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Abstract

Online reinforcement learning (RL) enhances policies through direct interactions1

with the environment, but faces challenges related to sample efficiency. In con-2

trast, offline RL leverages extensive pre-collected data to learn policies, but often3

produces suboptimal results due to limited data coverage. Recent efforts integrate4

offline and online RL in order to harness the advantages of both approaches. How-5

ever, effectively combining online and offline RL remains challenging due to issues6

that include catastrophic forgetting, lack of robustness to data quality and limited7

sample efficiency in data utilization. In an effort to address these challenges, we8

introduce A3RL, which incorporates a novel confidence-aware Active Advantage-9

Aligned (A3) sampling strategy that dynamically prioritizes data aligned with the10

policy’s evolving needs from both online and offline sources, optimizing policy11

improvement. Moreover, we provide theoretical insights into the effectiveness12

of our active sampling strategy and conduct diverse empirical experiments and13

ablation studies, demonstrating that our method outperforms competing online RL14

techniques that leverage offline data.15

1 Introduction16

Reinforcement learning (RL) has achieved notable success in many domains, such as robotics [24, 25],17

game play [40, 57], drug discovery [34, 37], and reasoning with Large Language Models (LLMs) [16].18

Online RL algorithms such as Q-learning [67], SARSA [53], and PPO [56] learn and make decisions19

in an online, sequential manner, whereby an agent interacts with an environment and learns from its20

experience. However, due to the need for exploration that is fundamental to RL, online RL tends to21

be highly sample inefficient in high-dimensional or sparse reward environments. A complementary22

approach to improve the sample efficiency is imitation learning (IL) [51, 52], where an agent learns23

a policy by leveraging expert demonstrations [7, 35, 36].24

However, in many cases, we do not have access to a live expert to query, but often have access25

to an abundance of logged data collected from experts. One approach to make use of this data26

is through offline reinforcement learning. Offline RL [30, 47] learns a policy solely from such a27

fixed dataset of pre-collected experiences, without the need to directly interact with the environment.28

Despite its advantages, offline RL often results in a suboptimal policy due to dataset limitations. This29

has motivated recent work that combines offline and online RL, whereby learning begins from a30

logged dataset before transitioning to online interactions for further improvement. While beneficial,31

contemporary offline-to-online RL methods suffer from catastrophic forgetting, where previously32

learned knowledge is overwritten during online fine-tuning, leading to significant performance33

degradation [39, 69].34

More recently, methods that integrate online RL with offline datasets utilize off-policy techniques35

to incorporate offline data while learning online [2, 59], mitigating catastrophic performance drops.36
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These techniques do not require any preliminary offline RL training or incorporate specific imitation37

clauses that prioritize pre-existing offline data. Notably, RLPD [2] exhibits strong empirical perfor-38

mance, however it employs a uniform random sampling strategy for both offline and online learning,39

ignoring that different transitions contribute differently to the various stage of policy improvement.40

Furthermore, this uniform sampling strategy may result in data inefficiencies (e.g., sampling useless41

data while missing valuable data) and also make policy improvement highly sensitive to data quality.42

Our contributions. In this work, we introduce Active Advantage-Aligned Reinforcement Learning43

(A3RL), a novel method that operates in the realm of online RL with an offline dataset. Our44

approach dynamically prioritizes data (transitions) that have the highest potential to maximize45

policy improvement, aligning with the evolving quality and learning needs of the policy. More46

specifically, A3RL considers not only the relevance of the data in facilitating the current policy’s47

online exploration and exploitation but also its estimated contribution to policy improvement via48

confidence-aware advantage-based prioritization. A3RL demonstrates robustness to data quality in a49

black-box manner and maintains resilience under varying environmental conditions. Notably, it also50

effectively accelerates policy improvement, even in a purely online environment.51

In summary, our contributions are:52
• We propose A3RL, a novel algorithm for online RL with offline data. This algorithm surpasses53

current state-of-the-art (SOTA) methods by integrating a priority-based active sampling strategy54

based on the value of confidence-aware advantage function and coverage by offline dataset.55

• In contrast to RLPD and other related works [29, 55], which lack theoretical support, this study56

provides theoretical insights of our confidence-aware active advantage-aligned sampling strategy,57

demonstrating superiority and its minimum improvement gap over random sampling.58

• Through extensive empirical evaluations in various environments, we demonstrate that A3RL59

achieves consistent and significant improvements over prior SOTA models.60

• Given the black-box nature of offline datasets, we conduct comprehensive ablation studies across a61

range of dataset qualities and environmental settings, including purely online scenarios, to evaluate62

the robustness of A3RL. These studies consistently confirm its stable performance across diverse63

conditions, regardless of environmental factors or data quality.64

2 Related Work65

Recent advances in online RL have improved sample efficiency by leveraging offline datasets, often66

through expert demonstrations [42, 19]. Among them, RLPD [2] is most relevant to our work,67

employing symmetric sampling from both online and offline data without pretraining. In contrast,68

A3RL introduces a prioritized experience replay (PER)-style mechanism that selectively samples69

transitions based on utility. While prior PER methods [55] focus on TD error, expected return [20], or70

recency [11], they typically apply to either online or offline settings. Our method uniquely integrates71

both, leveraging density ratios and confidence-aware advantage estimates [58] to assess sample value.72

Additionally, unlike prior active RL approaches that target state exploration or oracle queries [36, 38],73

A3RL actively samples transitions most likely to enhance policy improvement. We defer more details74

to Appendix C.75

3 Preliminaries and Problem Statement76

We consider a discounted Markov decision process (MDP) environment [3] characterized by a tuple77

M = (S,A,P, R, γ, d0), where S represents a potentially infinite state space, A is the action space,78

P : S × A → ∆(S) is the unknown transition kernel, R : S × A → [0, 1] is the reward function,79

γ ∈ (0, 1) is the discount factor and d0 (s) is the initial state distribution. The learner’s objective is to80

solve for the policy π : S → ∆(A) that maximizes the expected sum of discounted future rewards81

Eπ[
∑∞
t=1 γ

tr (st, at)], where the expectation is taken over the trajectory sampled from π.82

Maximum entropy RL. In this work, we adopt off-policy soft actor-critic (SAC) [15] RL to train83

an agent with samples generated by any behavior policy. We use a general maximum entropy84

objective [2, 15, 71] as follows:85

max
π

Es∼ρπ,a∼π

[ ∞∑
t=0

γt (rt + αH (π (a|s)))

]
, (1)
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where α is a temperature parameter. This involves optimizing reward while encouraging exploration,86

making the learned policy more robust.87

Q-value and advantage function. The Q-value function measures the expected return of executing88

action a in state s under policy π: Qπ (s, a) = BπQπ (s, a), where Bπ is the Bellman operator:89

BπQ (s, a) := r (s, a)+γEs′∼P (·|s,a)[V
π (s′)]. The soft state value function is defined as: V π (s) :=90

Ea∼π(·|s)[Qπ (s, a)− log π (a|s)]. For a generator policy π, the advantage function [60] quantifies91

the relative benefit of selecting a over the policy’s default behavior:92

Aπ (s, a) = Qπ (s, a)− V π (s) . (2)

Specifically, SAC learns a soft Q-Function, denoted as Qθ (s, a) which parameterized by θ, and a93

stochastic policy πϕ parameterized by ϕ. The SAC method involves alternating between updates for94

the critic and the actor by minimizing their respective objectives [29] as follows95

LSAC
critic (θ) =E(st,at,st+1)∼R[(Qθ (st, at)− r (st, at)

