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ABSTRACT

Recent transformer models have achieved state-of-the-art performance for visual
tasks involving high-dimensional data like 3D volumetric medical image segmen-
tation. Hierarchical transformers (e.g. Swin Transformers) circumvent the compu-
tational challenge of self-attention in high-dimensional data through shifted win-
dow approach to learn token relations within progressively overlapping local re-
gions, thus expanding receptive field across layers while limiting token attention
span in each layer within predefined windows. In this work, we introduce a novel
learning paradigm that captures token relations through progressive summariza-
tion of features. We leverage the compaction capability of discrete wavelet trans-
form (DWT) on high-dimensional features and learn token relation in multi-scale
approximation coefficients obtained from DWT. This approach enables efficient
representation of fine-grained local to coarse global contexts within each layer
of the network. Furthermore, computing self-attention on the DWT transformed
features significantly reduces the computational complexity, effectively address-
ing the challenges posed by high-dimensional data in vision transformers. Our
network competes favorably with current SOTA transformers (e.g. SwinUNETR)
using three challenging public datasets on volumetric medical imaging: (1) MIC-
CAI Challenge 2021 FLARE, (2) MICCAI Challenge 2019 KiTS, and (3) MIC-
CAI Challenge 2022 AMOS. Our DWT-based transformer termed as WaveFormer
consistently outperforms Swin-UNETR with improvement from 0.929 to 0.938
Dice (FLARE2021) and 0.880 to 0.900 Dice (AMOS2022). The source code and
pretrained models will be made available in the full paper submission.

1 INTRODUCTION

The Vision Transformer (ViT) architecture Dosovitskiy et al. (2020) has proven to be highly ef-
fective for visual recognition tasks due to its ability to model long-range relationships across non-
overlapping image patches or tokens. However, ViT comes with significant computational costs,
as its self-attention mechanism scales quadratically with input size. In addition, ViT generates
low-resolution single-scale output features that are unsuitable for downstream tasks that require
fine-grained analysis of high-resolution feature maps and global context understanding (Beal et al.,
2020; Fang et al., 2021; Xie et al., 2021; Zheng et al., 2021). These challenges are especially sig-
nificant for high-dimensional inputs such as 3D volumetric scans. Hierarchical backbones Wang
et al. (2021); Liu et al. (2021) offer a solution by reducing computational complexity through local
window attention applied to progressively smaller feature maps. While this alleviates some of the
computational burdens, it introduces a new limitation. The effective receptive field (ERF) becomes
constrained within each layer, even after techniques like neighborhood pooling Yang et al. (2021)
and shifted windows Liu et al. (2021) are applied. These methods attempt to expand the recep-
tive field in subsequent layers by gradually exposing tokens to previously unseen tokens, but the
restriction within the individual layers remain.

Recent studies demonstrate that self-attention mechanisms in ViTs exhibit characteristics analo-
gous to a low-pass filter, as in, low-frequency components are crucial for the performance of ViT
models Bai et al. (2022); Wang et al. (2022b); Park & Kim (2022); Rao et al. (2021); Wang et al.
(2020a; 2022a). In this work, we propose that it is feasible to achieve a multi-resolution feature
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Figure 1: Comparison of token relation learning mechanism between Swin (left) and WaveFormer
(right). Each finest volumetric cube (shown in white) represents the span of window self-attention
(4× 4× 4). Swin expands the receptive field through the shifted window mechanism in subsequent
layers. On the contrary, WaveFormer captures local and global relations in each layer on the multi-
scale low-frequency approximations obtained using DWT. The window size is carefully configured
to match the feature map length/width at the coarsest scale, thus leading to compute global attention;
while allowing multi-granular local attention on other scales. The dashed red cube illustrates the
summarization of features and resulting widening of receptive field through one level of DWT. For
visual clarity, high-frequency coefficients from DWT are not shown.

representation with reduced computational overhead by exploiting the inherent frequency-domain
properties of images. Our approach computes patch/token relationships across multiple scales of
low-frequency sub-bands derived through Discrete Wavelet Transform (DWT). This methodology
enables the model to capture multi-scale context at each network layer, providing an efficient mech-
anism for processing high-dimensional data such as 3D medical scans. This technique expands
the effective receptive field beyond what conventional window attention methods can achieve, as
illustrated in Fig. 1.

Specifically, we propose a novel wavelet-based transformer architecture that decomposes features
using DWT and computes windowed attention on the low-frequency components. Different level of
decomposition enables attention at different resolutions, which allows the model to capture and ag-
gregate essential local and global context at each stage. By prioritizing these compact low-frequency
approximations, our method reduces the computational burden associated with high-resolution im-
age analysis while preserving essential multi-resolution context. We validate our approach in 3D
volumetric segmentation benchmarks, including FLARE Ma et al. (2022), AMOS Ji et al. (2022)
and KiTS Heller et al. (2020b), where our model achieves state-of-the-art (SOTA) mean dice score.
Additionally, our model demonstrates competitive results on classification with ImageNet-1k Deng
et al. (2009), highlighting its generalization ability across medical and natural image recognition
tasks. Our contributions can be summarized as below:

• We introduce WaveFormer, a novel transformer architecture that processes low-frequency approx-
imations of spatial images through DWT. This approach enables multi-resolution contextualiza-
tion of visual elements, resulting in a significant expansion of the effective receptive field while
maintaining superior computational efficiency compared to similarly sized models.

