
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SMOOTH GRADIENTS, STABLE LEARNING: LOGITS
CONVEXITY FOR REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) has been pivotal to the recent success of large lan-
guage models (LLMs) across a broad spectrum of tasks. However, RL optimiza-
tion often suffers from inherent stability challenges, particularly when compared
to supervised fine-tuning (SFT). In this work, we investigate the stability gap be-
tween SFT and RL from a gradient-based perspective. We identify a property of
the cross-entropy loss with softmax in SFT, which we term logits convexity, char-
acterized by local convexity with respect to logits. Our theoretical analysis shows
that logits convexity induces smoother gradient magnitudes during optimization,
thereby enhancing stability. In contrast, the policy gradient objectives of widely
used algorithms such as PPO and GRPO lack this property. Motivated by this
insight, we propose Logits Convex Optimization (LCO), a simple yet effective
policy optimization strategy to align the policy distribution with a carefully de-
signed target distribution via KL divergence to emulate the stabilizing effects of
logits convexity. Empirical results demonstrate that LCO improves stability and
consistently outperforms conventional RL methods on both reasoning and non-
reasoning benchmarks. Code and datasets will be made publicly available.

1 INTRODUCTION

Reinforcement learning (RL) has become a cornerstone for aligning large language models (LLMs)
with human preferences (Ouyang et al., 2022; Bai et al., 2024) and enhancing complex capabilities
such as reasoning (Guo et al., 2025; Yang et al., 2025a). Despite these advances, RL training often
suffers from inherent instability (Rafailov et al., 2024). Existing approaches attempt to address
this issue through variance reduction in advantage estimation (Schulman et al., 2015b), clipping
strategies that constrain parameter updates (Schulman et al., 2017; Yu et al., 2025), and KL-based
penalties that regulate policy shifts (Ouyang et al., 2022; Shao et al., 2024). Although these solutions
mitigate instability to some extent, they do not fully resolve it (Team et al., 2025; Zhu et al., 2025a).
This motivates a deeper understanding of the underlying causes of RL instability in LLMs.

In this work, we analyze RL instability from a gradient-based perspective. We observe that the
loss functions in widely used RL algorithms, such as PPO (Schulman et al., 2017), often exhibit
large fluctuations or explosions in gradient magnitude as training progresses (Figure 1(a)). These
fluctuations can induce excessive parameter updates, potentially leading to training collapse (Figure
1(b)). By contrast, supervised fine-tuning (SFT) typically demonstrates more stable optimization
throughout training (Wu et al., 2025; He et al., 2025; Liu et al., 2025). This observation naturally
raises the question: what accounts for the greater stability of SFT compared to RL methods?

0 2500 5000 7500
Training Steps

0

2

4

6

8

PP
O

Gr
ad

ie
nt

 N
or

m

(a)

PPO & LCO Gradient Norm

0 2500 5000 7500
Training Steps

0.0

0.2

0.4

0.6

Pa
ss

@
1

(b)

MATH500 Pass@1

0.0

0.5

1.0

1.5

2.0

PP
O+

LC
O

Gr
ad

ie
nt

 N
or

m

PPO
PPO+LCO

0.0

0.2

0.4

0.6

Pa
ss

@
1

PPO
PPO+LCO

Figure 1: (a) Gradient norm during training for
PPO and PPO+LCO. (b) Pass@1 results of PPO
and PPO+LCO on the MATH500 benchmark.

Upon examining the underlying causes, we
identify a property termed logits convexity, de-
fined as local convexity at the logits level.
Our theoretical analysis demonstrates that log-
its convexity facilitates favorable gradient be-
havior during optimization, naturally leading
to diminishing gradient magnitudes as the pol-
icy approaches convergence. This behavior
aligns with the intuitive expectation that up-
dates should become more conservative near an

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

optimum. While SFT loss exhibits logits convexity, which ensures stable gradient updates, RL ob-
jectives such as REINFORCE (Williams, 1992) and PPO (Schulman et al., 2017) lack this property,
making them susceptible to large gradient fluctuations and training instability.

Building on this property, we propose Logits Convex Optimization (LCO), an RL optimization
objective that preserves logits convexity and promotes stable training. LCO works by aligning the
policy distribution with a carefully designed target distribution through KL divergence. This target
distribution preserves the core objective of policy gradient methods: it encourages the policy to in-
crease the probability of beneficial actions while suppressing the probability of undesirable actions.
LCO can be seamlessly incorporated into existing RL algorithms like PPO. With this integration,
LCO produces stable gradient updates (Figure 1(a)) and delivers consistent performance improve-
ments (Figure 1(b)). Empirical evaluations on both reasoning and non-reasoning tasks show that
LCO achieves superior stability and performance compared to standard RL baselines. Furthermore,
our analysis yields three key findings. First, we identify a primary source of training instability
in standard RL: excessively large gradient norms arising from negative samples in non-convex loss
regions. Second, we reveal that sampled actions with low probability can cause sudden spikes in
gradient updates, which affect the stability of methods such as PPO and GRPO. Third, we show
that preserving logit convexity during optimization leads to stable and diminishing gradient updates
as training approaches convergence, which mitigates RL training instability.

2 PRELIMINARY

2.1 NOTATION AND SUPERVISED FINE-TUNING

We define the state st at time step t as the combination of the prompt tokens and all tokens gener-
ated up to that step. An action at,i at time step t corresponds to selecting the i-th token from the
vocabulary A. Given state st, the probability that the policy πθ generates action at,i is denoted by
πθ(at,i|st). In this work, we consider the policy πθ to be a language model with a softmax output:

πθ(at,i|st) =
exp zθ(at,i|st)∑
k exp zθ(at,k|st)

, (1)

where zθ(at,i|st) is the logit corresponding to the i-th action at time step t, parameterized by θ. In
the following, we use i to denote the index of a sampled action at,i, j the index of a non-sampled
action at,j , and k the index of an arbitrary action at,k.

Supervised fine-tuning (SFT) trains language models to maximize the likelihood of target tokens
given input text. Given context st and target token at,i at time step t, the loss function is defined as:

Lt
SFT = − log πθ(at,i|st). (2)

2.2 POLICY GRADIENT

Policy gradient (PG) methods are a class of RL algorithms that optimize policy πθ by estimating the
gradient of the expected return. At time step t, the standard PG loss function is defined as:

Lt
PG = −Ψt,i log πθ(at,i|st), (3)

where Ψt,i represents either the return or the advantage for sampled action at,i at time step t. RE-
INFORCE (Williams, 1992) is a canonical example of a PG method.

2.3 POLICY GRADIENT WITH IMPORTANCE SAMPLING

Policy gradient with importance sampling (denoted PG-IS) methods mitigate the sample inefficiency
inherent in standard PG methods. By introducing importance sampling weights, these methods allow
policy updates to reuse samples generated by an older policy πθold , rather than relying on samples
from the current policy. At time step t, the loss function is defined as:

Lt
PG-IS = −Ψt,i

πθ(at,i|st)
πθold(at,i|st)

. (4)

A representative PG-IS method is proximal policy optimization (PPO) (Schulman et al., 2017).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

0 500 1000
Training Steps

0.0

0.2

0.4

Av
g

Gr
ad

ie
nt

 N
or

m
(a)

SFT

0.2 0.4 0.6 0.8 1.0

SFT

0.0
0.2
0.4
0.6
0.8
1.0Lo

gi
ts

 G
ra

di
en

t

target token probability
increases

(b)

Target Token Probability

0.2 0.4 0.6 0.8 1.0
Non-Target Token Probability

0.0
0.2
0.4
0.6
0.8
1.0

Lo
gi

ts
 G

ra
di

en
t

non-target token probability
decreases

(c)

SFT

0.7

0.8

0.9

Av
g

Ta
rg

et
 To

ke
n

Pr
ob

Gradient Norm
Target Token Prob

Figure 2: Training dynamics of supervised fine-tuning (SFT). (a) Average (Avg) gradient norm,
∥∇θLt

SFT∥, decreases as training progresses while average target token probability (prob) on train-
ing samples increases. (b) Target token logit gradient: ∂Lt

SFT/∂zθ(at,i|st) = πθ(at,i|st)− 1.
As πθ(at,i|st) → 1, this gradient approaches 0. (c) Non-target token logit gradient:
∂Lt

SFT/∂zθ(at,j |st) = πθ(at,j |st). As πθ(at,j |st) → 0, this gradient also approaches 0.

3 GRADIENT DYNAMICS

In this section, we empirically analyze the different gradient dynamics of Lt
SFT, Lt

PG, and Lt
PG-IS. We

then demonstrate how gradient dynamics relate to logits gradients and affect training stability.

3.1 GRADIENT DYNAMICS OF SFT

We first provide the gradient of SFT loss Lt
SFT with respect to parameters θ:

∇θLt
SFT =

|A|∑
k

[
∂Lt

SFT

∂zθ(at,k|st)
∇θzθ(at,k|st)

]
, (5)

where |A| is the size of the vocabulary. For a logit zθ(at,k|st), the gradient of Lt
SFT with respect to

zθ(at,k|st) is given by (refer to Appendix F.1 for a detailed derivation):

∂Lt
SFT

∂zθ(at,k|st)
= πθ(at,k|st)− δik, (6)

where i denotes the index of the target token at,i, k denotes the index of an arbitrary token at,k in
the vocabulary, and δik is the Kronecker delta, defined as δik = 1 if i = k and δik = 0 otherwise.

The logit gradient for a target token at,i is ∂Lt
SFT

∂zθ(at,i|st) = πθ(at,i|st)− 1, whereas for a non-target

token at,j (j ̸= i), it is ∂Lt
SFT

∂zθ(at,j |st) = πθ(at,j |st). Figure 2(a) illustrates the overall gradient dy-
namics, while Figures 2(b) and (c) depict the logit gradient dynamics. During training, target token
probabilities increase and gradient norms decrease. A similar trend is observed in the logit gradients:
as target token probabilities approach 1 and non-target probabilities approach 0, the corresponding
logit gradient magnitudes diminish, reflecting convergence. This behavior aligns with the intuition
that as model nears optimality and loss decreases, the parameter updates naturally become smaller.

3.2 GRADIENT DYNAMICS OF POLICY GRADIENT

For a logit zθ(at,k|st), the gradient of Lt
PG with respect to zθ(at,k|st) is given by:

∂Lt
PG

∂zθ(at,k|st)
= Ψt,i(πθ(at,k|st)− δik). (7)

The detailed derivation is provided in Appendix F.2. Since the scalar Ψt,i only scales the gradients
without changing their direction, its magnitude does not affect our analysis. Therefore, for Ψt,i > 0,
we set Ψt,i = 1 for simplicity. Under this setting, Equation 7 reduces to Equation 6. In other words,
when Ψt,i is positive, Lt

PG exhibits gradient dynamics analogous to those of Lt
SFT: as training pro-

gresses, the probability of the sampled action increases while that of non-sampled actions decreases,
leading to a reduction in the overall gradient norm. When Ψt,i < 0, we set Ψt,i = −1 for simplicity.

