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ABSTRACT

Backdoor (Trojan) attacks are an important type of adversarial exploit against deep
neural networks (DNNs), wherein a test instance is (mis)classified to the attacker’s
target class whenever a backdoor trigger is present. In this paper, we reveal and
analyze an important property of backdoor attacks: a successful attack causes
an alteration in the distribution of internal layer activations for backdoor-trigger
instances, compared to that for clean instances. Even more importantly, we find
that instances with the backdoor trigger will be correctly classified to their original
source classes if this distribution alteration is reversed. Based on our observations,
we propose an efficient and effective method that achieves post-training backdoor
mitigation by correcting the distribution alteration using reverse-engineered trig-
gers. Notably, our method does not change any trainable parameters of the DNN,
but achieves generally better mitigation performance than existing methods that do
require intensive DNN parameter tuning. It also efficiently detects test instances
with the trigger, which may help to catch adversarial entities.

1 INTRODUCTION

Deep neural networks (DNN) have shown impressive performance in many applications, but are
vulnerable to adversarial attacks. Recently, backdoor (Trojan) attacks have been proposed against
DNNs used for image classification (Gu et al. (2019); Chen et al. (2017); Nguyen & Tran (2021);
Li et al. (2019); Saha et al. (2020); Li et al. (2021a)), speech recognition (Liu et al. (2018b)), text
classification (Dai et al. (2019)), point cloud classification (Xiang et al. (2021)), and even deep
regression (Li et al. (2021b)). The attacked DNN will classify to the attacker’s target class whenever
a test instance is embedded with the attacker’s backdoor trigger, while maintaining high accuracy
on backdoor-free instances. Typically, a backdoor attack is launched by poisoning the training set
of the DNN with a few instances embedded with the trigger and (mis)labeled to the target class.

Most existing works on backdoors either focus on improving the stealthiness of attacks (Zhao et al.
(2022); Wang et al. (2022b)), their flexibility for launching (Bai et al. (2022); Qi et al. (2022)), their
adaptation for different learning paradigms (Xie et al. (2020); Yao et al. (2019); Wang et al. (2021)),
or develop defenses for different practical scenarios (Du et al. (2020); Liu et al. (2019); Dong et al.
(2021); Chou et al. (2020); Gao et al. (2019)). However, there are few works studying the basic
properties of backdoor attacks. Tran et al. (2018) first observed that triggered instances (labeled to
the target class) are separable from clean target class instances in terms of internal layer activations
of the poisoned classifier. This property led to defenses that detect and remove triggered instances
from the poisoned training set (Chen et al. (2019a); Xiang et al. (2019)). As another example, Zhang
et al. (2022) studied the differences between the parameters of clean and attacked classifiers, which
inspired a stealthier attack with minimum degradation in accuracy on clean test instances.

In this paper, we investigate an interesting distribution alteration property of backdoor attacks. In
short, the learned backdoor trigger causes a change in the distribution of internal activations for test
instances with the trigger, compared to that for backdoor-free instances; and we demonstrate that in-
stances with the trigger are classified to their original source class after the distribution alteration is
reversed. Accordingly, we propose a method to mitigate backdoor attacks (post-training), such that
classification accuracy on instances both with and without the trigger will be close to the accuracy
of a clean (backdoor-free) classifier. In particular, we propose a practical way to correct the distri-
bution alteration by exploiting reverse-engineered triggers (Wang et al. (2019); Xiang et al. (2020)).
Compared with existing approaches that address the same mitigation problem, but which require
tuning of the whole DNN, our method achieves generally better performance and without changing
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Figure 1: Activation distribution of a neuron in the penultimate layer of ResNet-18 trained on
CIFAR-10, for instances with and without a backdoor trigger, for (a) a clean classifier and (b) a
backdoor-poisoned classifier (with the same trigger). In (c), the distribution alteration in (b) is re-
versed by our proposed method – most instances with the trigger will thus be correctly classified.

any original parameters of the DNN. Moreover, while most mitigation approaches are designed to
correctly classify backdoor-trigger instances blindly without detection, our method is able to detect
those backdoor-trigger instances efficiently. Our main contributions in this paper are twofold:
1) We discover and analyze the activation distribution alteration property of backdoor attacks and its
relation to accuracy in classifying backdoor-triggered instances.
2) We propose a post-training backdoor mitigation approach based on our findings, which outper-
forms several state-of-the-art approaches for a variety of datasets and backdoor attack settings.

2 RELATED WORK

Existing backdoor defenses are deployed either during the DNN’s training stage or post-training.
The ultimate goal of training-stage defenses is to train an accurate, backdoor-free DNN given the
possibly poisoned training set. To achieve this goal, Shen & Sanghavi (2019); Huang et al. (2022);
Li et al. (2021d); Chen et al. (2019a); Xiang et al. (2019); Du et al. (2020) either identify a subset
of “high-credible” instances for training, or detect and then remove training instances possibly with
a backdoor trigger before training. Post-training defenders, however, are assumed to have no access
to the classifier’s training set. Many post-training defenses aim to detect whether a given classifier
has been backdoor-compromised. Wang et al. (2019); Xiang et al. (2020); Wang et al. (2020); Liu
et al. (2019) perform anomaly detection using triggers reverse-engineered on an assumed indepen-
dent clean dataset; while Xu et al. (2021); Kolouri et al. (2020) train a (binary) meta classifier on
“shadow” classifiers trained with and without attack.

However, model-detection defenses are not able to mitigate backdoor attacks at test time. Thus,
there is a family of post-training backdoor mitigation approaches proposed to fine-tune the classifier
on the assumed clean dataset, with a subset of neurons possibly associated with the backdoor attack
pruned (Liu et al. (2018a); Wu & Wang (2021); Guan et al. (2022); Zheng et al. (2022)), by lever-
aging knowledge distillation to preserve only classification functions for clean instances (Li et al.
(2021c); Xia et al. (2022)), or by solving a min-max problem as an analogue to adversarial training
for evasion attacks (Zeng et al. (2022); Madry et al. (2018)). These methods all aim to enhance the
robustness of the classifier against triggers embedded at test time, but are not implemented with a
backdoor detector. The cost of such robustness is usually a significant degradation in the classifier’s
accuracy on clean instances, especially when the clean data for fine-tuning are insufficient. Another
family of approaches are designed to detect test instances embedded with the trigger, without alter-
ing the classifier (Gao et al. (2019); Chou et al. (2020); Doan et al. (2020)). Defenses in this category
may help to catch the adversarial entities in the act, but they cannot correctly classify the detected
backdoor trigger instances to their original source classes. Moreover, existing methods in this cat-
egory require heavy computation at test time (where rapid inferences are needed). In contrast, our
mitigation framework includes both test-time trigger detection and source class inference, both with
very little computation, as will be detailed in Sec. 4.2.

Closely related to our method, Neural Cleanse (NC) proposed by Wang et al. (2019) detects back-
door attacks and then fine-tunes the classifier using a reverse-engineered trigger. However, NC is
not as effective as our method in backdoor mitigation, especially when its fine-tuning is performed
with insufficient data (see the last paragraph in Sec. 5.2 for more details). Moreover, NC does not
detect backdoor-trigger instances during inference, unlike our method.
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3 DISTRIBUTION ALTERATION PROPERTY OF BACKDOOR ATTACKS

In this section, we first present the activation distribution alteration property of backdoor attacks.
Then for a simplified setting, we analytically show how closing the “gap” between the clean-instance
and backdoor-trigger instance distributions improves the accuracy in classifying backdoor-trigger
instances; this will guide the design of our backdoor mitigation approach in Sec. 4.