• Our model capitalizes on the high energy density present in low-frequency components, optimiz-
ing representation learning from natural and volumetric images. This novel integration of the
discrete wavelet transform opens new pathways for efficiently processing large-scale visual data.

• Our extensive experiments demonstrate that WaveFormer surpasses state-of-the-art performance
on 3D volumetric segmentation tasks, achieving superior mean dice scores on the FLARE, AMOS
and KiTS test sets. Additionally, our model achieves competitive accuracy on ImageNet-1k for
natural image classification, all while reducing FLOP counts compared to other models in its class.
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2 RELATED WORKS

2.1 RECEPTIVE FIELD - COMPUTATION SPECTRUM

Vanilla ViT Dosovitskiy et al. (2020) enjoys global receptive field by processing an entire sample as
patchified input tokens, incurring massive computational burden (O(N2)). In contrast, Stand-alone
Self-attention Ramachandran et al. (2019) reduces computation by attending within non-overlapping
local windows, limiting the receptive field to the window size. Various approaches aim to balance
the trade-off between computational cost and receptive field in transformer models. SWIN Liu et al.
(2021) uses shifting windows between consecutive self-attention blocks for cross-window interac-
tion, which adds complexity and limits global context. LinFormer Wang et al. (2020b) reduces com-
putation via token projection, sacrificing fine-grained detail. Performer Choromanski et al. (2020)
approximates attention with kernel methods, reducing computation to linear but yielding unreliable
performance across tasks and modalities. Reformer Kitaev et al. (2020) hashes queries into buckets,
risking sub-optimal grouping. Axial Attention Ho et al. (2019) processes 2D attention as sequential
1D attention, limiting global context capture. Longformer Zhang et al. (2021) and RegionViT Chen
et al. (2021) focus on regional tokens but add complexity and limit global efficiency. Biformer Zhu
et al. (2023) adapts to multi-scale contexts but has inconsistent performance. Focal AttentionYang
et al. (2021) combines fine and coarse features but struggles with scalability. Dilated Attention Has-
sani & Shi (2022) takes adaptively spaced tokens which allow a larger receptive field at a low cost,
but the resulting sparsity affects the attention granularity.

2.2 LEARNING IN FREQUENCY DOMAIN

Learning in the frequency domain has been explored in various tasks like image deblurring and
image inpainting, often by learning directly from the frequency components, or as an assistive rep-
resentation alongside the spatial domain Xu et al. (2020); Wang & Sun (2022); Gueguen et al.
(2018); Bai et al. (2022); Zou et al. (2021); Suvorov et al. (2022); Ehrlich & Davis (2019). Some
works have leveraged frequency for model compression Kong et al. (2023) and channel description
Qin et al. (2021). Based on energy under low-frequency coefficients, Wang et al. (2022b) performs
channel and token pruning to compress models. Yao et al. (2022) uses selective coefficient tokens
for attention. However, such pruning or selective token shortlisting may cause information imbal-
ance and redundancy. Additionally, the feature stacking and restoration in Yao et al. (2022) require
extra layers, diminishing the computational benefits of the wavelet transform.

Compared to these works, our models’ strength comes from integrating wavelet into a multi-path
hierarchical architecture. Each branch in our attention block independently attends to features at
different scales, capturing a broader range of patterns and scale invariance. Aggregating these
branches helps contextualize multi-resolution object properties. Our in-depth analysis shows that
such a multi-path network allows each path to develop distinct modeling abilities due to their differ-
ences in ERF.

3 WAVEFORMER: INTUITION

WaveFormer introduces a novel approach to hierarchical transformers by combining two key intu-
itions: learning on compact representations and achieving local-to-global receptive field coverage.
The first notion leverages the properties of the Discrete Wavelet Transform (DWT) and Parseval’s
theorem to establish the significance of low-frequency approximations in the context of learning.
This enables reduced computation while preserving essential global features. The second notion
consolidates extraction of multi-resolution token relations by using multi-level DWT, which seam-
lessly models local and global dependencies. Together, these two intuitions form the foundation of
our WaveFormer architecture, enabling efficient yet powerful token relation modeling.

3.1 LEARNING ON COMPACT REPRESENTATION

Discrete Wavelet Transform: The Discrete Wavelet Transform (DWT) decomposes a signal into
coefficients that represent both spatial and frequency information at different scales. In contrast to
the global nature of the Fourier Transform, DWT offers localized time-frequency analysis, making it

3
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ideal for processing non-stationary signals, such as images. Given a 2D feature mapX ∈ RC×H×W ,
DWT decomposes its spatial dimensions (H,W ) into an approximation coefficient Cj and three
detail coefficients Dj,k, representing horizontal (k = 1), vertical (k = 2), and diagonal (k = 3)
orientations at each resolution level j.