In this case, the logit gradient of the sampled action at,i becomes ∂Lt
PG

∂zθ(at,i|st) = 1 − πθ(at,i|st),

while for any non-sampled action at,j (j ̸= i) it becomes ∂Lt
PG

∂zθ(at,j |st) = −πθ(at,j |st). We visualize
the overall gradient dynamics in Figure 3(a), and the logit gradient dynamics in Figures 3(b) and
(c). A counterintuitive phenomenon emerges: as training progresses, the loss decreases while
the gradient norms grow. Likewise, as the probability of the sampled action decreases and the
probability of the non-sampled action increases, the magnitude of the logit gradients increases.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0 500 1000
Training Steps

0

2

4

6

Av
g

Gr
ad

ie
nt

 N
or

m
(a)

PG (Negative)

0.2 0.4 0.6 0.8 1.0
Sampled Action Prob (Negative)

0.0
0.2
0.4
0.6
0.8
1.0

Lo
gi

ts
 G

ra
di

en
t

sampled action probability
decreases

(b)

PG (Negative)

0.2 0.4 0.6 0.8 1.0

PG (Negative)

0.0
0.2
0.4
0.6
0.8
1.0Lo

gi
ts

 G
ra

di
en

t

non-sampled action probability
increases

(c)

Non-sampled Action Prob (Negative)

0.7

0.8

0.9

Av
g

Ac
tio

n
Pr

obGradient Norm
Sampled Action Prob

Figure 3: Policy gradient (PG) training dynamics on negative actions (Ψt,i < 0). (a) For neg-
ative actions, gradient norm ∥∇θLt

PG∥ oscillates as training progresses while sampled action
probabilities decrease. (b) Sampled action logit gradient: ∂Lt

PG/∂zθ(at,i|st) = 1− πθ(at,i|st).
As πθ(at,i|st) → 0, this gradient magnitude increases. (c) Non-sampled action logit gradient:
∂Lt

PG/∂zθ(at,j |st) = −πθ(at,j |st). As πθ(at,j |st) → 1, this gradient magnitude also increases.

0 500 1000
Training Steps

0.0

0.2

0.4

Av
g

Gr
ad

ie
nt

 N
or

m

(a)

PG-IS (Positive)

0.2 0.4 0.6 0.8 1.0

PG-IS (Positive)

0.00
0.05
0.10
0.15
0.20
0.25Lo

gi
ts

 G
ra

di
en

t

sampled action probability
increases

(a-1)

Sampled Action Prob (Positive)

1
Non-sampled Action Prob (Positive)

0

1

Lo
gi

ts
 G

ra
di

en
t

non-sampled action probability
decreases

(a-2)

PG-IS (Positive)

0 500 1000
Training Steps

0.0

0.5

Av
g

Gr
ad

ie
nt

 N
or

m

(b)

PG-IS (Negative)

0.2 0.4 0.6 0.8 1.0
Sampled Action Prob (Negative)

0.00
0.05
0.10
0.15
0.20
0.25

Lo
gi

ts
 G

ra
di

en
t

sampled action probability
decreases

(b-1)

PG-IS (Negative)

1

PG-IS (Negative)

0

1Lo
gi

ts
 G

ra
di

en
t

non-sampled action probability
increases

(b-2)

Non-sampled Action Prob (Negative)

0.90
0.92
0.94
0.96
0.98

Av
g

Ac
tio

n
Pr

ob

Gradient Norm
Sampled Action Prob

0.0

0.5

Av
g

Ac
tio

n
Pr

ob

Gradient Norm
Sampled Action Prob

Figure 4: Training dynamics of policy gradient with importance sampling (PG-IS). (a) For pos-
itive actions (Ψt,i > 0), gradient norm ∥∇θLt

PG-IS∥ decreases as training progresses while sam-
pled action probabilities increase. (a-1) Sampled action logit gradient: ∂Lt

PG-IS/∂zθ(at,i|st) =
πθ(at,i|st)(πθ(at,i|st)− 1). As πθ(at,i|st) → 1, this gradient approaches 0. (a-2) Non-sampled ac-
tion logit gradient: ∂Lt

PG-IS/∂zθ(at,j |st) = πθ(at,i|st)πθ(at,j |st). As πθ(at,j |st) → 0, this gradient
approaches 0. (b) For negative actions (Ψt,i < 0), gradient norm exhibits an initial increase followed
by a decrease as training progresses, while sampled action probabilities decrease. (b-1) Sampled ac-
tion logit gradient: ∂Lt

PG-IS/∂zθ(at,i|st) = πθ(at,i|st)(1− πθ(at,i|st)). As πθ(at,i|st) → 0, this
gradient magnitude exhibits an initial increase followed by a decrease. (b-2) Non-sampled action
logit gradient: ∂Lt

PG-IS/∂zθ(at,j |st) = −πθ(at,i|st)πθ(at,j |st). As πθ(at,j |st) → 1, the gradient
value initially decreases before gradually increasing, while its magnitude exhibits the opposite trend.

3.3 GRADIENT DYNAMICS OF POLICY GRADIENT WITH IMPORTANCE SAMPLING

For policy gradient with importance sampling (PG-IS), the gradient of Lt
PG-IS with respect to the

logit zθ(at,k|st) is given by (derivation in Appendix F.3):
∂Lt

PG-IS

∂zθ(at,k|st)
=

Ψt,i

πθold(at,i|st)
πθ(at,i|st)(πθ(at,k|st)− δik) (8)

For simplicity, we absorb πθold(at,i|st) into Ψt,i and analyze two cases: (1) For Ψt,i > 0, we set

Ψt,i = 1. Then the logits gradient of sampled action is ∂Lt
PG-IS

∂zθ(at,i|st) = πθ(at,i|st)(πθ(at,i|st)− 1),

while for a non-sampled action, it is ∂Lt
PG-IS

∂zθ(at,j |st) = πθ(at,i|st)πθ(at,j |st). As shown in Figure 4(a),
gradient norm decrease as training progress, while magnitude of logit gradients decrease (Fig-
ures 4(a-1) and (a-2)). (2) For Ψt,i < 0, we set Ψt,i = −1. In this case, the gradient dynamics
behave differently. Figure 4(b) shows that gradient norm of Lt

PG-IS exhibits initial increase followed
by decrease as training progresses. A similar phenomenon can also be observed in logit gradients
(Figure 4(b-1) and (b-2)). Gradient magnitude spikes typically occur for sampled actions with low
probabilities (near 0.5), causing large parameter updates that can destabilize training.

4 ON THE CONVEXITY OF LOGITS

Previous analysis shows that, compared to Lt
SFT, Lt

PG and Lt
PG-IS are more susceptible to unstable

training. In this section, we conduct a deeper investigation and identify an important property: the
convexity exhibited at the logits level plays a critical role in ensuring smooth and stable convergence.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.1 DEFINITION OF LOGITS CONVEXITY

Definition 1 (Logits Convexity). Let L : Rn → R be a twice-differentiable loss function that takes
logits zθ ∈ Rn parameterized by θ as input. We say that L is logits convex if and only if the Hessian
matrix of L with respect to zθ is positive semi-definite.

To further illustrate the property of logits convexity, we first present two fundamental propositions.
Proposition 1. Let L : Rn → R be a twice-differentiable loss function taking logits zθ ∈ Rn

parameterized by θ as input. Let z∗
θ ∈ Rn be the optimal logits. If L is logits convex, then:

lim
zθ→z∗

θ

∥∇θL∥ = 0. (9)

Proof. See Appendix G.

Proposition 1 highlights a key property of logits convexity: as the logits approach their optimal
values, the gradient converges to zero, which can help prevent gradient divergence during training.
Proposition 2. Let L : Rn → R be a twice-differentiable loss function that takes logits zθ ∈ Rn

parameterized by θ as input. Let zθ,i denote the i-th element of zθ. Let z′θ,i and z′′θ,i be two values
on the same side of the optimal value z∗θ,i, with z′′θ,i closer to z∗θ,i than z′θ,i:∣∣z′′θ,i − z∗θ,i

∣∣ < ∣∣z′θ,i − z∗θ,i
∣∣ . (10)

If L is logits convex, then the logit gradient magnitudes satisfy the following relationship:∣∣∣∣∣ ∂L
∂z′′θ,i

∣∣∣∣∣ ≤
∣∣∣∣∣ ∂L
∂z′θ,i

∣∣∣∣∣ . (11)

Proof. See Appendix H.

Proposition 2 shows that the logit gradient magnitude decreases monotonically as logits approach
their optimal values. Since the parameter gradient norm can be written as:∥∥∥∥ ∂L

∂zθ,i
∇θzθ,i

∥∥∥∥ =

∣∣∣∣ ∂L
∂zθ,i

∣∣∣∣︸ ︷︷ ︸
scaling factor

∥∥∥∥∇θzθ,i

∥∥∥∥, (12)

the logit gradient serves as a global scaling factor that modulates the magnitude of parameter up-
dates. Consequently, logits convexity ensures that parameter gradients decrease smoothly during
optimization, thereby reducing the risk of sudden gradient spikes or unstable updates.

Below, we present a series of propositions to analyze the logits convexity of different loss functions.
Proposition 3. The supervised fine-tuning loss function Lt

SFT, as defined in Equation 2, is logits
convex at each time step (Proof. See Appendix I.1).
Proposition 4. The policy gradient loss function Lt

PG, as defined in Equation 3, is logits convex at
time steps where Ψt,i > 0, but not logits convex when Ψt,i < 0 (Proof. See Appendix I.2).
Proposition 5. The policy gradient loss function with importance sampling Lt

PG-IS, as defined in
Equation 4, is not logits convex at any time step (Proof. See Appendix I.3).
Taken together, these propositions suggest that Lt

SFT promotes smooth and stable gradient behavior,
whereas Lt

PG and Lt
PG-IS exhibit potential gradient instability, consistent with the oscillations ob-

served in practice. Furthermore, by leveraging the general consequences of logits convexity, Propo-
sition 1 addresses the issue of gradient divergence in Lt

PG during convergence, while Proposition 2
mitigates the risk of gradient magnitude spikes in Lt

PG-IS. These insights motivate the design of a
new RL objective that explicitly enforces logits convexity to achieve more stable training.

