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ABSTRACT

Detection of rare events in images is a challenging task because of two main prob-
lems, the first problem is the lack of labeled data for rare category class and the
second problem is a highly imbalanced data problem. Training models in this sce-
nario becomes hard. Unsupervised methods do not apply as we need to detect rare
events automatically. Rule-based methods seem to be the only viable solution, but
it is tedious to come up with a set of rules covering all corner cases. Even the
recently popular zero-shot learning techniques required to be pre-trained on auxil-
iary datasets. In the given scenario, we propose an approach to provide little guid-
ance from experts as an input into a hierarchical Bayesian model. The guidance
influences the Markov chain Monte Carlo (MCMC) based inference technique of
the model. After the steady-state is obtained for the underlying Markov chain, it
is possible to compute the posterior probability of the presence of the rare event in
a given image. The proposed method neither needs any labeled data nor required
pre-training, unlike zero-shot learning. The proposed technique has been observed
to outperform the state-of-the-art unsupervised image classification techniques.

1 INTRODUCTION

The significance of rare events is that they occur rarely but their occurrence can have a high impact.
Heavy rainfall to solar bursts (White, 2007) there are plenty of such phenomena in real life which
belong to the category of rare events. In this paper, we focus on rare events present in a collection
of images.

Detecting rare events in images is hard. Rare events detection falls into the classification problem
where convolutional neural networks (CNNs) are the de-facto standard. However, CNNs do need
some amount significant amount of examples to train the parameters. However, the presence of
rare events is not only insignificant but also relevant to specific problems. For example, pedestrians
crossing a road without signals. In the problem of rare event detection, the focus is on detecting the
rare events instead of overall accuracy. Supervised techniques do not naturally fit in this case. Un-
supervised methods are not applicable as in the end we want rare events to be labeled automatically.
One can resort to rule-based techniques, but as always it is hard to design an exhaustive set of rules
especially when rare events are critical to detect.

In this paper, we propose a novel mechanism Guided MCMC for Bayesian Models (GMBM) to
detect rare events without using any labeled data or pre-training using auxiliary datatsets. Our
method is more based on the intuition of rule-based systems and extending them through machine
learning mechanism. As in rule-based systems, we collect some guidance from human experts who
are aware of the dataset and the problem. Then we feed this guidance into the inference process of a
hierarchical Bayesian model as in machine learning to compute the posterior of the presence of rare
events in a given image.

Hierarchical Bayesian models are well-known techniques to build distributions suitable to model
some type of observations. Latent Dirichlet allocation (LDA) (Blei et al., 2003) is one such ex-
ample to model bag-of-words of documents. Then we learn the distribution through estimating
the parameters of the hierarchical Bayesian model. In general, hierarchical Bayesian models in-
volve latent random variables and often inference becomes intractable. Markov chain Monte Carlo
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Figure 1: Illustration of rare event in images using solar burst and associated challenges to
detect them. In the first row, we can see that there are different shapes of bursts. In the second row,
we can see that positions of bursts are not fixed. In the third row, we can see that even color patches
of bursts are not the same. In the fourth row, we can observe that noise signals are also present
in burst images themselves. In the last row we can see Non-Burst signals but have similarity with
bursts images.

(MCMC) (Geyer, 1992) is a well-established technique to infer and learn such models. Due to the
non-convexity of the underlying optimization problem, the Markov chain behind the MCMC tech-
nique can converge to some local optima. Once we achieve a steady state of the underlying Markov
chain we can compute the posterior of the latent random variables. Depending on the design of
the hierarchical Bayesian models, we can infer some decisions through the posterior of such latent
variables.

We design a hierarchical Bayesian model, and then use MCMC to infer whether a rare event is
present or not. However, here comes our novelty that, instead of running vanilla MCMC, we guide
the Markov chain with appropriate input from human experts so that we can infer the presence of
rare events without using any label. Secondly, we use sparsity along with mixture of distributions in
such a way that gives importance to rare events.

The Contributions of our work are as follows:-

• We have proposed a novel mechanism based on MCMC for hierarchical Bayesian models
to detect rare events in images without using any labeled data. The mechanism accepts
input from humans to guide MCMC to decide the label.

• The hierarchical Bayesian model is designed with sparsity and mixture of distributions in
such a way that it gives importance to rare events much in the spirit of importance sampling.

• We have demonstrated the efficacy of our model in detecting rare events in images outper-
forming state-of-the-art unsupervised image classification techniques.

2 PROBLEM DEFINITION: DETECTING RARE EVENTS IN IMAGES SANS
LABELS

Let D = {xi}ni=1 denotes a collection n images. Each image xi consists of m patches {xij}mj=1,
where a patch is a collection of spatially adjacent pixels. The task is to identify if a rare event is
present in an image, i.e. set yi = 1 if xi contains a rare event, otherwise yi = 0. To be precise, we
denote an event E by its visual characteristics {Ea}. We say an event E ∈ xi for some i, if {Ea}
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is present in the patches of xi. We further designate an event E to be rare if P (E ∈ xi) < ε < 1,
where ε is a small quantity and generally prescribed the domain expert.

Let R denotes the set of rare events for a given application and dataset D. The set R is generally
defined by the domain experts along with the visual characteristics. Then the task is to set yi = 1 if
E ∈ xi such that E ∈ R. In other words yi = 1 if P (E|xi) > δ, where δ > 0 is the threshold. We
can form the task as set yi = 1, if P (E|{xij}mj=1) > δ. Let V denotes the vocabulary or the set
of visual words representing the visual characteristics in such a way that each xij ∈ V and Ea ∈ V .
Then we can further refine the objective is to compute P ({Ea}|{xij}mj=1).