Mathematically, the components from one-level DWT of X can be expressed as:

C1(c, h
′, w′) =

H∑
h=1

W∑
w=1

X(c, h, w) · ϕh′(h) · ϕw′(w), (1)

D1,k(c, h
′, w′) =

H∑
h=1

W∑
w=1

X(c, h, w) · ψ(k)h′(h) · ψ(k)w′(w), (2)

where ϕ denotes the scaling (low-pass) function, ψ(k) denotes the wavelet (high-pass) functions
for different orientations, and (h′, w′) are the downsampled coordinates due to the subsampling
operation in DWT.

By recursively applying DWT to the approximation coefficients Cj , we obtain a multi-level decom-
position:

X(c,H,W ) = CJ(c, h
′′, w′′) +

J∑
j=1

∑
k

Dj,k(c, hj , wj), (3)

where J is the total number of decomposition levels, hj = H/2j , wj = W/2j , and (h′′, w′′) =
(H/2J ,W/2J) represent the dimensions at the coarsest scale.

Parseval’s Theorem: Parseval’s theorem shows that the total energy of a time-varying signal f(t)
is preserved in its frequency domain representation F (ω), as expressed by Equation 4 Hassanzadeh
& Shahrrava (2022).

∫ ∞

−∞
|f(t)|2 dt = 1

2π

∫ ∞

−∞
|F (ω)|2 dω (4)

When most of a signal’s energy is concentrated in the low-frequency coefficients, transformations
can be efficiently approximated by focusing on these components, significantly reducing computa-
tion. It has been observed in the literature Wang et al. (2022b); Park & Kim (2022) that in large-scale
transformer models, features used for computing token relations in self-attention mechanisms pre-
dominantly reside in the low-frequency domain.

Using the orthonormality property of the wavelet transformations, it can be shown that energy of X
follows Parseval’s theorem in the wavelet domain as mentioned in equation 5. Detailed derivation is
provided in appendix A.1.

∥X∥2 =

C∑
c=1

H∑
h=1

W∑
w=1

|CJ(c, h
′′, w′′)|2 +

J∑
j=1

∑
k

|Dj,k(c, hj , wj)|2
 (5)

In conclusion, DWT offers three primary features that motivates our architecture:

• Energy Compaction: As feature energy in transformer networks is mostly aligned towards the
low-frequency spectrum, DWT enables the concentration of the signal energy into a few approxi-
mation coefficients at the coarsest scale (follows from Parseval’s Theorem).

• Computational Efficiency: By operating on wavelet coefficients at coarser scales, we reduce the
computational burden without significant loss of important information.

• Multi-Resolution Representation: DWT provides a method for hierarchical decomposition of
data. In spatial context, shallower level of decomposition represents local details as deeper levels
tend to represent global structures. This enables another speculation for feature extraction at
multiple scales, as discussed in Section 3.2 in more detail.

4
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Figure 2: (a) An illustration of how window attention in multiple resolutions enables capturing
relationships that span multi-scale receptive fields in our network. The coarsest scale approximation
(h8 × w

8 × d
8 ) obtained from DWT is utilized to capture global context. Alongside this, the local

relationship is captured through window attention from the intermediate approximations, where
the window size is the same as the spatial shape of the coarsest scale feature. b: illustrates our
wavelet-attention block. Input tokens are decomposed into low-frequency coefficients (LFC, shown
as yellow cubes) and high-frequency (detail) coefficients (HFC, shown as red) of M = 1, 2, ...,m
scales using 3D-DWT. At each scale, window attention (k × k × k) is applied on the LFCs where
k = h

2m = w
2m = d

2m i.e. the side of coarsest scale approximations xLFC
m . This leads to capturing

global attention from xLFC
m and multi-granular local attentions on xLFC

i ; i = [1,m − 1]. Low-
energy-density HFCs are omitted in our network.

3.2 LOCAL-TO-GLOBAL RECEPTIVE FIELD COVERAGE

As mentioned above, our encoder network computes token relations on the compact approxima-
tion coefficients obtained from the Discrete Wavelet Transform (DWT). Figure 4a illustrates DWT
transformation on the input feature x, which is decomposed into multi-level low-frequency approx-
imations. At the coarsest level, global attention is applied, enabling the capturing of holistic rela-
tionships among tokens. On other levels, the token relationship is computed locally using fixed-size
window attention, where the window has the same shape as the spatial dimension of the coarsest-
level feature. In this way, the attention mechanism efficiently captures multi-granular relationships
spanning from local to global receptive fields as depicted in Figure 4a. This surpasses the limita-
tion of window attention and introduces a mechanism that learns token relation through multi-level
summarization of the input feature with low computational cost. Such a straightforward and effec-
tive approach to capturing token relationships at multiple resolutions has inspired us to develop a
wavelet-decomposition-based transformer network.

In the context of our WaveFormer architecture, we apply DWT to the input feature map x to ob-
tain a set of approximation coefficients Cj at multiple scales. Using these low-resolution wavelet
coefficients Cj , we capture global and local dependencies with reduced computation by applying
self-attention on the compact representations, enhancing efficiency without sacrificing accuracy.

