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【摘要】　新一代人工智能技术正推动心血管疾病诊疗进入新纪元，其中基于海量数据预训练的

大模型极具发展潜力。其通过自监督学习范式能够从影像、心电和各类检查数据中学习通用表征，在

心血管疾病诊断预警、个性化治疗与决策支持、患者管理与远程监测等方面的性能均明显得到提升。

然而，大模型在临床运用中仍面临数据规模、模型性能和应用监管等多方面瓶颈制约。该文系统梳理

了大模型在心血管疾病领域的创新应用、核心挑战及应对策略，并对其未来向高效、可靠、可信的临床

辅助工具的演进路径进行了展望。
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根据世界卫生组织和全球疾病负担研究数据，

心血管疾病每年导致 1 790万至 1 800万人死亡，占

全球总死亡人数的32%左右，是全球范围内的主要

死因，也是当今世界面临的最重大公共卫生挑战之

一［1］。传统的临床诊断与风险评估方法包括统计

学风险评分（如基于人口统计学和传统危险因素的

模型）、影像学检查（超声、CT、磁共振等）、电生理

检测（如心电图）等。在一级预防与人群筛查场景

中，临床仍高度依赖传统风险预测工具，例如美国

人群队列衍生的 Framingham 风险评分（用于估计

未来 10年总体心血管事件风险）、欧洲指南推荐并

按风险地区校准的 SCORE2/SCORE2‑OP（用于估计

10年致死与非致死心血管疾病风险）、英国基层医

疗服务体系常用的 QRISK3（用于预测 10年心血管

疾病风险），以及基于中国人群开发与验证的中国

动 脉 粥 样 硬 化 性 心 血 管 疾 病 风 险 预 测 模 型

（China‑PAR）等［2‑6］。这类模型虽然在临床与公共

卫生实践中具有可操作性，但他们都有一个共同特

点——依赖有限数量的结构化变量（如年龄、性别、

血压、血脂指标、吸烟、糖尿病等），且通常建立在特

定地区/队列之上，需要进行地区化校准后方能外

推。同时对专家经验依赖较强，且受限于高通量、

标准化与自动化分析能力的不足，这些因素进一步

制约了大规模精准筛查与早期干预目标的实现。

近年来，机器学习尤其深度学习技术迅速发

展，其已被广泛应用于医学影像分析、信号处理、电
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子病历分析、风险预测与分类等任务。随着卷积神