− γEat+1∼πϕ

[
Qθ (st+1, at+1)− α log πϕ (at+1|st+1)

]
)2],

LSAC
actor (ϕ) =Est∼R,at∼πϕ

[α log πϕ (at|st)−Qθ (st, at)] ,

Here, R is an experience replay buffer of either on-policy experience [60] or through off-policy96

experience [41, 46], and θ denotes the delayed parameters. Further details are provided in Appendix B.97

4 Algorithm98

In this section, we introduce A3RL; detailed algorithmic descriptions are provided in Appendix F.99

4.1 Confidence-aware Active Advantage-Aligned Sampling Strategy100

In this study, we theoretically derived from the performance difference lemma in §5 and presented101

active advantage-aligned strategy, a novel sampling approach for policy improvement. Here, ‘advan-102

tage’ measures the potential impact of the transition on policy improvement, while ’aligned’ assesses103

how well the transition aligns with the states sampled online by the current policy. This method104

allows for the safe utilization of online and offline samples by harnessing relevant, near on-policy105

offline samples that also present the potential to enhance policy improvement. For the advantage term,106

to enhance robustness, we use the pessimistic CDQ Q estimation, while incorporating uncertainty107

estimation for the value function under the current policy. Specifically, we estimate both the value108

function V̂—which directly determines the estimated advantage of Â—and the associated uncertainty109

ĈA (s, a), through Monte Carlo samples of the on-policy actions. Furthermore, we extend this ap-110

proach to density ratio estimation, using an ensemble of density networks to predict the density ratio111

ŵ (s, a) and associated uncertainty Ĉw (s, a). This approach broadens the distribution of samples112

used for updates, centering around on-policy examples, thereby facilitating immediate value. The113

active advantage-aligned priority σ and the probability p are as follows:114

pi =
σζi∑

k∈[|R|] σ
ζ
k

, σi = σ (si, ai) =
(
Ioffw (si, ai) + Ion) · exp (ξ ·A (si, ai)) , (3)

w (si, ai) = ŵ (si, ai)− Ĉw(si, ai), A (si, ai) = Â (si, ai)− ĈA(si, ai), (4)

where Ioff and Ion represents the indicator of offline and online respectively, density ratio w (s, a)115

is the LCB (Lower Confidence Bound) [35] of density ratio, which measures the onlineness of the116

transition (defined in Eq. (5)) in a conservative manner, A (s, a) is LCB of the advantage term, which117

assesses the potential of the transition in improving the policy and ξ > 0 representing a temperature118

hyperparameter associated with the advantage term, and another ζ > 0 for the entire priority term,119

per the standard PER approach. This approach considers not only the on-policyness of the data but120

also measures how important the data contributes to the current policy improvement. The active121

advantage-aligned sampling strategy aims to assign greater weight to transitions that are either not122

well covered by the offline dataset—indicating that the state-action pair is novel to the offline policy123

(i.e., the density ratio is large)—or that represent good actions for maximizing cumulative reward124

(i.e., the advantage / Q function is large).125
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Density ratio. We evaluate the onlineness through the use of a density ratio126

w (s, a) := don (s, a)/doff (s, a) (5)
for a given transition, where don (s, a) denotes the state-action distribution of online samples in127

the online buffer Ron and the doff (s, a) denotes the offline samples in the offline buffer Roff. By128

identifying a transition with a high density ratio w (s, a), we can effectively select a near-on-policy129

sample (s, a, s′) from the offline dataset Boff. Consider the much larger volume of offline data130

compared to online data, this would greatly improve the amount of transition and diversity of131

coverage for policy improvement in each step.132

Estimating the likelihoods doff (s, a) and don (s, a) poses a challenge, as they could represent station-133

ary distributions from mixture of complex policy. To address this issue, we employ a method studied134

by Lee et al. [29], Sinha et al. [58] for density ratio estimation that does not rely on likelihoods. This135

method approximates w (s, a) by training a neural network wψi
(s, a), which is parameterized by136

ψi, i ∈ [Ne], where Ne is the number of density networks in the ensemble. The training exclusively137

uses samples from Boff and Bon. We use variational representation of f-divergences [44]. Consider138

P and Q as probability measures on a measurable space X , with P being absolutely continuous139

w.r.t Q. We define the function f (y) := y log 2y
y+1 + log 2

y+1 . The Jensen-Shannon (JS) divergence140

is then defined as DJS (P ||Q) =
∫
X f (dP (x)/dQ (x)) dQ (x). Then we use a parametric based141

model wψ (x) to represent density ratio dP
dQ and estimated the density ratio by maximizing the lower142

bound of DJS (P ||Q):143

LDR (ψ) = Ex∼P [f ′ (wψ (x))]− Ex∼Q[f∗ (f ′ (wψ (x)))] ,

where wψ (x) ≥ 0 is represented by a neural network, with parameters ensuring that the outputs144

remain non-negative through the use of activation function. Additionally, f∗ represents convex145

conjugate and we sampled from Bon for x ∼ P and from Boff for x ∼ Q.146

Confidence-aware active advantage-aligned sampling. Relying solely on the density ratio is147

insufficient; even if a transition appears to be relevant in the online context, it may still fail to148

contribute meaningfully to policy improvement. For instance, consider a transition (s, a, s′). If the149

policy has previously encountered this state and taken the same action, or if the action performed150

in this state could potentially lead to a negative reward, such a transition would not that helpful in151

contributing to policy improvement, regardless of how closely it aligns with on-policy data.152

To address this, we incorporate an estimate of the advantage value A(s, a) (Eq. (2)) into our sampling153

strategy. Specifically, we integrate a non-negative exponential advantage term, exp (ξ ·A (s, a)),154

into the priority calculation. This term ensures that transitions are selected not only based on155

relevance but also on their contribution to policy improvement. The higher the advantage value,156

the greater the transition’s impact on learning, making our sampling mechanism both adaptive and157

optimization-aware.158

For transitions from the offline dataset, we prioritize samples based on both the estimated density159

ratio and advantage value, retrieving near-on-policy samples that also provide policy improvement160

benefits. Since the data source is known, we set the density ratio to 1 for transitions from the online161

dataset and prioritize them purely based on advantage values under the current policy. Additionally,162

there may be uncertainty and significant variance in estimating the advantage value and density ratio.163

To address this, we adopt LCB as a conservative estimate. Thus, we define the priority function for164

sampling as:165

Ioffw (si, ai) · exp (ξ ·A (si, ai)) + Ion exp (ξ ·A (si, ai)) .

Note that this advantage-aligned sampling strategy is not a heuristic-based approach but is theoretically166

derived in the performance difference lemma [22], providing insights into its effectiveness and167

superiority over the random sampling approach (see Section 5).168

The active sampling process in our algorithm is highlighted in blue in Algorithm 1, while our approach169

to addressing sampling bias is highlighted in red.170

5 Theoretical Analysis171

In this section, we derive the priority term theoretically from the performance difference lemma [22]172

and show that our active advantage-aligned sampling strategy leads to improved policy performance.173
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Furthermore, we establish a theoretical lower bound on the performance improvement gap under our174

sampling scheme.175

Theorem 1 Suppose the Q-function class is uniformly bounded, and for any Q-function, the cor-176

responding optimal policy lies within the policy function class. Let ϵt denote the ℓ2 error of the177

Q-function in the critic update step. Let πt be the policy at iteration t in A3RL, updated using178

priority-weighted sampling with w(s, a) exp(ξ ·A(s, a)). Then, the following lower bound holds:179

Jπ
t+1

α − Jπ
t

α ≥ Jπ
⋆

α − Jπ
t

α − C
√
ϵt sup

s,a

∣∣Rt(s, a; ξ)∣∣ ,
where Jπα = Es∼ρπ,a∼π [

∑∞
t=0 γ

t (rt + αH(π(a|s)))] is the entropy-regularized objective, Jπ
⋆

α −180

Jπ
t

α represents the maximum possible improvement if the true Q-function were known, and the181

function Rt(s, a; ξ) is given by:182

Rt(s, a; ξ) =

(
πt+1(a | s)
don(a | s)

)1−ξ

·
∑
s′,a′ d

on(a′, s′)πt+1(a′ | s′)ξ

don(a | s)ξ
· d

πt+1

(s)

don(s)
.