2.1 EXAMPLE: SOLAR BURST DETECTION

This work is largely motivated by the problem of detecting solar bursts. In the solar radio obser-
vations, solar bursts are considered to be as rare events. Solar radio bursts (Monstein, 2011) are
classified largely based on how they appear in dynamic spectrum observations from radio spectro-
graphs. In Aug 2021, the number of bursts observed was 149 out of total reported observations 678
taken from 55 active stations1. The shapes of solar bursts can be seen as big red spikes or harmonic
shapes and typically their sizes are bigger than noise signals which can be seen in Figure 1.

2.2 CHALLENGES FOR DETECTING RARE EVENTS IN IMAGES

It is hard to apply supervised techniques in rare event detection are: (i) lack of labeled data for
training, (ii) highly imbalanced data. One can not use unsupervised methods because the task is
more of automatic classification and in turn detection rather than pattern analysis.

Observing Figure 1, it may appear that the pattern of solar bursts can be captured through rules. The
same thing might be done for other rare events in images. However, the challenge in such methods
is always to design rules carefully exhaustively covering corner cases. This is extremely hard and
often the sole reason of opting the data-driven methods.

In order to explore this aspect more closely, we have developed our own rule-based heuristic method
to detect solar bursts. The algorithm is presented in Algorithm 2 in the appendix. The basic idea of
the method is to use contour and color to detect bursts. The domain experts can prescribe the color
and shape to some extent and depending on that we can define a rule, such as, if some area is of red
color and greater than a certain threshold but also not too big, then we can label that as burst.

Although it is very easy for humans to use such rules as the slight modifications in rules on a case-
by-case basis can be very easily adapted by humans due to their domain knowledge. However, it
is infeasible to capture even slight variations in color and contour for a rule. The second challenge
is that sometimes noise signals are also a similar size to solar Bursts due to which it will end up
predicting the image as a Burst image but in reality, it’s a Non-Burst image. Some more challenges
for solar burst detection can be seen in Figure 1.

3 RELATED WORKS

Hamaguchi et al. (2019) have proposed a novel method for rare event detection from an image pair
with the class imbalanced dataset. Their idea is that to learn disentangled representations from only
low-cost negative samples. This paper is the most recent work in the area of rare events detection
in images. But in our case, we are not using any training data even if data belongs to negative
samples. Recently for solar radio Burst classification Chen et al. (2017) tried to use the CNN model
for performing supervised Burst image classification.

In the area of unsupervised image classification, recently Van Gansbeke et al. (2020) designed
SCAN model which have shown astonishing performance in unsupervised image classification.
Park et al. (2021) studied to build an innovative RUC model which can be used as an add-on-module
on top of models like SCAN to improve classification accuracy. Dang et al. (2021) proposed a
method called Nearest Neighbor Matching (NNM) to match samples with their nearest neighbors

1http://www.e-callisto.org/Data/data.html
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from both local and global levels and has shown that superior unsupervised classification perfor-
mance against state-of-art methods.

Hingmire & Chakraborti (2014) propose a weakly supervised algorithm in which supervision
comes in the form of labeling of Latent Dirichlet Allocation (LDA) topics. They have used
this approach to perform text classification. Xian et al. (2018) gave a detailed description about
Zero-shot learning where its main aim is to recognize objects whose instances may not have been
seen during training. Although this work will not be strongly applicable to our case as we are not
using any training data. Zero-shot learning is also closely related to transfer learning. Similarly,
Wang et al. (2020) write about a Few-shot learning survey paper where it can learn new tasks
containing only a few labels with supervised information by incorporating prior knowledge but
the core issue of Few-shot learning is the unreliable empirical risk minimizer that makes Few-shot
learning hard to learn.

4 PROPOSED METHOD: GUIDED MCMC FOR SPARSE BAYESIAN MODELS

First, we describe the basic setup how we can leverage hierarchical Bayesian models and MCMC
for the task of classification. Then we will develop on top of the basic setup by introducing two key
modifications: (i) sparsity and focus to give importance to rare events, and (ii) guidance to MCMC
to connect posterior of a latent variable to a label in case we do not have labels. We will refer to the
proposed method as GMBM.

4.1 MCMC FOR BAYESIAN MODELS FOR CLASSIFICATION

A wide range of hierarchical Bayesian models can be represented as follows:

N∏
i=1

P (θi|α)
( M∏
j=1

P (xij |zij , β)P (zij |θi)
)
, (1)

where {zij}, {θi} are the latent random variables in two different levels of the hierarchy. {zij} are
the local variables corresponding each observed unit in {xij}, whereas θi is common across xi. α, β
are the parameters of the model which we want to learn. We can represent latent Dirichlet allocation
(LDA) and several topic models in this format. For our case {xij} are image patches that come from
the global vocabulary V .

Given this basic setup, we set θi to be aK dimensional vector such that
∑K
k=1 θik = 1, θik ≥ 0, ∀k.

We can model P (θi|α) asDirichlet(α1K). In our case,K is the number of events where each event
belongs to a particular class and the label of image xi is yi. As we are more concerned about the
presence of rare event, so following the setup in Sec. 2, we denote yi = 1 if θ̂ir > δ, where θ̂i is the
posterior of θi given image xi, r is the index of the rare event and δ > 0 is the threshold. Then the
task is to compute the posterior probability P (θi|{xij}mj=1) by applying Bayes theorem.