经网络、循环神经网络及其变体的成熟，研究者开

始将这些方法用于心血管疾病的诊断、分型与风险

预测［7‑8］。然而，传统深度学习方法多以“任务为中

心”的监督学习范式为主，常受到 3 类瓶颈制约：

（1）模型通常针对单一任务与特定数据分布进行训

练，跨中心、跨设备或跨人群时易受分布偏移影响；

（2）性能提升高度依赖高质量标注与人工特征设计

或强先验约束；（3）面对影像、信号、文本、结构化临

床变量等高维异构数据时，多模态联合建模的成本

与复杂度明显上升，从而限制了其在临床应用的规

模化和可持续扩展。

为应对“多模态、高异质、弱标注与跨场景泛

化”的现实问题，面向医学的大模型应运而生，推动

了心血管智能分析从任务驱动的监督学习向预训

练驱动的通用表征与可迁移能力转变。大模型主

要指在大规模数据上进行预训练，在学习到具有代

表性的通用特征后，通过少量数据进行模型微调然

后适配多种具体临床任务。大模型的引入正在改

变心电与心脏影像的建模方式：在心电方面，基于

大规模数据训练的心电图大模型被用于跨任务泛

化与多场景迁移，可作为通用基座模型支撑多种诊

断/预测任务［9］；在影像方面，视觉‑语言大模型通过

学习超声视频与专家报告之间的对应关系，为超声

心动图的解释与临床语义对齐提供了新的可扩展

范式［10］。

一、大模型在心血管疾病中的应用

1.疾病诊断与风险预测：在心电图智能分析领

域，Zhang等［11］和 Jin等［12］分别对原始心电信号进行

随机掩蔽，并构建无标签预训练框架对掩蔽后的心

电信号进行编码并补全掩蔽部分或预测波形变化，

以学习与下游任务无关的通用特征，进而用于疾病

诊断、风险预测与报告生成等多种下游任务；研究

结果表明，此类预训练底座在心律失常识别与风险

分层等任务上，相较于传统深度学习方法曲线下面

积和准确率等指标都得到了一定程度提升，并在少

标注或数据分布与预训练数据相差较大时表现出

更好的鲁棒性。除上述无标签预训练外，Tian等［13］

和 Xie 等［14］进一步引入诊断文本/报告作为配对信

息，构建心电‑文本的跨模态对比预训练/对齐学习

框架，以学习心电特征和疾病语义之间的对应关

系。此类方法由于使用了诊断文本/报告作为训练

数据的一部分，严格意义上更接近弱监督/有监督

的对比学习与跨模态对齐，即让同一患者的心电与

报告描述对应更紧密，并与不相关的报告描述拉开

差异。这种模型构建方式可直接利用医师在临床

报告中的诊断描述，使预训练模型更适用于疾病识

别、报告生成、信号预测与智能问答等任务。从医

师实际诊疗流程角度，用此类心电‑文本对齐方式

辅助生成报告、定位关键异常，能有效减少医护人

员的工作量，但生成内容仍需医师审核以降低“幻

觉”（编造/虚构内容）风险。

在心脏影像分析领域，将 SAM 为代表的可提

示分割大模型引入影像分析过程并适当对模型进

行微调，可使模型具备多模态、多器官、多任务的通

用分割能力，如 MedSAM［15］；结合添加适配器等参

数高效迁移策略可进一步提升模型在医学场景中

的可用性［16］；在更大规模医学二维数据上对 SAM
进行扩展与细化的工作也进一步增强了模型的泛

化能力，如 SAM‑Med2D［17］。影像‑文本大模型可利

用超声视频与临床报告的配对信息进行训练，使模

型支持更贴近临床流程的影像解释、相似病例检索

等任务，这种方式也减少了对数据精细标注的需

求［18］；针对心脏磁共振，相关研究通过在大规模数

据上进行预训练获取影像的通用特征，然后添加不

同任务网络对预训练模型进行微调，使模型在磁共

振影像分割、心脏功能评估等任务上表现更加稳

定，也更容易迁移到其他任务或新数据源［19］；针对

三维心脏 CT，同样通过影像‑报告文本进行配对训

练，使模型更好地整合影像信息和临床描述，为复

杂异常的检测及相关临床预测提供支持［20］。

2. 个性化治疗与决策支持：目前在心血管领

域，大模型在个性化治疗与决策支持方面的运用仍

相对有限，既往研究多停留在风险分层、预防干预

建议与临床管理辅助等上游环节，例如通过整合人

口统计学、传统危险因素、生活方式与辅助检查数

据（影像、心电等）提供个体化风险评估与预防建

议［21］，以及利用心电与心脏磁共振的预训练/跨模

态表征学习实现心脏功能评估［22］。但严格意义上

的治疗决策，如药物选择与剂量优化、手术时机决

策、围手术期策略调整等不仅需要进行各变量的相

关性预测，更需要可解释的因果推断、风险‑获益权

衡以及前瞻性临床验证，这也是其在临床推进相对

缓慢的关键原因之一。当前主要采用“大模型预训

练+下游任务适配”的形式对个性化治疗和决策支

持开展探索［15‑17］。因此，大模型的治疗与决策支持

应理解为：以大模型提供的标准化表征（结构、功

能、语义）为底座，在下游以指南/路径为约束，实现
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在医护人员主导下可追溯的对药物方案、治疗时机

