Recommender Forest for Efficient Retrieval

Chao Feng!*, Wuchao Li'*, Defu Lian', Zheng Liu?, Enhong Chen!
School of Computer Science and Technology
University of Science and Technology of China, Hefei, China
2 Microsoft Research Asia, Beijing, China
{chaofeng,liwuchao}@mail .ustc.edu.cn
{liandefu,cheneh}@ustc.edu.cn, zhengliu@microsoft.com

Abstract

Recommender systems (RS) have to select the top-n items from a massive item set.
For the sake of efficient recommendation, RS usually represents users and items
as latent embeddings and relies on approximate nearest neighbor search (ANNSs)
to retrieve the recommendation results. Despite the reduction of running time, the
representation learning is independent of ANNS index construction; thus, the two
operations can be incompatible, which results in a potential loss of recommendation
accuracy. To overcome the above problem, we propose the Recommender Forest
(a.k.a., RecForest), which jointly learns latent embedding and index for an efficient
and high-fidelity recommendation. RecForest consists of multiple K-ary trees, each
of which is a partition of the item set via hierarchical balanced clustering such that
each item is uniquely represented by a path from the root to a leaf. Given such
a data structure, an encoder-decoder-based routing network is developed: it first
encodes user information into user representation; then, leveraging a transformer-
based decoder, it identifies the top-n items via beam search. Compared with
the existing methods, RecForest brings in the following advantages: 1) the false
partition of the near-boundary items can be effectively alleviated by the use of
multiple trees; 2) the routing operation becomes much more accurate thanks to the
powerful transformer decoder; 3) the branch parameters are shared across different
tree levels, making the index to be extremely memory-efficient. The experimental
studies are performed on six popular recommendation datasets: with a significantly
simplified training cost, RecForest outperforms competitive baseline approaches in
terms of both recommendation accuracy and efficiency. The code is available at
https://github.com/wuchao-1i/RecForest.

1 Introduction

Recommender system (RS) is an important way to address the information overload problem. A
typical recommender system needs to select the top-n items for users from a massive-scale item set.
For the sake of efficient recommendation, RS usually calls for the collaboration of representation
learning and Approximate Nearest Neighbour search (ANNs). In the first place, users and items are
represented by embeddings in the same latent space; in the second place, the item embeddings are
organized with a specific ANNs index, like SCANN and HNSW, such that the top-n recommendation
to the user can be efficiently accomplished. Despite that the recommendation process is greatly
accelerated from the above workflow, the recommendation quality will probably be restricted, given
that the representation model is independently learned and can be incompatible with the ANNs index.

In recent years, many efforts have been devoted to alleviating the incompatibility between the repre-
sentation model and the ANNSs index, especially the effort on joint optimization of both components.
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One representative class of works is the tree-based deep model (TDM) [29] and the joint optimized
tree-based model (JTM) [28] from Alibaba. In both works, the item set is organized with a binary
tree structure: each internal node acts like a cluster center, and each leaf node corresponds to a
unique item. On top of the tree structure, a preference model is learned to route from the root to
the leaf nodes for the top-n recommendation results. These works achieve empirical gains over the
conventional two-stage methods; besides, they preserve competitive retrieval efficiency as the time
cost is logarithmic to the size of the item set.

However, the existing tree-based recommenders are still restricted in many aspects. Firstly, the item
set is hierarchically partitioned; as a result, it is challenging to route to items located around partition
boundaries. Secondly, a routing decision is made without consideration of the routing trajectory
(i.e., from the root to the direct ancestor of the current node), so the accuracy of beam search can be
limited. Thirdly, the tree-based index can be memory-consuming, given that the number of internal
nodes is at the same magnitude as the leaf nodes (i.e., the number of the items). Last but not least, the
existing methods call for joint adaptation of the representation model and tree index, so that the tree
structure needs to be repetitively updated, resulting in a significant cost for the training stage.

To overcome the limitations, we propose a novel framework, Recommender Forest (a.k.a., RecForest)
for an efficient and high-fidelity recommendation. RecForest is highlighted for the following features.

* RecForest consists of multiple K-ary trees, each of which is a partition of the item set based on
balanced hierarchical clustering. With the construction, the retrieval of the near-boundary items
can be effectively improved, as evidenced in Section 3.6.1, since a near-boundary item missed in
one tree can be retrieved back on another tree.