Property 3.1. (Activation Distribution Alteration) For a successful backdoor attack, two different
backdoor-trigger instances will induce perturbations to the activations of an internal DNN layer
that are in a similar direction. Thus, there is effectively a “shift” in the internal layer activation
distribution for backdoor-trigger instances, compared to that for backdoor-free instances.

Distribution alteration can be easily visualized empirically. Consider a set of clean instances from
CIFAR-10 (Krizhevsky & Hinton (2009)) and the same set of instances but with the backdoor trigger
used by Gu et al. (2019) embedded in each instance. For a ResNet-18 (He et al. (2016)) classifier
that was successfully attacked using this trigger, there is a divergence between the distributions of
the internal layer activations induced by these two sets of instances. This is shown in Fig. 1b for a
neuron in the penultimate layer as an example. In comparison, for a clean classifier (not backdoor-
attacked), the divergence between the two distributions is almost negligible as shown in Fig. 1a.
Based on these visualizations, we ask the following question: Suppose the distribution alteration
is reversed for each neuron, e.g. by applying a transformation to the internal activations of the
triggered instances, so that the transformed distribution now closely agrees with the distribution for
clean (without the backdoor-trigger) instances (see Fig. 1c). Then, following this compensation,
will the classifier accurately predict the true class of origin for these backdoor-trigger instances?

Here, we investigate this problem in a simplified binary classification setting similar to the one
considered by Ilyas et al. (2019). For a clean training random vector (X, Y ) with a uniform class
prior, i.e. Y ∼ U{−1,+1} and with X|Y ∼ N (Y · µ,Σ), where µ ∈ Rd and Σ = σ2I , consider a
backdoor attack with target class ‘+1’, triggered instance Xb ∼ N (µb,Σb) with µb = −µ+ϵ, and
Σb = σ2

bI . Here, class ‘−1’ is automatically the source class of Xb since there are only two classes.
With backdoor poisoning, a multi-layer perceptron (MLP) classifier is trained with one hidden layer
of J nodes, a batch normalization (BN) layer (Ioffe & Szegedy (2015)) followed by linear activation,
and two output nodes with functions f− : Rd → R and f+ : Rd → R corresponding to classes ‘−1’
and ‘+1’ respectively. An instance x will be classified to class ‘−1’ if f−(x) > f+(x); else it will
be classified to ‘+1’.

Definition 3.1. (η-erroneous classifier) A classifier is said to be η-erroneous if the error rate for
each class is upper bounded by η.

Definition 3.2. (ψ-successful attack) A backdoor attack is said to be ψ-successful if its attack
success rate (ASR), i.e. the probability for triggered instances being (mis)classified to the attacker’s
target class (Li et al. (2022b)), is at least ψ; in our case, this means that P [f+(Xb) > f−(Xb)] ≥ ψ.

Given the settings above, for an arbitrary input x, the activation of the j-th node (j ∈ {1, · · · , J})
(after BN with trained parameters γj and βj), with weight vector wj in the hidden layer, is:

aj(x) =
w⊤

j x−mj
√
vj

γj + βj , (1)

where mj and vj respectively are the mean and variance stored by the BN layer during training on
the poisoned training set. Then the activation distribution for clean source class instances (X|Y =
−1) ∼ N (−µ,Σ) is a Gaussian specified by mean E[aj(X)|Y = −1] and variance Var[aj(X)|Y =
−1]; while for triggered instances Xb ∼ N (µb,Σb), the activation follows a Gaussian specified by
mean E[aj(Xb)] and variance Var[aj(Xb)]. An easy way to eliminate the divergence between these
two distributions is to create a classifier for triggered instances Xb

1 by replacing aj in Eq. (1) with
a∗j (x) = (w⊤

j x−m∗
j )γj/

√
v∗j + βj for each node j, where (see Apdx. A.1 for derivation):

m∗
j =

σb
σ
mj + (

σb
σ

− 1)w⊤
j µ+w⊤

j ϵ and v∗j =
σb
σ
vj , (2)

1These can be constructed in practice, given an estimated backdoor trigger, by embedding the trigger in
clean instances available to the defender.
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Figure 2: Illustration of our backdoor mitigation framework with a test-time inference rule.

such that E[a∗j (Xb)] = E[aj(X)|Y = −1] and Var[a∗j (Xb)] = Var[aj(X)|Y = −1] are achieved.
But here, we aim to study the quantitative relationship between the distribution divergence and
the SIA metric of Def. 3.3 below. Thus, we consider an “intermediate state” with a classifier
specified by output node functions g−(·|α) : Rd → R and g+(·|α) : Rd → R, where for each
output node i ∈ {−,+}, gi(x|α) = u⊤

i â(x|α) depends on a “transition variable” α ∈ [0, 1],
with ui the weight vector for the original output function fi. â(x|α) = [â1(x|α), · · · , âJ(x|α)]⊤
is the activation vector for input x where âj(x|α) = (w⊤

j x − m̂j(α))γj/
√
v̂j(α) + βj , with

m̂j(α) = αmj + (1− α)m∗
j and v̂j(α) = (α

√
vj + (1− α)

√
v∗j )

2 being the “intermediate” mean
and variance respectively. Given these settings, our main theoretical results are presented below.
Definition 3.3. (Source inference accuracy (SIA)) SIA is the probability that a triggered instance
is classified to its original source class (Li et al. (2022a)), i.e. P [g−(Xb|α) > g+(Xb|α)] here.
Theorem 3.1. (Monotonicity of SIA with Divergence) If the binary classifier with f− and f+ is
η-erroneous with η < 1/2, the attack is ψ-successful with ψ > 1/2, and σb ≤ σ, then SIA of the
modified classifier, i.e. P [g−(Xb|α) > g+(Xb|α)], monotonically decreases as α ∈ [0, 1] increases.

The proof of the theorem is given in Apdx. A.2. Note that the assumptions for Thm. 3.1 are
very mild and reasonable. For example, η < 1/2 is a minimum requirement for the classifier and
ψ > 1/2 is a minimum requirement for a successful backdoor attack. Moreover, σb ≤ σ generally
holds empirically since trigger embedding (e.g., consider a patch attack) typically reduces the vari-
ance of source class instances (while additive attacks do not change the variance). Also note that
α merely gives a way of quantifying distribution divergence for purpose of analysis. According to
these results, the core part of our proposed backdoor mitigation approach should be to find a mod-
ified classifier g(·|Θ) by minimizing (e.g., using sub-gradient methods) a measure of distribution
divergence over a well-chosen set of parameters, Θ. This approach is next explicated.

4 REVERSING DISTRIBUTION ALTERATION FOR BACKDOOR MITIGATION

4.1 PROBLEM DESCRIPTION

Threat model. For input space X and label space C, a classifier that has been successfully backdoor-
attacked will predict to the attacker’s target class t∗ ∈ C when a test instance x ∈ X is embedded
with the backdoor trigger using an incorporation function ∆ : X → X . In addition to this “all-to-
one” setting, we also consider the “all-to-all” setting where a test instance from any class c ∈ C will
be (mis)classified to class (c+ 1)mod|C| when it is embedded with the trigger (Gu et al. (2019)).