4 WAVEFORMER: NETWORK ARCHITECTURE

WaveFormer, a hierarchical transformer, comprises multi-resolution window attention in com-
pressed feature space. This enables the learning of token relations from high-dimensional data like

5
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medical computed tomography (CT) scans with reasonably less computational overhead. Multi-
resolution features are obained in the encoder by applying attention on wavelet-approximated fea-
tures. A convolution-based decoder network is used for downstream tasks which receives multi-
stage encoder outputs via convolutional skip connections. Figure 3 illustrates the complete archi-
tecture of WaveFormer. In the following subsections, we describe the details of the encoder and
decoder.

4.1 ENCODER: WAVELET-TRANSFORMATION BASED TOKEN RELATION

Random sub-volumes Si ∈ RH×W×D×P are extracted from a set of 3D Image Volumes
Vi = Xi, Yii=1,2,...,L and passed as input to the encoder network. A simple convolutional embed-
ding is applied to the input to create 3D tokens of dimensions H

2 × W
2 × D

2 that is projected to a
C = 48 dimensional space. Following Hatamizadeh et al. (2021), this embedding is passed through
4 encoder stages where in each stage we have 2 wavelet-attention blocks (i.e. L = 8 total layers)
as depicted in Figure 3. Patch embedding is applied after each stage (except the last one) to obtain
hierarchical feature. After each stage we obtain feature map Fi of size H

2i ×
W
2i × D

2i × 2i−1C at
stage i where i ∈ {1, 2, 3, 4}.
Wavelet Attention Block. Instead of calculating token relations on the original patch embedding
feature X ∈ Rh×w×d×c, where h, w, d and c represent the height, width, depth and dimension at
stage i, self-attention mechanism is applied to the multi-scale (M = 1, 2...,m scales) low-frequency
approximation coefficients of X obtained by the discrete wavelet transform (DWT), as depicted in
Figure 4b. On the coarsest mth scale, coarse global relation is captured through global attention
while in other scales, window (k × k × k) attention is applied to capture multi-granular local
information. For simplicity, we used k = h

2m = w
2m = w

2m i.e. the window size is same as
the coarsest scale feature map. This mechanism effectively enables relation capturing across
various receptive fields without the need of dynamic window-size or window shifting and further
parameterization.

Res-Block

Res-Block

Res-Block

Res-Block

Res-Block Res-Block

Res-Block Res-Block

Stage 4

Waveformer Block

Waveformer Block
Stage 3Downsampling

Stage 2

Waveformer Block

Downsampling

Waveformer Block
Stage 1Downsampling

Res-Block
Res-Block

(1x1x1 conv)

Input
Mult-Organ Segmentation

Patch Embedding

BottleNeck
Residual Block

(Stride=2)

Res-Block
LayerNorm

MLP

Wavelet
Attention

LayerNorm

Transpose
ConvConcatenation

Residual
BlockHidden Feature

Bottleneck Feature

Figure 3: Model Architecture for our proposed WaveFormer network. 3D patch embedding is gen-
erated with Conv3D and passed through 4 stages of operation. In each stage, Waveformer block ex-
tracts multi-resolution salient features in depth-wise manner, and a following downsampling block
mixes and enriches context across channels. For segmentation, features from each stage of encoder
are collected through skip connection and final segmentation output is formed through progressive
reconstruction.

4.2 DECODER FOR DOWNSTREAM TASK

For the downstream segmentation task, we follow the similar decoder architecture from Lee et al.
(2022); Hatamizadeh et al. (2021) that comprises a ”U-shaped” network overall. Multi-scale out-
put from different stages of the network is connected to the corresponding decoder layer via a skip
connection. First, the output feature from each stage I(i ∈ 1, 2, 3, 4) is passed through a residual
block comprised of two post-normalized 3 × 3 × 3 convolutional layers with instance normaliza-
tion. This stabilizes further propagation of the feature. Note that the feature from stage 4 is also
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passed through a bottleneck residual layer to produce the final encoded feature. The feature is then
upsampled with a transpose convolution and concatenated with the previous stage features. The
concatenated feature will further be passed through a residual block to output the final feature for
that decoder layer (dark gray in Figure 4a). For final segmentation, the residual feature from in-
put patch is concatenated with the upsampled feature from the previous decoder layer and passed
through a residual block with 1× 1× 1 convolutional layer with a softmax activation to predict the
segmentation probabilities.

5 EXPERIMENTAL SETUP

5.1 DATASETS

We experiment on 4 publicly available datasets to validate our model. For volumetric segmentation,
we utilize MICCAI 2021 FLARE Challenge dataset Ma et al. (2022), MICCAI 2022 AMOS Chal-
lenge dataset Ji et al. (2022) and MICCAI 2019 KiTS Challenge dataset Heller et al. (2020a). For
classification, we use the widely adopted Imagenet-1K dataset Deng et al. (2009). Additional details
about the datasets are presented in Appendix A.3.