与随访管理的辅助决策支持。同时仍需在前瞻性

验证、风险责任界定与合规审查等方面进一步完

善。大模型在决策支持中的直接价值主要体现在：

提供更一致的结构化量化结果（如分割结果和功能

参数）、支持相似病例检索、辅助生成诊断报告等，

降低医师对各种临床信息进行整合的负担，但并不

等同于自动给出治疗处方。

3. 患者管理与远程监测：随着可穿戴设备、居

家影像随访与互联网医院的普及，心血管疾病管理

正从单次就诊转向跨时空连续监测。大模型通过

可复用的通用特征，将远程数据快速转化为可对

比、可追踪的临床指标与语义结论，降低对人工标

注和专家读片的依赖。在实际流程中，其输出内容

通常包括多次或连续测量的关键量化指标（如结构

尺寸、功能参数、节律负荷等）、异常事件提示与风

险分层标签，以及便于医护人员快速审核的随访结

论或报告。以影像结构化为例，MedSAM及其在医

学二维大规模数据上的扩展工作，使得不同模态、

不同器官的分割与结构提取具备更强的通用性与

可复用性，为远程随访场景下的心腔/心肌等结构

测量提供“标准化底座”［15］，配合高效的参数适配器

（如Med‑SA），在不明显增加部署成本的前提下，实

现模型的快速本地适配，便于在基层医院推广和持

续应用［16］。视觉‑语言大模型把“影像‑报告”对齐

后纳入统一语义空间，例如 EchoCLIP 通过学习超

声视频与临床报告的对应关系，实现了高精度的基

于超声的病例检索、病症解读等多种任务［10］。因

此，患者管理与远程监测的技术路线可从单点预测

升级为大模型驱动的纵向表型追踪+语义一致的随

访报告生成/辅助解读，为慢性非传染性疾病的分

层管理、复诊触发与个体化随访频率调整提供更具

推广潜力的路径。总体而言，该路线的优势主要体

现在提升效率和结果一致性：一方面可减少重复标

注和集中读片带来的工作负担，另一方面也有助于

统一多中心随访路径，并为异常触发和复诊决策提

供相对清晰的数据支撑。但目前相关研究多停留

在回顾性分析或原型系统验证阶段，其在临床实际

运用的效果仍有待进行前瞻性评估。

4.心血管疾病机制研究与生物标志物探索：相

较于诊断与风险预测，心血管疾病的机制研究与生

物标志物探索对数据与证据链的要求更高，不仅需

要稳定、可复现的表型刻画，还需要将表型与病理

过程、临床事件及治疗反应建立可解释关联。近期

大模型在心血管影像中的发展使影像表型有望成

为可量化生物标志物。一方面，大模型通过在海量

磁共振图像上自监督学习获得稳健特征，并将其用

于磁共振图像分割、功能诊断和评估等下游任务，

进而更准确地提取结构‑功能相关的连续表型，如

心腔容积、壁厚、收缩舒张功能指标等用于机制关

联 分 析［19］。 另 一 方 面 ，通 用 分 割 大 模 型（如

MedSAM 及其扩展）使跨中心、跨设备的结构化提

取结果一致性更高，有利于构建大规模可比对的影

像表型队列，并进一步支持表型分层与亚型划

分［17］。更重要的是，视觉‑语言模型将影像与临床

叙述对齐，把可量化表型与临床语义表征统一到同

一空间，例如 Cardiac‑CLIP 在三维心脏 CT 的图文

对齐框架下展示了对复杂异常情况的表征和识别

能力，为建立心脏影像的定量表型与临床语义（包

括诊断、症状群及疾病亚型特征）之间的关联提供

了新的思路［20］。需要强调的是，机制与标志物的有

效性评估通常不能仅依据单次相关性分析，而应至

少完成外部队列复现、混杂控制/因果敏感性分析，

并在纵向随访或干预前后验证其与临床结局或治

疗反应的一致性。总体而言，本领域机制与标志物

研究正在从依赖少数人工预设、可解释性强的量化

指标（如左心室射血分数、心室尺寸等）与小样本相

关性分析的传统范式，转向大模型驱动的大规模、

可复现“表型抽取+语义对齐+迁移泛化”的组合路

线，为后续与组学、病理与干预反应的跨模态机制

验证奠定方法学基础。

二、大模型的技术优势

1.多模态数据整合：现代的深度学习和混合深

度学习架构能够将不同来源的数据（如心电、心脏

影像、临床数据、检查结果、人口统计信息等）融合

到一个统一的模型中。这种多模态数据的融合使

得模型能够更全面、准确地进行疾病分类、风险评

估和早期预警。近年来，许多研究尝试将心电数据

与医学影像、临床及实验室数据结合起来，以构建

更强大的心脏疾病分类模型。例如Alsekait等［23］提

出的 Heart‑Net多模态深度学习框架结合了心脏磁

共振与心电数据，成功提升了心脏疾病的诊断精

度。Zhao 等［24］提出了一个专门结合心电信号和诊

断报告的大型多模态模型 ECG‑Chat，能够生成临

床报告并支持多模态对话，这为基于心电的自动化

诊断和报告生成提供了新思路。Yang等［25］系统梳

理了磁共振、CT/冠状动脉CT血管成像与超声等心

血管影像研究进展，指出单一模态模型多局限于单
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任务，而多模态信息融合更贴近临床“多源信息综