The proof is provided in Appendix A. We note that the coefficient Rt(s, a; ξ) is not necessarily the183

tightest possible bound, since it is based on the supremum norm and therefore can be dominated by a184

single (s, a) pair. A sharper result could be obtained by measuring distribution shift in the ℓ2 norm185

(or some other weaker norm). We nevertheless adopt the simpler supremum-norm bound here for186

clarity and to highlight the core intuition behind why advantage reweighting yields improvement, as187

will be detailed in the following.188

Comparison to random sampling. The fundamental concept behind proving that our sampling189

technique surpasses random sampling and contributes to positive policy improvement involves initially190

applying the performance difference lemma. This approach yields the performance differential term191

J
(
πt+1

)
− J (πt) between the updated policy and the current policy. Our goal is to demonstrate192

that this term is non-negative under our sampling priority. To do this, we prove that by a shift of193

distribution, this term is no less than the gap194

Jπ
⋆

− Jπ
t

− C
√
ϵt sup

s,a
|dπ

t+1

(s, a)/ρ(s, a)|. (6)

When looking at the distribution shift195

dπ
t+1

(s, a)

ρ(s, a)
=

(
πt+1(a | s)
don(a | s)

)1−ξ

·
∑
s′,a′ d

on(a′, s′)πt+1(a′ | s′)ξ

don(a | s)ξ
· d

πt+1

(s)

don(s)
,

we notice the shift between online/offline dataset is canceled, and the remaining terms comprise a196

shift term dπ
t+1

(s)/don(s) that characterizes how well the online data cover the visitation measure197

induced by the next policy, and another term that characterizes the shift in policy. In the sequel, we198

will see through an example why using some proper ξ helps reduce the shift in policy.199

Why does advantage weighting help? We show that under certain conditions, the ratio Rt(s, a)200

can decrease for increased value of ξ. Since ξ does not influcence the ration between the state201

distribution, let us just consider the bandit case with ratio202

Rt(a; ξ) =

(
πt+1(a)

don(a)

)1−ξ

·
∑
a′ d

on(a′)πt+1(a′)ξ

don(a)ξ
.

We illustrate the results of Theorem 1 on the bandit setting because its visitation measure reduces203

directly to the policy distribution—eliminating any dependence on a transition kernel—and note that204

the same argument carries over to MDPs with deterministic transitions. Moreover, the argument205

will still provide sufficient insight. Suppose the online data distribution don(a) ∝ exp(β1r(a)) for206

some parameter β while the policy πt+1(a) ∝ exp(β2r(a)) for some parameter β2 > β1. This is207

reasonable since the policy converges faster than the online buffer to the optimal policy. Then we208

have the following lemma.209

Lemma 1 For the bandit case with don(a) ∝ exp(β1r(a)) and πt+1(a) ∝ exp(β2r(a)) for β2 > β1,210

the coefficient supaR
t(a; ξ) decreases as ξ increases within the range ξ ∈ (0, 1− β1/β2).211

This lemma justifies that within a proper range of ξ, adding more advantage weighting would benefit212

learning by reducing the distributional shift.213
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(c) walker2d-medium
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Figure 1: Main results. A comparison between A3RL, the state-of-the-art baseline RLPD and SAC
with offline data (SACfD) on various D4RL benchmark tasks. (a-c): dense reward, (d): sparse reward.
Shaded areas represent one standard deviation based on ten seeds.

6 Experiments214

Environments We evaluate A3RL on both dense and sparse reward tasks from the D4RL bench-215

mark [12]. These include halfcheetah, walker2d, and ant, which are dense reward locomotion tasks,216

and antmaze, which involves sparse rewards. Each environment offers offline datasets composed of217

trajectories ranging from completely random to expert. Appendix E provides additional details.218

Setup. We employ the basic setup of the SAC networks as recommended by [2], i.e., with an ensemble219

of size 10 each for critic networks and target critic networks, as well as entropy regularization. A220

significant difference is that the MLP underlying these networks only has 2 layers of size 256 each,221

as we desired to see if the agent is able to learn with less complexity.222

Baseline Methods For our main results, we compare A3RL with two baselines: (1) RLPD [2],223

regarded as the SOTA baseline for addressing online RL with offline datasets, also attains state-of-224

the-art performance in this problem set, (2) SAC with offline data (SACfD), a canonical off-policy225

approach using offline data, as also studied in [43] and [64]. In the ablation studies, we evaluate226

A3RL against five additional representative baselines: (3) Off2On [29], an offline-to-online RL227

method; (4) a variant of A3RL using advantage estimation only; (5) an online version of A3RL that228

excludes offline data; (6) SAC in an online setting without offline data; (7) TD (Temporal Difference)229

with a PER [55] sampling strategy; and (8) TD+Density, which combines PER with a density ratio230

sampling strategy.231

6.1 Main results232

Fig. 1 presents a comparative analysis of A3RL’s performance against the baseline SACfD and the233

current state-of-the-art method, RLPD. The results demonstrate that A3RL consistently outperforms234

the baseline across the evaluated domains. This performance advantage can be attributed to a235

fundamental difference in sampling strategy: while RLPD relies on symmetric random sampling,236

A3RL employs an active sampling approach based on advantage alignment.237

Unlike RLPD, which treats all transitions uniformly, A3RL dynamically reevaluates the relevance238

and on-policyness of each transition as the policy evolves, continuously adjusting its sampling priority239

to align with the current learning needs. This targeted sampling ensures that the most beneficial240

transitions are prioritized, directly contributing to faster and more effective policy improvement.241

In scenarios involving nearly random offline datasets Fig.1a,1b, datasets containing trajectories242

from a poorly performing policy, or even medium datasets Fig.1d,1c, useful transitions are often243

sparse and scattered. Random sampling, as used by RLPD, is likely to miss these valuable data244

points, leading to suboptimal performance. In contrast, A3RL ’s active sampling strategy effectively245

identifies and emphasizes these critical transitions, resulting in substantial policy enhancements, as246

clearly illustrated in Fig. 1.247
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Figure 2: halfcheetah-expert

In expert environments Fig. 2, A3RL consistently matches or ex-248

ceeds the performance of RLPD. This superior performance can be249

attributed to the higher quality of transitions present in medium and250

expert datasets, compared to random datasets. Consequently, even251

with a random sampling strategy, RLPD is still likely to encounter252

useful transitions. However, most offline datasets are provided in253

a black-box format, where the specifics of the data are unknown.254

Despite this uncertainty, A3RL achieves performance that is at least255

on par with RLPD, demonstrating robustness to varying data quality256

in these black-box conditions.257
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(c) purely online setting
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Figure 3: Ablation Studies: Results of ablation studies on the halfcheetah-random environment.