5.2 IMPLEMENTATION DETAILS

Following Lee et al. (2022), the model is evaluated in two scenarios for volumetric medical image
segmentation: 1) directly supervised training on FLARE2021 and KITS2019 datasets, and 2) trans-
fer learning with FLARE pre-trained wights on AMOS 2022 dataset. More detailed information
on datasets and splits is provided in Appendix A.3. We performed 5-fold cross-validation on both
FLARE and KITS while using the best fold model trained on FLARE to finetune on AMOS. Train-
ing details are provided in Appendix A.4. We evaluate WaveFormer against the current volumetric
transformer and ConvNet SOTA approaches for volumetric segmentation in a fully-supervised set-
ting. The dice similarity coefficient is used as the evaluation metric.
We further train the model on the natural image dataset Imagenet-1k for visual recognition tasks to
test the generalization capability of the representation encoded by the model. Training details on
Imagenet-1k are provided in Appendix A.5.
Furthermore, we performed ablation studies to investigate the effect of different-level wavelet de-
composition on the model’s capability to learn different-scale organs.

6 RESULTS

6.1 EVALUATION ON FLARE2021

Table 1: Performance comparison on FLARE 2021 datasets.

Methods #Params FLOPs FLARE 2021
Spleen Kidney Liver Pancreas Mean

3D U-Net Çiçek et al. (2016) 4.81M 135.9G 0.911 0.962 0.905 0.789 0.892
SegResNet Myronenko (2019) 1.18M 15.6G 0.963 0.934 0.965 0.745 0.902
RAP-Net Lee et al. (2021) 38.2M 101.2G 0.946 0.967 0.940 0.799 0.913
nn-UNet Isensee et al. (2021) 31.2M 743.3G 0.971 0.966 0.976 0.792 0.926

TransBTS Wenxuan et al. (2021) 31.6M 110.4G 0.964 0.959 0.974 0.711 0.902
UNETR Hatamizadeh et al. (2022) 92.8M 82.6G 0.927 0.947 0.960 0.710 0.886
nnFormer Zhou et al. (2021) 149.3M 240.2G 0.960 0.975 0.977 0.717 0.908
SwinUNETR Hatamizadeh et al. (2021) 62.2M 328.4G 0.979 0.965 0.980 0.788 0.929
3D UX-Net Lee et al. (2022) 53.0M 639.4G 0.981 0.969 0.982 0.801 0.934

WaveFormer (ours) 52M 326.56G 0.982 0.969 0.981 0.828 0.941*

The performance of our proposed WaveFormer model is compared against SOTA approaches for
FLARE segmentation in Table 1. With the wavelet-decomposition-based multi-resolution atten-
tion transformer as the encoder backbone, WaveFormer significantly improves Dice scores on the
FLARE2021 dataset. Specifically, WaveFormer outperforms competing models like TransBTS, UN-
ETR, nnFormer, and SwinUNETR and achieves higher overall mean Dice scores (from 0.934 in 3D
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Figure 4: Qualitative representations of tissues and multi-organ segmentation across FLAIR2021 &
AMOS2021 public datasets. Boxed are further zoomed in and visualize the significant differences
in segmentation quality. WaveFormer shows the best segmentation quality compared to the ground-
truth.

Table 2: Comparison of Finetuning performance with transformer SOTA approaches on the AMOS
2021 testing dataset.(*: p < 0.01, with Wilcoxon signed-rank test to all SOTA approaches)

Methods Spleen R. Kid L. Kid Gall. Eso. Liver Stom. Aorta IVC Panc. RAG LAG Duo. Blad. Pros. Avg

nn-UNet 0.965 0.959 0.951 0.889 0.820 0.980 0.890 0.948 0.901 0.821 0.785 0.739 0.806 0.869 0.839 0.878

TransBTS 0.885 0.931 0.916 0.817 0.744 0.969 0.837 0.914 0.855 0.724 0.630 0.566 0.704 0.741 0.650 0.792
UNETR 0.926 0.936 0.918 0.785 0.702 0.969 0.788 0.893 0.828 0.732 0.717 0.554 0.658 0.683 0.722 0.762
nnFormer 0.935 0.904 0.887 0.836 0.712 0.964 0.798 0.901 0.821 0.734 0.665 0.587 0.641 0.744 0.714 0.790
SwinUNETR 0.959 0.960 0.949 0.894 0.827 0.979 0.899 0.944 0.899 0.828 0.791 0.745 0.817 0.875 0.841 0.880
3D UX-Net 0.970 0.967 0.961 0.923 0.832 0.984 0.920 0.951 0.914 0.856 0.825 0.739 0.853 0.906 0.876 0.900*

WaveFormer (ours) 0.974 0.967 0.960 0.925 0.872 0.983 0.926 0.954 0.914 0.846 0.822 0.782 0.850 0.910 0.885 0.910*

UX-Net to 0.941 in Wavelet) with fewer parameters and lower FLOPs compared to 3D UX-Net. No-
tably, WaveFormer maintains SOTA performance with almost half the computational cost (FLOPs)
of 3D UX-Net (≈ 50% decrease, from 639.4G to 326.56G). Apart from the quantitative represen-
tations, Figure ?? further shows that the morphology of organs and tissues are well preserved in our
model’s prediction compared to the ground truth.