Specification of other variables can be dependent on the datasets and applications and do not inter-
fere with the classification setup as posed here. Due to the nature of the hierarchy in Eq 1, computing
P (θi|xi) becomes hard and we generally resort to MCMC or Gibbs sampling. In the case of con-
jugacy, we can even collapse some of the variables leading to faster convergence (Porteous et al.,
2008).

4.2 SPARSITY AND IMPORTANCE FOR RARE EVENTS

Note that in our case there is a chance that some rare event E is present in the image patches {xij}.
The event E is manifested in the image through visual words {Ea} among visual words in the patches
{xij} such that P (E ∈ {xij}) < ε. One key challenge is that ε can be very small. Hence unless we
put specific care it is difficult to catch rare events through statistical models.

To be more precise P (θ̂ir > δ) can be arbitrarily small and may be difficult to distinguish with
noise and false positives if we keep δ too small even if E ∈ xi. This is due to the fact that θi
captures the proportion of all events in image xi, and along with rare events there are other normal
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Algorithm 1 Generative process of the proposed Bayesian model
1: for visual-words v=1,2,...,V do:
2: sample visual-word selection probability ψv ∼ Beta(1, %)
3: end for
4: for events k=1,2,...,K do:
5: for visual-words 1=1,2,...,V do:
6: sample visual-word selection probability φkv ∼ Bernoulli(ψv)
7: end for
8: draw event βk ∼ Dirichlet(κ1V .φk)
9: event selection probability πk ∼ Beta(1, %)

10: end for
11: for images i = 1 to N do:
12: sample distribution over events proportions ηi ∼ Dirichlet(ζ1H)
13: for events proportions h = 1, ...,H do:
14: for events k=1,2,...,K do:
15: sample ξihk ∼ Bernoulli(πk)
16: end for
17: sample θih ∼ Dirichlet(α1K .ξih)
18: end for
19: for patches j = 1, ...,M do:
20: sample event proportion gij ∼ mult(ηi)
21: sample event zij ∼ mult(θi,gij )
22: sample patch xij ∼ mult(βzij )
23: end for
24: end for

events in xi. Normal events being prominently present in the collection as well as in the image,
θir = 1−

∑K
k=1,6=r θik can be insignificant.

In order to mitigate this issue our proposal is to give importance to rare events. Our proposal is
in the spirit of importance sampling. We allow the model to have an events proportion vector that
puts zero weight on most of the events and non-zero to a few including the rare event mainly. Now
this proportion vector being a probability mass function, non-zero entries get boosted up. Using
the technique of sparsity we put zero weights to many common events. In this way, we provide
importance to the rare events. Then similar to importance sampling we down-scale the proposal
distribution. This we achieve by putting a distribution over the proportion vectors.

4.2.1 ADDITIONAL PROPOSAL DISTRIBUTION FOR RARE EVENTS

Although a proportion vector is sufficient to model all the events in an image, we propose to use
additional proportion vectors such as instead of θi for xi, now we have {θih}Hh=1. We want one of
the proportion vectors to put focus on the rare event. So we induce sparsity in the proportion vectors.
If θih ∼ Dirichlet(α1K), then we sample binary random variables ξihk ∼ Bernoulli(πk), and
enforce sparsity in the proportion vectors as follows:

K∑
k=1

θihk ξihk = 1,∀i, h; θihk ξihk ≥ 0, ξihk ∈ {0, 1}, ∀k, (2)

where a.b denotes element wise product of two vectors of the same length. The above construction
can be represented as θih ∼ Dirichlet(α1K .ξih). Similarly we induce sparsity in the event vectors
that is proportion over visual words for an event:

V∑
v=1

βkv φkv = 1,∀k; βkv φkv ≥ 0, φkv ∈ {0, 1}, ∀k, (3)

or alternatively βk ∼ Dirichlet(κ1V .φk). Thus not all events put weight on all visual words, and
effectively events are more likely to be represented by distinguishing visual words.
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4.3 PROPOSED HIERARCHICAL BAYESIAN MODEL

Depending on the above constructions, we define the hierarchical Bayesian model as below:

N∏
i=1

(
P (ηi|ζ)

H∏
h=1

P (θih|α)
) ( M∏

j=1

P (xij |zij , β)P (zij |{θih}, {ξih}, gij)P (gij |ηi)
)
, (4)

where zij denotes the index of event to draw the patch xij , gij is the index of the proportion vector
over events {θih}. Thus, gij acts like a selection random variable and can be sampled from a
discrete distribution with parameter ηi. The rest of the model is quite similar to the topic models.
The complete generative process is given in Algorithm 1. The model has some resemblance with the
subtle topic models (STM) Das et al. (2013), where they have also used multiple proportions over
topics in a document to discover subtly manifested software concerns.

4.3.1 POSTERIOR INFERENCE WITH SPARSITY AND IMPORTANCE

We use the collapsed Gibbs sampling approach (Porteous et al., 2008) to sample the latent variables
using the posterior conditional distribution. We will use the notation for counts as follows. i is the
image index, k is the event index and j is the image patch position index. n represents the counting
variable and indices are put in the subscript, where “.” represents marginalization. φkv denotes a
binary value of visual word v index by event k. Inference of ξ and g are required to assign events.
The notation table can be found in the appendix A.1. The detailed sampling of ξ and g can be found
in the appendix A.2. Mapping between visual words and patches is mentioned in the appendix
section A.4. The conditional probability of event assignment of patch j at event k in image i can be
expressed as:

p(zij = k|x, z−ij) ∝ p(xij |zij = k, z−ij , φ, κ)p(zij = k|zi,−j , gi, ξi, α)

=
φkjκ + n−ij...kj∑
v φkvκ + n−ij...k︸ ︷︷ ︸

β

ξigijkα + n−iji..gijk∑
k ξigijkα + n−iji..gij︸ ︷︷ ︸

θ

(5)

where β is a event-visual word distribution of size K × V and θ is an image-event distribution of
size N ×H ×K.