6.2 Ablation studies258

Ablation on advantage term Fig. 3a illustrates the comparison between the performance of259

A3RL using advantage-aligned sampling priority and Off2On utilizing solely density ratio (σ =260

Ioffw (si, ai) + Ion), a modified version of balanced experience replay [29]. The results show that261

A3RL with the advantage term surpasses its counterpart that only considers online-ness in prioritizing262

samples in the halfcheetah-random environments. This superiority is attributed to the advantage term,263

which effectively screens out transitions that are either non-informative or harmful. For example,264

even if a transition indicates online-ness, it may not provide new information if the policy has already265

mastered the associated action for that state. By integrating the advantage term, such repetitive266

transitions are excluded, as the advantage value tends to zero for well-understood transitions.267

Ablation on density term Fig. 3b compares the performance of A3RL to A3RL with only advan-268

tage in sampling priority (σ = exp (ξ ·A)), without density term. The results consistently show that269

A3RL, which incorporates onlineness through the density termw = don/doff, outperforms the version270

that does not. Onlineness measures the likelihood that A3RL will experience the given transition271

during the online exploration and exploitation of the current policy. Transitions experienced during272

online policy enhancement are more advantageous for policy development. In contrast, focusing on273

transitions that are unlikely to occur during live interactions with the environment can hinder the274

progression of policy improvement. This result demonstrates the effectiveness of onlineness term.275

Ablation on purely online setting and offline data Fig. 3c presents an ablation study comparing276

regular A3RL (in red), purely online A3RL (in blue), and SAC (in green), with neither having access277

to offline data. A3RL surpasses its purely online version when utilizing an offline dataset, as the278

offline data provides a more diverse range of transitions that the online policy might not encounter,279

effectively demonstrating A3RL’s ability to leverage offline datasets. Moreover, the purely online280

version of A3RL outperforms SAC, highlighting A3RL’s robustness in environment setting. The281

results confirm A3RL’s effectiveness in a purely online environment and its superiority over SAC in282

online batch scenarios through active advantage-aligned sampling.283

Ablation on priority term Fig. 3d presents an ablation study forA3RL (in red), where we compare284

two different sampling strategies: PER as detailed in [55] (named as TD in blue), and a modified285

version incorporating a density ratio (named as TD+Density in green). The TD-error based sampling286

strategy prioritizes transitions with larger TD-errors. A3RL significantly outperforms both strategies,287

illustrating that an active advantage-aligned sampling approach is more effective than prioritizing288

based on TD-error alone. The superior performance of A3RL over TD+Density also indicates that289

prioritizing using the advantage term achieve the better performance compared to the TD-error term.290

7 Conclusion291

We present A3RL, a novel algorithm for online RL with offline dataset through a confidence-292

aware active advantage-aligned sampling strategy. This algorithm is theoretically motivated by293

the objective of shifting the sampling distribution toward more beneficial transitions to maximize294

policy improvement. We provide theoretical insights for A3RL and quantify its enhancement295

gap. Moreover, we conduct comprehensive experiments with various qualities of offline data,296

demonstrating that A3RL outperforms the SOTA RLPD method with significance. We also conduct297

multiple ablation studies and confirm the importance of each component within the active advantage-298

aligned formula and its effectiveness to pure online setting as well. While our approach primarily299

aims to enhance performance, it may result in higher computational costs due to the calculations300

needed for determining advantage-aligned sampling priorities. Reducing computational demands301

will be a focus of our future work.302
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A Theoretical Motivation499

In this section, we show that the active advantage-aligned sampling strategy helps mitigate the gap500

between offline data distribution, online data distribution and the current on-policy distribution, which501

serves as a main theoretical motivation for designing A3RL.502

Theorem 1 Suppose the Q-function class is uniformly bounded, and for any Q-function, the cor-503

responding optimal policy lies within the policy function class. Let ϵt denote the ℓ2 error of the504

Q-function in the critic update step. Let πt be the policy at iteration t in A3RL, updated using505

priority-weighted sampling with w(s, a) exp(ξ ·A(s, a)). Then, the following lower bound holds:506

Jπ
t+1

α − Jπ
t

α ≥ Jπ
⋆

α − Jπ
t

α − C
√
ϵt sup

s,a

∣∣Rt(s, a; ξ)∣∣ ,
where Jπα = Es∼ρπ,a∼π [

∑∞
t=0 γ

t (rt + αH(π(a|s)))] is the entropy-regularized objective, Jπ
⋆

α −507

Jπ
t

α represents the maximum possible improvement if the true Q-function were known, and the508

function Rt(s, a; ξ) is given by:509

Rt(s, a; ξ) =

(
πt+1(a | s)
don(a | s)

)1−ξ

·
∑
s′,a′ d

on(a′, s′)πt+1(a′ | s′)ξ

don(a | s)ξ
· d

πt+1

(s)

don(s)
.

Proof: (Proof of Theorem 1). Define visitation measures510

dπh(s, a) = Ea∼π(·|s) [1(sh = s, ah = a)] , dπ(s, a) =
1

1− γ

∞∑
h=1

γhdπh(s, a).

Consider a sufficiently small one-step update in the policy network with step-size η. Define511

Jπα = Es∼ρπ,a∼π[
∑∞
t=0 γ

t (rt + αH (π (a|s)))]. Let π̃ be the policy from the last iteration. In512

the following, we abbreviate Eπ[·] as E[·].513

V π − V π̃ = E
[
⟨π,Qπ − α log π⟩ − ⟨π̃, Qπ̃ − α log π̃⟩A

]
= E

[
⟨π,Qπ −Qπ̃⟩A + ⟨π − π̃, Qπ̃⟩A − α ⟨π, log π⟩+ α ⟨π̃, log π̃⟩

]
= E

[
⟨π, r + γPV π − r + γPV π⟩+ ⟨π − π̃, Qπ̃⟩A − α ⟨π, log π⟩+ α ⟨π̃, log π̃⟩

]
= E

[
γ
〈
π,P

(
V π − V π̃

)〉
A +

〈
π − π̃, Qπ̃

〉
A − α ⟨π, log π⟩+ α ⟨π̃, log π̃⟩

]
,

Using this iterative form, we conclude that514

Jπα − J π̃α = E

[ ∞∑
h=1

γi
(〈
πi − π̃i, Qπ̃i

〉
A − α ⟨πi, log πi⟩+ α ⟨π̃i, log π̃i⟩

)]
= Edπ

[〈
π − π̃, Qπ̃

〉
A − α ⟨π, log π⟩+ α ⟨π̃, log π̃⟩

]
.