6.2 TRANSFER LEARNING WITH AMOS

Following Lee et al. (2022), we further investigate the transfer learning capability of our Wave-
Former on the AMOS dataset. The finetuning performance of WaveFormer outperforms the SOTA
large kernel convolution network Lee et al. (2022) by 1% and the transformer network Hatamizadeh
et al. (2021) by 3%. Also, the qualitative representation Figure ?? shows that our model performs
significantly better at maintaining edge clarity, especially in challenging dense segmentation scenar-
ios, highlighting its effectiveness compared to other methods.
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Table 3: Comparison of Models based on Accuracy, Flops, and Parameters on Imagenet-1K
Model Accuracy Flops Params
DeIT (Global) 79.90% 4.6G 22.1M
PVT (Global) 79.80% 3.8G 24.5M
RegionViT (Window) 83.30% 5.7G 31.3M
Focal (Window) 82.2% 4.9G 29.1M
Swin (Window) 81.3% 4.5G 29M

WaveFormer 80.9% 3.7G 28.5M

6.3 VISUAL RECOGNITION ON IMAGENET-1K

We further investigate the generalization capability of our proposed encoder by evaluating it on the
visual recognition benchmark in the natural image domain. WaveFormer performs favorably in The
performance of the proposed WaveFormer model was evaluated on the image classification task
against several state-of-the-art transformer-based approaches, including both global and window-
based models, as shown in Table 3. WaveFormer achieves a favorable performance with the lowest
FLOPs and parameter count among the window-based models (≈ 22% fewer FLOPs than Swin),
incurring only a 0.4% drop in accuracy compared to Swin. WaveFormer offers more flexibility by
incorporating wavelet blocks with negligible FLOPs increase, which makes it effective for multi-
scale visual tasks. Furthermore, WaveFormer outperforms state-of-the-art global attention-based
models at lower Flops, highlighting its lightweight yet effectiveness in capturing local features.
Detailed comparisons can be found in the ablation.

6.4 ABLATION STUDIES

We study how different configuration of Wavelet Attention block contributes to the efficiency of
WaveFormer. We leverage FLARE and ImageNet-1K datasets for experimenting on the contribution
by different settings. For convenience, we name the variants of WaveFormer based on the branches
a particular input feature is transformed with at stage 1, 2, 3, 4; respectively. As such,
WaveFormer1111 consists of one branch in each attention block. In each stage, input feature is
transformed to coarsest resolution so that it equals to the window-length of window attention.
WaveFormer2211 consists of 2, 2, 1 and 1 branches in the attention blocks across stages 1-4. This
design facilitates more fine-grained local details than above.
WaveFormer3211 differs with the former on stage-1, enforcing a medium fine feature map that
enforces an intermediate fine-to-coarse representation through window attention.
WaveFormer3221 differs with the former only on stage-3, which imposes late stage fine-granularity
to the aggregated attention output.

Table 4: Mean DICE scores for each organ and overall mean DICE for each model across all folds.
Model #Params FLOPs Spleen Right Kidney Liver Pancreas Overall Mean DICE

WaveFormer1111 52.26M 326.3G 0.983 0.967 0.981 0.817 0.937

WaveFormer2211 52.26M 326.59G 0.982 0.965 0.981 0.826 0.938

WaveFormer3211 52.26M 326.62G 0.982 0.966 0.981 0.827 0.939

WaveFormer3221 52.26M 327G 0.982 0.969 0.981 0.828 0.941

Waveformer Variants on ImageNet-1K: Table 5 presents classification performance from differ-
ent variants of our models. From WaveFormer1111 to WaveFormer2211, we show that increasing
early-stage local token relations improves performance. Comparison between WaveFormer3211 and
WaveFormer3221 shows increasing late-stage local details yields even further increase in accuracy.

Feature decomposition with Pooling: We considered max pooling as a downsampling alternative
to DWT in our WaveFormer1111 setting. Results in Table 5 clearly shows the superiority of low-
frequency components from DWT in retaining more salient information during spatial reduction of
feature maps.
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Table 5: Mean Top-1 Accuracy on ImageNet-1K for WaveFormer variants
Model #Params FLOPs Top-1 Acc.

WaveFormer1111 (MaxPool) 28.5M 3.7G 80.794
WaveFormer1111 (DWT) 28.5M 3.7G 80.884

WaveFormer2211 28.5M 3.83G 80.965
WaveFormer3211 28.54M 3.82G 80.966
WaveFormer3221 28.55M 4.35G 81.104

7 DISCUSSION & FUTURE WORKS

In this work, we proposed a frequency-level learning module as a general feature extractor and
adapted it into a generic encoder-decoder architecture for volumetric segmentation. Our findings in-
dicate that the process of learning from full-resolution feature maps can be effectively approximated
by computing multi-resolution token relationships in the frequency domain with fewer computation.
Two key factors contribute to WaveFormer’s performance. First, the Discrete Wavelet Transform
(DWT) enables selective retention of high-energy, low-frequency coefficients from 3D feature maps,
which minimizes redundancy when processing pairwise token relations. Second, the reduction in
spatial dimensions achieved by DWT facilitates attention across feature maps at different scales. The
use of self-attention with constant-sized window captures local relationships at various granularities
while also summarizing global relationships efficiently in a continuous token space.

