(at,i|5t)
Dzp(ax k|st) Omg(ari|se) Ozo(arklst)
1 (24)
rolanaey) " auilse) Ou = mo(anklsy))

= 7Te((lt,lc|8t) — Ok

F.2 LOGITS GRADIENT OF POLICY GRADIENT

We provide the derivation for Equation[7] The policy gradient (PG) loss at time step ¢ is:
Lo = =V, logmg(asi|st). (25)

For a logit zg(ay x|s:), we compute the partial derivative using Equation

LEG - _ ‘810g mo(ayi|st) Omg(ag,i|se)
Oze(ar.rlst) " Omg(asilse)  Oze(ark|se)
: (26)
= -V, ———mo(ar,ilst) (0ik — mo(atk|s
i ol T (Guilse) Cik = o (anks0))

= U, ;(mo(ark|st) — dir)-
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F.3 LoOGITS GRADIENT OF POLICY GRADIENT WITH IMPORTANCE SAMPLING

We provide the derivation for Equation[8] The PG-IS loss at time step ¢ is:

We(at,z‘|8t)

Lhois=—V, . 27)
poIs " TOoia (at,i|5t)
For a logit zg(ay r|s:), we the compute partial derivative using Equation
8£]§G_IS _ \Iftﬂ; (971'9 (atﬂ;|st)
820( ) /n-e:; (a’tai|st) 820 (at,k|8t) (28)
ti
= ————mg(a mo(atk|St) — dir).
7T901d(at,i|5t) ( t )( ( t | t) )
F.4 LoGITS GRADIENT OF LCO
We provide the derivation for Equation|[T8] The LCO loss at time step  is:
/
Lo = (Wi S (0 [s0) log Tk 150) (29)
LCO | t, | %: ( t, ‘ t) g 7T(9(at7k;/|5t)
For a logit zg(ay r|s:), we compute the partial derivative using Equation
8£iCO o | Z |: O,t k’ |St) 671'9(6% k/|3t):|
= [P
Dzo(arklse) mo(ar)  Ozo(akl|st)
at k' |S
= Uy Z [ ol ai k/|si)) mo (@t |st) Ok — We(at,k|5t))]
|‘I/tz|2 Clt k’|5t (Ok'k —71'9((175 klst))] (30)

= |\Ijt,i| [— Zﬁl(at’kﬂst)&k/k + ZW/(at,k/|st)7rg(at,k|st)‘|

k' K’

))-

= Wyl (mo(arklse) — m'(
G PROOF OF PROPOSITION 1

In this section, we provide the proof for Proposition [I} Let £ : R™ — R be a twice-differentiable
loss function that takes logits zy € R™ parameterized by 6 as input. According to the chain rule, the
gradient norm of £ with respect to 6 is given by:

oL
IVoL| = 7% VGZQZ @31
where zg ; is the i-th element of zj. According to the trlangle inequality, we have:
28 elvezh <2Hvezh Z‘az ; Hvezw : (32)

If L is logits convex, then by the Definition|I} £ is convex with respect to z¢. Let z; € R™ be the
optimal logits, and z; , be the i-th element of z;. For each i, we have:

oL .
ze}l—ge, D70 —0:>z9h_>rri Z‘aez H 020,i|| = 0. (33)
So by the squeeze theorem, we have the following result:
oL
< < E —_— i i =0.
0< ||V9£H < : 82’9,1" V@Z‘gﬂ = z;g; ||V9£|| 0 (34)

This completes the proof.
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H PROOF OF PROPOSITION 2

In this section, we provide the proof for Proposition[2] Let £ : R” — R be a twice-differentiable
loss function that takes logits zg € R™ parameterized by @ as input. If L is logits convex, by the
Definition [T} £ is convex with respect to zg. By the first-order characterization of convexity (Boyd
& Vandenberghe, [2004), for any two vectors z’e, zé’ € R”, the following inequalities hold:

oL
L(zp) > L(zy) + Z aZT(zé,k ~ 26 1)5
0,k
' oL (35
L(zg) > L(zp) + Z ﬁ(zg,k — 2p1)5
A 0.k
where zg 1, is the k-th element of zy. We then reformulate Equation [35|as:
oL oL
D 5o = 2a) 2 L(zh) = L(z5) 2 3 5 (.~ 2. (36)
w970k e %60,k

To analyze the i-th component of the logits vector, we fix all other components of zj and z; by
setting 2, = 24 ., for k # 4. Under this setup, Equationthen can be simplified to:

oL oL
@(zé,i —2p,) > @(Zé,i —2p,)- (37)

oL  __
82;‘)1 -

oL .
82,;)77: (Zé,i - ZG,i) > 07

oL i
92" (Zg,‘ — Z9 ) > 0.
0,i

For the optimal value z; ;, where 0 (for a convex function), we obtain these conditions:

(38)

i K
Consider the case where 2 ; < 2j/; < z; ;, using Equations 37]and 38} we have:

oL oL oL oL
> > < .
0= 925, — 9% - 92|~ |97, &

Similarly, consider the case where zj ; > zy; > z; ;. Using Equation 37]and [38] we have:

oc  oc  loc| |oc
< < < . 4
U= o S om, 0w | |om, (40)