Defender’s goal. Given a trained classifier f : X → C that may possibly be attacked, the defender
aims to mitigate possible attacks by producing a mapping f̂ : X → C which (a) has high accuracy
in classifying clean instances, and (b) when there is a backdoor attack, classifies triggered instances
to their original source class, as though there is no trigger embedded, i.e., achieves a high SIA.

Defender’s assumptions. We consider a post-training scenario where the defender has no access
to the training set of the classifier. The defender does possess an independent clean dataset, but this
dataset is too small to train an accurate classifier from scratch, and even too small to effectively fine-
tune the full set of classifier parameters (Liu et al. (2018a); Zeng et al. (2022); Wang et al. (2019)).
The defender has white box access to the classifier, but does not know whether it has been attacked
and, if so, does not know the trigger pattern that was used, i.e., the defense is unsupervised.

4.2 METHOD

Based on Thm. 3.1, it would seem that a good mitigation approach involves modifying the classifier
f , i.e. creating a new classifier g(·|Θ) : X → C from f by applying a transformation function
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hj,l(·|θj,l) : R → R to the activation of each neuron j ∈ {1, · · · , Jl} in each layer l ∈ {1, · · · , L}.
The parameters Θ = {θj,l} should be jointly chosen so as to minimize the aggregation (e.g. sum) of
the divergences between the distributions qj,l(θ<l ∪ θj,l) obtained using hj,l(ẑj,l(∆(X)|θ<l)|θj,l)
and the target distributions pj,l for zj,l(X) for ∀j, l, where X follows the clean data distribution, i.e.:

minimize
Θ={θj,l}

∑
j,l

Dk

(
pj,l||qj,l(θ<l ∪ θj,l)

)
(3)

where: zj,l : X → R and ẑj,l : X → R are activation functions for neuron j in layer l for classifiers
f and g(·|Θ) respectively; θ<l = {θj,l′ |l′ < l} represents all transformation parameters prior to
layer l; Dk(p||q) := Eq[k(p/q)] for a convex function k : [0,∞) → R satisfying k(1) = 0 and
belonging to the family of f -divergences for any distributions p and q (Ali & Silvey (1966)).

However, in practice, we will face the following challenges. Challenge 1: The defender does
not know a priori whether there is an attack. When there is no attack, no distribution correction
should be needed. Moreover, when there is an attack, while the classifier g(·|Θ) with optimal
transformation functions for neuron activation will achieve a high SIA on triggered instances, its
accuracy on clean instances (especially those not from the backdoor target class) may be degraded2.
Challenge 2: If there is an attack, the attack setting, i.e. all-to-one or all-to-all, and the ground-
truth backdoor trigger ∆ are both unknown to the defender. Challenge 3: The density form for
zj,l(∆(X)) may get altered by the trigger ∆ and will likely be different from the density form for
zj,l(X) – moreover both will likely be non-Gaussian. Thus, (3) cannot be easily minimized, e.g.,
simply by matching the mean and variance.

For Challenges 1&2, we leverage existing post-training backdoor detection approaches to infer:
whether the classifier f is backdoor attacked and the associated target classes when f is attacked
(Wang et al. (2019); Chen et al. (2019b); Liu et al. (2019)). These detectors, following the same
assumptions in Sec. 4.1, reverse-engineer a trigger for each putative target class on the clean dataset
possessed by the defender. Then anomaly detection is performed on statistics derived from these
reverse-engineered triggers, e.g. the estimated size for patch triggers used by Wang et al. (2019).

Here, the detector in our framework is different from most existing ones in order to cover a broad
range of attack settings including all-to-one and all-to-all attacks. We first reverse-engineer a trigger
by solving an optimization problem defined on the clean set to get a detection statistic for each
ordered putative class pair (s, t) ∈ C × C. For the Xiang et al. (2020) method, this statistic is
(the reciprocal of) the estimated perturbation size inducing high (mis)classifications from s to t.
For Wang et al. (2019), it is the estimated patch size inducing high (mis)classifications from s to t.
Then we apply the anomaly detection approach in Wang et al. (2019), based on the MAD criterion
(Hampel (1974)), to all the obtained statistics to find all the outlier statistics. We denote the set of
detected class pairs associated with these outlier statistics as P̂ , and denote T̂ = {t ∈ C | ∃s ∈
C s.t. (s, t) ∈ P̂} as the set of detected target classes. For each t ∈ T̂ , we (re-)estimate a trigger
∆̂t (as a surrogate for the true backdoor trigger, which is unknown) using clean instances from all
detected source classes3 Ŝ(t) = {s ∈ C|(s, t) ∈ P̂}. Then, for each detected target class t ∈ T̂ , we
construct a classifier g(·|Θt) by solving the distribution divergence minimization problem using its
(re-)estimated ∆̂t.

For any test input x ∈ X , if classifier f is deemed attack-free, i.e. P̂ = ∅, the classification output
under our mitigation framework will be f̂(x) = f(x). Otherwise, if f(x) ∈ C \ T̂ , we trust the
class decision and set f̂(x) = f(x) both because x is unlikely to possess a trigger and because
a successful attack should not degrade the classifier’s accuracy on clean instances. However, if
f(x) = t ∈ T̂ , there are two main possibilities: 1) x is a clean instance truly from class t; 2) x
is classified to class t due to the presence of the trigger. To distinguish these two cases, we feed x
to the optimized g(·|Θt). If g(x|Θt) ̸= f(x), x likely contains a trigger, and thus we should set
f̂(x) = g(x|Θt), which is likely the original source class of x based on our theoretical results. The
outline of our mitigation framework is summarized in Fig. 2. Note that in the test-time inference
procedure above, the major (additional) computation for both backdoor trigger instance detection
and source class inference is a forward propagation for feeding x to g(·|Θt), which is comparable

2For example, the histogram for clean activations in Fig. 1b will be shifted away (to the left).
3More reliable trigger estimation can be achieved in this way for a detected target class.
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to the computation required for classification using f . Moreover, such additional computation occurs
only if an attack is detected and f(x) = t; thus, our test-time inference is very efficient.

Now the remaining problem is to address Challenge 3, which is critical to the estimation of Θt using
the reverse-engineered trigger ∆̂t for each detected target class t ∈ T̂ . For simplicity, we will drop
the subscript t below without loss of generality. Our main goals are: (a) specifying the structure of
the transformation function hj,l with its associated parameters θj,l, (b) empirical estimation of the
distribution divergence in Eq. (3) using a clean dataset (i.e. the subset of clean instances from classes
in Ŝ(t) for each detected class t), and (c) choosing the convex function k for the divergence form. For
(a), we consider the following transformation function with parameters θj,l = {µj,l, σj,l, υj,l, ωj,l}:

hj,l(z) = max{min{z − µj,l

σj,l
, ωj,l}, υj,l} (4)

where µj,l and σj,l specify the location and scale of the activation distribution, respectively, while
υj,l, ωj,l control the shape of the tail of the distribution. For goal (b), we quantize the real line intoM
intervals I1 = (−∞, b1), I2 = [b1, b2), · · · , IM = [bM−1,∞), for M sufficiently large. Then the
distribution divergence in Eq. (3) for each node j and layer l is computed on discrete distributions
p̂j,l and q̂j,l over these intervals. Specifically, the discrete distributions are estimated using a subset
Dt of instances from classes Ŝ(t), with the probabilities for interval Ii computed by:

p̂
(i)
j,l =

1

|Dt|
∑
x∈Dt

1[zj,l(x) ∈ Ii] and q̂
(i)
j,l =

1

|Dt|
∑
x∈Dt

1[hj,l(ẑj,l(∆̂t(X)|θ<l)|θj,l) ∈ Ii]. (5)