In future work, we aim to further investigate optimal configurations for diverse datasets and tasks.
This includes exploring the role of high-frequency, low-information density coefficients, which were
omitted in the current implementation. Understanding how these high-frequency components con-
tribute to the learning process could unlock new avenues for fine-tuning WaveFormer’s architecture,
potentially enhancing its utility across a broader range of vision applications.

8 CONCLUSION

In this study, we introduced WaveFormer, a transformer-based architecture designed for high-
dimensional medical image segmentation. By utilizing a discrete wavelet transform-based self-
attention mechanism, WaveFormer efficiently fuses local and global token relations, leading to su-
perior segmentation performance on 3D volumetric datasets like FLARE2021 and AMOS2022. Our
approach reduces computational overhead while outperforming traditional methods, setting a bench-
mark for future research in visual transformers.
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A APPENDIX

A.1 PARSEVAL’S THEOREM FOR WAVELET

The wavelet transformation of function f in the time domain can be expressed in the following way.

f(t) =
∑
k

cJ,k ϕJ,k(t) +

J∑
j=1

∑
k

dj,k ψj,k(t) (6)

Here,
ϕJ,k(t) are the scaling functions at the coarsest scale J , representing the low-frequency components
of the signal.

ψj,k(t) are the wavelet functions at different scales j and positions k, representing the high-
frequency components of the signal.

cJ,k are the approximation coefficients that capture the overall shape of the signal.

dj,k are the detail coefficients that capture finer details at different scales.

The energy of the function f(t) is expressed as

∥f(t)∥2 =

∫ ∞

−∞
|f(t)|2 dt (7)

Expanding the square,

∥f(t)∥2 =

∫ ∞

−∞

∑
k

cJ,k ϕJ,k(t) +

J∑
j=1

∑
k

dj,k ψj,k(t)


∑

k′

cJ,k′ ϕJ,k′(t) +

J∑
j′=1

∑
k′

dj′,k′ ψj′,k′(t)

 dt

=

∫ ∞

−∞

(∑
k

cJ,k ϕJ,k(t) ·
∑
k′

cJ,k′ ϕJ,k′(t)

+
∑
k

cJ,k ϕJ,k(t) ·
J∑

j′=1

∑
k′

dj′,k′ ψj′,k′(t)

+

J∑
j=1

∑
k

dj,k ψj,k(t) ·
∑
k′

cJ,k′ ϕJ,k′(t)

+

J∑
j=1

∑
k

dj,k ψj,k(t) ·
J∑

j′=1

∑
k′

dj′,k′ ψj′,k′(t)

 dt (8)

Here, the wavelet functions ϕJ,k(t) and ψj,k(t) are orthonormal. This implies∫ ∞

−∞
ϕJ,k(t)ϕJ,k′(t) dt = δkk′∫ ∞

−∞
ψj,k(t)ψj′,k′(t) dt = δjj′δkk′∫ ∞

−∞
ϕJ,k(t)ψj,k′(t) dt = 0

Here, δkk′ and δjj′ are Kronecker deltas, which are 1 when the indices match and 0 otherwise.

Using orthonormality, the energy function in equation 8 reduces to,

∥f(t)∥2 =
∑
k

|cJ,k|2 +
J∑

j=1

∑
k

|dj,k|2 (9)
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Equation 9 reflects Parseval’s theorem for wavelet decomposition.

A.2 MODEL CONFIGURATION

Table 6: Configuration of the model’s decomposition level for each stage with output size
Encoder Output Decomposition Levels

WaveFormer1111 WaveFormer2211 WaveFormer3211 WaveFormer2221 WaveFormer3221
Stage 1 H/2×W/2×D/2 3 1, 3 1, 2, 3 1, 3 1, 2, 3
Stage 2 H/4×W/4×D/4 2 1, 2 1, 2 1, 2 1, 2
Stage 3 H/8×W/8×D/8 1 1 1 0, 1 0, 1
Stage 4 H/16×W/16×D/16 0 0 0 0 0

A.3 PUBLIC DATASET DETAILS

Table 7: Complete details of three public datasets

Challenge FLARE KiTS AMOS

Imaging Modality Multi-Contrast CT Arterial CT Multi-Contrast CT
Anatomical Region Abdomen Kidney Abdomen

Sample Size 361 210 200

Anatomical Label Spleen, Kidney, Liver, Pancreas Kidney, Tumor Spleen, Left & Right Kidney, Gall Bladder,
Esophagus, Liver, Stomach, Aorta, Inferior Vena Cava (IVC),