4.2 LOGITS CONVEX OPTIMIZATION

Motivated by the above analysis, we introduce Logits Convex Optimization (LCO), a training objec-
tive that stabilizes gradient dynamics in reinforcement learning. The key idea is to construct a target
distribution that guides the policy model to encourage beneficial actions while suppressing undesir-
able ones, aligning with the core goal of policy gradient methods. Concretely, LCO minimizes the
KL divergence between the policy distribution πθ(·|st) and a target distribution π′(·|st).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 500 1000
Training Steps

0.0

0.1

0.2

Av
g

Gr
ad

ie
nt

 N
or

m
(a)

LCO (Positive)

0.90 0.95 1.00

Sampled Action Prob
 LCO (Positive)

0.10
0.05

0.05

Lo
gi

ts
 G

ra
di

en
t

sampled action probability
increases

(a-1)

′(at, i|st) = 0.95

0.05 0.10 0.15
Non-sampled Action Prob

 LCO (Positive)

0.05
0.00
0.05
0.10
0.15

Lo
gi

ts
 G

ra
di

en
t non-sampled

 action probability decreases

(a-2)

′(at, j|st) = 0.05

0 500 1000
Training Steps

0.0

0.2

0.4

Av
g

Gr
ad

ie
nt

 N
or

m

(b)

LCO (Negative)

0.80 0.85 0.90 0.95
Sampled Action Prob

 LCO (Negative)

0.05

0.05

0.15

Lo
gi

ts
 G

ra
di

en
t

sampled action probability
decreases

(b-1)

′(at, i|st) = 0.80

0.1 0.2

Non-sampled Action Prob
 LCO (Negative)

0.2

0.1

0.0

0.1

Lo
gi

ts
 G

ra
di

en
t

non-sampled
 action probability increases

(b-2)

′(at, j|st) = 0.20

0.88
0.90
0.92
0.94
0.96

Av
g

Ac
tio

n
Pr

ob

Gradient Norm
Sampled Action Prob

0.78

0.82

0.86

0.90

Av
g

Ac
tio

n
Pr

obGradient Norm
Sampled Action Prob

Figure 5: Training dynamics of LCO. (a) Gradient norm ∥∇θLt
LCO∥ for positive actions (Ψt,i > 0).

(b) Gradient norm ∥∇θLt
LCO∥for negative actions (Ψt,i < 0). (a-1) & (b-1) Sampled action logit

gradient: ∂Lt
LCO/∂zθ(at,i|st) = πθ(at,i|st)− π′(at,i|st). (a-2) & (b-2) Non-sampled action logit

gradient: ∂Lt
LCO/∂zθ(at,j |st) = πθ(at,j |st)− π′(at,j |st). The π′(·|st) is the target distribution.

Estimation for Target Distribution To specify the desired update for the probability of a sampled
action at,i, we first define the ratio ρt,i of the target probability to the current policy probability:

ρt,i ≜
π′(at,i|st)
πθ(at,i|st)

. (13)

If Ψt,i > 0, then the probability of at,i should be increased, which implies ρt,i > 1. If Ψt,i < 0,
then the probability of at,i should be suppressed, which implies ρt,i < 1.

Next, we introduce a logit adjustment ∆zt,i so the updated probability of at,i equals π′(at,i|st). For
simplicity, we apply the adjustment only to the sampled action, with its target probability given by:

π′(at,i|st) =
exp(zθ(at,i|st) + ∆zt,i)∑

k ̸=i exp zθ(at,k|st) + exp(zθ(at,i|st) + ∆zt,i)
. (14)

We derive ∆zt,i by combining ρt,i with Equation 14 (derivation in Appendix J):

∆zt,i = log ρt,i + log
1− πθ(at,i|st)

1− ρt,iπθ(at,i|st)
. (15)

For non-sampled action at,j , the probability is proportionally reallocated using softmax:

π′(at,j |st) =
exp zθ(at,j |st)∑

k ̸=i exp zθ(at,k|st) + exp(zθ(at,i|st) + ∆zt,i)
. (16)

By constructing the target distribution via direct logit adjustments, LCO ensures the policy updates
align with the core goal of policy gradient methods while staying close to the current policy. This
proximity prevents large distribution shifts and excessive updates.

LCO Objective With the target distribution π′(·|st) defined, the LCO objective minimizes the
KL divergence between πθ(·|st) and π′(·|st), with |Ψt,i| regulating the update strength:

Lt
LCO = |Ψt,i|

|A|∑
k

π′(at,k|st) log
π′(at,k|st)
πθ(at,k|st)

. (17)

Proposition 6 establishes that minimizing Lt
LCO produces a logits-convex objective, ensuring stable

gradient behavior during RL training. This objective is applicable across different RL methods.
Proposition 6. The logits convex optimization loss function Lt

LCO, as defined in Equation 17, is
logits convex at each time step (Proof. See Appendix I.4).

4.3 GRADIENT DYNAMICS OF LCO
In this section, we analyze the gradient dynamics of Lt

LCO. For a logit zθ(at,k|st), the gradient of
Lt

LCO with respect to zθ(at,k|st) is given by (see Appendix F.4 for the derivation):
∂Lt

LCO

∂zθ(at,k|st)
= |Ψt,i|(πθ(at,k|st)− π′(at,k|st)). (18)

Since the magnitude of Ψt,i does not affect our analysis, we set |Ψt,i| = 1 for simplicity. Figure 5
visualizes the gradient dynamics of Lt

LCO. As training converges, the magnitude of the parameter
gradients smoothly diminishes to zero, indicating stable gradient dynamics.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5 EXPERIMENTAL SETUP

Training Data We first introduce the datasets utilized for RL training. We combine the original
training instructions from GSM8K Cobbe et al. (2021), MATH (Hendrycks et al., 2021b), and AIME
(1983–2023) to construct our RL training dataset, which contains around 20k instruction data points.
We prompt DeepSeek-R1 (Guo et al., 2025) to generate responses for these instructions. From these,
we randomly select 1k instructions and filter them to ensure each has a correct response, which are
then used for SFT warm-up training. The remaining 19k instructions are reserved for RL training.

Baselines To assess the effectiveness of our approach, we substitute the original loss functions in
three widely used RL algorithms, REINFORCE/PPO/GRPO, with the proposed LCO, yielding RE-
INFORCE/PPO/GRPO+LCO. Furthermore, our baselines include RFT (Yuan et al., 2023), trained
solely on positive samples, and W-REINFORCE (Zhu et al., 2025b), which reduces the weighting of
positive samples in REINFORCE. We also include recently prominent baselines DAPO (Yu et al.,
2025), GSPO (Zheng et al., 2025), and CISPO (Chen et al., 2025a). To ensure consistency, all
baseline settings adhere to the configurations recommended in their original papers.

RL Training To achieve comprehensive validation across models with varying foundational ca-
pabilities, we utilize Qwen-2.5-7B, known for its strong performance, alongside the less capable
Llama-2-7B in our experiments. We also incorporate the larger-scale Qwen-2.5-32B to investigate
the impact of model size. Following the setting in Guo et al. (2025), we assign a rule-based reward
of +1 for correct responses and −1 for incorrect ones. Before RL training, we perform warm-up
SFT training on the policies to enhance their initial reasoning capabilities. For the LCO methods, we
set the learning rate to 5e-6 to ensure effective training. We treat ρt,i as a hyperparameter and adjust
it based on the polarity of Ψt,i. Specifically, we set ρt,i = 1.8 when Ψt,i > 0, and ρt,i = 0.9 when
Ψt,i < 0. The experimental justification for this hyperparameter selection is provided in Appendix
D.1. Additional experimental configurations are provided in Appendix C.

Evaluation Tasks For mathematical reasoning evaluation, we assess models on benchmarks
of varying difficulty. The more capable Qwen-2.5-7B is tested on challenging tasks, including
MATH500, AMC23, MinervaMath (Lewkowycz et al., 2022), OlympiadBench (He et al., 2024),
OmniMath (Gao et al., 2024), and AIME2024/2025. In contrast, the less capable Llama-2-7B is
evaluated on simpler tasks such as GSM8K, SVAMP (Patel et al., 2021), ASDiv (Miao et al., 2021),
and MultiArith (Koncel-Kedziorski et al., 2016). To evaluate generalization beyond mathematical
reasoning, we conduct experiments on out-of-distribution tasks. This includes the complex reason-
ing task BBH (Suzgun et al., 2022) and the multi-task language understanding benchmarks MMLU
(Hendrycks et al., 2021a), MMLU-Pro (Wang et al., 2024), and MMLU-Redux (Gema et al., 2025).

6 RESULTS AND ANALYSIS

6.1 MAIN RESULTS

Mathematical Reasoning We present results on math reasoning tasks in Table 1 and Table 2,
using Pass@1 and Pass@8 as the evaluation metrics. Compared to the baseline methods, (e.g.,
RFT, W-REINFORCE, DAPO, GSPO, and CISPO), the LCO series, which leverages Qwen-2.5-7B
as the backbone, achieves improved performance across most benchmarks, including MATH500,
AMC23, MinervaMath, and OmniMath. Specifically, REINFORCE+LCO achieves the highest
Pass@1 scores on MATH500 (64.80%) and OmniMath (17.21%), as well as the best Pass@8 scores
on MinervaMath (31.62%). Similarly, GRPO+LCO demonstrates exceptional performance, achiev-
ing the highest Pass@1 on MinervaMath (23.16%) and tying for the best Pass@1 on OmniMath
(17.21%). Furthermore, PPO+LCO achieves the best Pass@1 on AMC23 (47.50%), showcasing the
versatility of LCO in enhancing performance across various RL settings.

Table 1: Main results of Qwen-2.5-7B on challenging mathematical reasoning tasks, aligned with
its capabilities. Best performances are shown in bold, while suboptimal ones are underlined.

Methods MATH500 AIME2024 AIME2025 AMC23 MinervaMath OlympiadBench OmniMath
Pass@1 Pass@8 Pass@1 Pass@8 Pass@1 Pass@8 Pass@1 Pass@8 Pass@1 Pass@8 Pass@1 Pass@8 Pass@1 Pass@8

SFT 51.80 74.60 3.33 6.67 3.33 3.33 27.50 62.50 14.34 29.78 15.58 29.53 13.46 24.89
RFT 60.40 75.80 10.00 13.33 3.33 10.00 30.00 60.00 16.91 29.78 17.80 31.60 16.51 26.40
W-REINFORCE 56.40 77.00 3.33 10.00 3.33 10.00 25.00 70.00 14.34 25.74 15.43 29.23 13.75 25.52
DAPO 59.20 77.60 3.33 10.00 6.67 10.00 36.00 62.50 17.71 30.15 15.00 32.94 14.18 25.52
GSPO 61.60 79.20 6.67 16.67 3.33 6.67 30.00 72.50 16.54 29.41 18.55 34.42 15.94 26.81
CISPO 59.60 78.60 6.67 13.33 6.67 6.67 30.00 65.00 18.38 29.78 16.91 33.09 15.42 26.94
REINFORCE 58.60 76.40 6.67 13.33 3.33 3.33 42.50 62.50 16.91 28.68 17.80 33.28 15.09 25.81
REINFORCE+LCO 64.80 78.00 13.33 13.33 6.67 10.00 40.00 65.00 19.12 31.62 21.07 33.38 17.21 26.54
PPO 56.40 74.80 6.67 6.67 3.33 6.67 32.50 72.50 15.81 28.31 14.39 32.49 14.36 26.13
PPO+LCO 62.80 74.40 10.00 13.33 3.33 10.00 47.50 67.50 17.65 28.31 19.88 30.91 16.92 24.13
GRPO 58.80 74.40 6.67 16.67 3.33 10.00 34.40 67.50 16.13 30.51 16.17 30.42 13.96 25.09
GRPO+LCO 64.60 72.80 10.00 16.67 6.67 10.00 45.00 65.00 23.16 26.10 21.07 28.34 17.21 23.13

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Results of Llama-2-7B on simpler math reasoning
tasks, aligned with its capabilities. Best performances are
shown in bold, while suboptimal ones are underlined.