To ensure that the distribution divergence is differentiable with reference to the parameters, such that
it can be minimized using (e.g.) gradient descent, we approximate the non-differentiable indicator
function 1[·] in Eq. (5) using differentiable functions such as the sigmoid, i.e. we redefine:

1[z ∈ Ii] = sigmoid(τ(z − bi−1))− sigmoid(τ(z − bi)) (6)

where τ is a scale factor controlling the error of approximation. For I1 and IM , which have semi-
infinite support, we use a single sigmoid in Eq. (6). The choice of the intervals and τ is not critical
to the performance, as long as the length of the finite intervals is sufficiently small, as will be shown
in Tab. 4 in Sec. 5. Finally, for goal (c), we consider several different divergence forms including
the total variation (TV) divergence with k(r) = |r− 1|/2, the Jensen-Shannon (JS) divergence with
k(r) = r log 2r

r+1 + log 2
r+1 , and the Kullback-Leibler (KL) divergence with k(r) = r log r. The

choice of the divergence form is also not critical to the mitigation performance (see Apdx. E).

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Datasets: Our main experiments are conducted on the benchmark CIFAR-10 dataset, which
contains 60,000 32× 32 color images from 10 classes, with 5,000 images per class for training and
1,000 images per class for testing (Krizhevsky & Hinton (2009)). We also show the effectiveness
of our proposed mitigation framework on other benchmark datasets including GTSRB (Houben
et al. (2013)), CIFAR-100 (Krizhevsky & Hinton (2009)), ImageNette (Howard (2020)), and
TinyImageNet. Details of these datasets can be found in Apdx. B.1. Data allocation in our
experiments strictly follows the assumptions in Sec. 4.1. For each dataset, we randomly sample
10% of the test set to form the small, clean dataset DDefense assumed for the defender. The remaining
test instances, denoted by DTest, are reserved for performance evaluation.
Attack settings: In this paper, we consider standard backdoor attacks launched by poisoning the
training set of the classifier (Gu et al. (2019); Chen et al. (2017)). In particular, we consider both the
all-to-one (A2O) attacks and the all-to-all (A2A) attacks in our main experiments on CIFAR-10.
For A2O attacks on CIFAR-10, we arbitrarily choose class 9 as the target class; while for A2A
attacks, as described in Sec. 4.1, triggered instances from any class c ∈ C are supposed to be
(mis)classified to class (c + 1)mod|C|. For each attack setting, we consider the following triggers:
1) a 3× 3 random patch (BadNet) with a randomly selected location (fixed for all triggered images
for each attack) used in Gu et al. (2019); 2) an additive perturbation (with size 2/255) resembling
a chessboard (CB) used in Xiang et al. (2020); 3) a single pixel (SP) perturbed by 75/255 with
a randomly selected location (fixed for all triggered images for each attack) used by Tran et al.
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Trigger
type

BadNet CB l0 inv l2 inv SP WaNet
A2O A2A A2O A2A A2O A2A A2O A2A A2O A2A A2O A2A

Vanilla
ACC 0.9122 0.9121 0.9135 0.9098 0.9135 0.9131 0.9130 0.9126 0.9138 0.9060 0.9032 0.8994
ASR 0.9573 0.8658 0.9685 0.8692 0.9989 0.8973 0.9889 0.8620 0.8912 0.8550 0.9153 0.8216
SIA 0.0397 0.0432 0.0293 0.0257 0.0010 0.0151 0.0107 0.0194 0.1016 0.0593 0.0772 0.0714

NC
ACC 0.8797 0.8762 0.8735 0.8776 0.8835 0.8767 0.8750 0.8690 0.8854 0.8614 0.8748 0.8756
ASR 0.0130 0.0154 0.0064 0.0155 0.0120 0.0150 0.0080 0.0179 0.0335 0.0188 0.0144 0.1381
SIA 0.8532 0.8614 0.8312 0.8597 0.8654 0.8650 0.7932 0.8254 0.8362 0.8477 0.8231 0.7183

I-BAU
ACC 0.8500 0.8758 0.8812 0.8719 0.8452 0.8800 0.8825 0.8726 0.8666 0.8745 0.8777 0.8700
ASR 0.0094 0.0164 0.1973 0.0811 0.0091 0.0133 0.2600 0.3353 0.0172 0.0154 0.1339 0.1253
SIA 0.8301 0.8583 0.6399 0.7756 0.8277 0.8673 0.5549 0.4928 0.8479 0.8609 0.7059 0.7269

ANP
ACC 0.8644 0.8492 0.8241 0.8577 0.8455 0.8648 0.8345 0.8421 0.8195 0.8411 0.8298 0.8607
ASR 0.0474 0.1199 0.3351 0.0927 0.0836 0.1326 0.4703 0.2648 0.1229 0.0495 0.0263 0.0835
SIA 0.8184 0.7205 0.4587 0.7168 0.7697 0.7324 0.3351 0.4976 0.7060 0.7942 0.7368 0.7451

NAD
ACC 0.8814 0.8819 0.8800 0.8908 0.8958 0.9047 0.8991 0.8781 0.8813 0.8761 0.8592 0.8963
ASR 0.0193 0.7132 0.0871 0.0681 0.0356 0.0457 0.0254 0.0191 0.0667 0.0647 0.0571 0.1056
SIA 0.8498 0.1520 0.7711 0.8084 0.8504 0.8534 0.8221 0.8337 0.8123 0.8082 0.7710 0.7773

ARGD
ACC 0.8689 0.8482 0.8800 0.8774 0.8880 0.8885 0.8669 0.8583 0.8899 0.8728 0.8739 0.8755
ASR 0.0368 0.0839 0.0099 0.0117 0.0079 0.0122 0.0125 0.0179 0.0955 0.0452 0.0111 0.0362
SIA 0.8217 0.7544 0.8657 0.8690 0.8725 0.8786 0.8168 0.8297 0.7934 0.8295 0.8283 0.8241

BNA
(ours)

ACC 0.9032 0.8951 0.9072 0.8615 0.9068 0.8944 0.9005 0.8638 0.9058 0.8921 0.8945 0.8792
ASR 0.0139 0.0189 0.0127 0.0202 0.0033 0.0111 0.0042 0.0168 0.0104 0.0225 0.0041 0.0191
SIA 0.8835 0.8841 0.8787 0.8820 0.8924 0.8942 0.8383 0.8522 0.8863 0.8811 0.8530 0.8607

Table 1: Average ACC, ASR, and SIA for our BNA, compared with NC, NAD, I-BAU, ANP, and
ARGD, against all the created attacks applied to ResNet-18 trained on the CIFAR-10 dataset.