Recall our definition of σ(s, a) that515

σ(s, a) = exp(ξÂπ̃(s, a)) · d
on(s, a)

µ(s, a)
, (7)

where µ(·, ·) is the distribution in the sampled batch and don(·, ·) is the online distribution. Note516

that the advantage function Âπ̃(s, a) = Q̂π̃(s, a)− α log
∑
a′ exp(α

−1Q̂(s, a′)) is calculated using517

policy π̃ and Q function Q̂π̃ obtained from the last iteration in the above formula. Let us define πϕ⋆518

as the optimal policy under the current Q function Q̃:519

π⋆(· | s) = argmin
π

KL

(
π(· | s)

∥∥∥∥ exp(α−1Qπ̃(s, ·))
Z̃α(s)

)
= argmax

π

〈
π (·|s) , Qπ̃ (s, ·)− α log π (·|s)

〉
A ∝ exp(α−1Aπ̃(s, ·)).
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where Z̃α(s) is the normalization factor at state s for the exponential of the Q function, and Aπ̃(s, ·)520

is the advantage function under policy π̃. Recall by policy optimization:521

π̂ = argmax
π

Eµ
[
σ (s, a)

〈
π (·|s) , Q̂π̃ (s, ·)− α log π (·|s)

〉
A

]
,

where Q̂π̃ is the estimated Q function at the current iteration. In the above formula, µ is the sampled522

data distribution and σ is the quantity calculated in (7). Suppose we take some function class πϕ523

which contains the optimal one-step policy improvement π⋆ and also the optimization target π̂. Using524

a shift of distribution, we have525

µ(s, a)σ(s, a) = µ(s, a) · d
on(s, a)

µ(s, a)
· exp(ξÂπ̃(s, a)) = don(s, a) · π̂(a | s)ξ

= dπ̂(s, a) · d
on(s)

dπ̂(s)
· d

on(a | s)
π̂(a | s)1−ξ

∝ ρ(s, a),

where we define ρ(s, a) as the probability density induced by the above distribution. Here, the first526

ratio don(s)/dπ
⋆

(s) is the state-drift between the online data and the next-step optimal policy. Since527

the online batches are refreshing as the algorithm proceeds, the ratio will be close to 1. The second528

ratio term characterizes the drift caused by a mismatch in the policy. Intuitively, as we know the529

policy π̃ from the last iteration, we can use this information to further boost the alignment between530

the online policy and the next-step policy. Suppose the Q function is learned up to ϵ error, that is531

Eρ
[
(Qπ̃(s, a)− Q̂π̃(s, a))2

]
≤ ϵ.

Then, we have performance difference lemma that532

J π̂α − Jπ
⋆

α = Edπ̂
[〈
π̂, Qπ̃

〉
A − α ⟨π̂, log π̂⟩ −

(〈
π⋆, Qπ̃

〉
A − α ⟨π

⋆, log π⋆⟩
)]

= Edπ̂
[〈
π̂, Qπ̃

〉
A − α ⟨π̂, log π̂⟩ −

(〈
π̂, Q̂π̃

〉
A − α ⟨π̂, log π̂⟩

)]
+ Edπ̂

[〈
π̂, Q̂π̃

〉
A − α ⟨π̂, log π̂⟩ −

(〈
π⋆, Q̂π̃

〉
A − α ⟨π

⋆, log π⋆⟩
)]

+ Edπ̂
[〈
π⋆, Q̂π̃

〉
A − α ⟨π

⋆, log π⋆⟩ −
(〈
π⋆, Qπ̃

〉
A − α ⟨π

⋆, log π⋆⟩
)]

≥ Edπ̂
[〈
π̂ − π⋆, Qπ̃ − Q̂π̃

〉
A

]
≥ − sup

s,a

∣∣∣∣π⋆(a | s)π̂(a | s)
− 1

∣∣∣∣ · Edπ̂ [|Qπ̃ − Q̂π̃|] ≥ −C · Edπ̂ [|Qπ̃ − Q̂π̃|]
where C is an absolute constant given that both Qπ̃ and Q̂π̃ are uniformly bounded. Here, the first533

inequality holds by the policy optimization step where we upper bound the second term by zero, and534

the last inequality holds by the assumption that the Q function class is uniformly bounded. Now, by a535

shift of distribution536

Edπ̂ [|Qπ̃ − Q̂π̃|] = Eρ
[
|Qπ̃ − Q̂π̃| · d

π̂(s, a)

ρ(s, a)

]
≤
√

Eρ[(Qπ̃ − Q̂π̃)2] · sup
s,a

∣∣∣∣dπ̂(s, a)ρ(s, a)

∣∣∣∣ .
Let’s look at the distribution ratio537

dπ̂(s, a)

ρ(s, a)
=

π̂(a | s)
π̂(a | s)ξ · don(a | s)1−ξ

·
∑
s′,a′ d

on(a′, s′)π̂(a′ | s′)ξ

don(a | s)ξ
· d

π̂(s)

don(s)

=

(
π̂(a | s)
don(a | s)

)1−ξ

·
∑
s′,a′ d

on(a′, s′)π̂(a′ | s′)ξ

don(a | s)ξ
· d

π̂(s)

don(s)
.

Therefore, the policy improvement is guaranteed by538

J π̂α − J π̃α = J π̂α − Jπ
⋆

α + Jπ
⋆

α − J π̃α ≥ Jπ
⋆

α − J π̃α − C ·
√
ϵ · sup

s,a

∣∣∣∣dπ̂(s, a)ρ(s, a)

∣∣∣∣ .
This completes the proof.539

□540

Now we give a formal proof for Lemma 1.541
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Lemma 1 For the bandit case with don(a) ∝ exp(β1r(a)) and πt+1(a) ∝ exp(β2r(a)) for β2 > β1,542

the coefficient supaR
t(a; ξ) decreases as ξ increases within the range ξ ∈ (0, 1− β1/β2).543

Proof:(Proof of Lemma 1) Under the reparameterization don(a) ∝ exp(β1r(a)) and πt+1(a) ∝544

exp(β2r(a)), we have for the coefficient Rt(a; ξ) that545

Rt(a; ξ) ∝ exp
((
(1− ξ)(β2 − β1)− ξβ1

)
· r(a)

)
= exp

((
(1− ξ)β2 − β1

)
· r(a)

)
.

Within the range ξ ∈ (0, 1 − β1/β2), we always have (1 − ξ)β2 − β1 > 0. Hence, the largest546

coefficient always occurs on action ã = argmaxa′ r(a
′). In addition, we consider the following ratio547

log

(
R(a; ξ)

R(a; 0)

)
= −ξ log(πt+1(a)) + log

(∑
a′

don(a′)πt+1(a′)ξ

)

= −ξβ2r(a) + log

(∑
a′

exp((β1 + β2ξ)r(a
′))

)
.

Consider the gradient of log (
∑
a′ exp((β1 + β2ξ)r(a

′))) with respect to ξ:548

∂

∂ξ
log

(∑
a′

exp((β1 + β2ξ)r(a
′))

)
=

∑
a′ β2r(a

′) exp((β1 + β2ξ)r(a
′))∑

a′ exp((β1 + β2ξ)r(a′))
− β2r(a).

Note that the largest probability ratio happens for ã = argmaxa′ r(a
′). Since the softmax is strictly549

less than the argmax when r has different values in each action, the above derivative for action ã is550

negative, meaning that by increasing ξ, the value ofR(ã; ξ) will decrease. As supaR(a; ξ) = R(ã; ξ)551

by our previous discussion, we complete the proof. □552

B Additional Preliminaries and Problem Statement553

Prioritized experience replay. PER [55] serves as the basis of our sampling techniques, providing a554

framework for prioritizing experience replay based on transition importance. Instead of sampling555

uniformly from the replay bufferR, PER assigns higher probability to more informative transitions,556

leading to improved sample efficiency [17]. Each transition Ri = (si, ai, ri, si+1) is assigned557

a priority σi, typically based on the TD-error: δ = r + γV (st+1) − V (st) [4, 17, 45, 55, 63].558

Subsequently, the sampling approach of PER involves establishing an index set I within the range of559

[|R|] based on the probabilities pi assigned by the priority set as follows: pi =
σζ
i∑

k∈[|R|] σ
ζ
k

, with a560

hyper-parameter ζ > 0. To correct for sampling bias, PER applies importance sampling weights:561

ui ∝
(
1/(|R| · pi)