4.4 GUIDED MCMC FOR RARE EVENT DETECTION

Recall that, our objective is to infer θ̂i = P (θi|{xij}). Here utilizing the conjugacy between
Dirichlet and multinomial, we can marginalize out {θi} and other continuous random variables
and build the Markov chain only the space of discrete random variables such as {zij}. This scheme
is called collapsed sampling and in general lead to faster convergence. Then after the convergence
is achieved, we can retrieve back {θi} and other continuous random variables again utilizing the
conjugacy property between Dirichlet and multinomial, that is if θi ∼ Dirichlet(α1K), then

θ̂i ∼ Dirichlet(α+ ci1, α+ ci2, . . . , α+ ciK), cil =

m∑
j=1

I[zij = l], (6)

where I[] is the indicator function. Note that, as P (zij = l) = θil, the index in the proportion vector
is meaningful. That is, if r is the index of the rare event E , then P (zij = r) = θir. Further notice
that, zij = r means that xij belongs to the rare event. In other words rare event gets manifested in
the ith image. Therefore, we can say that yi = 1 if θ̂ir > δ if we know that r is the index of the rare
event.

Here comes our key contribution, that instead of starting the Markov chain at a random initial point,
we start at a point where we set r as the index of the rare event a priori. Due to the structure
of the model, the position remains unchanged throughout the MCMC procedure. Hence, after the
convergence when we get θ̂ir we can easily get the value of yi or label xi if a rare event is present or
not. We call this as guided MCMC and notice that, we do not use any label information throughout
the learning process to classify images.

6
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Figure 2: The working pipeline of our proposed GMBM model. The guidance is provided to MCMC
for Bayesian Models that give importance to rare events in images while learning the image-event
distribution.

We are providing guidance to the sampling process to detect rare events. Recall that, the idea is to
fix the index of the rare event as r a priori. Then we start the Markov chain with that information.
We do that by carefully initializing the Markov chain instead of random initialization. We will set
event r as a rare event index in {φk}Kk=1. It can be expressed as follows:

∀ v ∈ V, φrv =

{
1, if v is a rare visual word
0, otherwise

(7)

For non-rare event indexes, we have two ways to fill φkv , first case is either we can put 1 for all
entries, or the second case is to put 1 only in the place of non-rare visual words indexes. After
setting up the guidance φkv this will remain fixed throughout the finding of posterior inference.

4.5 DECISION PROCESS AND ANALYSIS

The decision process is described in the Algorithm 3. In order to ensure the method to work, we
have to ensure two things: (i) the rare event index as prescribed in the beginning remains the same
at the time of making the decision, (ii) we can correctly assign weight for the rare events in one of
the proportion vectors.

We need to check P (E|xi) and if it is above a threshold δ we claim the presence of rare event in the
ith image. Given the hierarchical Bayesian modeling setup in Eq. 4, we use θ̂i as the representation
for the ith image. We compute θ̂i using Eq. 6 and Eq. 5. Now from Eq. 5 note that the index of
the event is passed across the iterations through the count variables which are global throughout the
lifetime of the sampling process starting from the initialization. Hence, the index of the rare event
once set to r will remain at r even after the chain converges or iteration terminates. Given that,
we only need to ensure that if a rare event is present then we are able to capture that, and we can
compute that as follows:

P (E ∈ xi) ≈ P (E ∈ {θ̂ih}) =

H∑
h=1

θ̂ihr (8)

Note that P (zij = r) = 0 if gij = h and ξihr = 0. Due to the same reason it is possible that
gij = h, ξihk = 0 for all k 6= r, then P (zij = r) = 1. Thus even if r denotes the index of rare
event it can have high probability. In such cases, other proportion vectors {θil, l 6= h} can model
the normal events. We have also experimentally shown that the event-visual words φ is helping to
find rare event in event-visual words distribution in Table 6, 7, and 8 respectively under the appendix
section. The working pipeline diagram of our proposed GMBM model can be seen in Figure 2.

We can analyse the method from a different perspective as follows. Now since we have set rth event
as a rare event in φkv then to determine the conditional probability of xij patch given event rth is as
follows:

p(xij |zij = r, z−ij , φ, κ) =

∫
dβ p(xij |zij = r, β)p(β|x−ij , z−ij , φ, κ) =

φrvκ + n−ij...rv∑
u φruκ + n−ij...r

.

Notice that, if φrv = 0 in setting the guidance, xij can not contain visual word v attributing to event
r. Whereas, if φrv = 1 i.e. v is a characteristic visual word for the rare event, then xij containing
the visual word v can be claimed to contain the rare event.

7
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Table 1: Summary of datasets.

Image Datasets Burst Dataset Synthetic Burst Datasets(4) Fruit Datasets(2) Aeroplane-sky DS

Classes Burst(B),
Non-Burst(NB)

Burst(B),
Non-Burst(NB)

Huckleberry(Hu), Red Apple(Ap),
Banana(Ba), Watermelon(Wa)

Aeroplane(A),
Sky(S)

Class
Counts

{B:50 images,
NB:50 images}

DS 1{B:475, NB:525}
DS 2{B:259, NB:741}
DS 3{B:90, NB:910}
DS 4{B:25, NB:975}

DS 1{Hu:490, Ap:492, Ba:490, Wa:475}
DS 2{Hu:50, Ap:492, Ba:490, Wa:475} {A:25,S:475}
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Figure 3: Summary of Precision, Recall, F1 score on four synthetic Burst datasets of Burst class.
Here we have shown that how all models are performing when Burst class ratio is reduced from
50% to 2.5% in a total of 1000 images. As the target class becomes very rare, GMBM becomes way
better than the other models.