(2018); 4) invisible triggers generated with l0 and l2 norm constraints (l0 inv and l2 inv respectively)
proposed by Li et al. (2021a); 5) a warping-based trigger (WaNet) proposed by Nguyen & Tran
(2021). Details for generating these triggers are deferred to Apdx. B.3. For experiments on
CIFAR-10, we randomly create 5 attacks for each attack setting and each trigger (e.g. with random
location). For experiments on the other four datasets, we only consider A2O attacks for a subset of
triggers where sufficiently high success rate can be achieved. For each dataset, we create one attack
for each trigger being considered. A2A attacks are not considered for these datasets since they are
not successful due to the insufficiency of data. More details about the attacks, including the number
of backdoor-trigger images used for poisoning and the target class selected to create A2O attacks
for the four datasets other than CIFAR-10, are shown in Apdx. B.3.
Performance evaluation metrics: 1) The attack success rate (ASR) is the fraction of clean
instances in DTest (mis)classified to the designated target class when the backdoor trigger is
embedded. 2) The clean test accuracy (ACC) is the DNN’s accuracy on DTest without trigger
embedding. 3) The SIA (Def 3.3) is the fraction of clean instances in DTest classified to the original
source class when the trigger is embedded. For a successful backdoor attack, ASR and ACC should
be large, while SIA should be small. For a successful mitigation approach, the resulting ASR should
be small, while ACC and SIA should be large.
Training settings: We train one classifier for each attack to evaluate our mitigation approach
against existing ones. Training configurations, including the DNN architecture, batch size, number
of epochs, etc., are detailed in Tab. 6 in Apdx. B.2. Data augmentation choices, including random
cropping and horizontal flipping, are applied to each training instance. As shown in Tab. 1, the
defenseless “vanilla” classifiers being attacked achieve high ACC but suffer high ASR and low SIA
(averaged over the five attacks we created) for all trigger types and for both A2O and A2A settings,
i.e., the attacks are all successful and hence adequate for performance evaluation.

5.2 BACKDOOR MITIGATION RESULTS

We compare our mitigation approach (named BNA in the sequel) with five well-known and/or state-
of-the-art methods, including NC(Wang et al. (2019)), NAD(Li et al. (2021c)), I-BAU(Zeng et al.
(2022)), ANP(Wu & Wang (2021)), and ARGD(Xia et al. (2022)). For all these other methods,
we used their officially posted code for implementation. For our BNA, following Sec. 4.2, we
first perform detection by reverse-engineering a backdoor trigger for each class pair using objective
functions from, e.g., Wang et al. (2019); Xiang et al. (2020) and then feeding the statistics obtained
from the estimated trigger to an anomaly detector. Our anomaly detector is based on MAD, which is
a classical approach also used by Wang et al. (2019); Chen et al. (2019b); Wang et al. (2020). Here,
we set the detection threshold at “7-MAD” which easily catches all the backdoor class pairs. More
details, including pattern estimation and detection statistics are shown in Apdx. C due to space
limitation. Then, for each detected target class, we solve the divergence minimization problem
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the number of poisoned instances per class perturbation size (*255)
50 100 150 200 250 2 3 4 5 6

ACC 0.9112 0.9094 0.9098 0.9102 0.9015 0.9094 0.9041 0.9079 0.8992 0.8912
ASR 0.0095 0.0141 0.0121 0.0170 0.0090 0.0141 0.0395 0.0222 0.0109 0.0388
SIA 0.8851 0.8837 0.8728 0.8840 0.8662 0.8851 0.8783 0.8711 0.8814 0.8435

Table 2: ACC, ASR, and SIA for our BNA as a function of (1) the number of poisoned instances
injected into the training set; (2) the perturbation size under all-to-one CB attack.

to optimize the transformation functions using learning rate 0.01 for 30 epochs. If a neuron is
followed by a BN (which is very common), instead of applying an additional transformation function
hj,l, we treat the mean and standard deviation of BN as the parameters µj,l and σj,l associated
with hj,l respectively. Here, we only show results for BNA with the total variation divergence.
Results for KL-divergence and JS-divergence are deferred to Apdx. E. To compute the divergence,
we use the “interval trick” (Eq. (5)) to obtain the discrete empirical distribution. For simplicity,
we let all finite intervals, Ii = [bi−1, bi), i = 1, · · · ,M , have the same length ∆b = 0.1. For
each neuron, we set bmin and bmax as the minimum and maximum activations, respectively, when
feeding in clean instances from DDefense to the poisoned classifier f . Then, the number of intervals
is M = ⌈ bmax−bmin

∆b ⌉; and all intervals can be specified by b0 = bmin and bi = bi−1 +∆b. Finally,
the scale factor in Eq. (6) is set to τ = 150, which is obtained by line search to minimize the total
variation between the “soft” distribution and the empirical one. In fact, the choices for ∆b and τ
(over reasonable ranges) has little impact on our mitigation performance, as shown in Tab. 4.

In Tab. 1, we show the ASR, ACC, and SIA for our BNA compared with the other five methods
(which are all tuning-based) for attacks on CIFAR-10. Each metric is averaged over the five attacks
created for each trigger type and attack setting, with the highest ACC and SIA, and the lowest ASR
in bold. Although the five tuning-based methods we compare here can effectively deactivate the
backdoor attacks (i.e., significantly reduce ASRs), there is a clear drop (3%-15%) in both ACC
and SIA. This is possibly due to tuning many DNN parameters using very limited data. Moreover,
we found these tuning-based methods are sensitive to the choices of hyper-parameters, such as the
learning rate. For ANP with neuron pruning, the performance is acceptable only for A2O with
the BadNet trigger. One possible reason is that invisible, perturbation-based triggers affect most
neurons only moderately (Wang et al. (2022a)); thus, pruning a small number of neurons cannot
mitigate the attack. In contrast, our method successfully mitigates all these backdoor attacks (with
generally the best ACC and ASR compared with the others) regardless of the trigger type and attack
setting. Notably, since the purpose of BNA’s divergence minimization is to maximize the SIA, it
unsurprisingly achieves the best SIA with a clear margin over all other methods, in all cases (the
corresponding distribution divergnces are shown in Tab. 9). We also tune the poisoning ratio and
perturbation size used in A2O CB attacks, and the performance for our BNA slightly declines as
the attack is strengthened, as shown in Tab. 2. However, it still outperforms the other methods (see
Tab. 11 in Apdx. F).

Why tuning-based methods like NC cannot achieve SIA as high as our BNA without parameter
altering? Note that NC tunes the classifier using instances embedded with the estimated trigger but
without label flipping. This is equivalent to minimizing the divergence between internal activation
distributions for clean and triggered instances, but with the parameters changed. Even for an optimal
(zero) divergence, the best achievable SIA of NC is still upper-bounded by the ACC of the classifier
after tuning, which usually drops due to the data insufficiency. By contrast, the reference distribution
for our divergence minimization is obtained by feeding clean instances to the poisoned classifier
without changing its parameters; thus, it is a “better” reference with a higher upper-bound ACC.

Results of our BNA on other datasets are shown in Table 3. The ACC for DNNs trained without
attack for GTSRB, CIFAR-100, ImageNette, and TinyImageNet are 0.9567, 0.6926, 0.8726, and
0.5224, respectively; while ACC, ASR, and SIA for attacked DNNs are shown in the row “Vanilla”.
We apply our BNA on the poisoned DNNs, with the same settings as for CIFAR-10, which signifi-
cantly reduces ASR (to less than 1.3% in all cases), with uniformly high SIA and ACC.