» RecForest leverages a transformer decoder for beam search. On top of such a decoder, the routing
trajectory, i.e., from the root node to the current node, can be jointly considered when the next
routing decision is made. Compared with the previous methods which merely take account of the
current node, the beam search becomes much more accurate since the routing trajectory is fully
utilized, as analyzed in Section 3.4.

* The tree parameters are shared across different tree levels; in other words, there are mere K
vectors (corresponding to the K different branches) in each K-ary tree. Thanks to parameter
sharing, RecForest becomes much more memory-efficient compared with the existing tree-based
recommenders, as demonstrated in Table 1 theoretically and in Table 3 empirically.

» Given the above settings, RecForest becomes much less sensitive to the partition of the item set.
As a result, without any tree update, RecForest can perform remarkably better than TDM and JTM
with repetitive tree update, as shown in Table 3. Therefore, RecForest can avoid the repetitive
adaption of the tree structure, saving a considerable portion of the training cost.

We perform comprehensive evaluations on six popular recommendation datasets. According to our
experiment results, RecForest notably outperforms the existing tree-based recommenders in terms
of recommendation quality and efficiency. Besides, we empirically verify that RecForest can be
effectively trained with much less time cost, indicating its strong usability in real-world scenarios.

2 Recommender Forest

2.1 Preliminary

As mentioned above, RS usually represents user and item as latent embeddings, where the user’s
preferences for the items are measured by the inner product of the embeddings [19, 1, 11, 12]. As
a result, the top-n recommendation is boiled down to the maximum inner product search (MIPS)
problem. For the sake of efficient recommendation, various ANNS indexes are leveraged in practice,
such as the tree-based index [18, 10, 2, 14]; the hash-based index [21, 22, 7, 17], the quantization-
based index [4, 25, 5, 13, 15] and the graph-based index [16, 23, 27, 3], etc. These indexes have
been well implemented by toolkits, like FAISS, which greatly facilitates the deployment of recom-
mendation systems in practice. However, one limitation of the current ANN-based methods is that
the index construction and the representation learning are decoupled, which will probably introduce
incompatibility between both modules.

To mitigate the above problem, recent works were proposed to jointly optimize the representation
model and index, where two representative works are TDM [29] and JTM [28]. Both methods are
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Figure 2: Illustration of RecForest framework.

based on the tree structures, where the top-n recommendation can be efficiently accomplished by a
layer-wise beam search. For example, as shown in Figure 1, when the beam size is 2, these models
will score the four children of previously retrieved 2 nodes, from which the two largest children will
be selected. Such a process is iteratively performed until the final top-2 leaf nodes are retrieved.

2.2 Overview

The framework of RecForest is overviewed as follows. First of
all, the item set is partitioned based on hierarchical balanced
Kmeans, so that a tree structure is generated. The tree structure
will enable an item to be efficiently retrieved in O(log N) time
complexity (IV is the number of the items). Knowing that the
items located close to the partition boundaries may get falsely
assigned to a branch missing from the retrieval process, we pro-
pose to leverage multiple diversified trees, where the missing

probability can be largely reduced. One item is corresponding
to a leaf node in the tree, which can be represented by a path
stretching from the route. Suppose that the K-ary tree is uti-
lized, each item can be represented by a sequence of branch
ID (0, ..., K — 1), whose length is [logy N]. For example, in
Figure 2(b), the item 24 is represented by “011” and “110” in the

Figure 1: Beam search over a bi-
nary tree. The beam size is set
2. The nodes in the dotted box
of each layer are candidates for
scoring, where green nodes are se-
lected.

corresponding binary trees, respectively. Given the hierarchical

numbering of the items, the recommendation turns out to be a sequence-to-sequence problem: based
on the encoded user representation, paths to the most preferable items are progressively decoded via
beam search, from which the top-n recommendation is made. The overall framework of RecForest is

shown in Figure 2(a).

For ease of understanding, let’s first summarize the notations used in this paper. Let x,, denote
the user information of w, which can be either a behavior sequence or a user feature vector. Let
y; € {0, K — 1}* be the item i’s routing sequence of length H and Y; € {0, K — 1} be a
concatenation of item ¢’s routing sequences of T trees. Formally, RecForst models the conditional

probability P(Y;|x,,) with the seq2seq architecture.



2.3 Construction of Tree and Forest

As mentioned, the item set is organized by a tree structure, where semantically close items should
fall into the same branch as much as possible. We will construct multiple trees so as to alleviate the
false assignment of items around partition boundaries. Detailed workflows are illustrated as follows.