Methods GSM8K SVAMP ASDiv MultiArith
Pass@1 Pass@8 Pass@1 Pass@8 Pass@1 Pass@8 Pass@1 Pass@8

SFT 20.47 58.53 33.60 78.00 33.87 78.22 48.89 98.33
RFT 29.11 59.74 46.50 82.30 53.28 79.56 75.56 98.89
W-REINFORCE 24.47 58.23 35.90 78.40 39.87 78.79 56.67 98.89
DAPO 24.72 62.32 40.80 79.90 45.00 79.22 61.11 97.22
GSPO 25.85 64.90 40.30 82.60 48.30 80.56 62.78 98.89
CISPO 25.25 62.62 41.20 81.60 45.96 80.42 64.44 99.44
REINFORCE 24.41 56.79 35.30 74.00 38.04 76.76 62.22 98.33
REINFORCE+LCO 32.45 65.88 48.40 84.30 55.05 80.85 80.00 99.44
PPO 25.92 56.56 34.00 75.90 41.14 79.78 57.78 99.44
PPO+LCO 34.34 65.43 47.60 79.60 56.25 79.25 81.67 97.78
GRPO 26.08 62.47 38.40 81.70 45.62 80.71 59.44 98.89
GRPO+LCO 35.25 61.22 46.60 81.40 55.58 74.40 84.44 99.44

Compared to REINFORCE, PPO,
and GRPO, incorporating LCO
shows consistent advantages. Specif-
ically, relative to REINFORCE,
REINFORCE+LCO achieves im-
provements of 6.20 and 6.66 points
in Pass@1 scores on MATH500 and
AIME2024, respectively. Similarly,
PPO+LCO and GRPO+LCO out-
perform their original algorithms by
15.00 and 7.03 points in Pass@1
scores on AMC23 and MinervaMath,
respectively. Even with the less capable Llama-2-7B backbone, LCO-based methods outperform
their counterparts. For example, GRPO+LCO achieves Pass@1 score gains of 9.17 and 25.00
points over the GRPO on GSM8K and MultiArith, respectively. Likewise, REINFORCE+LCO and
PPO+LCO deliver improvements of 13.1 and 15.11 points on SVAMP and ASDiv, respectively,
underscoring the effectiveness of LCO across diverse foundational models with varying capabilities.

Table 3: Results for Qwen-2.5-7B on out-of-
distribution tasks. Best performances are shown
in bold, while suboptimal ones are underlined.

Methods MMLU MMLU-Pro MMLU-Redux BBH
REINFORCE 73.96 43.29 70.93 67.31
REINFORCE+LCO 74.26 49.19 68.48 68.12
PPO 72.57 41.42 67.16 64.98
PPO+LCO 73.46 49.49 70.35 66.29
GRPO 71.00 40.90 67.15 67.64
GRPO+LCO 75.12 50.37 69.83 67.69

Multitask Understanding & Complex Reason-
ing We evaluate the out-of-distribution (OOD)
performance of the LCO methods on multitask
language understanding benchmarks, including
MMLU, MMLU-Pro, and MMLU-Redux, as
well as complex reasoning task BBH. As de-
tailed in Table 3, LCO-based methods exhibit su-
perior accuracy compared to their counterparts.
GRPO+LCO achieves the highest accuracy of
75.12% and 50.37% on MMLU and MMLU-Pro, respectively, outperforming GRPO’s 71.00% and
40.90%. Additionally, REINFORCE+LCO and PPO+LCO achieve 68.12% and 70.35% accuracy on
BBH and MMLU-Redux, compared to 67.31% and 67.16% for REINFORCE and PPO, respectively.
These results highlight the strong OOD generalization and robustness of LCO-based approaches.

6.2 TRAINING DYNAMICS ANALYSIS

To investigate how LCO stabilizes the RL training process, we compare the training dynamics of
Lt

PG-IS and Lt
LCO, which are both implemented on top of the REINFORCE algorithm as the base RL

framework. Additionally, the clipping mechanism is applied to Lt
PG-IS. Unless specified otherwise,

the experimental settings for Lt
PG-IS and Lt

LCO are kept consistent throughout the following sections.
The training dynamics of Lt

PG-IS and Lt
LCO are presented in Figure 6. Additionally, the training

dynamics of Lt
PG are provided in Figure 9 in the Appendix.

Gradient Norms The gradient norm dynamics of Lt
PG-IS and Lt

LCO are illustrated in Figures 6(a)
and (b). As training progresses, Lt

PG-IS remains relatively stable during the early stages but begins to
oscillate after approximately 6K steps. In contrast, the gradient norm of Lt

LCO consistently decreases
throughout the entire training process. Similar trends are observed for both positive and negative
gradients, as shown in Figures 6(a-1) and (b-1). Here, the positive gradient reflects contributions
from action gradients where Ψt,i > 0, while the negative gradient corresponds to Ψt,i < 0. These
results indicate that LCO effectively smooths the gradients, promoting stable training.

Entropy and Action Probabilities We further analyze the dynamics of policy entropy and sam-
pled action probabilities, which directly reflect the exploration capability and expected behavior of
policy. As shown in Figure 6 (a-2), Lt

PG-IS exhibits a sharp drop in the sampled action probabili-
ties and an entropy explosion during later training stages, aligning with oscillations in the gradient
norms. This indicates increased uncertainty in the output of policy, confirming the occurrence of
collapse phenomenon. However, Lt

LCO (b-2) maintains stable entropy and action probabilities, pre-
serving exploration capacity while ensuring effective policy optimization.

Evaluation Results We evaluate the performance of Lt
PG-IS and Lt

LCO on the MATH500 test set
during training. As shown in Figure 6(a-3), Lt

PG-IS experiences a performance drop in the later
training stages due to the training collapse. In contrast, Lt

LCO exhibits steady performance improve-
ments and ultimately outperforms Lt

PG-IS in terms of Pass@1 score (Figure 6(b-3)). This finding
demonstrates that Lt

LCO enhances policy performance while maintaining training stability.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 2500 5000 7500
Training Steps

0

2

4

Av
er

ag
e

Gr
ad

ie
nt

 N
or

m
(a)

PG-IS

Gradient Norm

0 2500 5000 7500
Training Steps

0

2

4

Gr
ad

ie
nt

 N
or

m

(a-1)

Positive & Negative Gradient Norm

0 2500 5000 7500
Training Steps

0
2
4
6
8

Po
lic

y
En

tro
py

(a-2)

Entropy & Action Probability

0 2000 4000 6000 8000
Training Steps

0.0

0.2

0.4

0.6

Pa
ss

@
1

(a-3)

MATH500 Pass@1

0 2500 5000 7500
Training Steps

0

1

Av
er

ag
e

Gr
ad

ie
nt

 N
or

m

(b)

LCO

Gradient Norm

0 2500 5000 7500
Training Steps

0

1

Gr
ad

ie
nt

 N
or

m

(b-1)

Positive & Negative Gradient Norm

0 2500 5000 7500
Training Steps

0

1

2

Po
lic

y
En

tro
py

(b-2)

Entropy & Action Probability

0 2000 4000 6000 8000
Training Steps

0.0

0.2

0.4

0.6

Pa
ss

@
1

(b-3)

MATH500 Pass@1

0

2

4

Gr
ad

ie
nt

 N
or

mPositive Gradient
Negative Gradient

0

1

Sa
m

pl
ed

 A
ct

io
n

Pr
ob

ab
ilit

y

Entropy
Action Prob

0

1

Gr
ad

ie
nt

 N
or

mPositive Gradient
Negative Gradient

0

1

Sa
m

pl
ed

 A
ct

io
n

Pr
ob

ab
ilit

y

Entropy
Action Prob

Figure 6: Training dynamics of Lt
PG-IS and Lt

LCO. The analysis covers four key metrics: gradient
norms, policy entropy, action probabilities, and evaluation performance.

6.3 TRAINING WITH DIFFERENT LEARNING RATES

We evaluate the performance trajectories of Lt
PG, Lt

PG-IS and Lt
LCO under different learning rates

across training iterations. All three methods are implemented on top of the REINFORCE frame-
work. As shown in Figure 7, performance is highly sensitive to the learning rate in non-convex
optimization methods such as PG and PG-IS, where higher learning rates often lead to unstable
training dynamics. In contrast, LCO exhibits robust adaptability across different learning rates,
achieving stable improvements and reaching its best performance with a larger learning rate.

0 2000 4000 6000
Training Steps

0.4

0.5

0.6

Pa
ss

@
1

(a)

PG

0 2000 4000 6000
Training Steps

0.4

0.5

0.6

Pa
ss

@
1

(b)

PG-IS

0 2000 4000 6000
Training Steps

0.4

0.5

0.6

Pa
ss

@
1

(c)

LCO
lr=5e-7 lr=1e-6 lr=2e-6 lr=3e-6 lr=5e-6

Figure 7: MATH500 Pass@1 across learning rates during training of Lt
PG, Lt

PG-IS and Lt
LCO. PG and

PG-IS become unstable at higher rates, whereas LCO remains stable with increasing performance.

6.4 PG-IS PERFORMANCE ON LOW-PROBABILITY POSITIVE SAMPLES

Based on Figure 4(a-1), our analysis suggests that training on low-probability positive actions may
also destabilize Lt

PG-IS. To verify this, during the policy rollout phase, we selected the top 50% of
positive samples with the highest perplexity. As illustrated in Figure 8, this leads to unstable train-
ing dynamics, with oscillating gradient norms and fluctuating action probabilities. Consequently,
entropy oscillates and evaluation performance declines during the later stages of training. These
results show that low-probability positive samples destabilize learning. Therefore, the LCO method
should be applied to positive-sample gradients alongside negative samples to maintain stability.

100 2000 4000 6000
Training Steps

0
2
4
6
8

Av
er

ag
e

Gr
ad

ie
nt

 N
or

m

(a)

PPO

Gradient Norm

100 2000 4000 6000
Training Steps

0
2
4
6
8

Gr
ad

ie
nt

 N
or

m

(b)

Positive & Negative Gradient Norm

100 2000 4000 6000
Training Steps

0
2
4
6
8

Po
lic

y
En

tro
py

(c)

Entropy & Action Probability

100 2000 4000 6000
Training Steps

0.3

0.4

0.5

Pa
ss

@
1

(d)

MATH500 Pass@1

0
2
4
6
8

Gr
ad

ie
nt

 N
or

mPositive Gradient
Negative Gradient

0.00
0.25
0.50
0.75
1.00

Sa
m

pl
ed

 A
ct

io
n

Pr
ob

Entropy
Action Prob

Figure 8: Training dynamics of Lt
PG-IS on positive samples with low probabilities. Training collapse

still occurred in the later stages, indicating that applying LCO to positive samples is also necessary.

