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Abstract

Compositional Zero-Shot Learning (CZSL) aims to recognize compositions of
objects and states in images, generalizing to unseen compositions of objects and
states at test time. Recent works tackled this problem effectively by using side
information (e.g., word embeddings) together with either consistency constraints
or specific network designs modeling the relationships between objects, states,
compositions, and visual features. In this work, we take a step back, and we revisit
the simplest baseline for this task, i.e., Visual Product (VisProd). VisProd considers
CZSL as a multi-task problem, predicting objects and states separately. Despite its
appealing simplicity, this baseline showed low performance in early CZSL studies.
Here we identify the two main reasons behind such unimpressive initial results:
network capacity and bias on the seen classes. We show that simple modifications
to the object and state predictors allow the model to achieve either comparable
or superior results w.r.t. the recent state of the art in both the open-world and
closed-world CZSL settings on three different benchmarks.

1 Introduction

Compositional Zero-Shot Learning (CZSL) is the task of predicting the object (e.g. tomato, dog, car)
and the state (e.g. wet, dry, pureed) present in a given input image. The main challenge of CZSL
stems from the inherent distribution-shift that occurs between training and test data. In fact, the
training set contains only a subset of the existing state-object compositions and unseen compositions
of the same objects and states appear at test time. This means that the appearance of an object may
drastically change from training to test based on the associated states (e.g. wet vs pureed tomato) as
well as the effect of a state may change depending on the associated objects (e.g. wet dog vs car).

Recently, multiple works tackled this problem from different perspectives, usually exploiting side
information to initialize state and object representations [9, 14]. Examples are modeling attributes
as operators modifying object representations [12, 6], predicting embeddings for each composition
through simple multi-layer perceptrons [10, 8] or graph convolutions [11, 5], or modeling the
dependency between object and state representations from a causal perspective [1].

One may wonder what happens if we get rid of specific loss functions or architectural designs and
predict objects and states independently. This simple baseline would both reduce training complexity
and eliminate the need for side information. Unfortunately, this method named Visual Product
(VisProd) performed worse than early CZSL methods [10, 12] and hence was neglected in recent
works.
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Figure 1: Visual Product. Previous works (left) implemented Visual Product with single-layer linear
classifiers for objects and states, and did not account for the natural bias the model has towards
predicting seen compositions. Our model (right) uses deeper non-linear object and state classifiers,
and tackles the bias by subtracting a scalar from the scores of seen compositions.

Despite these results, we revisit VisProd, and we find that its performance is comparable to the
recent state-of-the-art methods [8, 11] and far superior to the performance of the initial works in this
field [10, 12, 15, 6] on various CZSL settings and benchmarks. Investigating this further, we find
two significant reasons for this discrepancy. The first is that early VisProd models lacked enough
architecture capacity to learn the objects and state predictors, something crucial for its effectiveness.
The second reason pertains to the evaluation of CZSL models. The initial works directly measured
the performance on both seen and unseen pairs without taking into account the bias towards seen
compositions, as highlighted in [15]. If we take this bias into account and we adjust VisProd scores,
its accuracy on unseen compositions is on par with the state of the art. We believe this work provides
evidence to the community for re-considering VisProd as a competitive baseline for CZSL.

2 Related Work

Compositional zero-shot learning aims to recognize novel compositions of seen primitives. More
specifically, we aim to recognize compositions of states and objects in images, even unseen during
training. The main challenge of this setting is modeling how states modify objects, generalizing this
capability to unseen compositions. Previous works have mainly focused on modeling the interactions
between states and objects. LabelEmbed [10] uses an MLP to predict the parameters of the classifier
of a state-object composition given the two classifiers (or embeddings) of its constituent primitives.
Task-modular networks [15], follows a similar idea, using a shared ompositional classifier whose
connections are gated, depending on the input primitives. Other works proposed to treat states as
operators modifying object embeddings. In this direction, [12] models states as matrices and objects as
vectors, learning state matrices that preserve compositional principles (e.g. commutativity, inversion).
Similarly, [6] predicts uses networks to add or remove states from objects/image embeddings,
imposing properties such as symmetry and invertibility to the state operators.