2.3.1 Tree Construction

The tree is expected to be balanced for the sake of efficient beam search on the tree. Thus, we leverage
hierarchical balanced clustering, where each cluster is evenly divided into K child clusters until
each child cluster merely contains one single item. We propose to randomly sample K — N items
(H = [logj N7 is the height of the tree) from the entire item set, such that the constructed tree will
be a complete K-ary tree.

We suggest the following two methods for the balanced partition of the item set. Random: For each
cluster, the included items are randomly partitioned into K equally-sized subsets. Such a method
is extremely simple; yet, the semantic relationship between items is ignored. Balanced Kmeans
(short for Kmeans): Particularly, we first pre-train item embeddings based on an arbitrary off-the-
shelf recommendation model. In our experiment, we use the Deep Interest Network (DIN) [26] for
sequential recommendation and the Bayesian Personalized Ranking (BPR) [19] for non-sequential
recommendation, given their effectiveness and popularity in corresponding scenarios. With such a
recommendation model, the items’ semantic closeness can be measured by their embedding similarity,
as relevant items will be close to each other in the latent space. Then, for each cluster, the included
items are evenly partitioned via Kmeans w.r.t. their embedding similarity. Due to the space limitation,
details about balanced Kmeans clustering are given in the appendix.

2.3.2 Forest Construction

Different trees are desirable of being diversified such that the boundary items can be better covered
from beam search. To this end, we propose a simple but effective approach, which combines the
random and Kmeans tree construction. Particularly, for each cluster with n items, n mod K items
are first randomly chosen, from which one item is sampled with replacement into each child cluster;
then, the remaining items are further partitioned into the K equally-sized groups via balanced Kmeans.
By doing so, different trees are naturally diversified due to the inherent randomness.

2.4 RecForest Enocoder

As shown in Figure 2(a), the encoder is utilized to encode user information and output user represen-
tation. Any neural network based encoders are compatible with our framework. We mainly consider
the sequential scenario and non-sequential scenario, where a sequence encoder and a feature encoder
is used to encode user behavior sequences and feature vectors, respectively.

Feature Encoder In the non-sequential scenarios, user information is denoted by a feature vector,
ie. x,. We simply use a MLP for the feature encoder. z, = MLP(x,). When only user id is
available, we can take its embedding as user representation, without any non-linear transformation.

Sequence Encoder In the sequential scenarios, user information is an item sequence. Concretely,
xy = [it,, 0y, - -, 1t,], Where the item i;,(1 < j < m) is the j-th interacted item of user u. It
is straightforward to take item features into account. In view of Transformer’s [24] state-of-the-
art performance in seq2seq tasks like machine translation and speech recognition, we utilize the
Transformer encoder for the sequence encoder. In particular, z,, = transformer-encoder(z,, ), where
the length of z,, is the same as x,,. Due to space limitation, more details about the Transformer
encoder are provided in the appendix.

2.5 RecForest Decoder

The decoder is to predict the next branch (routing decision) given the routing trajectory and the
encoder’s outputs of user representation. As shown in Figure 2(a), we apply the Transformer [24]
decoder for this task due to its powerful capability. From down to up, following the branch embedding
and positional embedding, the Masked Multi-Head Attention [24] is utilized to model the complex



dependence among branches at different layers. Taking the outputs from the Masked Multi-Head
Attention, Multi-Head Attention [24] is followed to encode the complex interactions between user
representation and routing trajectory representations. The FFN layer then enhances non-linearity of
context-aware routing trajectory representations. A linear layer with the softmax activation is applied
for predicting the next routing decision. Note that this decoder can also handle the non-sequence
scenarios since a user feature vector can be considered as a sequence only with one element.

2.6 Training

As depicted in Figure 2(b), the routing trajectory of item 44 is [0,1,1] and [1,1,0] on the two trees,
respectively. The framework uses [start,0,1] to predict [0,1,1] and uses [start,1,1] to predict [1,1,0].
‘start’ is a special symbol for initializing the sequence, which actually corresponds to the tree
root. According to experimental results, we do not share the transformer decoder among trees, i.e.,
P(Y;|x,) =[], Ps, (Yi[k]|x.), where 6, indicate the parameters of the k-th tree. In this case, all
trees share the same training procedure, so we illustrate the training with one tree. At each layer, the
training task is to predict the next routing decision given routing trajectory, which corresponds to a
multi-class classification problem. Given a user v and its interacted item ¢, the loss for optimizing
encoder and decoder is formulated as follows:

H—-1
L(u,i) = — Y logProb(y! |cat(start, y "), z,) (1)

h=0
where y and yl[O:h] indicate the branch (routing decision) at the h-th layer and routing trajectory until
the h-th layer respectively, and ‘cat’ means concatenation.