7 CONCLUSION

In this work, we analyzed the sources of reinforcement learning (RL) instability in LLMs and iden-
tified logits convexity as a key property underlying stable gradient behavior. We demonstrated that
while supervised fine-tuning exhibits inherent stability due to logits convexity, standard RL ob-
jectives lack this property, leading to large gradient fluctuations and training collapse. Leveraging
this insight, we proposed Logits Convex Optimization (LCO), a RL objective that preserves log-
its convexity, mitigates sudden gradient spikes, and can be seamlessly integrated into existing RL
algorithms. Empirical results show that LCO delivers consistently stable training and improved per-
formance across both reasoning and non-reasoning tasks. Our findings provide both a theoretical
explanation for RL instability and a practical framework for more reliable optimization of LLMs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work focuses on improving the training stability of reinforcement learning algorithms, which
we believe does not inherently raise significant ethical concerns. We have taken care to ensure that
our methodologies and applications align with responsible research practices. The datasets used
in this study are publicly available and widely recognized within the research community, and we
have verified that their use complies with all associated terms and conditions. Additionally, we
have adhered to all relevant legal and ethical standards throughout the research process. Finally, we
confirm that no conflicts of interest or sponsorships have influenced the outcomes of this work.

REPRODUCIBILITY STATEMENT

Full experimental details, including data processing and training configuration, are provided in Sec-
tion 5 and Appendix C. The implemented code and data are included in the supplementary materials
and will be made publicly available. Proofs for the core theoretical results (Proposition 1 and Propo-
sition 2) are provided in Appendix G and Appendix H, respectively. These proofs assume the loss
function is twice-differentiable over the real numbers.

REFERENCES

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting REINFORCE-style optimization for
learning from human feedback in LLMs. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 12248–12267, Bangkok, Thailand, August 2024. Association for
Computational Linguistics.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson
Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernan-
dez, Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson,
Dario Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann, and Jared Ka-
plan. Training a helpful and harmless assistant with reinforcement learning from human feedback.
arXiv preprint arXiv:2407.16574, 2024.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

Aili Chen, Aonian Li, Bangwei Gong, Binyang Jiang, Bo Fei, Bo Yang, Boji Shan, Changqing Yu,
Chao Wang, Cheng Zhu, et al. Minimax-m1: Scaling test-time compute efficiently with lightning
attention. arXiv preprint arXiv:2506.13585, 2025a.

Huayu Chen, Kaiwen Zheng, Qinsheng Zhang, Ganqu Cui, Yin Cui, Haotian Ye, Tsung-Yi Lin,
Ming-Yu Liu, Jun Zhu, and Haoxiang Wang. Bridging supervised learning and reinforcement
learning in math reasoning. arXiv preprint arXiv:2505.18116, 2025b.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for
reasoning language models. arXiv preprint arXiv:2505.22617, 2025.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma,
Liang Chen, Runxin Xu, et al. Omni-math: A universal olympiad level mathematic benchmark
for large language models. arXiv preprint arXiv:2410.07985, 2024.

Aryo Pradipta Gema, Joshua Ong Jun Leang, Giwon Hong, Alessio Devoto, Alberto Carlo Maria
Mancino, Rohit Saxena, Xuanli He, Yu Zhao, Xiaotang Du, Mohammad Reza Ghasemi Madani,
Claire Barale, Robert McHardy, Joshua Harris, Jean Kaddour, Emile Van Krieken, and Pasquale
Minervini. Are we done with MMLU? In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.),
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp.
5069–5096, Albuquerque, New Mexico, April 2025. Association for Computational Linguistics.
ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.naacl-long.262.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024.

Lixuan He, Jie Feng, and Yong Li. Amft: Aligning llm reasoners by meta-learning the optimal
imitation-exploration balance. arXiv preprint arXiv:2508.06944, 2025.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference
on Learning Representations, 2021a.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021b.

Jian Hu, Jason Klein Liu, Haotian Xu, and Wei Shen. Reinforce++: An efficient rlhf algorithm with
robustness to both prompt and reward models. arXiv preprint arXiv:2501.03262, 2025.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh Hajishirzi.
Mawps: A math word problem repository. In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, pp. 1152–1157, 2016.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in Neural Information Processing Systems,
35:3843–3857, 2022.

Mingyang Liu, Gabriele Farina, and Asuman Ozdaglar. Uft: Unifying supervised and reinforcement
fine-tuning. arXiv preprint arXiv:2505.16984, 2025.

Chengqi Lyu, Songyang Gao, Yuzhe Gu, Wenwei Zhang, Jianfei Gao, Kuikun Liu, Ziyi Wang,
Shuaibin Li, Qian Zhao, Haian Huang, et al. Exploring the limit of outcome reward for learning
mathematical reasoning. arXiv preprint arXiv:2502.06781, 2025.

Shen-Yun Miao, Chao-Chun Liang, and Keh-Yih Su. A diverse corpus for evaluating and developing
english math word problem solvers. arXiv preprint arXiv:2106.15772, 2021.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math
word problems? arXiv preprint arXiv:2103.07191, 2021.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, pp. 1889–1897. PMLR,
2015a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015b.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Mirac Suzgun, Nathan Scales, Nathanael Scharli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed Huai hsin Chi, Denny Zhou, and Jason Wei. Challenging
big-bench tasks and whether chain-of-thought can solve them. In Annual Meeting of the Associa-
tion for Computational Linguistics, 2022. URL https://api.semanticscholar.org/
CorpusID:252917648.

Ling Team, Bin Hu, Cai Chen, Deng Zhao, Ding Liu, Dingnan Jin, Feng Zhu, Hao Dai, Hongzhi
Luan, Jia Guo, et al. Ring-lite: Scalable reasoning via c3po-stabilized reinforcement learning for
llms. arXiv preprint arXiv:2506.14731, 2025.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
task language understanding benchmark. Advances in Neural Information Processing Systems,
37:95266–95290, 2024.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Yongliang Wu, Yizhou Zhou, Zhou Ziheng, Yingzhe Peng, Xinyu Ye, Xinting Hu, Wenbo Zhu,
Lu Qi, Ming-Hsuan Yang, and Xu Yang. On the generalization of sft: A reinforcement learning
perspective with reward rectification. arXiv preprint arXiv:2508.05629, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025a.

Shihui Yang, Chengfeng Dou, Peidong Guo, Kai Lu, Qiang Ju, Fei Deng, and Rihui Xin. Dcpo:
Dynamic clipping policy optimization. arXiv preprint arXiv:2509.02333, 2025b.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025.

Yufeng Yuan, Yu Yue, Ruofei Zhu, Tiantian Fan, and Lin Yan. What’s behind ppo’s collapse in
long-cot? value optimization holds the secret. arXiv preprint arXiv:2503.01491, 2025.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqi Tan, Chang Zhou,
and Jingren Zhou. Scaling relationship on learning mathematical reasoning with large language
models. arXiv preprint arXiv:2308.01825, 2023.

Yi-Fan Zhang, Xingyu Lu, Xiao Hu, Chaoyou Fu, Bin Wen, Tianke Zhang, Changyi Liu, Kaiyu
Jiang, Kaibing Chen, Kaiyu Tang, et al. R1-reward: Training multimodal reward model through
stable reinforcement learning. arXiv preprint arXiv:2505.02835, 2025.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
Yuqiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. arXiv preprint
arXiv:2507.18071, 2025.

Wenqiao Zhu, Ji Liu, Rongjuncheng Zhang, Haipang Wu, and Yulun Zhang. Carft: Boosting llm
reasoning via contrastive learning with annotated chain-of-thought-based reinforced fine-tuning.
arXiv preprint arXiv:2508.15868, 2025a.

Xinyu Zhu, Mengzhou Xia, Zhepei Wei, Wei-Lin Chen, Danqi Chen, and Yu Meng. The surpris-
ing effectiveness of negative reinforcement in llm reasoning. arXiv preprint arXiv:2506.01347,
2025b.

12

https://api.semanticscholar.org/CorpusID:252917648
https://api.semanticscholar.org/CorpusID:252917648

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

In this work, we utilize large language models solely for the purpose of polishing the manuscript.
Specifically, they are employed to improve clarity and precision of phrasing, ensure grammatical
correctness and spelling accuracy, and provide suggestions to enhance overall coherence and read-
ability. The core research problem, conceptual framework, methodologies, analysis, and results are
entirely developed by the authors. Our use of LLMs is strictly confined to improving the efficiency
and quality of academic writing without influencing the intellectual contributions of this work.

B RELATED WORK

Recent research in reinforcement learning has increasingly focused on improving the stability of
policy training. These efforts can be broadly categorized into three groups.

The first category aims to reduce the variance or bias in advantage estimation. A seminal work
in this line is the GAE (Schulman et al., 2015b), which combines Monte Carlo returns and a value
model to balance bias and variance. Extending GAE, VC-PPO (Yuan et al., 2025) identifies a failure
mode where the value model exhibits bias during training, resulting in large errors in advantage
estimation. To address this, they propose a pretraining procedure for the value model, and decouple
the λ in GAE for the policy and value model computations. Zhang et al. (2025) identify outliers
caused by the imbalance in the advantage distribution. They propose StableReinforce, which applies
an advantage filter to retain only those advantages that fall within three standard deviations for stable
training. By simplifying the advantage estimation process, RLOO (Ahmadian et al., 2024) employs
a leave-one-out baseline across multiple completions to produce an unbiased advantage estimate for
a single prompt. Similarly, Shao et al. (2024) introduce GRPO, which standardizes sequence-level
rewards by subtracting the mean and dividing by the standard deviation, thereby reducing bias and
variance. Extending GRPO, Yu et al. (2025) propose DAPO, which re-weights token-level losses to
prevent longer responses from being underrepresented in gradient updates.

The second category stabilizes training by constraining policy updates through a Kullback-Leibler
(KL) divergence penalty relative to a reference model. For example, TRPO (Schulman et al., 2015a)
aims to find a policy that increases the probability of advantageous actions while limiting the di-
vergence from the previous policy using a KL constraint, ensuring stable training. Building upon
PPO, Ouyang et al. (2022); Hu et al. (2025) add a token-level KL penalty to the reward function,
which constrains the policy at each generation step to remain close to the reference SFT model.
GRPO (Shao et al., 2024) modifies this approach by applying the KL constraint directly to the pol-
icy loss rather than the reward, which allows for more targeted optimization. KL-Cov (Cui et al.,
2025) advances this idea by analyzing policy entropy, showing that entropy change is driven by the
covariance between action probabilities and advantages, and applying KL penalties selectively to
high-covariance tokens to prevent entropy collapse and improve stability.

The third category employs clipping mechanisms to stabilize policy updates. PPO and GRPO con-
strain the importance sampling ratio between current and previous policies within fixed upper and
lower bounds to prevent excessively large policy updates. However, such bounds can limit training
efficiency and unduly constrain specific updates. To address this, DAPO (Yu et al., 2025) proposes
a decoupled clip-higher method that relaxes the upper clipping bound to improve training efficiency
while maintaining stability. Building upon the same idea, DCPO (Yang et al., 2025b) addresses the
limitation in DAPO, where the same clip range is set for different positions. It further introduces
a dynamic clipping method that adaptively adjusts the clipping bounds based on the token-specific
probabilities from previous iterations, thereby mitigating the drawbacks of fixed clipping bounds.
Chen et al. (2025a) identify a key limitation in PPO/GRPO: clipping can prematurely drop high-
advantage tokens from contributing to off-policy gradients. They introduce CISPO, which clips
importance sampling weights without clipping token updates to stabilize training. Extending this
covariance analysis, Cui et al. (2025) propose Clip-Cov, which applies clipping selectively to up-
dates on high-covariance tokens to further enhance training stability.