5 EXPERIMENTS

Baselines. We have chosen current state-of-art unsupervised image classification methods which
can work without labels. We have used the SCAN model as our first baseline, RUC model as our
second baseline, NNM model as our third baseline. The working of SCAN, RUC, and NNM models
is already discussed under the related work section 3. We have also used our own heuristic method
as a baseline for the original Burst dataset.

Datasets and Experimental Settings. We have used burst dataset2, four synthetic burst datasets,
two fruit datasets using famous fruits360 dataset (Mures, an & Oltean, 2018) and lastly aeroplane-
sky dataset made from pascal-voc 2007 dataset (Everingham et al., 2007) and synthetically generated
475 blue sky images. The summary of all datasets can be found in Table 1. The detailed generative
process for synthetic burst can be found in Algorithm 5. Dataset descriptions in detail can be found in
the appendix section A.5. The detailed experimental setup of our model and baselines are mentioned
in the appendix section A.6.

Guidance in the proposed GMBM technique. In the burst dataset, the guidance for Non-Burst
event index is given by filling 1 in all indexes and for Burst event index, we have filled 1 only in
place of rare visual words indexes i.e red, yellow, and orange color indexes. In the fruit dataset, the
guidance is given for each fruit for example in huckleberry event index we have set 1 for blue color
index as rare visual word and rest we have filled 0 in all color indexes of huckleberry event index.
Similarly for other fruits we did the same procedure. In the aeroplane-sky dataset, the guidance for
sky-event is given by filling 1 in non-rare visual word index i.e. sky blue color and for aeroplane
event, we have filled 1 in all rare visual words indexes i.e white, black, and grey. More detailed in
guidance part can be found in Table 6, 7, and 8 respectively under the appendix section.

5.1 RESULTS

Detecting bursts as rare events. As we have discussed, this work is motivated with the problem of
detection of solar bursts which is considered as a hard problem, we compare the proposed technique
GMBM with the state of the art methods in that task. Table 2 shows that GMBM is significantly
superior.

2source: http://rac.ncra.tifr.res.in/da/oc/oecda.html
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Table 2: Comparison on detection of Solar bursts as rare events. GMBM performed best among all
models. Even our heuristic method based on color contour detection is not far behind.

Burst class
Method Precision Recall F1 score Accuracy

Color Contour Detection 0.74 0.88 0.80 79%
SCAN 0.70 0.32 0.44 59%
RUC 0.65 0.90 0.76 71%
NNM 0.93 0.54 0.68 75%

GMBM 0.97 0.90 0.93 94%

Table 3: Classification performance on fruits dataset when Huckleberry class is made as a rare class.
Precision, Recall, and F1 score are mentioned for the Huckleberry class and Overall Accuracy is
mentioned for all four classes.

Dataset Class Model Precision Recall F1 Score Accuracy
Fruit DS 1 Huckleberry SCAN 1.00 1.00 1.00 74%
(balanced (490 images) RUC 1.00 1.00 1.00 74%
dataset) NNM 1.00 0.99 0.99 99%

GMBM 1.00 1.00 1.00 83%
Fruit DS 2 Huckleberry SCAN 0.18 0.9 0.29 62%
(imbalanced (50 images) RUC 0.00 0.00 0.00 44%

dataset) NNM 0.31 0.78 0.45 90%
GMBM 1.00 1.00 1.00 78%

Table 4: Classification performance on Aeroplane-Sky dataset. Aeroplane is the rare event in this
case.

Aeroplane in sky Sky
Model Precision Recall F1 Score Precision Recall F1 Score Accuracy
SCAN 0.14 0.80 0.24 0.99 0.74 0.84 74.0%
RUC 1.00 0.84 0.91 0.99 1.00 1.00 99.2%
NNM 0.40 1.00 0.57 1.00 0.92 0.96 92.6%

GMBM 1.00 0.96 0.98 1.00 1.00 1.00 99.8%

Varying the Degree of Rarity. We wanted to compare GMBM with the state of the art by varying
the percentage of burst images in dataset. For this purpose, we have synthetically (see Algorithm
5) created solar dataset with varied number of bursts. Figure 3 shows that as the degree of rarity
increases GMBM outperforms the state of the art methods.

Fruit and Aeroplane-Sky Datasets. We have also experimented on simple datasets like fruits and
aeroplane-sky datasets to perform unsupervised image classification. The results are shown in Table
3 and Table 4 respectively. These two experiment shows that our model can be applied to a similar
kind of above datasets for the task of unsupervised image classification.

It can be observed that GMBM is particularly better than other models in case of detecting rare
events, as in the case of Huckleberry class in Table 3. Aeroplane being the rare event, GMBM gives
very high F1 score compared to the baselines.