2.7 Inference

Since each leaf in the tree corresponds to an item, RecForest transforms top-n recommendation into the
sequence prediction problem. In particular, we first apply the encoder for deriving user representation
and leverage the decoder to generate the top-n routing sequences, i.e., paths from the root node to
leaf nodes on each tree, based on beam search. Note that each item can correspond to multiple leaf
nodes (i.e. routing sequences) in each tree since some items are randomly sampled for building a
complete K-ary tree. Therefore, the generated items should be duplicated. Let C' denote the union of
generated candidate items from the forest. For ¢ € C, we first compute the logarithmic probability

[0:R]

Zf;ol log Prob(y!|cat(start, y; ), z,) in each tree and then sum logarithmic probabilities over all

trees as the score of the item c. We then select the top-n items from C' for recommendation.

2.8 Complexity Analysis

Notation Denote by D item embedding size, B the beam search size, K the number of branches,
and [ the training set size. Denote by " the number of trees in RecForest and the times of updating
the tree in JTM and TDM. In SCANN, denote by K., the number of centroids in VQ, K, the
number of centroids in PQ, M the number of subspaces and W the number of probed VQ cells.

Time Complexity In inference, the beam search can be finished within O(T' K B log, N) since
the probabilities of K B branches at each level of all trees need to be calculated. Hierarchical Kmeans
clustering can be done within O(NN K log, N) to build a tree index so that it takes O(T' N K log, N)
to build the forest index.

Space Complexity The memory consumption of the recommendation model is inevitable in any
recommender systems, so we mainly focus on the size of the index structure. In RecForest, we only
need to keep the tree structure and 7" matrices with size K x D, denoting branch embeddings of T’
trees. In TDM and JTM, beside the tree structure, they also store all tree node embeddings, where the
number of tree nodes is at the same magnitude as the number of the items.

We summarize complexity analysis of typical algorithms in Table 1, which shows RecForest enjoys a
small index memory cost and low inference time. This is because a smaller beamsize and fewer beam
search are only required, and tree node representations are not stored but computed on the fly.



Table 1: Complexity analysis. The SCANN indexing time only considers the encoding period given
codebooks for fair comparison. The time complexity of IPNSW directly is taken from the original
paper of HNSW, which is derived with exact Delaunay graphs.

Complexity | RecForest JTM TDM IPNSW SCANN
Inference Time | O(TKBlogx N)  O(BlogN) — O(BlogN)  O(logN)  O(Kyq+ Kpy+ 72— - N)
Indexing Time | O(TNKlog,; N) O(TIlogN) O(TNlogN) O(NlogN) O(NMK,,)

Index Size O(TKD) O(ND) O(ND) O(ND) O(KyqD + KpD)

3 Experiments

We conduct the experiments to answer the following research questions: RQ-1: Does RecForest
outperform the SOTA efficient recommenders in the tradeoff between efficiency and accuracy? RQ-
2: Does the forest-based index improve near-boundary item retrieval? RQ-3: How much effect
positional embedding can take? The experiments are carried out in both sequential scenarios and
non-sequential scenarios, where the sequence encoder and feature encoder is utilized, respectively.
Due to space limitations, we only report the results in the sequential scenario. Other results are
provided in the appendix. These experiments are done on a Linux server with Tesla V100 GPUs.

3.1 Dataset

We evaluate the RecForest wi'th six real-world Table 2: Statistics of Datasets
recommendation datasets, which can be down-
loaded from the url®. The datasets are Movie-
Lens 10M (abbreviated as Movie), Amazon Movie | 69,878 10,677 10,000,054 1.34%
Books (abbreviated as Amazon), Tmall Click Amazon| 29,980 67,402 2,218926 0.11%
(abbreviated as Tmall), Gowalla Check-in Tmall 139,234 135,293 10,487,585 0.05%
Dataset (abbreviated as Gowalla), Microsoft Gowalla| 13,583 71,436 977,425 0.10%
News Dataset (abbreviated as MIND). Since  MIND | 36,281 7,129 5,610,960 2.16%
some datasets only include rating-based explicit Yelp | 26,031 35,294 1,713,759 0.19%
feedback, they should be converted into implicit
feedback for RecForest’s inputs. These datasets
are pre-processed by filtering the users who interact with no more than 15 items. The overall
information of datasets is summarized in Table 2.