Combining both of the above cases, when zj ; and zj ; lie on the same side of the optimal value z} ,
and |z, — 25 ;| < |2y — #; ;|, the gradient magnitudes satisfy the following relationship:

oL oL
= | < |55 41
329,1 8297i
This completes the proof.
I PROOF OF LOGITS CONVEXITY
I.1 LocIiTs CONVEXITY OF SFT LoSS
According to Equation 24} the partial derivative of L.z with respect to logit zg(as i |s¢) is:
oL
—F = 7y — Si, (42)
aZQ,k
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with zg(a x| s¢) simplified as zg i, and 7y (ay i|s¢) simplified as 7y ;. The second derivative is:

DLy (1o — Oir)
e 2 = . 5 ;) — ). 4
D20 nD70 1 Dzom o,k (O = To.1) (43)

To prove the convexity of the logits, we derive the Hessian matrix H of Lk with respect to the
logits and check if H is positive semi-definite. The Hessian is a square matrix composed of second-
order partial derivatives of the loss L with respect to the logits:

Hk b = 82 ‘CgFT

_ ks 44
' 0291020 )

According to Equation 3] the individual elements of the Hessian matrix H can be decomposed
using elements of two matrices A and B:

Hy, 1o = o 10k — 70,1670,k - (45)
—_—— N———
Ak,k/ Bk,k’

Each of the two matrices A and B can be written in a compact form. Let

T
™) = [71—9,17 70,25 - - - 7779,n] (46)

represent the probability distribution over the vocabulary at time step ¢, where n is the vocabulary

size. The A and B are both n x n matrices with the following structure:
A = diag(my),

. 47)

B = mgmy

where diag(7ry) is a diagonal matrix with 7 ; as its 4-th diagonal entry. Then the Hessian matrix H
has the following structure:

H = diag(my) — wom, . (43)

To prove convexity, we need to show that the Hessian matrix H is positive semi-definite. For any
random vector v € R, consider the quadratic form:

v Hv = v (diag(my) — momy V. (49)
Expanding this:

n n 2
v Hv = deiag(ﬂ'e)v - VT7T97T;—V = Z We’kvi - (Z 7T9’k’l)k> . (50)
k k

We use the Cauchy-Schwarz inequality:

BB ) o

Let uy = \/To.k, Wk = Vk+/T0,k» and substitute into Equation and have:

n n 2
VTHV = Zﬂg,kvz — (Z 7T97k’l}k> Z O, (52)
k k

which implies that the supervised fine-tuning loss L&z is logits convex at time step .

1.2 LoaGiTs CONVEXITY OF PG LoOSS

According to Equation [26] the partial derivative of L} with respect to logit zg(as k|st) is:

aLL
(9,?,’97]C

=V, i(mo,k — Oir), (53)

19



Under review as a conference paper at ICLR 2026

with zg(a x| s¢) simplified as zg i, and 7y (ay i|s¢) simplified as 7y ;. The second derivative is:

PLh; o (o k. — k)

=Wy,

=W, ;w9 k(O — To,kr)- (54)

8297k82’971€/ 3297k/

Notice that second derivative in Equation [54] and that in Equation 43| differ only by a scalar term
Wy ;. Using Equation we can directly express the Hessian matrix of Lk in the following form:

H = U, ;(diag(my) — womy ). (55)

For any random vector v € R", consider the quadratic form:

n n 2
VTHV = \I/tﬂ; Zﬂ'@vkvi - <Z Wg,kvk> . (56)
k k

According to Equation [52}

{VTHV >0, if¥;>0, (57)

v Hv <0, if U5 < 0.

When ¥, ; > 0, Lk is convex with respect to the logits. Conversely, when U, ; < 0, Lhg is not
convex but instead concave with respect to the logits. Minimizing a concave function can lead to
gradient divergence, resulting in unstable training.

1.3 LoaGIiTs CONVEXITY OF PG-IS Loss

According to Equation 28] the partial derivative of L5 s with respect to logit zg(as k|s¢) is:
6£§’G-IS _ Vi

829,/? B 014 (at7i|8t

)Wa,i(ﬂe,k — Oik), (58)

with zg(a¢ k| s¢) simplified as zg , and 7y (ay i |s;) simplified as 7y ;.. The second derivative is:

PLogas _ Vi O(mg.i(mon — dir))
8297’@8297’6' T4 (at,i|st) aze,k/
Wy

= —————[m0.i(dir — To.x')(Mo.k — Oik) + 70,70,k (Okk — 7o kv
WGMd(atJISt)[ (0 ) ik) ok ( )]

U,
= ——"——mpi(—0ikbir + To kOirs + OikTokr — To ko + Mok (Okkr — Tok7)).-

T Oo1a (at,i|st)
(59

To prove the logits convexity, we need to derive the Hessian matrix H of L} 5 with respect to the
logits and check if H is positive semi-definite. To construct the Hessian matrix, we need to organize
the second derivatives of the loss function L} ;¢ with respect to the logits, which is given by:

2 ot
9 Lg1s

Hk k! == .
' 026,100 1’

(60)

From the previous derivation (Equation [59), the individual elements of the Hessian matrix H can
be decomposed using elements of five matrices A, B, C, D, and F:

Ui 4
Hy o = ——————70,i(— Oirlirs + 7o 10iks + 0ikTo,kr — To, 670,k + To,k Ok — To,kr)). (61)
7r91)ld(at7i|st) M N Y —— —
Ak,k’ Bk,k/ Ck-.k/ Dk,k’ Fk,k’

Each of the five matrices can be written in a compact form. Let
i T
e =10,...,0,1,0,...,0] (62)
represent the standard n-dimension basis vector with a 1 at position 4, and

.
o = [T9,1, 70,25 - T0,n] (63)
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represent the probability distribution over the vocabulary, where n is the vocabulary size. Then A,
B, C, D, and F are all n x n matrices with the following structure:

A=eDedT
B = wee(i)T,
C=eVn), (64)
D = 71'971'9T ,
F = diag(my) — wom, .
Since scaling H by any positive scalar does not affect its positive semi-definiteness, we absorb
W into W, ; for simplicity. The Hessian matrix H has the following structure:
H=Y, [fe(i)e(")T + mee®T + e(i)ﬂ;}r — 27r97r9T + diag(mg)| - (65)
For any random vector v € R", consider the quadratic form:

v Hv = U, {fVTe(i)e(i)Tv +v e Ty + vTe(i)ﬂ'Jv - QVTﬂ'gﬂ'gTv + deiag(ﬂ'g)v}

n n 2 n

2 2

=Wy, | —v; + 2v; g T kUL — 2 E To VL | + E o, kU
k & k

n n 2 n n
2 2
=Wy, E T KV — E To Uk | — | vy — 2u; E To, KV + E T,k Vk
% % k %

D(v) (vi—E(v))?

2

_ [D(v) ~ (i — E(v))ﬂ .

(66
where E(v) = Y7 mg g, and D(v) = >} mo k03 — (O1 ﬂg)kvk)z. According to Equation
we have D(v) > 0. Now, consider the case where ¥ ; > 0:

vIHv <0, ifv;>E(WV)+/D(v)orv; <E(v)—+/D(v),
T . (67)
v' Hv >0, otherwise.

A symmetric result holds for the case where U; ; < 0. This implies Hessian matrix H of Lhq g is
not positive semi-definite, which indicates that the PPO loss L} 1 is not logits convex.

1.4 LogGITS CONVEXITY OF LCO Loss

According to Equation 30} the partial derivative of L! -, with respect to logit zg(ay i |s:) is:
oLt

aiLco =W il(mo — k), (68)

26,k

with zg(ay k|s;) simplified as zg k, mg(ark|s¢) simplified as 7g , and 7' (ay k|s;) simplified as 7.
The second derivative is as follow:

*Lico =| .|3(7T9,k — )
020 k02 11 S Bz

Notice that second derivative in Equation [69] and that in Equation 43| differ only by a scalar term
| ¥, ;|. Using Equation we can express the Hessian matrix of £} in the following form:

H = |V, ;|(diag(my) — momy ). (70)

For any random vector v € R", consider the quadratic form:

n n 2
VTHV = |\Ilt,i| Zﬂg,k’l}i — (Z 71'97]#);9) . (71)
k

k

= Uy ;|mo,k(Okk — To k7 )- (69)
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According to Equation [52}
v Hv > 0. (72)

It concludes that Hessian matrix H of L}, is positive semi-definite, which implies that £} is

logits convex.

J DERIVATION OF THE LOGIT VARIATION

We provide derivation for Az; ; in Equation[T3] First, we reformulate Equation [I3]as follows:
7' (ari|s¢) = pramolasi|st). (73)
Substituting this expression into Equation we derive the expression for Az, ;:

_ exp(zg(at,i|st) + Aze)
> ki XD 20 (ar k|st) + exp(zo(arilst) + Aze;)

pt,iﬂ'O(at,i|3t)

=p €Xp Za(at,z'|5t) . eXP(Za(at,z'|St) + Az ;)

t,% -

"o exp zo(anklse) D ki XD zo(ask|st) +exp(zg(arilst) + Azti)
1 Az,

:>pt7i exp Zt,z

Sopexpzo(ak|sy) D ki €XD zo(ark|st) +exp(zo(arilst) + Az ;) (74)
Zk# exp zg(as,k|s¢) + exp(zo(ar,ilse) + Azei)
> onexp zg(ayk|se)
=exp Az = pri(1 — mo(agi|se) + mo(asi|se) exp Az ;)
1 — mo(ayi|s:)
1 — primg(asilse)

= expAzy; = pei

=Az; =log p;; + log

With this logit adjustment Az, ;, we can construct the target distribution 7' (-|s;) using Equation[14]
and Equation [T6]to control the desired update for the probability of the sampled action ay ;.
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