合判断”的工作思路，可提升疾病诊断与结局预测

的稳定性与可解释性。

2. 高精度与泛化能力：大模型在处理复杂、高

维、庞大的各类数据时表现出更高的准确性和自动

化特征学习能力，在不同任务和数据集上的泛化能

力都有所提升。SuPreME 通过对心电报告进行监

督预训练，能够在缺乏标签的情况下进行精准分

类，展现了大模型在零样本学习中的强大潜力［26］。

尤其是在心脏磁共振图像分割与功能结构评估中，

深度学习可实现标准化、自动化分析，适用于大规

模临床研究。在四维血流磁共振成像中，深度学习

算法已被用于左心室自动分割及血流、容积、血流

动力学量化，精度与可重复性均达到较高水平［27］。

深度学习模型在 CT、心脏磁共振、超声心动图、单

光子发射计算机断层扫描等多种心血管成像模态

下均能实现心肌疾病检测，说明其具有良好的跨模

态泛化能力。此外，通过人工智能驱动的图像重建

（去噪、运动伪影修正、超分辨率等）还可提高成像

质量，诊断/分析精度高于传统成像。对于心电图，

深度学习模型能够识别传统方法难以捕捉的微小

但具有临床意义的信号变化，从而实现对病变的早

期识别［28］。

3.可扩展性与临床大规模部署潜力：深度学习

框架完成构建及验证后（包括数据预处理、模型训

练、验证、测试和部署流程），便可高效扩展到大量

心电、影像、电子健康记录数据。特别是对于检测

设备和专业人员等资源有限的国家和地区，使用成

熟的深度学习技术进行自动化诊断、预警和风险评

估，可以明显提高疾病的诊断率与防控水平。以跨

模态预训练模型为例，CardiacNets仅借助心电数据

即可进行心脏结构和功能评估、病变筛查，这为在

资源受限地区开展心血管疾病筛查及高危人群的

基线评估提供了一种低成本、易获取的有效解决路

径［22］。对于扫描版或纸版心电图像，Wang 等［29］提

出了基于合成数据增强的深度学习处理流程，可将

纸质心电图像经标准化预处理后实现自动识别与

分类，使得在缺乏原始数字心电信号的场景下也能

开展自动化分析。因此，只要构建好标准化、可自

动化的模型与工作流程，就可将深度学习技术应用

于大规模、常规临床筛查［30］。

三、挑战与前景展望

1.数据方面：在当前人工智能技术飞速发展的

时代，数据逐步成为提升模型性能最重要的因素，

尤其对于旨在实现高精度与强泛化能力的医学大

模型。然而临床医用数据依然面临数据规模、数据

质量及数据异构性等方面的挑战。数据规模方面，

罕见病与长尾病例数据严重匮乏，导致模型难以充

分学习相关特征，在面对真实复杂病例时性能下

降［31‑32］。同时，高质量标注极度依赖专家经验，现

有精细标注数据规模远小于原始数据，限制了模型

向精准诊断的进化。数据质量方面，采集噪声（如

心电信号中的基线漂移与工频干扰）及残留噪声会

影响模型的特征提取［33］。此外，不同医师对困难数

据的判读差异导致标签不一致，这使模型决策边界

模糊，损害其准确性与可靠性。数据异构性与隐私

壁垒同样制约了大模型的发展。各机构设备、采样

设置与操作习惯不同造成数据分布差异，导致模型

跨中心应用时泛化能力下降［34‑35］；同时，患者隐私

与法规限制使数据无法自由流通，阻碍了构建超大

规模统一数据集，限制了模型性能的进一步突破。

为应对数据方面的挑战，未来心血管人工智能

大模型需要重点突破小样本学习与智能标注技术，

解决数据规模瓶颈。通过迁移学习和元学习等范

式，使模型具备从少量罕见病例中快速学习的能

力［36］；同时开发人机协同的智能标注平台，利用主

动学习策略优先选择价值最高的数据供专家标注，

大幅提升标注效率。此外，探索构建融合医学知识

的自适应去噪算法，不仅能消除噪声，还能保留具

有临床价值的细微特征。通过建立标准化的标注

规范，提升数据一致性。在数据异构性与隐私壁垒

方面，在保证数据“不出院”的前提下实现对模型的

多中心协同训练，提升其泛化能力。

2.模型算法方面：不同于其他领域直接对通用

大模型进行适当微调便可用于实际生产过程，在医

学领域的应用需要更加严格的解释和验证，同时医

学数据的建模和分析也需要符合医学常识和准则。

在心血管疾病智能分析过程中，心电图等生理信号

的病理特征需要在时间尺度上进行综合分析，因此

时序依赖与长程上下文建模的效果直接影响后续

疾病诊断、风险评估等相关任务性能［37］。传统的

Transformer架构在处理超长序列时，因其自注意力

机制的计算复杂度随输入序列长度呈平方级增长，

计算成本高昂。虽有学者采用线性注意力等技术

以尝试降低负担，但其在捕捉心电信号等复杂时空

关联方面的有效性仍有待验证。同时，临床心血管

疾病诊疗需要融合心电、影像、病史等多模态数据，

但当前领域缺乏统一、原生的多模态大模型架
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构［38］。现有方案多采用独立编码器处理不同模态