Dataset | #User ~ #Item #Interaction Density

3.2 Baselines

In the part, we report the results of the sequential recommendation scenario, so we compare the
proposed RecForest with two-stage indexes, IPNSW [16] and SCANN [5], with learnable indexes,
TDM [29] and JTM [28] as well as with YoutubeDNN [1] and DIN [26] based on the brute-force
retrieval. Note that brute-force-based YoutubeDNN and DIN are time-prohibitive in online services,
but they can be considered as two strong baselines. IPNSW and SCANN are built over item
embedding of a recommender. The recommender shares the same encoder as RecForest, but replaces
the decoder with flat item embedding. It is then trained with the same loss as DIN. Both TDM and
JTM make a routing decision simply based on current node without the consideration of routing
trajectories. More details about baselines can be referred to in the appendix.

3.3 Experimental Settings

In each dataset, we randomly choose 10% users as validation users, 10% users as test users, and all
the left users as training users. Following TDM and JTM, we use a slide window to split user-item
interaction histories into slices of length 70 at most. For training users’ data, the first 69 interactions
are used for input context and the 70-th item is regarded as the ground truth of prediction. For data of
both validation users and test users, we regard the first half as context and others as ground truth.

The latent dimensionality is set to 96 in all methods. Here, for a fair comparison of running time, we
implement SCANN and IPNSW with PyTorch. To construct the quantization-based index, we follow

“https://drive.google.com/drive/folders/1ahiLmzU7cGRPXf5qGMqtAChte2e Yp9gl



Table 3: Comparison with Baselines w.r.t NDCG @20 and NDCG @40, index memory cost (MB),
and inference time (second). The bold fonts indicate the best performance.

INDCG@20 NDCG@40 Memory Time [NDCG@20 NDCG@40 Memory Time

Method | Movie \ Amazon
DIN 0.5440 0.5473 - 193.87| 0.2766 0.3039 - 492.64
YoutubeDNN| 0.5329 0.5484 - 29.38 0.2195 0.2491 - 120.91
JTM 0.5149 0.5075 10.80 12.05 0.1533 0.1683 75.99 6.64
TDM 0.4684 0.4651 10.80 9.33 0.0856 0.0949 75.99 6.61

SCANN 0.4665 0.4695 3.64 18.64| 0.1529 0.1780 14.66  4.48
IPNSW 0.5330 0.5486 10.08 15.52| 0.2255 0.2548 66.46  10.28
RecForest 0.5580 0.5682 321 833 0.2339 0.2576 7.32 3.79

Method | Gowalla \ Tmall
DIN 0.2798 0.3095 - 186.41| 0.2275 0.2491 - 4057.69
YoutubeDNN| 0.2312 0.2637 - 53.55 0.1736 0.1975 - 1086.75
JTM 0.2595 0.2484 7756 2.64 0.0749 0.0849 151.19 30.11
TDM 0.1723 0.1775 77.56  2.55 0.0257 0.0272 151.19 29.42

SCANN 0.1839 0.2083 1548 1.86 0.1105 0.1226 28.10  20.88
IPNSW 0.2464 0.2805 70.39  4.73 0.1696 0.1902 13272 52.90
RecForest 0.3783 0.3963 739 1.82 0.2059 0.2261 9.29 18.88

Method | MIND \ Yelp
DIN 0.7399 0.7399 - 62.98 | 0.2825 0.3117 - 170.25
YoutubeDNN| 0.7349 0.7336 - 52.14| 0.2518 0.2850 - 48.51
JTM 0.5956 0.5505 6.62 548 0.1014 0.1300 3947 421
TDM 0.5615 0.5198 6.62  5.51 0.1547 0.1515 3947 434

SCANN 0.5987 0.5713 320 1951] 0.1729 0.2012 8.44 3.58
IPNSW 0.7346 0.7331 695 899 0.2562 0.2906 3474  8.92
RecForest 0.7583 0.7579 318 4.61 0.2766 0.3031 6.81 3.57

SCANN’s default settings. To construct the graph index of IPNSW, the maximum degree of each
node is set to 16. The beam size for any beam search is set to 100 unless specified. To learn models,
the learning rate is all set to le-3 with exponential decay. The items’ representations for constructing
trees are obtained from item embedding of the pre-trained DIN on each dataset.