)β
, (8)

where β anneals from β0 ∈ (0, 1) to 1 during training to counteract bias in the learning updates, and562

the importance sampling weights are normalized to have maximum weight of 1 for stability. While563

standard PER prioritizes TD-error, our method extends this framework to prioritize transitions based564

on onlineness and contribution to policy improvement.565

Online RL with offline datasets. In this work, we study online RL with offline datasets denoted566

as D [2]. These datasets consist of a set of tuples (s, a, r, s′) generated from a specific MDP. A key567

characteristic of offline datasets is that they typically offer only partial coverage of state-action pairs.568

In other words, the set of states and actions in the dataset, denoted as {(s, a) ∈ D}, represents a569

limited subset of the entire state space and action space, S ×A. Moreover, learning on the data with570

incomplete coverage of state-action pairs potentially results in excessive value extrapolation during571

the learning process for methods using function approximation [14]. Our model, based on SAC [15],572

incorporates several effective strategies for RL with offline data, as outlined in RLPD [2]. These573

strategies include:574

Layer Normalization: Off-policy RL algorithms often query the learned Q–function with out-of-575

distribution actions, leading to overestimation errors due to function approximation. This can cause576

training instabilities and even divergence, particularly when the critic struggles to keep up with577
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growing value estimates. To address this, prior research has employed Layer Normalization to ensure578

that the acquired functions do not extrapolate in an unconstrained manner. Layer Normalization acts579

to confineQ-values within the boundaries set by the norm of the weight layer, even for actions beyond580

the dataset. As a result, the impact of inaccurately extrapolated actions is substantially reduced, as581

their associated Q-values are unlikely to significantly exceed those already observed in the existing582

data. Consequently, Layer Normalization serves to alleviate issues such as critic divergence and the583

occurrence of catastrophic overestimation.584

Update-to-Data: Enhancing sample efficiency in Bellman backups can be accomplished by elevating585

the frequency of updates conducted per environment step. This approach, often referred to as the586

update-to-data (UTD) ratio, expedites the process of backing up offline data.587

Clipped Double Q-Learning: The maximization objective of Q-learning and the estimation uncertainty588

from value-based function approximation often leads to value overestimation [62]. To address this589

problem, Fujimoto et al. [13] introduced Clipped Double Q-Learning (CDQ) as a means of mitigation.590

CDQ involves taking the minimum from an ensemble of two Q-functions for computing TD-backups.591

The targets for updating the critics are given by the equation y = r (s, a) + γmini=1,2Qθi (s
′, a′),592

where a′ ∼ π (·|s′).593

Maximum Entropy RL: Incorporating entropy into the learning objective (as defined in (1)) helps594

mitigate overconfidence in value estimates, particularly when training with offline datasets. In offline595

RL, policies may become overly conservative due to limited dataset coverage, leading to suboptimal596

exploration during fine-tuning. By preserving policy stochasticity, entropy regularization ensures597

that the agent remains adaptable when transitioning from offline training to online interactions.598

This controlled exploration has been shown to improve training stability and prevent premature599

convergence [2, 6, 15, 18].600

C Related Work601

Offline to online RL In an effort to mitigate the sample complexity of online RL [36], offline602

RL utilizes fixed datasets to train policies without online interaction, however it can be prone to603

extrapolation errors that lead to overestimation of state-action values. Recent off-policy actor-critic604

methods [14, 26, 28, 66] seek to mitigate these issues by limiting policy learning to the scope of the605

dataset, thereby minimizing extrapolation error. Strategies for reducing extrapolation error include606

value-constrained approaches [28] that aim for conservative value estimates and policy-constrained607

techniques [43] that ensure the policy remains close to the observed behavior in the data. There608

are several works that leverage advantage estimation to guide policy improvement in purely offline609

RL, such as LAPO [5], A2PR [32], and A2PO [48]. However, they are not well-suited for online610

settings because they fail to consider the importance of “onlineness,” measured by the density ratio,611

to align with the needs of online RL exploration and exploitation. Additionally, they do not account612

for uncertainty in advantage estimation.613

While offline RL methods can outperform the dataset’s behavior policy, they rely entirely on614

static data [30]. When the dataset has comprehensive coverage, methods like FQI [1] or certainty-615

equivalence model learning [50] can efficiently find near-optimal policies. However, in practical616

scenarios with limited data coverage, policies tend to be suboptimal. One approach to addressing this617

suboptimality is to follow offline RL with online fine-tuning, however as discussed above, existing618

methods are prone to catastrophic forgetting and performance drops during fine-tuning [39]. In con-619

trast, A3RL begins with online RL while incorporating offline data to enhance the policy, selectively620

leveraging offline data to facilitate online policy improvement.621

Online RL with offline datasets Several methods exist that incorporate offline datasets in online RL622

to enhance sample efficiency. Many rely on high-quality expert demonstrations [19, 23, 42, 49, 64, 70].623

Nair et al. [43] introduced the Advantage Weighted Actor Critic (AWAC), which utilizes regulated624

policy updates to maintain the policy’s proximity to the observed data during both offline and online625

phases. On the other hand, Lee et al. [29] propose an initially pessimistic approach to avoid over-626

optimism and bootstrap errors in the early online phase, gradually reducing the level of pessimism627

as more online data becomes available. Most relevant to our work is RLPD [2], which adopts a628

sample-efficient off-policy approach to learning that does not require pre-training. Unlike RLPD,629

which utilizes symmetric sampling to randomly draw from both online and offline datasets for630
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policy improvement, A3RL adopts a Prioritized Experience Replay (PER)-style method, whereby it631

selectively uses data from both datasets to enhance policy performance.632

Prioritized experience replay Experience replay [31] enhances data efficiency in online RL by633

reusing past experiences. Priority Experience Replay (PER) [55] introduces prioritization based on634

temporal difference (TD) error to ensure that impactful experiences are used more frequently, and635

has proven effective in a variety of settings [17, 21, 42, 45, 54, 61, 65, 68]. Alternative prioritization636

strategies have been explored, such as prioritizing transitions based on expected return [20] or637

adjusting sample importance based on recency [11]. Existing research predominantly focuses on638

either purely online or offline applications of PER. Our research distinctively integrates the advantages639

of both online and offline data in an innovative way. Eysenbach et al. [9] apply a density ratio to640

the reward instead of weighting the samples. The most relevant studies to ours include Sinha et al.641

[58] that uses the density ratio between off-policy and near-on-policy state-action distributions as642

an importance weight for policy evaluation, and Lee et al. [29] that employs density ratios to select643

relevant samples from offline datasets. Our method differs by not only using the density ratio to644

assess the “on-policyness” of the data but also by considering the confidence-aware advantage value645

to determine how much the data can contribute to enhancing policy improvement.646

Active learning in RL Active learning has been explored in RL for data-efficient exploration647

[8, 10, 27, 33, 35, 36, 38]. Unlike previous approaches that focus on oracle selection [35, 36],648

state exploration [8, 36] or reward estimation [38], A3RL introduces an active transition sampling649

mechanism tailored to online RL with offline data, prioritizing transitions that maximize policy650

improvement. We defer more details of related work to Appendix C.651

D Limitations of the Prior State-of-the-art.652

A drawback of RLPD, as discussed by Ball et al. [2], lies in its symmetric random sampling method653

applied to both online and offline data, disregarding the significance of individual transitions for654

evolving quality of policy. This predefined approach to sampling can potentially lead to less than655

optimal policy improvements due to the omission of vital data and inefficiencies arising from the656

use of redundant data. Such inefficiencies fail to offer any positive contribution towards enhancing657

policy. To address the limitation, our research presents an innovative active data sampling technique,658

specifically designed to optimize the use of both online and offline data in the process of policy659

improvement.660

E Experimental Details661

In order to ensure fair evaluation, all baselines and ablation studies are assessed using an equal662

number of environment interaction steps. We average results over 10 seeds to obtain the final result.663