Unlike previous work, our study is inspired by the stable training of SFT and provides a theoretical
analysis of RL instability from a gradient perspective. We identify a property, termed logits con-
vexity, which induces smoother gradient updates during optimization and ensures more stable RL
training. Building on this insight, we propose a simple yet effective policy optimization strategy.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 4: Ablation study on KL divergence variation for ρt,i in LCO methods. Configurations that
achieve the closest match to the KL divergence (between the policy distributions before and after
one update step) compared to their corresponding original methods are highlighted in bold.

Method ρt,i KL |∆KL| Method ρt,i KL |∆KL| Method ρt,i KL |∆KL|
Ψt,i > 0 Ψt,i < 0 Ψt,i > 0 Ψt,i < 0 Ψt,i > 0 Ψt,i < 0

REINFORCE N/A N/A 0.0264 0.0000 PPO N/A N/A 0.0216 0.0000 GRPO N/A N/A 0.0324 0.0000

REINFORCE+LCO

1.8 0.8 0.0336 0.0072

PPO+LCO

1.8 0.8 0.0314 0.0098

GRPO+LCO

1.8 0.8 0.0487 0.0163
1.8 0.9 0.0273 0.0009 1.8 0.9 0.0241 0.0025 1.8 0.9 0.0368 0.0044
1.8 0.95 0.0134 0.0130 1.8 0.95 0.0096 0.0120 1.8 0.95 0.0216 0.0108
1.9 0.9 0.0281 0.0017 1.9 0.9 0.0263 0.0047 1.9 0.9 0.0396 0.0072
1.7 0.9 0.0236 0.0028 1.7 0.9 0.0183 0.0033 1.7 0.9 0.0314 0.0010

C ADDITIONAL EXPERIMENTAL SETUP

To initialize the policies with basic instruction-following and reasoning capabilities while avoiding
overfitting, we perform SFT warm-up training for only 1 epoch. For RL methods, we set the rollout
batch size to 2,048, with 4 responses generated per instruction. The update batch size is set to
256, following Zhu et al. (2025b). A sampling temperature of 0.6 and a top-p value of 0.95 are
consistently applied across all policies to control the diversity and quality of generated responses.

To ensure reproducibility, all baseline configurations strictly follow the settings in their original
papers. These configurations are further supplemented by the default parameters from the TRL
repository1, a widely used library for training language models with reinforcement learning.

All experiments utilize bfloat16 precision to optimize memory usage and computational efficiency.
Evaluations are performed in a zero-shot setting. Consistent with training, a sampling temperature
of 0.6 and a top-p value of 0.95 are used during evaluation, as recommended by Guo et al. (2025).

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 ABLATION STUDY ON ρt,i

Table 5: Ablation study of ρt,i in the
REINFORCE+LCO method.

Method ρt,i Pass@1
Ψt,i > 0 Ψt,i < 0

REINFORCE+LCO

1.2 0.7 55.20
1.2 0.8 58.60
1.7 0.8 61.20
1.8 0.8 63.60
1.8 0.9 64.80
1.8 0.95 64.00
1.9 0.9 63.40
1.7 0.9 62.40

In this section, we present a comprehensive ablation study
on the hyperparameter ρt,i in the LCO framework, using
Qwen-2.5-7B as the base model. Individually tuning ρt,i
at each time step t is computationally prohibitive, so we
instead treat ρt,i across all steps as a unified parameter.
For Ψt,i > 0, we consider values greater than 1, and for
Ψt,i < 0, values smaller than 1. Accordingly, we search
within constrained ranges: ρt,i ∈ {1.2, 1.7, 1.8, 1.9}
when Ψt,i > 0 and ρt,i ∈ {0.7, 0.8, 0.9, 0.95} when
Ψt,i < 0, to identify the optimal update magnitude. As
shown in Table 5, the configuration ρt,i = 1.8 for Ψt,i > 0 and ρt,i = 0.9 for Ψt,i < 0 consistently
delivers the best performance, achieving a Pass@1 of 64.80% on the evaluation set. This setting
strikes a balance: ρt,i = 1.8 amplifies beneficial actions, while ρt,i = 0.9 suppresses undesirable
ones without introducing gradient instability.

We further evaluate the KL divergence between policy distributions before and after a single training
update for REINFORCE, PPO, GRPO, and their LCO-augmented counterparts. The objective is to
find ρt,i values that align the KL divergence of LCO-augmented methods with their baselines. As
reported in Table 4, the same configuration (ρt,i = 1.8 for Ψt,i > 0, ρt,i = 0.9 for Ψt,i < 0)
in REINFORCE+LCO and PPO+LCO yields the closest KL divergence to the original methods.
Considering both Pass@1 and KL divergence, we adopt this configuration as the default for LCO.

0 2500 5000 7500
Training Steps

0
2
4
6
8

Av
er

ag
e

Gr
ad

ie
nt

 N
or

m

(a)

PG

Gradient Norm

0 2500 5000 7500
Training Steps

0
2
4
6
8

Gr
ad

ie
nt

 N
or

m

(b)

Positive & Negative Gradient Norm

0 2500 5000 7500
Training Steps

0
2
4
6
8

Po
lic

y
En

tro
py

(c)

Entropy & Action Probability

0 2000 4000 6000 8000
Training Steps

0.0

0.2

0.4

0.6

Pa
ss

@
1

(d)

MATH500 Pass@1

0
2
4
6
8

Gr
ad

ie
nt

 N
or

mPositive Gradient
Negative Gradient

0

1

Sa
m

pl
ed

 A
ct

io
n

Pr
ob

Entropy
Action Prob

Figure 9: Training dynamics of Lt
PG. The analysis covers four key metrics: gradient norms, policy

entropy, action probabilities, and evaluation performance.

1https://github.com/huggingface/trl

14

https://github.com/huggingface/trl

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

D.2 TRAINING DYNAMICS ANALYSIS FOR PG

As an extensive experiment of Section 6.2, we show the training dynamic of Lt
PG in Figure 9. Follow-

ing the settings of Lt
PG-IS and Lt

LCO, Lt
PG is also implemented on top of the REINFORCE algorithm

as the base RL framework.

The gradient norm dynamics of Lt
PG are shown in Figure 9(a). As training progresses, the gradient

norm diverges significantly, with similar trends observed for both positive and negative gradients,
as illustrated in Figure 9(b). Additionally, we analyze the dynamics of policy entropy and sampled
action probabilities. As depicted in Figure 9(c), Lt

PG exhibits a sharp decline in sampled action
probabilities at approximately 4K steps, coinciding with oscillations in the gradient norms. Concur-
rently, policy entropy fluctuates in a similar manner. Furthermore, we evaluate Lt

PG’s performance
on the MATH500 test set during training. As shown in Figure 9(d), a performance drop is observed
around 4K steps, which aligns with the oscillations in the gradient norms.

Table 6: Additional results for Qwen-2.5-7B on challenging mathematical reasoning tasks, aligned
with its capabilities. Best performances are shown in bold, while suboptimal ones are underlined.

Methods MATH500 AIME2024 AIME2025 AMC23 MinervaMath OlympiadBench OmniMath
Pass@1 Pass@8 Pass@1 Pass@8 Pass@1 Pass@8 Pass@1 Pass@8 Pass@1 Pass@8 Pass@1 Pass@8 Pass@1 Pass@8

NFT 54.80 75.80 3.33 10.00 3.33 10.00 27.50 65.00 12.87 30.15 16.02 30.86 13.82 25.93
NSR 53.20 75.80 0.00 6.67 3.33 13.33 22.50 57.50 15.07 26.84 16.77 30.56 14.00 25.56
OREAL 56.80 78.40 6.67 13.33 0.00 10.00 32.50 62.50 15.81 27.94 15.13 31.01 14.32 26.20
RLOO 57.60 78.00 3.33 20.00 3.33 6.67 32.40 67.50 15.24 29.78 17.95 31.75 15.15 26.54
REINFORCE+LCO 64.80 78.00 13.33 13.33 6.67 10.00 40.00 65.00 19.12 31.62 21.07 33.38 17.21 26.54
PPO+LCO 62.80 74.40 10.00 13.33 3.33 10.00 47.50 67.50 17.65 28.31 19.88 30.91 16.92 24.13
GRPO+LCO 64.60 72.80 10.00 16.67 6.67 10.00 45.00 65.00 23.16 26.10 21.07 28.34 17.21 23.13

Table 7: Additional results for Llama-2-7B on simpler mathematical reasoning tasks, aligned with
its capabilities. Best performances are shown in bold, while suboptimal ones are underlined.

Methods GSM8K SVAMP ASDiv MultiArith
Pass@1 Pass@8 Pass@1 Pass@8 Pass@1 Pass@8 Pass@1 Pass@8

NFT 26.62 56.86 34.70 78.90 42.03 79.32 57.78 97.22
NSR 21.38 57.24 32.90 76.80 37.48 79.61 58.89 97.22
OREAL 26.99 61.03 38.30 79.40 42.60 78.55 58.33 98.33
RLOO 26.38 62.02 41.50 81.40 44.81 81.62 66.11 96.67
REINFORCE+LCO 32.45 65.88 48.40 84.30 55.05 80.85 80.00 99.44
PPO+LCO 34.34 65.43 47.60 79.60 56.25 79.25 81.67 97.78
GRPO+LCO 35.25 61.22 46.60 81.40 55.58 74.40 84.44 99.44

D.3 ADDITIONAL BASELINES COMPARISON

Additionally, we compare our method against a broader set of baselines, including RLOO (Ahma-
dian et al., 2024), NSR (Zhu et al., 2025b), NFT (Chen et al., 2025b), and OREAL (Lyu et al., 2025).
Results on the test sets of various mathematical reasoning tasks are presented in Tables 6 and 7, with
Pass@1 and Pass@8 as the evaluation metrics. Whether using the more powerful Qwen-2.5-7B
model or the less advanced Llama-2-7B backbone, the LCO series methods consistently enhance
performance across different baselines in most mathematical reasoning tasks.

D.4 IMPACT OF MODEL SIZE

To investigate the impact of model size on LCO, we adopt Qwen-2.5-32B as the policy backbone
and compare three training approaches: SFT, REINFORCE, and REINFORCE+LCO. Performance
is evaluated using the Pass@1 metric on the MATH500 benchmark. As shown in Figure 10, LCO
consistently outperforms both SFT and REINFORCE when scaling the policy model to 32B param-
eters. These results demonstrate the robustness and scalability of LCO, confirming its effectiveness
not only for smaller models such as 7B but also for substantially larger ones.