3.4 Comparison with Baselines

Settings We compare RecForest with the baselines on all datasets. RecForest uses 2 trees on the
Movie and MIND, and 4 trees on other datasets. Other settings can be referred to in Section 3.3.

Results All the results are shown in Table 3, where the index memory cost of RecForest indicates
the decoder’s memory consumption. The following observations answers the RQ-1.

¢ RecForest significantly outperforms all efficient recommenders with indexes on all datasets
w.r.t NDCG @20 and NDCG @40. The improvements over the best baselines w.r.t NDCG @20
are 4.69%, 3.72%, 45.78%, 21.40%, 3.23%, 7.96% on the Movie, Amazon, Gowalla, Tmall,
MIND, and Yelp dataset, respectively. Its superiority over two-stage baselines (i.e., [IPNSW and
SCANN) demonstrates the effectiveness of joint representation learning, although the graph-based
index shows a strong performance. The higher accuracy than TDM and JTM indicates the benefit
from the use of routing trajectory, multiple trees and the powerful transformer decoder.

* RecForest performs better than brute-force-based YoutubeDNN on all datasets and even
than brute-force-based DIN on the Movie, Gowalla, and MIND datasets. Note that we
do not apply DIN for post-reranking, otherwise the retrieval accuracy can be further improved.
This again confirms the superpower of the transformer decoder. Note that after fine-tuning the
hyper-parameters, YoutubeDNN performs well compared to TDM and JTM, which may not be
consistent with the results in TDM and JTM.
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Figure 3: Tradeoff between Efficiency and Accuracy

¢ RecForest also enjoys the smallest index memory cost compared to other methods, which is
now supported empirically and theoretically. This is because RecForest only embeds the routing
decision and compute tree node representation on the fly, compared to directly embedding all
tree nodes in TDM and JTM. RecForest even costs fewer memories for index than the most
lightweight PQ-based index — SCANN, which only stores the codes of data points and codebooks.
In spite of good retrieval accuracy, the graph-based index IPNSW is memory-heavy due to the
storage of graphs and data points. Note that both DIN and YoutubeDNN are based on exhaustive
search so they don’t consume memory for indexes.

* RecForest is almost as fast as and sometimes even faster than SCANN for the top-n item
retrieval, which is considered as the SOTA index for MIPS in retrieval efficiency and accuracy.
This benefits from transforming the top-n recommendation into sequence prediction, which can
be efficiently accomplished by beam search on GPU. Note that the running time cost of IPNSW
seems inconsistent with Table 1, this is because only the approximate proximity graphs instead of
exact Delaunay graphs can be efficiently constructed for query in practice. Theoretical results
show that the RecForest is almost as efficient as TDM and JTM, while the experimental results
indicate RecForest is slightly faster. On the one hand, this is because we use the comparatively
large branches (much larger than 2 used in TDM and JTM), remarkably decreasing the tree depth
and thus reducing the times of beam search. On the other hand, because RecForest uses the simple
function for routing decision and enables high parallelism due to the use of transformer decoder.

3.5 Extensive Study between Efficiency and Accuracy

Settings The efficiency-accuracy curve is a commonly-used standard for evaluating the ANNs
index, so we also provide this result for better illustrating the superiority of RecForest. The study is
mainly investigated on the Amazon, MIND, Gowalla, and Yelp dataset, since the other two datasets
show a similar trend. To vary the retrieval time of RecForest, we adjust the beam size of beam search
from 10 to 100 with step 10, where the forest consists of at most 5 trees. For TDM, JTM, and IPNSW,
we adjust the beam size from 10 to 200 with step 10. For SCANN, we adjust the number of probe
cells from 50 to 2,000 with step 100.

Results The curves of different algorithms between NDCG @20 and query time are shown in Figure
3. The following observations confirms the answer of RQ-1. First, RecForest strikes the best
balance between query time and retrieval accuracy on all the four datasets, since the curve
stands on top of the others. This confirms the superiority of RecForest to these competing baselines.
The advantage is the most significant on the Gowalla dataset, evidenced by the biggest gap between
RecForest and IPNSW. Second, With the increase of beam size, the accuracy of RecForest can
improve more significantly than baselines. This benefits from the powerful transformer decoder
and the novel training paradigm as well as the forest-based index, such that the representation model
and tree indexes are jointly learned better.