5.3 TEST-TIME BACKDOOR-TRIGGER INSTANCES DETECTION

Different from other tuning-based backdoor mitigation approaches, our BNA can also detect
backdoor-trigger instances at test-time, as described in Sec. 4.2 and shown in Fig. 2. Here, we
evaluate the accuracy of our test-time detection compared with a state-of-the-art detector named
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Trigger
type

GTSRB CIFAR-100 TinyImageNet ImageNette
BadNet CB l0 inv l2 inv WaNet BadNet CB l0 inv l2 inv BadNet BadNet

Vanilla
ACC 0.9517 0.9556 0.9531 0.9521 0.9408 0.6796 0.6917 0.6863 0.6804 0.5192 0.8626
ASR 1.0000 1.0000 1.0000 0.9794 0.9000 0.9037 0.9169 0.9935 0.9097 0.8058 0.9144
SIA 0.0000 0.0000 0.0000 0.0169 0.0905 0.0781 0.0646 0.0063 0.0707 0.1134 0.0771

BNA
ACC 0.9491 0.9548 0.9505 0.9500 0.9404 0.6770 0.6863 0.6858 0.6787 0.5178 0.7941
ASR 0.0000 0.0000 0.0122 0.0001 0.0041 0.0002 0.0524 0.0062 0.0016 0.0043 0.0016
SIA 0.9312 0.9454 0.9330 0.8945 0.9338 0.6526 0.5880 0.6169 0.5224 0.4965 0.7940

Table 3: ACC, ASR, and SIA for our BNA against all-to-one attacks on CIFAR-100, GTSRB,
ImageNette, and TinyImageNet datasets.

τ (∆b=0.1) 10 100 200 300 400 500 600 700 800 900 1000
ACC 0.9024 0.9025 0.9022 0.9019 0.9024 0.9019 0.9022 0.9018 0.9017 0.9015 0.9021
ASR 0.0257 0.022 0.0206 0.0207 0.0214 0.0202 0.0212 0.0209 0.0207 0.0201 0.0204
SIA 0.8744 0.8758 0.8774 0.8768 0.8768 0.8775 0.8773 0.8768 0.8772 0.8778 0.8777

∆b (τ=150) 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2
ACC 0.9028 0.9018 0.9019 0.9023 0.9019 0.9023 0.9019 0.9019 0.9022 0.9022 0.9022
ASR 0.0197 0.0202 0.0199 0.0204 0.0199 0.0204 0.0198 0.0206 0.0206 0.0207 0.0212
SIA 0.8799 0.8775 0.8779 0.8773 0.8772 0.8779 0.8773 0.8767 0.8779 0.8769 0.8764

Table 4: ACC, ASR, and SIA for our BNA as a function of scale factor and bin size on ResNet-18
trained on CIFAR-10 poisoned by all-to-one BadNet attack.

Trigger
type

BadNet CB l0 inv l2 inv SP WaNet
A2O A2A A2O A2A A2O A2A A2O A2A A2O A2A A2O A2A

BNA FPR 0.1390 0.0606 0.1144 0.1092 0.1413 0.0600 0.1976 0.1027 0.1323 0.0656 0.1406 0.0865
TPR 0.9872 0.9508 0.9872 0.9682 0.9967 0.9873 0.9958 0.9793 0.9894 0.9294 0.9959 0.9248

STRIP FPR 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
TPR 0.9638 0.5147 0.6802 0.2089 0.9995 0.1053 0.9924 0.5272 0.8522 0.3123 0.0202 0.0411

Table 5: TPR and FPR for our BNA, compared with STRIP, against all attacks created on CIFAR-10.

STRIP (Gao et al. (2019)). For any input image during inference, STRIP blends it with clean im-
ages possessed by the defender. The blended image is fed into the poisoned DNN, with an entropy
calculated on the output posteriors. If the entropy is lower than a prescribed detection threshold,
the input is deemed to be embedded with the trigger. Here, we set the detection threshold at 15%
FPR for STRIP which achieves a generally good trade-off between TPR and FPR. In contrast, our
BNA does not need to set a detection threshold. In Tab. 5, we show the True Positive Rate (TPR,
i.e., the fraction of backdoor-trigger images correctly detected) and the False Positive Rate (FPR,
i.e., the fraction of clean test images from the backdoor target class(es) that are falsely detected) for
both methods. Although STRIP performs well on A2O attacks for some trigger types, e.g., BadNet,
l0 inv, and l2 inv, its TPR drops drastically on attacks using human-imperceptible triggers, espe-
cially the WaNet attacks. Moreover, it does not perform well on all A2A attacks, with largest TPR
of only 0.5272. By contrast, our BNA is effective for all these attacks – it detects almost all the
backdoor-trigger images, with FPRs comparable to STRIP.

5.4 MITIGATION PERFORMANCE AGAINST ADAPTIVE ATTACKS

A recent backdoor attack proposed by Doan et al. (2021) minimizes a metric similar to our activa-
tion distribution alteration, in order to achieve better stealthiness. This attack can be viewed as an
adaptive attack against our mitigation defense since the trained classifier will be more sensitive to
even a smaller distribution divergence than for ordinary backdoor attacks. Nevertheless, our method
successfully mitigates this attack. In our experiment on CIFAR-10, the average distribution total
variation divergence over all neurons is reduced from 8067 to 2789. Accordingly, the ACC/ASR
before and after mitigation are 0.9162/0.9978 and 0.8906/0.0072 respectively, with SIA 0.8496.

6 CONCLUSION

In this paper, we revealed an activation distribution alteration property for backdoor attacks. We
found that by correcting such alteration, backdoor trigger instances will be classified to their original
source classes. Accordingly, we proposed a backdoor mitigation approach without changing any
parameters of the classifier, which outperformed methods that use DNN fine-tuning. Moreover, our
method can detect instances with the trigger during inference.
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ETHICS STATEMENT

The main purpose of this research is to understand the behavior of deep learning systems facing
malicious activities, and enhance their safety level. The backdoor attack considered in this paper
is well-known, with open-sourced implementation code. Thus, publication of this paper will be
beneficial to the community in defending against backdoor attacks. The code of our defense will be
released if the paper is accepted.
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A PROOF OF THEOREMS IN THE MAIN PAPER

A.1 DERIVATION OF EQ. (2)

Here, we provide the derivation showing that m∗
j and v∗j in Eq. (2) are the solutions to:

E[a∗j (Xb)] = E[aj(X)|Y = −1] (7)

Var[a∗j (Xb)] = Var[aj(X)|Y = −1] (8)

Based on Eq. (1), the above equations can be expanded as the following:

E[
w⊤

j Xb −m∗
j√

v∗j
γj + βj ] = E[

w⊤
j X−mj
√
vj

γj + βj |Y = −1] (9)

Var[
w⊤

j Xb −m∗
j√

v∗j
γj + βj ] = Var[

w⊤
j X−mj
√
vj

γj + βj |Y = −1] (10)

We first solve Eq. (10) for (X|Y = −1) ∼ N (−µ, σ2I) and Xb ∼ N (µb, σ
2
bI), which leads to:

v∗j =
σb
σ
vj (11)

By substituting Eq. (11) into Eq. (9), and since µb = −µ+ ϵ, we get the following:

m∗
j =

√
v∗j
vj

(mj −w⊤
j µ) +w⊤

j µb

=
σb
σ
mj + (

σb
σ

− 1)w⊤
j µ+w⊤

j ϵ.