Differently from these works, [1] tackles CZSL from a causality perspective, learning disentangled
objects and states representations. [8] proposes the OW-CZSL setting, where there are no prior on the
unseen compositions available at test time, and the full compositional space is considered as output
space of the model, tackling these problems by modeling the feasibility of each composition. Finally,
more recent approaches exploit graph convolutional networks [5] to model the interactions between
state, objects and their compositions [11]. In the graph, state and objects are connected if they take
part in a composition, and compositional nodes are connected with the constituent primitives [11]. In
[7] this approach is revised for the OW-CZSL, modeling the feasibility of each composition.

In this work, we take a different direction, revisiting the Visual Product (VisProd) baseline that
independtly predicts objects and states for CZSL. Despite the lack of any compositionality-specific
design, we show that VisProd is effective strategy not only for the standard CZSL, but also for the
more challenging OW-CZSL setting.

3 Method

Problem Formulation: The CZSL problem can be formalized as follows. Let T = {(x, y)|x ∈
X, y ∈ Ys} be a training set, where x denotes an image in the space X and y is its label in the set of
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seen compositions Ys. Each label is a tuple y = (s, o) of a state s ∈ S and an object o ∈ O with S
and O being the set of states and objects respectively. The goal of CZSL is to learn the parameters θ
of a function fθ that can assign to an image one of the unseen compositions in a set Yt ⊆ Y , with
Y being the set of all possible compositions, i.e. Y = S ×O. The set Yt depends on the particular
CZSL setting. In standard CZSL [10], we have Yt = Yu with Yu being a set of unseen compositions,
i.e. Yu ∩ Ys = ∅. In generalized CZSL [15] we have both seen and unseen compositions at test time,
i.e. Yt = Ys ∪ Yu. More recently, in [8] the problem of open-world CZSL (OW-CZSL) has been
studied, where the set of unseen pairs Yu is not known apriori to the model during inference. In this
setting, the output space contains of all possible compositions, i.e. Yt = Y .

Visual Product: Given an image x, we want to model the joint probability distribution p(s, o|x),
from the partial view given by T . The simplifying assumption made by visual product is:

p(s, o|x) ∼ p(s|x) · p(o|x).

With this formulation, we assume state and objects to be independent. This contrasts with the main
idea of recent works, explicitly modeling the relationship between objects and states (e.g. [6, 11]).
Additionally, we are completely disregarding side information (e.g. word embeddings), tackling the
task by relying solely on the visual cues.

Practically, given an image x, we extract its feature representation z = ω(x) through a function
ω, mapping images into a feature space Z, i.e. ω : X → Z. We then have an object classifier
φo : Z → ∆O that assigns z to a vector in the probability simplex ∆O, spanning all object categories.
Similarly, we have another classifier that maps z to a probability over the states, i.e. φs : Z → ∆S .
During training, we minimize the cross-entropy loss for both the object and state predictions:

min
θ

∑
(x,(s,o))∈T

`obj + `state = min
θ

∑
(x,(s,o))∈T

`CE(φo(ω(x)), o) + `CE(φs(ω(x)), s).

During inference, our prediction function is

fθ(x) = arg max
y∈Yt

φo(w(x)) · φs(w(x))− 1y∈Ys
βs, (1)

with Yt being the target output space (e.g. Yu for original CZSL, Ys ∪ Yu for generalized CZSL,
Y for OW-CZSL). Note that, for simplicity, θ contains the parameters of all functions (i.e. ω, φo,
φs). In Eq. 1, βs is a scalar applied only on the scores of seen compositions, to take into account the
inherent bias that models have toward them. Note that this hyperparameter is used during evaluation
in all recent works [15, 11, 8, 6] and is also standard in generalized zero-shot learning [17]. We
implement ω as a Convolutional Neural Network and φo, φs as Multi-Layer Perceptrons (MLP).
To stay consistent with prior work, we refer to the model with φo and φs implemented as a linear
classifier as VisProd, while with VisProd++ when φo and φs have multiple fully connected layers.