3.6 Ablation Study

3.6.1 Effect of Forest Construction

Settings We investigate three aforementioned ways (in Section 2.3.2) of constructing a forest with
at most 10 trees, where the branch number of each tree is set to 4.



Results The results on the Amazon, Gowalla, MIND, and Yelp datasets are reported in Figure 4.
We can observe that Kmeans with randomness (i.e. Random+Kmeans) always performs best
and improves with the increasing number of trees while the Random performs worst and does
not improve as much as Random+Kmeans when the tree number increases. The reason why the
Random does not work well is that the semantic requirement is not satisfied. Since Kmeans utilizes
the semantic information, it performs better than the Random, but is not affected a lot by growing
the number of trees. This can be explained by the lack of diversity between trees. This answers the
RQ-2: since the use of forest-based index can lead to significant improvement of retrieval accuracy,
particularly when tree construction takes semantics into account, the forest-based index improves
near-boundary item retrieval.
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Figure 4: Ablation study: Different construction ways for forests.
3.6.2 Effect of Branch Number K

Settings We conduct evaluations on a single Kmeans-constructed tree on the Amazon, MIND,
Gowalla and Yelp dataset, by varying the branch number in {2.4,8,10,16,18}.

Results bThe re}slultshare shownlin Table 4. Table 4: Effect of branch number
We can observe that the retrieval accuracy NDCG @20

of RecForest improves with the growing ~ #Branch |

number of branches, particularly from | Amazon MIND Gowalla  Yelp
2 branches to 4. The imprqvement on the 0.1624 06900 02353  0.1951
Gowalla and Yelp datasets is the most sig- 0.1912  0.6935 02795 02269
nificant. This observation can be explained 0.1864 0.6966 02938 02483

as follows: First, the vocabulary size grows, 02022  0.6954 072843 0.2577
so the decoder can be supervised by more 02031 0.6977 02957 02437

challenging discriminative signals and the 0.2088 0.7154 03337  0.2581
decoders’ parameters grow. Secondly, the
routing sequences would be shorted, reduc-
ing the error accumulation of sequence prediction to some extent.

—_—
oo X

3.6.3 Effect of Positional Embedding

Settings Since the routing sequence is used for representing an item, the order of routing decisions
is important. To this end, we compare four positional embeddings: (1) None indicates that there is
no positional embedding; (2) Absolute positional embedding (Abs for short) encodes the absolute
positions which range from 1 to maximum length of sequence by learnable parameters; (3) Relative
Key [20] (RelK for short) focuses on attention and relative distance between decisions; (4) Relative
Key Query [8] (RelKQ for short) is a refined Relative Key. Please refer to [8] for more details.

Results The results are summarized in Table 5: Effect of positional embedding

Table 5. We can observe that positional

embedding takes a remarkable effect on  Pos. Emb. ‘ NDCG@20

improving the retrieval capacity while | Amazon MIND Gowalla  Yelp

different positional embedding methods

do not haSe a significant differ%nce in re- None 0.1704 06476 0.1697  0.1988
Abs 0.1805  0.6986  0.2632  0.2505

trieval accuracy, which answers the RQ-
3. The effects of positional embedding are
more significant on the Gowalla and Yelp

RelK 0.1824  0.6942 0.2617  0.2402
RelKQ 0.1840 0.6917 0.2588  0.2492

datasets.



4 Conclusion and Future Work

In this paper, we propose the Recommender Forest for efficient recommendation, which can be simply
trained within the sequence-to-sequence framework. RecForest enjoys a small index memory cost,
low inference time, and highly-accurate recommendation even without updating the tree structure.
The extensive study on six real-world recommendation datasets shows that RecForest becomes a state-
of-the-art efficient recommender. In the future, we explore multi-task learning, non-autoregressive
prediction, and index structure learning as well as a more general framework.
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

* Did you include the license to the code and datasets? [Yes] See Section ??.

* Did you include the license to the code and datasets? The code and the data are
proprietary.

* Did you include the license to the code and datasets? [IN/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] Please see the future work in
section 4.

(c) Did you discuss any potential negative societal impacts of your work? For the
proposed RecForest model, we have not seen negative societal impacts

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [IN/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] We provide the
URL in the abstract.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Please see section 3.
(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)?
(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you're
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A |

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A |
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