Pancreas, Left & Right Adrenal Gland (AG), Duodenum

Data Splits 5-Fold Cross-Validation 5-Fold Cross-Validation 1-Fold
Train: 272 / Validation: 69 / Test: 20 Train: 152 / Validation: 38 / Test: 20 Train: 160 / Validation: 20 / Test: 20

A.4 MEDICAL DATA PRE-PROCESSING AND MODEL TRAINING SETUP

Table 8: Hyperparameters used in training and finetuning on three public datasets

Hyperparameters Direct Training Finetuning
Encoder Stage 4
Layer-wise Channel 48, 96, 192, 384
Hidden Dimensions 768
Patch Size 96× 96× 96
No. of Sub-volumes Cropped 2 1
Training Steps 40000
Batch Size 2 1
AdamW ϵ 1e−8
AdamW β (0.9, 0.999)
Peak Learning Rate 1e−4
Learning Rate Scheduler ReduceLROnPlateau N/A
Factor & Patience 0.9, 10 N/A
Dropout X
Weight Decay 0.08
Data Augmentation Intensity Shift, Rotation, Scaling
Cropped Foreground ✓
Intensity Offset 0.1
Rotation Degree −30◦ to +30◦

Scaling Factor x: 0.1, y: 0.1, z: 0.1

A.5 TRAINING ON IMAGENET-1K

We compare different approaches on the ImageNet-1k dataset, which comprises 1.28 million training
images and 50K validation images from 1000 classes. For fair comparison, we follow the training
recipes in Touvron et al. (2021); Wang et al. (2021); Yang et al. (2021). All models are trained from
scratch for 300 epochs with a batch size of 1024 distributed across 4 NVIDIA A100 GPUs (batch
size of 256 in each GPU). An initial learning rate of 5× 10−4, weight decay of 0.05 and 20 epochs
of linear warm-up is used. AdamW optimizer Loshchilov (2017) is used with a cosine learning rate
scheduler. We followed the same set of augmentation as in Liu et al. (2021). During training, we
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crop images randomly to 224× 224, while a center crop is used during evaluation on the validation
set. We performed ImageNet training on the publicly available Nautilus hypercluster by National
Reserch Platform.

A.6 TABLE FOLD

Table 9: Performance comparison for different models and configurations.

Spleen Right Kidney Liver Pancreas All
Fold µ µ µ µ µ

Model checking v2 wf 1111
0 0.9789 0.9667 0.9827 0.7975 0.9314
1 0.9835 0.9676 0.9816 0.8167 0.9373
2 0.9803 0.9614 0.9812 0.8080 0.9327
3 0.9806 0.9690 0.9822 0.8369 0.9421
4 0.9825 0.9663 0.9816 0.8203 0.9377

Wavelet two branch wf 2211
0 0.9819 0.9656 0.9816 0.8262 0.9388
1 0.9818 0.9659 0.9776 0.8187 0.9360
2 0.9780 0.9631 0.9759 0.8204 0.9343
3 0.9786 0.9700 0.9716 0.8156 0.9340
4 0.9822 0.9677 0.9821 0.8147 0.9367

Wavelet without split wf 3211
0 0.9828 0.9664 0.9813 0.8276 0.9395
1 0.9784 0.9635 0.9800 0.8298 0.9379
2 0.9822 0.9652 0.9703 0.8184 0.9340
3 0.9810 0.9675 0.9815 0.8178 0.9369
4 0.9807 0.9654 0.9800 0.8202 0.9366

Wave wo split v2 wf 3221
0 0.9789 0.9654 0.9803 0.8149 0.9349
1 0.9820 0.9700 0.9778 0.8215 0.9378
2 0.9825 0.9683 0.9807 0.8281 0.9399
3 0.9807 0.9692 0.9828 0.8128 0.9364
4 0.9805 0.9683 0.9813 0.8184 0.9371
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Table 10: Comparison of WaveFormer configurations on the segmentation performance of various
organs. (*: p < 0.01, with Wilcoxon signed-rank test to all configurations)

Configurations Spleen R. Kid L. Kid Gall. Eso. Liver Stom. Aorta IVC Panc. RAG LAG Duo. Blad. Pros. Avg
WaveFormer1111 0.9740 0.9669 0.9604 0.9214 0.8812 0.9829 0.9336 0.9505 0.9123 0.8425 0.8245 0.7748 0.8640 0.8982 0.8633 0.9033
WaveFormer2211 0.9691 0.9672 0.9607 0.9244 0.8664 0.9833 0.9423 0.9521 0.9163 0.8385 0.8197 0.7867 0.8524 0.9086 0.8783 0.9043
WaveFormer3211 0.9734 0.9648 0.9612 0.9209 0.8619 0.9816 0.9340 0.9540 0.9108 0.8502 0.8003 0.7671 0.8519 0.8980 0.8412 0.8980
WaveFormer3221 0.9736 0.9672 0.9585 0.9246 0.8719 0.9831 0.9257 0.9544 0.9143 0.8459 0.8220 0.7817 0.8476 0.9098 0.8846 0.9043
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