后进行简单拼接，难以深入挖掘模态间复杂的非线

性关联。此外，心血管领域的知识体系具有高度的

严谨性、复杂性与逻辑依赖性，而当前主流大模型

采用“通用预训练+医学微调”的范式，容易在学习

中产生事实性错误或逻辑不一致，难以稳定掌握该

领域精确的概念体系与复杂的诊断推理路径。这

种“黑箱”训练方式也容易在处理复杂问题时产生

“幻觉”，输出违背医学原理的结果，制约了模型的

可靠性与临床适用性。

因此，突破心血管人工智能大模型性能瓶颈仍

然需要从时序数据建模、多模态信息融合和医学可

解释性研究 3个方向深入探索。在时序建模上，心

电图数据同时包含毫秒级的局部波形特征（如P波

形态）和跨越数秒甚至更久的心跳节律，为同时有

效建模这两种尺度的依赖关系，采用结合层次化注

意力机制［39］与状态空间模型［40］的新架构能在保证

计算效率的同时，分别专注于局部细节的解析与全

局节律动态的捕捉。在多模态融合方面，将开发原

生多模态架构，通过统一的表示空间实现心电信

号、医学影像与临床文本的深度交互，内嵌的跨模

态对齐模块能自动挖掘不同模态间的关联。在知

识融合与可信度层面，将转向知识与数据双驱动范

式，通过将医学知识图谱作为结构性约束嵌入训练

过程，并开发因果推理模块，确保模型输出符合医

学原理［41］。

3.临床转化与监管方面：要将大模型转化为临

床可用的工具，其开发与评估应遵循分层递进的临

床评价范式，同时需要在确保其预期用途与潜在风

险相匹配的前提下，逐步积累有效性与安全性证

据，如国际医疗器械监管机构论坛为软件型医疗器

械 SaMD 制定临床评价指南的过程［42］。大模型的

监管审批较为复杂，现有医疗器械审批框架难以评

估不断迭代的大模型，其“黑箱”特性使得决策过程

透明度不足，增加了监管难度。另外，医疗责任界

定困难，当模型诊断建议与医师判断冲突或出现错

误时，责任归属问题尚未明确。此外，还需要克服

医疗数据隐私保护、不同医疗机构数据标准化差异

以及与实际临床工作流程整合等系统性障碍。除

上述制度与流程方面的阻碍，大模型在临床使用中

还普遍面临：输出不符合医学事实、推理与部署的

计算成本较高，以及由数据偏倚与隐私合规引发的

伦理风险。

面对这些挑战，需要建立适应人工智能特性的

新型监管体系。监管机构应开发一个贯穿人工智

能医疗产品研发与应用全过程的监管框架，全面涵

盖数据质量、算法验证和临床评估等核心环节，并

同步探索基于真实世界证据的审评新路径［43‑44］。

在临床整合上应明确划定临床责任边界，人工智能

系统的输出属于辅助建议与证据汇总，不能替代医

师处方与临床最终决策，尤其不应在缺乏医师审核

的情况下直接生成或执行治疗处方［45‑46］。针对“幻

觉”风险，需在监管与临床规程以及算法与产品设

计层面，遵循“人类监督与控制”的最终原则，例如

优先部署输出易于被临床医师快速复核、验证或否

决的辅助性任务（如提供结构化测量数据、生成报

告草稿），同时配套提供置信度提示、决策依据追溯

功能，并设立“遇不确定情况时主动拒答或转交人

工”的强制机制。针对伦理风险，应在数据采集与

训练阶段开展隐私保护与偏倚评估，明确知情同意

与用途边界，并在真实世界使用中进行持续监测与

审计。这些措施根本目的在于确保大模型在临床

实践中始终处于辅助地位，并在严格界定的人机协

同框架内发挥作用，共同推动大模型从技术概念转

化为真正改善心血管疾病诊疗效果的临床工具。
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