A.2 PROOF OF THEOREM 3.1

Proof. First, let’s specify the following vector/matrix representations that will be used throughout
this proof:

W = [w1, · · · ,wJ ]
⊤ ∈ RJ×d

V =

v1 · · · 0
...

. . .
...

0 · · · vJ

 ∈ RJ×J V̂ (α) =

v̂1(α) · · · 0
...

. . .
...

0 · · · v̂J(α)

 ∈ RJ×J

m =

m1

...
mJ

 ∈ RJ m̂(α) =

m̂1(α)
...

m̂J(α)

 ∈ RJ Γ =

γ1 · · · 0
...

. . .
...

0 · · · γJ

 ∈ RJ×J β =

β1

...
βJ

 ∈ RJ

a(·) =

a1(·)...
aJ(·)

 ∈ RJ â(·|α) =

â1(·|α)...
âJ(·|α)

 ∈ RJ a∗(·) =

a
∗
1(·)
...

a∗J(·)

 ∈ RJ

Let X− = (X|Y = −1) ∼ N (−µ, σ2I) denote a random instances from the source class ‘−1’ for
simplicity. Let u = u− − u+ with u− and u+ being the weight vectors associated with the node
for class ‘−1’ and the node for class ‘+1’ respectively. Then, it is easy to see that:

â(Xb|α)
∣∣
α=1

= a(Xb) and â(Xb|α)
∣∣
α=0

= a∗(Xb),

and taking one step further by setting α = 1, we have the following:

P [g−(Xb|α) > g+(Xb|α)
∣∣α = 1] = P [u⊤â(Xb|α) > 0

∣∣α = 1] (12)

= P [u⊤a(Xb) > 0]

= P [f−(Xb) > f+(Xb)]

≤ 1− ψ (13)

14



Under review as a conference paper at ICLR 2023

This is to say that when α = 1, the classifier is not modified at all, thus the SIA will be no larger
than 1−ψ since the attack is ψ-successful (see Definition 3.2). On the other hand, by setting α = 0,
we will have the following:

P [g−(Xb|α) > g+(Xb|α)
∣∣α = 0] = P [u⊤â(Xb|α) > 0

∣∣α = 0]

= P [u⊤a∗(Xb) > 0]

= P [f−(X−) > f+(X−)] (14)
≥ 1− η (15)

and this is to say that when α = 0, the distribution shift will be fully recovered, such that SIA is
equally high as the accuracy of the source class. Recall that Eq. (14) is due to Eq. (7) and Eq.
(8). The inequality (15) is because the classifier specified by f− and f+ is assumed η-erroneous (see
Definition 3.1). Here, we prove the theorem by showing that the partial derivative of P [g−(Xb|α) >
g+(Xb|α)] over α is strictly negative when σb ≤ σ (i.e. triggered instances have smaller standard
deviation than clean instances, which is generally true). To achieve this, we notice that

u⊤â(Xb|α) = u⊤V̂ (α)−
1
2Γ(WXb − m̂(α)) + u⊤β

follows a Gaussian distribution with

E[u⊤â(Xb|α)] = u⊤V̂ (α)−
1
2Γ(−Wµ+Wϵ− m̂(α)) + u⊤β (16)

Var[u⊤â(Xb|α)] = σ2
b ||W⊤ΓV̂ (α)−

1
2u||22 (17)

We also notice that for source class instances X−

u⊤a(X−) = u⊤V − 1
2Γ(WX− −m) + u⊤β

follows a Gaussian distribution with

E[u⊤a(X−)] = u⊤V − 1
2Γ(−Wµ−m) + u⊤β (18)

Var[u⊤a(X−)] = σ2||W⊤ΓV − 1
2u||22 (19)

Then we have

P [u⊤â(Xb|α) > 0] = 1−Φ(− E[u⊤â(Xb|α)]√
Var[u⊤â(Xb|α)]

) (20)

P [u⊤a(X−) > 0] = 1−Φ(− E[u⊤a(X−)]√
Var[u⊤a(X−)]

) (21)

where Φ is the cumulative distribution function of standard Gaussian. Now let’s consider Eq. (21)
first. Since η < 1

2 as we have reasonably assumed (otherwise the classifier may be worse than a
random guess), and also according to Eq. (15), we have

P [u⊤a(X−) > 0] = P [f−(X−) > f+(X−)] >
1

2

Thus, based on Eq. (21) and Eq. (18), we get

u⊤V − 1
2Γ(−Wµ−m) + u⊤β > 0 (22)

Next, let’s focus on Eq. (20). Again, we set α = 1. Based on (12)-(13) and the reasonable
assumption that ψ > 1

2 (otherwise the attack is not deemed successful since the success rate will be
even lower than the accuracy on clean instances), we have

P [u⊤â(Xb|α) > 0
∣∣α = 1] = P [f−(Xb) > f+(Xb)] <

1

2

Then, based on Eq. (20) and Eq. (16), we get

u⊤V − 1
2Γ(−Wµ+Wϵ−m) + u⊤β < 0 (23)

Subtract Eq. (23) from Eq. (22) we get:

−u⊤V − 1
2ΓWϵ > 0 (24)
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Based on Eq. (20), we also have

∂P [g−(Xb|α) > g+(Xb|α)]
∂α

=
∂ E[u⊤â(Xb|α)]√

Var[u⊤â(Xb|α)]

∂α
· ϕ(− E[u⊤â(Xb|α)]√

Var[u⊤â(Xb|α)]
) (25)

where ϕ is the probability density function (PDF) for standard normal distribution. Based on Eq.
(16), Eq. (17), and Eq. (2), we have

E[u⊤â(Xb|α)]√
Var[u⊤â(Xb|α)]

=
u⊤V − 1

2Γ[−Wµ+Wϵ− (αm+ (1− α)m∗)] + (α+ (1− α)σb

σ )u⊤β

σb||W⊤ΓV − 1
2u||2

=
α · u⊤V − 1

2Γ[(σb

σ − 1)m+ (σb

σ − 1)Wµ+Wϵ]− α · (σb

σ − 1)u⊤β

σb||W⊤ΓV − 1
2u||2

+ constant

and thus, based on Eq. (23) and Eq. (24)

∂ E[u⊤â(Xb|α)]√
Var[u⊤â(Xb|α)]

∂α

=
(σb

σ − 1)[u⊤V − 1
2Γ(m+Wµ−Wϵ)− u⊤β] + σb

σ u⊤V − 1
2ΓWϵ

σb||W⊤ΓV − 1
2u||2

<0

when σb ≤ σ. Substitute it into Eq. (25) and given Gaussian PDF being strictly positive, we have

∂P [g−(Xb|α) > g+(Xb|α)]
∂α

< 0
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B DATASETS, TRAINING SETTINGS, AND ATTACK SETTINGS

B.1 DATASETS

In experiments, we show the effectiveness of our proposed backdoor mitigation method on several
benchmark datasets including CIFAR-10 (Krizhevsky & Hinton (2009)), GTSRB (Houben et al.
(2013)), CIFAR-100 (Krizhevsky & Hinton (2009)), ImageNette (Howard (2020)), and TinyIma-
geNet. CIFAR-10 dataset contains 60,000 32× 32 color images from 10 classes, with 5,000 images
per class for training and 1,000 images per class for testing . GTSRB dataset has more than 50,000
traffic sign images with different sizes from 43 classes. Here, we resize all images in GTSRB to
32 × 32. CIFAR-100 contains 60,000 32 × 32 color images evenly from 100 classes, where 500
images per class are used for training, while the others are used for testing. ImageNette is a subset of
10 easily classified classes from Imagenet4, with image size of 256× 256. For each class, there are
around 900 images for training and 400 images for testing. The TinyImageNet dataset is a subset of
the ImageNet dataset (Russakovsky et al. (2015)). It contains 100,000 64× 64 color images evenly
distributed in 200 classes (500 training images and 50 test images for each class).