One standard error of the mean is shaded for each graph.664

E.1 Additional experimental results.665

We explored whether different mixtures of offline datasets can be exploited by A3RL. In particular,666

for the D4RL locomotion halfcheetah, walker2d, hopper and ant environments in Fig. 4, mix A667

corresponds to having the offline dataset consisting of 100% of the -simple Minari dataset, mix B668

corresponds to 100% -simple and 5% -medium, while mix C corresponds to 100% -simple and 10%669

-medium. Those proportions were chosen due to the recognizable difference in the performance670

of RLPD under these different settings. In particular, we observed that all RLPD runs with the671

offline dataset consisting of 100% of the -simple dataset and no less than 30-40% of the -medium672

dataset achieve similar performance. Meanwhile at lower percentages such as 5% and 10%, there is673

a difference between runs of RLPD, which implies that there is significant impact from the offline674

dataset quality to the bootstrapping from offline transitions.675

For the Adroit environments (Fig. 5) pen, relocate and door, the -cloned dataset plays the role of the676

-simple dataset above, while the -expert plays the role of the -medium dataset above. The mixtures677

were generated similarly. A3RL robustly outperforms, or at least performs on par with, RLPD across678

diverse black-box environments.679
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(a) halfcheetah mix A
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(b) halfcheetah mix B
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(c) halfcheetah mix C
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(d) walker2d mix A
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(e) walker2d mix B
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(f) walker2d mix C
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(g) hopper mix A
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(h) hopper mix B
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(i) hopper mix C
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(j) ant mix A
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(k) ant mix B
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Figure 4: A3RL vs RLPD vs SACfD on halfcheetah, walker2d, hopper and ant with different offline
dataset mixtures. A3RL outperforms or performs comparably to RLPD across diverse black-box
environments.

E.2 Additional ablation studies.680

Ablation on density term. Fig. 6 presents further ablation studies on the density term for A3RL. We681

see the distinction in the effectiveness of the density term is more significant over harder tasks like682

antmaze-medium-play.683

Ablation on purely online setting. Fig. 7 presents further ablation studies on A3RL interacting with684

the environment in a purely online manner, i.e., the algorithm does not utilize access to offline data.685

It is consistent throughout tested environments that A3RL is able to leverage offline data effectively,686

especially in harder tasks like antmaze-medium-play where purely online A3RL fails to learn in the687

same number of steps.688

Ablation on priority term. Fig. 8 presents further ablation studies on the priority term for A3RL,689

where we compare it against the sampling strategy that solely uses TD-error as the priority term,690

and another that combines the density term with TD-error. The superior performance of A3RL over691

TD+Density over tested environments indicates that prioritizing using the advantage term achieves692

better performance compared to the canonical TD-error term.693
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(a) pen mix A
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(b) pen mix B
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(c) pen mix C
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(d) relocate mix A
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(e) relocate mix B
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(f) relocate mix C
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(g) door mix A
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(h) door mix B
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Figure 5: A3RL vs RLPD vs SACfD on pen, relocate and door tasks with different offline dataset
mixtures. A3RL outperforms or performs comparably to RLPD across diverse black-box environ-
ments.
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(b) halfcheetah-medium-replay

0 50 100 150 200 250 300
Environment Steps (×103)

0.0

0.2

0.4

0.6

0.8

1.0

E
va

lu
at

io
n 

R
et

ur
n

A3RL
No Density

(c) antmaze-medium-play

Figure 6: Ablation Studies: A3RL vs A3RL without density term.

Training and evaluation environments. Fig. 9 presents snapshots of tested D4RL locomotion tasks:694

halfcheetah, walker2d, hopper, ant and antmaze. halfcheetah, walker2d, hopper and ant have dense695

rewards, while antmaze has sparse rewards, and all environments are equipped with continuous state696

and action spaces.697

In the halfcheetah environment, the 2D agent resembles a simplified cheetah model with a torso698

and lined legs, with the objective of forward locomotion and maintaining balance while maximizing699

speed. In the walker2d environment, the 2D humanoid agent has 2 legs and multiple joints, with700

the objective of stable bipedal walking without falling. In the ant environment, the agent is a 3D701

quadrupedal agent with multiple joints and degrees of freedom, with the objective of moving forward702

efficiently while maintaining balance. For all of these environments, rewards are given for velocity703

to encourage the agent to move forward efficiently while maintaining balance, and several offline704

datasets, per [12], with varying characteristics, as detailed below, were tested.705
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(a) halfcheetah-random
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(b) halfcheetah-medium-replay
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(c) antmaze-medium-play

Figure 7: Ablation Studies: A3RL vs purely online A3RL vs purely online SAC.
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(a) halfcheetah-random
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(b) halfcheetah-medium-replay
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Figure 8: Ablation Studies: A3RL vs PER (TD) vs PER with Density (TD+Density).

Fig. 10 presents snapshots of tested Adroit manipulation tasks: pen, relocate, and door. These706

environments involve a simulated 28-DoF robotic arm interacting with objects in a 3D space and are707

characterized by sparse rewards and continuous state and action spaces.708

In the pen environment, the robotic arm is tasked with reorienting a pen to a target orientation in709

free space. In the relocate environment, the arm must pick up a ball and move it to a target position,710

requiring coordinated grasping and relocation of an object in 3D space. The door task involves711

the robotic arm grasping and pulling open a door, necessitating nuanced contact dynamics and712

manipulation under constraints. For all of these environments, rewards are sparse and typically only713

given upon task completion, increasing the exploration difficulty.714

Offline dataset type Description
-expert-v2 1M samples from policy trained to completion with SAC
-medium-v2 1M samples from policy trained to 1/3 of expert
-medium-replay-v2 Replay buffer of policy trained to medium
-random-v2 1M samples from randomly initialized policy

Table 1: Locomotion offline dataset.

In the antmaze environment, the aforementioned ant agent is placed in a maze environment and must715

navigate from a defined start point to a goal. Rewards are binary: 1 for reaching the goal and 0716

otherwise. Varying sizes of the maze were tested: umaze (U-shaped), medium and large; which are717

naturally also of increasing difficulty.718
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ABSTRACT

The offline reinforcement learning (RL) setting (also known as full batch RL),
where a policy is learned from a static dataset, is compelling as progress enables
RL methods to take advantage of large, previously-collected datasets, much like
how the rise of large datasets has fueled results in supervised learning. However,
existing online RL benchmarks are not tailored towards the offline setting and ex-
isting offline RL benchmarks are restricted to data generated by partially-trained
agents, making progress in offline RL difficult to measure. In this work, we in-
troduce benchmarks specifically designed for the offline setting, guided by key
properties of datasets relevant to real-world applications of offline RL. With a fo-
cus on dataset collection, examples of such properties include: datasets generated
via hand-designed controllers and human demonstrators, multitask datasets where
an agent performs different tasks in the same environment, and datasets collected
with mixtures of policies. By moving beyond simple benchmark tasks and data
collected by partially-trained RL agents, we reveal important and unappreciated
deficiencies of existing algorithms. To facilitate research, we have released our
benchmark tasks and datasets with a comprehensive evaluation of existing algo-
rithms, an evaluation protocol, and open-source examples. This serves as a com-
mon starting point for the community to identify shortcomings in existing offline
RL methods and a collaborative route for progress in this emerging area.