4 Experiments

Implementation Details: We perform experiments on UT-Zappos [18], MIT-States [4] and the
CGQA [11] datasets on both the open and closed-world settings. We compare our results against
Attributes as Operators (AoP) [12], LabelEmbed (LE+) [10], Task Modular Networks (TMN) [15],
Compositional Graph Embeddings (CGE) [11] as well as Compositional Cosine Classifier (Comp-
Cos) [8]. We use a ResNet18 backbone [3] for extracting the image features. For VisProd++ we use a
3-layer MLP for the object and state classifiers. This architecture is very similar to the one used in
both CGE [11] and CompCos [8] which employs also LayerNorm [2], Dropout [16] and ReLU [13].
As done in CGE [11], we benchmark the performance of Visual Product with the frozen ResNet
backbone as well as end-to-end training. We refer to the version of Visual Product with a frozen
backbone as VisProdff and VisProdff++. All results are the average of 5 independent runs for VisProd,
while taken from [11] for the other methods. For C-GQA, we take the results and the updated splits
of [7].

4.1 Comparison with the state of the art

Closed-World Results The results for the closed-world setting are presented in Table 1. On
MIT-States, the best performing Visual Product model (VisProd++), achieves better performance
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Method MIT-States UT Zappos C-GQA
S U HM AUC S U HM AUC S U HM AUC

AoP [12] 14.3 17.4 9.9 1.6 59.8 54.2 40.8 25.9 11.8 3.9 2.9 0.3
LE+ [10] 15.0 20.1 10.7 2.0 53.0 61.9 41.0 25.7 16.1 5.0 5.3 0.6
TMN [15] 20.2 20.1 13.0 2.9 58.7 60.0 45.0 29.3 21.6 6.3 7.7 1.1
SymNet [6] 24.2 25.2 16.1 3.0 49.8 57.4 40.4 23.4 25.2 9.2 9.8 1.8
CompCosCW [8] 25.3 24.6 16.4 4.5 59.8 62.5 43.1 28.1 27.1 10.8 11.4 2.3
CGEff [11] 28.7 25.3 17.2 5.1 56.8 63.6 41.2 26.4 27.5 11.7 11.9 2.5
CGE [11] 32.8 28.0 21.4 6.5 64.5 71.5 60.5 33.5 31.4 14.0 14.5 3.6
CompCos [8] 25.6 22.7 15.6 4.1 59.3 61.5 40.7 27.1 26.6 8.7 9.6 1.8
VisProdff 20.9 20.9 12.6 2.8 54.8 56.5 41.2 25.0 24.8 8.7 9.8 1.7
VisProd 26.2 22.1 14.5 3.8 61.0 66.2 45.3 31.6 29.2 11.6 12.1 2.7
VisProdff++ 24.6 21.8 14.0 3.5 58.0 62.0 43.7 28.7 26.0 11.2 11.3 2.3
VisProd++ 28.5 22.8 15.3 4.2 61.8 66.3 46.5 32.5 29.9 12.5 13.0 3.0

Table 1: Closed World CZSL results on MIT-States, UT Zappos and C-GQA. We measure best
seen (S) and unseen accuracy (U), best harmonic mean (HM), and area under the curve (AUC) on the
compositions.

Method MIT-States UT Zappos C-GQA
S U HM AUC S U HM AUC S U HM AUC

AoP [12] 16.6 5.7 4.7 0.7 50.9 34.2 29.4 13.7 NA NA NA NA
LE+ [10] 14.2 2.5 2.7 0.3 60.4 36.5 30.5 16.3 19.2 0.7 1.0 0.08
TMN [15] 12.6 0.9 1.2 0.1 55.9 18.1 21.7 8.4 NA NA NA NA
SymNet [6] 21.4 7.0 5.8 0.8 53.3 44.6 34.5 18.5 26.7 2.2 3.3 0.43
CompCosCW [8] 25.3 5.5 5.9 0.9 59.8 45.6 36.3 20.8 28.0 1.0 1.6 0.20
CGEff [11] 29.6 4.0 4.9 0.7 58.8 46.5 38.0 21.5 28.3 1.3 2.2 0.30
CGE [11] 32.4 5.1 6.0 1.0 61.7 47.7 39.0 23.1 32.7 1.8 2.9 0.47
CompCos [8] 25.4 10.0 8.9 1.6 59.3 46.8 36.9 21.3 28.4 1.8 2.8 0.39
VisProdff 20.9 5.8 5.6 0.7 54.6 42.8 36.9 19.7 24.8 1.7 2.8 0.33
VisProd 26.2 6.6 6.8 1.1 60.5 52.3 41.3 25.8 29.2 2.6 4.1 0.61
VisProdff++ 24.6 6.7 6.6 1.0 58.3 47.1 39.3 22.8 27.2 2.1 3.3 0.46
VisProd++ 28.1 7.5 7.3 1.2 62.5 51.5 41.8 26.5 28.0 2.8 4.5 0.75

Table 2: Open World CZSL results on MIT-States, UT Zappos and C-GQA. We measure best seen
(S) and unseen accuracy (U), best harmonic mean (HM), and area under the curve (AUC) on the
compositions.