6 CONCLUSION

We have proposed an unsupervised method to detect rare events in images by giving guidance to
MCMC for Bayesian models. The proposed model GMBM is outperforming the current state-of-art
unsupervised image classification in terms of F1 score for a rare class as well as we have also shown
that our model can be applied to simple datasets. For future work, we like to explore how to make
optimal visual words to make our model more generalize for any image dataset to detect rare events.
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A APPENDIX

A.1 NOTATIONS TABLE

Symbol Description
N , K, V number of images, number of events, and number of visual words respectively.
H number of image levels.
α, κ, ζ hyper-parameters of Dirichlet distributions.
ηi hyper-parameter of multinomial distribution.
% hyper-parameter of beta distribution.
ψv, πk hyper-parameters of bernoulli distribution.
σ, ω hyper-parameters of dirichlet distribution of size H-1.
θ N ×H ×K matrix indicating image-event distribution.
β K × V matrix indicating event-visual word distribution.
φ binary random vector of event-visual word.
ξih denotes binary random vectors.
δ threshold.
− Super-script denotes that in all counts the current patch is excluded.
n−ij...kj number of times patch type j is associated with event k.
n−ij...k number of times event k is used in the whole image dataset.
n−iji.gijk.

number of times event k and gij are used.
n−iji.gij..

number of times gij is used.
n−ijihk.. number of times event vector indexed by k is used.
n−iji.h.. number of visual words in the image level h.

A.2 SAMPLING

Sampling of ξ can be defined as follows:

p(ξihk = 1|z, ξ−ihk) ∝ p(zi|ξihk = 1, ξ−ihk)p(ξihk = 1|ξ−ihk)

∝
Γ(
∑
s6=k ξihsα + α)

Γ(
∑
s6=k ξihsα + α + n−iji.h..)

∑
w

∑
l ξwlk + 1∑

w

∑
l 1 + 1 + %

(9)

Similarly we can sample φ.

Sampling of g: The posterior probability of selecting a event vector for a patch can be defined as
follows:

p(gij = h|g−ij , z, ξih) ∝ p(zij |gij = h, z−ij , ξih)p(gij = h|g−ij)

=
ξihzijα + n−iji.hzij .∑
k ξihkα + n−iji.h..

p(gij = h|g−ij) (10)

A.3 ALGORITHMS

We have mentioned our heuristic algorithm color contour detection defined in Algorithm 2. Predic-
tion algorithm for rare events detection in images defined in Algorithm 3 and for multi-class image
classification is defined in Algorithm 4. The generative process of synthetic burst data is defined in
Algorithm 5.

A.4 MAPPING BETWEEN VISUAL WORDS AND PATCHES

We have considered color pixel values as a bag of visual words V for our Guided MCMC for
Bayesian Models. For the sake of simplicity let us assume that a patch j is of size S x T . Now
we need to compute euclidean distance between each pixel value present in patch j and all visual
words present in bag of visual words V . Next we would assign visual word index v to patch j based

11
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Algorithm 2 Heuristic algorithm to detect solar bursts in solar radio images sans labels.
Input: Area Threshold,M
Output: Predicted labels

1: procedure COLOR CONTOUR DETECTION
2: Declare Low and High threshold of Red color.
3: Initialize Mask= Convert RGB to HSV using low and high threshold of red color.
4: for images m = 1 to M do:
5: // Find all contours by applying Mask into image m.
6: if any contour area ≥ Area Threshold then:
7: Predict current image as Burst
8: else
9: Predict current image as Non-Burst

10: end if
11: end for
12: end procedure

Algorithm 3 Prediction algorithm for rare events detection in images using our method.
Input: θ,H, r, δ,M
Output: Predicted labels

1: procedure PREDICT
2: for images i = 1 to M do:
3: Initialize Pred label=’Non-Rare Class’
4: for levels h=1,2,...H do:
5: prob val = θ[i][h][r]
6: if prob val ≥ δ then:
7: Update Pred label=’Rare Class’
8: break
9: end if

10: end for
11: Print Pred label
12: end for
13: end procedure

Algorithm 4 Prediction algorithm for unsupervised multi-class image classification using our
method.

Input: θ,H,K,M
Output: Predicted labels

1: procedure PREDICT
2: for images m = 1 to M do:
3: Declare prob val vector as a zero vector of size 1 x K.
4: for levels h=1,2,...H do:
5: for events k = 1 to K do:
6: prob val vector [k]+ = θ[m] [j] [k]
7: end for
8: end for
9: Pred label class index=arg max(prob val vector)

10: Print: Pred label class index
11: end for
12: end procedure

12
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Algorithm 5 Generative process for synthetic solar radio image generation. A palette V represents
size of colors. A patch K represents section of image region. We will defined an image size as R
number of rows and C no of columns. We will use alpha and beta priors of beta distribution and set
them both as 1. We will definedN as number of image generation happened so far. We will defined y
as number of Burst images generated so far. Burst Probability(BRYO)=[0.1,0.5,0.2,0.2],Non-Burst
Probability(BRYO)=[0.98,0.007,0.006,0.007].We will defined dictionary of colors(color palette)
which contains Blue,Red,Yellow and Orange(BRYO) which will act like a vocabulary.

1: Choose Ic(Image Category) ∼ Beta(α prior + y, β prior +N − y)
2: If Ic is Burst then increment y and do following for all columns in RC image generation:

1. Initial Burst prob success set to 0.3
2. Choose Column Category ∼ Bernouli(Burst prob success)

(a) If Column Category is Burst Then
• Update Burst prob success− = 0.2
• Do following
i. Choose patch ∼ Random(Burst Palette Probab Dis)

ii. For every twenty rows update Burst Palette Probab Dis = [B + 0.18, R −
0.1, Y − 0.04, O − 0.04]

(b) else
• Burst prob success+=0.1
• Do following
i. Choose patch ∼ Random(Non Burst Palette Probab Dis)
. Note: we set lower bound of Burst prob success=0 and above updated probabity

will be used for next Column category sample.
3: If Ic is Non-Burst do following for all columns

1. Choose patch ∼ Random(Non Burst Palette Probab Dis)

4: update N+=1

on the overall minimum distance of all visual words. We can also add some percentage threshold t
which tells if t% of pixel values are closed to visual word index v then assign that particular patch j
to v.