1 INTRODUCTION

Figure 1: A selection of pro-
posed benchmark tasks.

Impressive progress across a range of machine learning applica-
tions has been driven by high-capacity neural network models with
large, diverse training datasets (Goodfellow et al., 2016). While
reinforcement learning (RL) algorithms have also benefited from
deep learning (Mnih et al., 2015), active data collection is typi-
cally required for these algorithms to succeed, limiting the extent
to which large, previously-collected datasets can be leveraged. Of-
fline RL (Lange et al., 2012) (also known as full batch RL), where
agents learn from previously-collected datasets, provides a bridge
between RL and supervised learning. The promise of offline RL
is leveraging large, previously-collected datasets in the context of

Website with code, examples, tasks, and data is available at https://sites.google.com/view/
d4rl/

1

ar
X

iv
:2

00
4.

07
21

9v
4 

 [
cs

.L
G

] 
 6

 F
eb

 2
02

1

1/18/25, 3:16 AM WeChat0fbfe70f0d112af79bd2608dba18cda3.jpg (259×301)

file:///Users/xuefeng/Library/Containers/com.tencent.xinWeChat/Data/Library/Caches/com.tencent.xinWeChat/2.0b4.0.9/10cf4075c8851ecc50e129b4d27f7387/dragI… 1/1

5 TASKS AND DATASETS

Given the properties outlined in Section 4, we assembled the following tasks and datasets. All tasks
consist of an offline dataset (typically 106 steps) of trajectory samples for training, and a simulator
for evaluation. The mapping is not one-to-one – several tasks use the same simulator with different
datasets. Appendix C lists domains and dataset types along with their sources and Appendix A
contains a more comprehensive table of statistics such as size. Our code and datasets have been
released open-source and are on our website at https://sites.google.com/view/d4rl/.

Maze2D. (Non-markovian policies, undirected and multitask data)
The Maze2D domain is a navigation task requiring a 2D agent to reach
a fixed goal location. The tasks are designed to provide a simple test
of the ability of offline RL algorithms to stitch together previously col-
lected subtrajectories to find the shortest path to the evaluation goal.
Three maze layouts are provided. The “umaze” and “medium” mazes
are shown to the right, and the “large” maze is shown below.

The data is generated by selecting goal locations at random and then using a
planner that generates sequences of waypoints that are followed using a PD
controller. In the figure on the left, the waypoints, represented by circles, are
planned from the starting location (1) along the path to a goal (2). Upon reach-
ing a threshold distance to a waypoint, the controller updates its internal state
to track the next waypoint along the path to the goal. Once a goal is reached,
a new goal is selected (3) and the process continues. The trajectories in the

dataset are visualized in Appendix G. Because the controllers memorize the reached waypoints, the
data collection policy is non-Markovian.

AntMaze. (Non-markovian policies, sparse rewards, undirected and multitask data) The AntMaze
domain is a navigation domain that replaces the 2D ball from Maze2D with the more complex
8-DoF “Ant” quadraped robot. We introduce this domain to test the stitching challenge using a
morphologically complex robot that could mimic real-world robotic navigation tasks. Additionally,
for this task we use a sparse 0-1 reward which is activated upon reaching the goal.

The data is generated by training a goal reaching policy and us-
ing it in conjunction with the same high-level waypoint genera-
tor from Maze2D to provide subgoals that guide the agent to the
goal. The same 3 maze layouts are used: “umaze”, “medium”,
and “large”. We introduce three flavors of datasets: 1) the ant
is commanded to reach a specific goal from a fixed start location
(antmaze-umaze-v0), 2) in the “diverse” datasets, the ant is
commanded to a random goal from a random start location, 3) in
the “play” datasets, the ant is commanded to specific hand-picked locations in the maze (which
are not necessarily the goal at evaluation), starting from a different set of hand-picked start loca-
tions. As in Maze2D, the controllers for this task are non-Markovian as they rely on tracking visited
waypoints. Trajectories in the dataset are visualized in Appendix G.

Gym-MuJoCo. (Suboptimal agents, narrow data distributions) The Gym-MuJoCo tasks (Hopper,
HalfCheetah, Walker2d) are popular benchmarks used in prior work in offline deep RL (Fujimoto
et al., 2018a; Kumar et al., 2019; Wu et al., 2019). For consistency, we provide standardized datasets
similar to previous work, and additionally propose mixing datasets to test the impact of heterogenous
policy mixtures. We expect that methods that rely on regularizing to the behavior policy may fail
when the data contains poorly performing trajectories.

The “medium” dataset is generated by first train-
ing a policy online using Soft Actor-Critic (Haarnoja
et al., 2018a), early-stopping the training, and collect-
ing 1M samples from this partially-trained policy. The
“random” datasets are generated by unrolling a ran-
domly initialized policy on these three domains. The
“medium-replay” dataset consists of recording all samples in the replay buffer observed during train-

5

Figure 9: Environments: halfcheetah, walker2d, hopper, ant and antmaze respectively.
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Figure 10: Environments: pen, relocate and door respectively.

E.3 Computing infrastructure and wall-time comparison.719

We performed our experiments on a cluster that includes CPU nodes (approximately 280 cores) and720

GPU nodes (approximately 110 NVIDIA GPUs, ranging from Titan X to A6000, set up mostly in 4-721

and 8-GPU configurations). On the same cluster, the wall run time of A3RL is approximately 1.5722

times the run time of regular RLPD and is comparable to Off2On.723

E.4 Hyperparameters and architectures.724

We list the hyperparameters used for A3RL in Table 2.725

Parameter Value
Batch size 256
Gradient steps G 20
MLP Architecture 2-Layer
Network width 256 Units
Discount 0.99
Learning rate 3× 10−4

Ensemble size E 10
ζ 0.3
ξ 0.03
Optimizer Adam

Table 2: A3RL hyperparameters.

F Algorithm Details726

In this section, we details our algorithm in Fig. 1.727
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Algorithm 1 A3RL

1: Select LayerNorm, large ensemble Size E, gradient steps G, discount γ, temperature α.
2: Randomly initialize Critic θi (set targets θ′i = θi) for i = 1, 2, . . . , E, Actor ϕ parameters.
3: Select critic EMA weight ρ, batch sizeN , determine number of Critic targets to subsetZ ∈ {1, 2}
4: Initialize buffer D with offline data, online replay bufferR ← ∅
5: while True do
6: Receive initial observation state s0
7: for t = 0, . . . , T do
8: Take action at ∼ πϕ (·|st), update bufferR ← R∪ {(st, at, rt, st+1)}.
9: Randomly sample a subset of size N

2 from online bufferR and size N
2 from offline buffer

D to form a learning datasetRN
10: Update density ensemble usingRN
11: Calculate priority PR ofRN via (3)
12: for g = 1, . . . , G do
13: Sample batch bN of size N according to PR fromRN
14: Sample set Z of Z indices from {1, . . . , E}
15: With b, set y = r + γ

(
mini∈Z Qθ′i (s

′, a′) + α log πϕ (a
′|s′)

)
, a′ ∼ πϕ (·|s′)

16: for i = 1, . . . , E do
17: Calculate importance weight ui via (8).
18: Update θi minimizing loss: ℓ =

∑
i ui · (y −Qθi (s, a))

2

19: Update target networks: θ′i ← ρθ′i + (1− ρ) θi
20: With b, update ϕ maximizing objective:
21: 1

E

∑E
i=1Qθi (s, a)− α log πϕ (a|s) , where a ∼ πϕ (·|s), (s, a) ∼ bN .
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