(AUC of 4.2) than AoP [12] (1.6), LE+ [10] 2.0), TMN [15] (2.9), and SymNet [6] (3.0), however,
CompCos [8] (4.5) and CGE [11] (6.5) achieve significantly better performance. In this setting, we
believe VisProd is penalized by the label noise of MIT-States [1], especially for state predictions.

On the cleaner UT-Zappos and C-GQA, the results of VisProd++ is surpassed only by the state-of-
the-art CGE. In particular, on UT-Zappos, VisProd++ is surpassed only by CGE (e.g. 32.5 vs 33.5 in
AUC), outperforming by a margin the second best competitor (29.3 AUC of TMN). We also observe
a similar trend on C-GQA where the results of Visual Product is only outperformed by CGE with
both a frozen backbone as well as with end-to-end training (i.e. 3.0 vs 3.6). This is remarkable given
that VisProd is based on a strong independence assumption and completely ignores side information.

Open-World Results: We report the results on the open-world setting in Table 2. Most notably,
on UT-Zappos, VisProd++ surpasses the performance of all previous models (i.e. AUC of 26.5 vs
23.1 of CGE) and achieves the new state of the art. Similarly, on C-GQA, the performance achieved
by VisProd++ is significantly higher than of prior works, achieving 0.75 AUC vs 0.39 of CompCos
and 0.47 of CGE. On the noisy MIT-States, the performance of VisProd++ is only surpassed by
CompCos [8] (1.2 vs 1.6), which uses feasibility scores to improve its performance on the open-world
setting. Our results indicate that modeling states and objects independently may be an effective
approach to deal with the very large output space of OW-CZSL.
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(a) Effect of Classifier Depth (b) Role of Scalar Bias

Figure 2: Ablation studies on the depth of the object and state-classifier (left) and the scalar bias
(right) for UT-Zappos and MIT-States validation set in terms of AUC.

4.2 Ablation studies

We investigate the two crucial aspects behind VisProd’s performance: the depth of the object and
state classifier and the bias on seen compositions.

Effect of depth of the classifier: We ablate the impact of the depth in Fig 2a for VisProdff and
VisProdff++ in both MIT-States and UT-Zappos validation sets. The validation AUC on both UT-
Zappos and MIT-States rapidly increases with the depth of the classifier. This shows the importance of
having a powerful predictor with enough capacity to learn a complex classification function. However,
after 3 layers, the performance degrades (i.e., going from 26.9 to 24.3 on UT-Zappos when depth is
increased from 3 to 5 layers), possibly due to overfitting.

Effect of bias during evaluation: We evaluate the harmonic mean between the performance on
the seen and unseen compositions in Fig 2b. The results demonstrate that using a bias to penalize
seen compositions plays a vital role in the performance of VisProd. Interestingly, AoP [12] had found
that VisProd had the best performance when evaluated only on the unseen classes. The performance
degraded when evaluated on both seen and unseen compositions due to the inherent bias of VisProd
toward the seen ones. However, subtracting a bias to their predicted value solved this issue, with
the HM reported by VisProdff improving from 3.63 to 36.2 on UT-Zappos and from 6.8 to 16.0 on
MIT-States. These results show that modeling the bias on seen compositions is crucial in VisProd.

5 Conclusion

In this work, we revisit the traditional baseline Visual Product for the task of Compositional Zero-Shot
Learning. We find that by increasing the representation power of its state and object classifiers and
taking into account its inherent bias toward training compositions during the evaluation, Visual
Product (VisProd++) achieves performance on par or superior to the state-of-the-art in various CZSL
benchmarks and settings. Remarkably, this method is particularly effective in open-world CZSL
(OW-CZSL) where there are no priors on the unseen compositions and the full compositional space
is considered as output space at test time. In this setting, VisProd surpasses all competitors in the
challenging C-GQA dataset, with almost 280k compositions. We hope that our work will revive
interest in visual-only methods for Compositional Zero-Shot Learning and re-consider treating objects
and states separately as a competitive approach.
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