A.5 DATASETS DESCRIPTION

Solar Radio Burst Image Dataset Description: There are two classes in solar radio spectrograph.
1)Burst class and 2)Non-Burst class. Each RGB image is the size of 1273width x 833height after
removing the axis of time and frequency. This dataset contains 50 Burst and 50 Non-Burst images.

Synthetic Burst dataset Description: We have tried to generate synthetic solar radio Burst
and Non-Burst images. The detailed generative process can be found in Algorithm 5 in the appendix
section. Samples of original as well as synthetic Burst and Non-Burst images can be seen in Figure
4 and Figure 5 in the appendix section A.7. We have generated four synthetic Burst datasets each
containing 1000 color images of size 1200width x 800height. 1)Syn Burst Data 1 contains 475
Burst and 525 Non-Burst images. 2)Syn Burst Data 2 contains 259 Burst and 741 Non-Burst
images. 3)Syn Burst Data 3 contains 90 Burst and 910 Non-Burst images. 4)Syn Burst Data 4
contains 25 Burst and 975 Non-Burst images which mean only 2.5% of images in this dataset
belong to Burst class. So that we can evaluate all baselines models as well as our model to measure
how they are performing under the degree of high Burst rareness in the synthetic datasets. Reasons
for synthetic data generation: There are two main reasons for synthetic data generation. The
first reason is to challenge our model to check whether it will be able to detect Burst if more noise
signals are present in synthetic Burst images, or what happens when there is no Burst at all only
noise signals are present and also to check whether our model to detect different shape variation in
synthetic Burst images. The second reason is that since we have run our GSTM model only on 100
images because of the unavailability of labeled data.

Fruits Dataset Description: We have also used a simple dataset like the Fruits dataset to
check if our model can be applied to perform unsupervised image classification or not. We have
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created two fruit datasets 1)Fruit DS 1 has 1947 images and 2)Fruit DS 2 has 1507 images, using
famous fruits360 dataset (Mures, an & Oltean, 2018). In Fruit DS 1 we have used four fruits
category Huckleberry(490 images),Red Apple(492 images),Banana(490 images),Watermelon(475
images) . Each image size is 100x100. In Fruit DS 2, we have used the same number of Apple,
Banana, Watermelon images from Fruit DS 1 where the only change is that we have made the
huckleberry class rare by reducing no of images from 490 to 50.

Aeroplane-Sky Dataset Description: We wanted to test our model on whether an object is
present or not in an image for that we have created aeroplane in air dataset. We have randomly
selected 25 images of aeroplanes where aeroplane present in the air from pascal-voc 2007 dataset
(Everingham et al., 2007) and synthetically generated 475 clear blue sky images of size 100× 100.

A.6 EXPERIMENTAL SETUP

A.6.1 EXPERIMENTAL SETTINGS FOR OUR MODEL

We have used the same hyper-parameters settings for all datasets only the number of events is dif-
ferent. α is a Dirichlet hyper parameter of per image-event distribution is set to 0.1. κ is a Dirichlet
hyper parameter of per event-visual word distribution is set to 0.5. For Burst and Synthetic Burst
dataset, we have computed the frequency of the values of each pixel in the entire dataset, and based
on that we have selected four different pixel values of colors Blue, Red, Yellow, and Orange. In
this case, rare visual words are Red, Yellow, and Orange where a non-rare visual word is Blue. The
number of events we have set is 10 and the guidance event index is set to 10th index. δ value was
set to 0.001 and we have used Algorithm 3 for prediction. In the fruit dataset, there are four fruits
categories and we have manually set universal color values for each fruit for example if the fruit
category is red apple we have used [255, 0, 0] as a visual word for the red apple category and so on.
The number of events we have set is 5. Visual words for this dataset are Red, Yellow, Blue, Green
and White pixel values. White was chosen as non-rare visual word because it was present as back-
ground color. Now for each fruit category, we have set its own event which means for each event k
we have set 1 in φ if visal word v belongs to event k and rest all 0 . We have used Algorithm 4 for
prediction. For aeroplane dataset, we have considered White, Grey, and Black pixel values as rare
visual words and Sky-blue pixel value as non-rare visual word, the number of events we have set is
2 and the guidance event index is set to 2nd. δ value was set to 0.001 and we have used Algorithm
3 for prediction.

A.6.2 BASELINES EXPERIMENTAL SETTINGS

We have used the publicly available implementation of all three baselines algorithms, with default
hyper-parameters settings mostly and augmentation strategy is simclr for all cases. SCAN was
used as an off-the-shelf clustering algorithm for RUC. In the original Burst dataset comparison, for
SCAN(clustering and self-labeling step we have kept the same batch and augment size), RUC and
NNM models we have used batch size as 10, augment size as 96, and confidence threshold as 0.5. In
fruit dataset comparison, for SCAN model we have used augment size 96 batch size 11 in clustering
step and batch size 137 in self-labeling step, confidence threshold is 0.6, for RUC model batch size
is 137 augment size set to 32 confidence threshold is 0.99, For NNM model batch size, is 11 and
augment size is 96. In aeroplane dataset case, for SCAN, NNM models we have used batch size as
50, augment size as 96, and confidence threshold as 0.99 in SCAN, and RUC model we have used
batch as 25 and confidence threshold as 0.75. In the Syn Burst Data 1, for SCAN model we have
used batch size is 10, augment size is 96 and confidence threshold set to 0.5. for RUC model we
have used batch size as 10 and confidence threshold as 0.5 and augment size as 70. for NNM model
we have used batch size as 10 and augment size as 70. In the Syn Burst Data 2, for SCAN model
we have used batch size is 100 in clustering step and in self labeling step batch size is set to 250,
augment size is 70 and confidence threshold set to 0.6. for RUC model we have used batch size as
10 and confidence threshold as 0.6 and augment size as 70. for NNM model we have used batch
size as 10 and augment size as 70. In the Syn Burst Data 3, for SCAN model we have used batch
size is 100 in clustering step and in self labeling step batch size is set to 250, augment size is 70
and confidence threshold set to 0.75. for RUC model we have used batch size as 10 and confidence
threshold as 0.75 and augment size as 70. for NNM model we have used batch size as 10 and
augment size as 70. In the Syn Burst Data 4, for SCAN model we have used batch size is 10 in
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Burst Burst Non-Burst Non-Burst