MATH500
AIME2024

AIME2025
AMC23 MinervaMath

OlympiadBench
OmniMath

0.0

0.2

0.4

0.6

0.8

Pa
ss

@
1

SFT REINFORCE REINFORCE+LCO

Figure 10: Performance of SFT, REINFORCE, and REINFORCE+LCO using Qwen-2.5-32B.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

E GRADIENT OF THE SOFTMAX FUNCTION

Consider the output of the softmax function, denoted as πθ(at,i|st), which is defined as:

πθ(at,i|st) =
exp zθ(at,i|st)∑
k′ exp zθ(at,k′ |st)

. (19)

The gradient of the softmax function with respect to the logits zθ(at,k|st) can be derived in two
cases. The first case is when i ̸= k:

∂πθ(at,i|st)
∂zθ(at,k|st)

= −exp zθ(at,i|st) exp zθ(at,k|st)
(
∑

k′ exp zθ(at,k′ |st))2

= −πθ(at,i|st)πθ(at,k|st).
(20)

The second case is when i = k:

∂πθ(at,i|st)
∂zθ(at,k|st)

=
exp zθ(at,i|st)∑
k′ exp zθ(at,k′ |st)

− exp zθ(at,i|st) exp zθ(at,k|st)
(
∑

k′ exp zθ(at,k′ |st))2

= πθ(at,i|st)(1− πθ(at,k|st)).
(21)

To unify these two cases, we introduce the Kronecker delta function, defined as δik = 1 if i = k,
and δik = 0 otherwise. Using this definition, the gradient can be written as:

∂πθ(at,i|st)
∂zθ(at,k|st)

= πθ(at,i|st)(δik − πθ(at,k|st)). (22)

F DERIVATION OF LOGITS GRADIENT

F.1 LOGITS GRADIENT OF SUPERVISED FINE-TUNING

We provide the derivation for Equation 6. The SFT loss at time step t is:

Lt
SFT = − log πθ(at,i|st). (23)

For a logit zθ(at,k|st), we compute the partial derivative using Equation 22:

∂Lt
SFT

∂zθ(at,k|st)
= −∂ log πθ(at,i|st)

∂πθ(at,i|st)
∂πθ(at,i|st)
∂zθ(at,k|st)

= − 1

πθ(at,i|st)
πθ(at,i|st)(δik − πθ(at,k|st))

= πθ(at,k|st)− δik.

(24)

F.2 LOGITS GRADIENT OF POLICY GRADIENT

We provide the derivation for Equation 7. The policy gradient (PG) loss at time step t is:

Lt
PG = −Ψt,i log πθ(at,i|st). (25)

For a logit zθ(at,k|st), we compute the partial derivative using Equation 22:

∂Lt
PG

∂zθ(at,k|st)
= −Ψt,i

∂ log πθ(at,i|st)
∂πθ(at,i|st)

∂πθ(at,i|st)
∂zθ(at,k|st)

= −Ψt,i
1

πθ(at,i|st)
πθ(at,i|st)(δik − πθ(at,k|st))

= Ψt,i(πθ(at,k|st)− δik).

(26)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

F.3 LOGITS GRADIENT OF POLICY GRADIENT WITH IMPORTANCE SAMPLING

We provide the derivation for Equation 8. The PG-IS loss at time step t is:

Lt
PG-IS = −Ψt,i

πθ(at,i|st)
πθold(at,i|st)

. (27)

For a logit zθ(at,k|st), we the compute partial derivative using Equation 22:

∂Lt
PG-IS

∂zθ(at,k|st)
= − Ψt,i

πθold(at,i|st)
∂πθ(at,i|st)
∂zθ(at,k|st)

=
Ψt,i

πθold(at,i|st)
πθ(at,i|st)(πθ(at,k|st)− δik).

(28)

F.4 LOGITS GRADIENT OF LCO

We provide the derivation for Equation 18. The LCO loss at time step t is:

Lt
LCO = |Ψt,i|

∑
k′

π′(at,k′ |st) log
π′(at,k′ |st)
πθ(at,k′ |st)

. (29)

For a logit zθ(at,k|st), we compute the partial derivative using Equation 22:

∂Lt
LCO

∂zθ(at,k|st)
= |Ψt,i|

∑
k′

[
−π′(at,k′ |st)

πθ(at,k′)

∂πθ(at,k′ |st)
∂zθ(at,k|st)

]
= |Ψt,i|

∑
k′

[
− π′(at,k′ |st)
πθ(at,k′ |st)

πθ(at,k′ |st)(δk′k − πθ(at,k|st))
]

= |Ψt,i|
∑
k′

[−π′(at,k′ |st)(δk′k − πθ(at,k|st))]

= |Ψt,i|

[
−
∑
k′

π′(at,k′ |st)δk′k +
∑
k′

π′(at,k′ |st)πθ(at,k|st)

]
= |Ψt,i|(πθ(at,k|st)− π′(at,k|st)).

(30)

G PROOF OF PROPOSITION 1

In this section, we provide the proof for Proposition 1. Let L : Rn → R be a twice-differentiable
loss function that takes logits zθ ∈ Rn parameterized by θ as input. According to the chain rule, the
gradient norm of L with respect to θ is given by:

∥∇θL∥ =

∥∥∥∥∥∑
i

∂L
∂zθ,i

∇θzθ,i

∥∥∥∥∥ . (31)

where zθ,i is the i-th element of zθ. According to the triangle inequality, we have:∥∥∥∥∥∑
i

∂L
∂zθ,i

∇θzθ,i

∥∥∥∥∥ ≤
∑
i

∥∥∥∥ ∂L
∂zθ,i

∇θzθ,i

∥∥∥∥ =
∑
i

∣∣∣∣ ∂L
∂zθ,i

∣∣∣∣ ∥∥∥∥∇θzθ,i

∥∥∥∥. (32)

If L is logits convex, then by the Definition 1, L is convex with respect to zθ. Let z∗
θ ∈ Rn be the

optimal logits, and z∗θ,i be the i-th element of z∗
θ . For each i, we have:

lim
zθ,i→z∗

θ,i

∣∣∣∣ ∂L
∂zθ,i

∣∣∣∣ = 0 ⇒ lim
zθ→z∗

θ

∑
i

∣∣∣∣ ∂L
∂zθ,i

∣∣∣∣ ∥∥∥∥∇θzθ,i

∥∥∥∥ = 0. (33)

So by the squeeze theorem, we have the following result:

0 ≤ ∥∇θL∥ ≤
∑
i

∣∣∣∣ ∂L
∂zθ,i

∣∣∣∣ ∥∥∥∥∇θzθ,i

∥∥∥∥⇒ lim
zθ→z∗

θ

∥∇θL∥ = 0. (34)

This completes the proof.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

H PROOF OF PROPOSITION 2

In this section, we provide the proof for Proposition 2. Let L : Rn → R be a twice-differentiable
loss function that takes logits zθ ∈ Rn parameterized by θ as input. If L is logits convex, by the
Definition 1, L is convex with respect to zθ. By the first-order characterization of convexity (Boyd
& Vandenberghe, 2004), for any two vectors z′

θ, z
′′
θ ∈ Rn, the following inequalities hold:

L(z′
θ) ≥ L(z′′

θ) +
∑
k

∂L
∂z′′θ,k

(z′θ,k − z′′θ,k),

L(z′′
θ) ≥ L(z′

θ) +
∑
k

∂L
∂z′θ,k

(z′′θ,k − z′θ,k),

(35)

where zθ,k is the k-th element of zθ. We then reformulate Equation 35 as:∑
k

∂L
∂z′θ,k

(z′θ,k − z′′θ,k) ≥ L(z′
θ)− L(z′′

θ) ≥
∑
k

∂L
∂z′′θ,k

(z′θ,k − z′′θ,k). (36)

To analyze the i-th component of the logits vector, we fix all other components of z′
θ and z′′

θ by
setting z′θ,k = z′′θ,k, for k ̸= i. Under this setup, Equation 36 then can be simplified to:

∂L
∂z′θ,i

(z′θ,i − z′′θ,i) ≥
∂L
∂z′′θ,i

(z′θ,i − z′′θ,i). (37)

For the optimal value z∗θ,i, where ∂L
∂z∗

θ,i
= 0 (for a convex function), we obtain these conditions:

∂L
∂z′θ,i

(z′θ,i − z∗θ,i) ≥ 0,

∂L
∂z′′θ,i

(z′′θ,i − z∗θ,i) ≥ 0.

(38)

Consider the case where z′θ,i < z′′θ,i < z∗θ,i, using Equations 37 and 38, we have:

0 ≥ ∂L
∂z′′θ,i

≥ ∂L
∂z′θ,i

⇒

∣∣∣∣∣ ∂L
∂z′′θ,i

∣∣∣∣∣ ≤
∣∣∣∣∣ ∂L
∂z′θ,i

∣∣∣∣∣ . (39)

Similarly, consider the case where z′θ,i > z′′θ,i > z∗θ,i. Using Equation 37 and 38, we have:

0 ≤ ∂L
∂z′′θ,i

≤ ∂L
∂z′θ,i

⇒

∣∣∣∣∣ ∂L
∂z′′θ,i

∣∣∣∣∣ ≤
∣∣∣∣∣ ∂L
∂z′θ,i

∣∣∣∣∣ . (40)

Combining both of the above cases, when z′θ,i and z′′θ,i lie on the same side of the optimal value z∗θ,i
and |z′′θ,i − z∗θ,i| < |z′θ,i − z∗θ,i|, the gradient magnitudes satisfy the following relationship:∣∣∣∣∣ ∂L

∂z′′θ,i

∣∣∣∣∣ ≤
∣∣∣∣∣ ∂L
∂z′θ,i

∣∣∣∣∣ . (41)

This completes the proof.

I PROOF OF LOGITS CONVEXITY

I.1 LOGITS CONVEXITY OF SFT LOSS

According to Equation 24, the partial derivative of Lt
SFT with respect to logit zθ(at,k|st) is:

∂Lt
SFT

∂zθ,k
= πθ,k − δik, (42)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

with zθ(at,k|st) simplified as zθ,k, and πθ(at,k|st) simplified as πθ,k. The second derivative is:

∂2Lt
SFT

∂zθ,k∂zθ,k′
=

∂(πθ,k − δik)

∂zθ,k′
= πθ,k(δkk′ − πθ,k′). (43)

To prove the convexity of the logits, we derive the Hessian matrix H of Lt
SFT with respect to the

logits and check if H is positive semi-definite. The Hessian is a square matrix composed of second-
order partial derivatives of the loss Lt

SFT with respect to the logits:

Hk,k′ =
∂2Lt

SFT

∂zθ,k∂zθ,k′
. (44)

According to Equation 43, the individual elements of the Hessian matrix H can be decomposed
using elements of two matrices A and B:

Hk,k′ = πθ,kδkk′︸ ︷︷ ︸
Ak,k′

−πθ,kπθ,k′︸ ︷︷ ︸
Bk,k′

. (45)

Each of the two matrices A and B can be written in a compact form. Let

πθ = [πθ,1, πθ,2, . . . , πθ,n]
⊤ (46)

represent the probability distribution over the vocabulary at time step t, where n is the vocabulary
size. The A and B are both n× n matrices with the following structure:

A = diag(πθ),

B = πθπ
⊤
θ ,

(47)

where diag(πθ) is a diagonal matrix with πθ,i as its i-th diagonal entry. Then the Hessian matrix H
has the following structure:

H = diag(πθ)− πθπ
⊤
θ . (48)

To prove convexity, we need to show that the Hessian matrix H is positive semi-definite. For any
random vector v ∈ Rn, consider the quadratic form:

v⊤Hv = v⊤(diag(πθ)− πθπ
⊤
θ)v. (49)

Expanding this:

v⊤Hv = v⊤diag(πθ)v − v⊤πθπ
⊤
θ v =

n∑
k

πθ,kv
2
k −

(
n∑
k

πθ,kvk

)2

. (50)

We use the Cauchy-Schwarz inequality:(
n∑
k

u2
k

)(
n∑
k

w2
k

)
−

(
n∑
k

ukwk

)2

≥ 0. (51)

Let uk =
√
πθ,k, wk = vk

√
πθ,k, and substitute into Equation 51 and have:

v⊤Hv =

n∑
k

πθ,kv
2
k −

(
n∑
k

πθ,kvk

)2

≥ 0, (52)

which implies that the supervised fine-tuning loss Lt
SFT is logits convex at time step t.

I.2 LOGITS CONVEXITY OF PG LOSS

According to Equation 26, the partial derivative of Lt
PG with respect to logit zθ(at,k|st) is:

∂Lt
PG

∂zθ,k
= Ψt,i(πθ,k − δik), (53)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

with zθ(at,k|st) simplified as zθ,k, and πθ(at,k|st) simplified as πθ,k. The second derivative is:

∂2Lt
PG

∂zθ,k∂zθ,k′
= Ψt,i

∂(πθ,k − δik)

∂zθ,k′
= Ψt,iπθ,k(δkk′ − πθ,k′). (54)

Notice that second derivative in Equation 54 and that in Equation 43 differ only by a scalar term
Ψt,i. Using Equation 48, we can directly express the Hessian matrix of Lt

PG in the following form:

H = Ψt,i(diag(πθ)− πθπ
⊤
θ). (55)

For any random vector v ∈ Rn, consider the quadratic form:

v⊤Hv = Ψt,i

 n∑
k

πθ,kv
2
k −

(
n∑
k

πθ,kvk

)2
 . (56)

According to Equation 52: {
v⊤Hv ≥ 0, if Ψt,i > 0,

v⊤Hv ≤ 0, if Ψt,i < 0.
(57)

When Ψt,i > 0, Lt
PG is convex with respect to the logits. Conversely, when Ψt,i < 0, Lt

PG is not
convex but instead concave with respect to the logits. Minimizing a concave function can lead to
gradient divergence, resulting in unstable training.

I.3 LOGITS CONVEXITY OF PG-IS LOSS

According to Equation 28, the partial derivative of Lt
PG-IS with respect to logit zθ(at,k|st) is:

∂Lt
PG-IS

∂zθ,k
=

Ψt,i

πθold(at,i|st)
πθ,i(πθ,k − δik), (58)

with zθ(at,k|st) simplified as zθ,k, and πθ(at,k|st) simplified as πθ,k. The second derivative is:

∂2Lt
PG-IS

∂zθ,k∂zθ,k′
=

Ψt,i

πθold(at,i|st)
∂(πθ,i(πθ,k − δik))

∂zθ,k′

=
Ψt,i

πθold(at,i|st)
[πθ,i(δik′ − πθ,k′)(πθ,k − δik) + πθ,iπθ,k(δkk′ − πθ,k′)]

=
Ψt,i

πθold(at,i|st)
πθ,i(−δikδik′ + πθ,kδik′ + δikπθ,k′ − πθ,kπθ,k′ + πθ,k(δkk′ − πθ,k′)).

(59)

To prove the logits convexity, we need to derive the Hessian matrix H of Lt
PG-IS with respect to the

logits and check if H is positive semi-definite. To construct the Hessian matrix, we need to organize
the second derivatives of the loss function Lt

PG-IS with respect to the logits, which is given by:

Hk,k′ =
∂2Lt

PG-IS

∂zθ,k∂zθ,k′
. (60)

From the previous derivation (Equation 59), the individual elements of the Hessian matrix H can
be decomposed using elements of five matrices A, B, C, D, and F :

Hk,k′ =
Ψt,i

πθold(at,i|st)
πθ,i(− δikδik′︸ ︷︷ ︸

Ak,k′

+πθ,kδik′︸ ︷︷ ︸
Bk,k′

+ δikπθ,k′︸ ︷︷ ︸
Ck,k′

−πθ,kπθ,k′︸ ︷︷ ︸
Dk,k′

+πθ,k(δkk′ − πθ,k′)︸ ︷︷ ︸
Fk,k′

). (61)

Each of the five matrices can be written in a compact form. Let

e(i) = [0, . . . , 0, 1, 0, . . . , 0]⊤ (62)

represent the standard n-dimension basis vector with a 1 at position i, and

πθ = [πθ,1, πθ,2, . . . , πθ,n]
⊤ (63)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

represent the probability distribution over the vocabulary, where n is the vocabulary size. Then A,
B, C, D, and F are all n× n matrices with the following structure:

A = e(i)e(i)⊤,

B = πθe
(i)⊤,

C = e(i)π⊤
θ ,

D = πθπ
⊤
θ ,

F = diag(πθ)− πθπ
⊤
θ .

(64)

Since scaling H by any positive scalar does not affect its positive semi-definiteness, we absorb
πθ,i

πθold (at,i|st) into Ψt,i for simplicity. The Hessian matrix H has the following structure:

H = Ψt,i

[
−e(i)e(i)⊤ + πθe

(i)⊤ + e(i)π⊤
θ − 2πθπ

⊤
θ + diag(πθ)

]
. (65)

For any random vector v ∈ Rn, consider the quadratic form:

v⊤Hv = Ψt,i

[
−v⊤e(i)e(i)⊤v + v⊤πθe

(i)⊤v + v⊤e(i)π⊤
θ v − 2v⊤πθπ

⊤
θ v + v⊤diag(πθ)v

]
= Ψt,i

−v2i + 2vi

n∑
k

πθ,kvk − 2

(
n∑
k

πθ,kvk

)2

+

n∑
k

πθ,kv
2
k



= Ψt,i


n∑
k

πθ,kv
2
k −

(
n∑
k

πθ,kvk

)2

︸ ︷︷ ︸
D(v)

−

v2i − 2vi

n∑
k

πθ,kvk +

(
n∑
k

πθ,kvk

)2


︸ ︷︷ ︸
(vi−E(v))2


= Ψt,i

[
D(v)− (vi − E(v))2

]
.

(66)
where E(v) =

∑n
k πθ,kvk, and D(v) =

∑n
k πθ,kv

2
k − (

∑n
k πθ,kvk)

2. According to Equation 52,
we have D(v) ≥ 0. Now, consider the case where Ψt,i > 0:{

v⊤Hv < 0, if vi > E(v) +
√

D(v) or vi < E(v)−
√
D(v),

v⊤Hv ≥ 0, otherwise.
(67)

A symmetric result holds for the case where Ψt,i < 0. This implies Hessian matrix H of Lt
PG-IS is

not positive semi-definite, which indicates that the PPO loss Lt
PG-IS is not logits convex.

I.4 LOGITS CONVEXITY OF LCO LOSS

According to Equation 30, the partial derivative of Lt
LCO with respect to logit zθ(at,k|st) is:

∂Lt
LCO

∂zθ,k
= |Ψt,i|(πθ,k − π′

k), (68)

with zθ(at,k|st) simplified as zθ,k, πθ(at,k|st) simplified as πθ,k, and π′(at,k|st) simplified as π′
k.

The second derivative is as follow:
∂2Lt

LCO

∂zθ,k∂zθ,k′
= |Ψt,i|

∂(πθ,k − π′
k)

∂zθ,k′
= |Ψt,i|πθ,k(δkk′ − πθ,k′). (69)

Notice that second derivative in Equation 69 and that in Equation 43 differ only by a scalar term
|Ψt,i|. Using Equation 48, we can express the Hessian matrix of Lt

LCO in the following form:

H = |Ψt,i|(diag(πθ)− πθπ
⊤
θ). (70)

For any random vector v ∈ Rn, consider the quadratic form:

v⊤Hv = |Ψt,i|

 n∑
k

πθ,kv
2
k −

(
n∑
k

πθ,kvk

)2
 . (71)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

According to Equation 52:
v⊤Hv ≥ 0. (72)

It concludes that Hessian matrix H of Lt
LCO is positive semi-definite, which implies that Lt

LCO is
logits convex.

J DERIVATION OF THE LOGIT VARIATION

We provide derivation for ∆zt,i in Equation 15. First, we reformulate Equation 13 as follows:

π′(at,i|st) = ρt,iπθ(at,i|st). (73)

Substituting this expression into Equation 14, we derive the expression for ∆zt,i:

ρt,iπθ(at,i|st) =
exp(zθ(at,i|st) + ∆zt,i)∑

k ̸=i exp zθ(at,k|st) + exp(zθ(at,i|st) + ∆zt,i)

⇒ρt,i
exp zθ(at,i|st)∑
k exp zθ(at,k|st)

=
exp(zθ(at,i|st) + ∆zt,i)∑

k ̸=i exp zθ(at,k|st) + exp(zθ(at,i|st) + ∆zt,i)

⇒ρt,i
1∑

k exp zθ(at,k|st)
=

exp∆zt,i∑
k ̸=i exp zθ(at,k|st) + exp(zθ(at,i|st) + ∆zt,i)

⇒ exp∆zt,i = ρt,i

∑
k ̸=i exp zθ(at,k|st) + exp(zθ(at,i|st) + ∆zt,i)∑

k exp zθ(at,k|st)
⇒ exp∆zt,i = ρt,i(1− πθ(at,i|st) + πθ(at,i|st) exp∆zt,i)

⇒∆zt,i = log ρt,i + log
1− πθ(at,i|st)

1− ρt,iπθ(at,i|st)
.

(74)

With this logit adjustment ∆zt,i, we can construct the target distribution π′(·|st) using Equation 14
and Equation 16 to control the desired update for the probability of the sampled action at,i.

22

	Introduction
	Preliminary
	Notation and Supervised Fine-Tuning
	Policy Gradient
	Policy Gradient with Importance Sampling

	Gradient Dynamics
	Gradient Dynamics of SFT
	Gradient Dynamics of Policy Gradient
	Gradient Dynamics of Policy Gradient with Importance Sampling

	On the Convexity of Logits
	Definition of Logits Convexity
	Logits Convex Optimization
	Gradient Dynamics of LCO

	Experimental Setup
	Results and Analysis
	Main Results
	Training Dynamics Analysis
	Training with Different Learning Rates
	PG-IS Performance on Low-Probability Positive Samples

	Conclusion
	Statement on the Use of Large Language Models
	Related Work
	Additional Experimental Setup
	Additional Experimental Results
	Ablation Study on rho
	Training Dynamics Analysis for PG
	Additional Baselines Comparison
	Impact of Model Size

	Gradient of the Softmax Function
	Derivation of Logits Gradient
	Logits Gradient of Supervised Fine-Tuning
	Logits Gradient of Policy Gradient
	Logits Gradient of Policy Gradient with Importance Sampling
	Logits Gradient of LCO

	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Logits Convexity
	Logits Convexity of SFT Loss
	Logits Convexity of PG Loss
	Logits Convexity of PG-IS Loss
	Logits Convexity of LCO Loss

	Derivation of the Logit Variation