Figure 4: Samples of four solar radio images are shown here. The first two images contains Burst
and last two images are Non-Burst which contains only noise signals.

clustering step and in self labeling step batch size is set to 10, augment size is 96 and confidence
threshold set to 0.75. for RUC model we have used batch size as 10 and confidence threshold as 0.5
and augment size as 70. for NNM model we have used batch size as 10 and augment size as 70.

A.7 VISUALS

The events generated by Guided MCMC for Sparse Bayesian Models can be seen in Table 5. We
have shown samples for original burst dataset in Figure 4 and samples for synthetic burst dataset can
be seen in Figure 5. The event-visual words φ used as guidance on synthetic burst, aeroplane-sky,
and fruit datasets are shown in Table 6, 7, 8 respectively.

Table 5: Events Generated by Guided MCMC for Sparse Bayesian Models in which top visual words
are shown as background colors with their corresponding probability values. a) Events generated on
synthetic burst dataset, here we have shown b) Events generated on aeroplane-sky dataset, c) Events
generated on fruit dataset.

Non-Burst
Event

Burst 
Event

0.3492 0.1966
0.2895 0.1801
0.2146 0.1562
0.1377 0.1391
0.0011 0.0555
0.0010 0.0486
0.0009 0.0448
0.0008 0.0383
0.0008 0.0377
0.0007 0.0372

Sky Event Aeroplane Event
1 0.7807
0 0.1954
0 0.0238
0 0

a)

b)

c)

Huckleberry
Event

Apple Red
Event

Banana
Event

Watermelon
Event

Other
Event

1 1 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
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Synthetic Burst Synthetic Burst Synthetic Non-Burst Synthetic Non-Burst

Figure 5: Samples of four synthetic solar radio images are shown here. The first two images contains
Burst and last two images are Non-Burst which contains only noise signals.

Table 6: Events generated on synthetic Burst dataset by providing a) event-visual φ guidance to our
model which will generate b) event-visual words distribution. In the guidance part we have set index
0 as Non-Burst event and index 1 as Burst-event. For Non-Burst event we have filled 1 in all indexes
and for Burst event, we have filled 1 only in place of rare visual words indexes i.e red, yellow, and
orange. Notice that the index 1 in guidance of event-visual φ and event-visual words distribution
corresponds to Burst event. Now using index 1 in image-event distribution can help to detect bursts
events in solar radio images.

Index 0 Index 1

Non-Burst
Event

Burst 
Event

1 0
1 0
1 0
1 0
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

Visual 
Words

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Index 0 Index 1

Non-Burst
Event

Burst 
Event

0.3492 0
0.2895 0
0.2146 0
0.1377 0
0.0006 0.1966
0.0005 0.1801
0.0010 0.1562
0.0011 0.1391
0.0008 0.0555
0.0008 0.0486
0.0009 0.0448
0.0006 0.0383
0.0002 0.0377
0.0004 0.0372
0.0005 0.0347
0.0007 0.0305

a) Guidance b) Event-Visual
words distribution
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Table 7: Events generated on aeroplane-sky dataset by providing a) event-visual φ guidance to our
model which will generate b) event-visual words distribution. In the guidance part we have set index
0 as Sky event and index 1 as aeroplane-event. For sky-event we have filled 1 in non-rare visual word
index i.e. sky blue color and for aeroplane event, we have filled 1 in all rare visual words indexes i.e
white, black, and grey. Notice that the index 1 in guidance of event-visual φ and event-visual words
distribution corresponds to aeroplane event. Now using index 1 in image-event distribution can help
to identify aeroplane is present in images or not.

Index 0 Index 1

Sky  
Event

Aeroplane
Event

1 0
0 1
0 1
0 1

Visual 
Words

1
2
3
4

Index 0 Index 1

Sky  
Event

Aeroplane
Event

1 0
0 0.0238
0 0.1954
0 0.7807

a) Guidance b) Event-Visual
words distribution

Table 8: Events generated on fruit dataset by providing a) event-visual φ guidance to our model
which will generate b) event-visual words distribution. In the guidance part we have set fruit cate-
gory for each index. for example in index 0 we have set 1 to blue as rare visual word for huckleberry
class and rest we have filled 0 in all indexes of huckleberry class. Similarly for other fruits we did
the same procedure. Notice that the each index in guidance of event-visual φ and event-visual words
distribution corresponds to same fruit event. Now using image-event distribution we can identify
which image belongs to a particular fruit class.

Visual 
Words

1

2

3

4

Index 0 Index 1 Index 2 Index 3

Huckleberry
Event

Apple Red
Event

Banana
Event

Watermelon
Event

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Index 0 Index 1 Index 2 Index 3

Huckleberry
Event

Apple Red
Event

Banana
Event

Watermelon
Event

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

a) Guidance b) Event-Visual
words distribution
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