B.2 TRAINING SETTINGS

Training settings for the 5 datasets are shown in Table 6. We train a ResNet-18 (He et al. (2016))
on CIFAR-10 and CIFAR-100 for 30 epochs and 40 epochs, respectively. We train a ResNet-34
(He et al. (2016)) on both TinyImageNet and ImageNette for 90 epochs. For GTSRB, we train a
MobileNet (Howard et al. (2017)) for 60 epochs. For all models, we use Adam optimizer (Kingma
& Ba (2015)) for parameter learning and a scheduler to decay the learning rate of each parameter
group by 0.1 every “scheduler step size” epochs (shown in the table). We choose batch size 32 for
both CIFAR-10 and CIFAR-100, 64 for GTSRB and ImageNette, and 128 for TinyImageNet.

B.3 ATTACK SETTINGS

On dataset CIFAR-10, we consider the following triggers: 1) a 3× 3 random patch (BadNet) with a
randomly selected location (fixed for all triggered images for each attack) used in Gu et al. (2019),
as visualized in Fig. 3b; 2) an additive perturbation (with size 2/255) resembling a chessboard (CB)
used in Xiang et al. (2020), as visualized in Fig. 3c; 3) a single pixel (SP) perturbed by 75/255 with a
randomly selected location (fixed for all triggered images for each attack) used by Tran et al. (2018),
as visualized in Fig. 3d; 4) invisible triggers generated with l0 and l2 norm constraints (l0 inv and l2
inv respectively) proposed by Li et al. (2021a), as visualized in Fig. 3e and 3f; 5) a warping-based
trigger (WaNet) proposed by Nguyen & Tran (2021), as visualized in Fig. 3g.

Attack settings for CIFAR-10 are summarized in Tab. 7. For all-to-one attacks, we arbitrarily choose
class 9 as the target class, and embed the backdoor triggers in 100 randomly chosen training samples
per class (excluding the target class). To achieve similar effective attacks as other triggers, we poison
900 images per source class in the all-to-one attack using WaNet. For all-to-all attacks, we embed
the backdoor triggers into 300 images for each class. For effective attacks, we poison 800 training
images and 1500 training images in the all-to-all attacks using SP and WaNet, respectively.

Attack settings for other datasets are summerized in Tab. 8. Due to the insufficiency of data, we
only conduct all-to-one attacks on these datasets for effective attacks. We arbitrarily choose class
0 as the target class for CIFAR-100, GTSRB, and TinyImageNet, and class 9 for ImageNette. The
classes other than the target class are all source classes. For CIFAR-100, we use the same BadNet,
l0 inv, and l2 inv triggers as CIFAR-10. We increase the perturbation size to 6/255 for CB pattern
for a effective backdoor attack. For each of the attack, we poison 10 images per source class using
the above triggers. Trigger SP and WaNet are not considered since we can not launch a successful
backdoor attack using the trigger on CIFAR-100. For GTSRB, in addition to the same triggers as
CIFAR-100, 2e also use the warping-based trigger (WaNet). We poison 2% of the training images
per source class using BadNet trigger and l2 inv trigger, and 5% of the training images per source
class with CB trigger and l0 inv trigger. To achieve similar effective attacks, we embed WaNet
trigger into 24% of the training images per source class. For TinyImageNet and ImageNette, we

4The 10 classes are tench, English springer, cassette player, chain saw, church, French horn, garbage truck,
gas pump, golf ball, and parachute.
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only consider BadNet as the trigger, as the DNN can not learn the backdoor mapping using the other
(relatively simple and small) triggers in datasets that are much more complicated than CIFAR-10. To
successfully plant backdoors, we increase the size the the BadNet patch to 6× 6 for TinyImageNet
and to 21 × 21 for ImageNette. We embed the trigger in 10 training images per source class in
TinyImageNet and in 5% of the training images per source class for ImageNette.

Dataset CIFAR-10 CIFAR-100 TinyImageNet ImageNette GTSRB
DNN architecture ResNet-18 ResNet-18 ResNet-34 ResNet-34 MobileNet

Optimizer Adam Adam Adam Adam Adam
Batch size 32 32 128 64 64

Epochs 30 40 90 90 60
Initial learning rate 1e-3 1e-3 1e-3 1e-3 1e-3
scheduler step size 10 10 30 30 20

Table 6: Training configurations of the 5 datasets used in our experiments.

Trigger type BadNet CB l0 inv
A2O A2A A2O A2A A2O A2A

# poisoned
per class 100 300 100 300 100 300

l0 norm 3× 3 3× 3 NA NA 1× 6 1× 6
l2 norm NA NA 0.3074 0.3074 NA NA

Trigger type l2 inv SP WaNet
A2O A2A A2O A2A A2O A2A

# poisoned
per class 100 300 100 800 900 1500

l0 norm NA NA NA NA NA NA
l2 norm 1.6106 1.6106 0.5094 0.5094 NA NA

Table 7: Attack configurations on CIFAR-10

Trigger type CIFAR-100 TinyImageNet ImageNette
BadNet CB l0 inv l2 inv BadNet BadNet

Target class 0 0 0 0 0 9
# poisoned
per class 10 10 10 10 10 5%

l0 norm 3× 3 NA 1× 6 NA 6× 6 21× 21
l2 norm NA 0.9222 NA 1.6106 NA NA

Trigger type GTSRB
BadNet CB l0 inv l2 inv WaNet

Target class 0 0 0 0 0
# poisoned
per class 2% 5% 5% 2% 24%

l0 norm 3× 3 NA 1× 6 NA NA
l2 norm NA 0.9222 NA 1.6106 NA

Table 8: Attack configurations on GTSRB, CIFAR-100, ImageNette, and TinyImageNet.
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(a) clean (b) BadNet (c) CB (d) SP

(e) l0 inv (f) l2 inv (g) WaNet

Figure 3: Example of CIFAR-10 images embedded with the backdoor triggers considered in our
experiments.
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C PATTERN ESTIMATION AND BACKDOOR DETECTION

For our BNA, following Sec. 4.2, we first perform detection by reverse-engineering a backdoor
trigger for each class pair. For patch triggers like BadNet, we use the objective function from
Wang et al. (2019) for trigger reverse-engineering. For other more subtle, perturbation-based trigger
types, we use the objective function from Xiang et al. (2020) for reverse-engineering. The detection
statistic is the reciprocal of the l0 norm of estimated patch triggers and l2 norm of reverse-engineered
perturbation-based triggers. Then we feed the statistics obtained from the estimated trigger to an
anomaly detector.

Our anomaly detector is based on MAD, which is a classical approach also used by Wang et al.
(2019); Chen et al. (2019b); Wang et al. (2020). It first calculates absolute deviation between all
detection statistics (the reciprocal of l0 norm of patch triggers and l2 norm of perturbation-based
triggers) and the median, and the median of the absolute deviations is called Median Absolute Devi-
ation (MAD). For a class pair and its corresponding estimated trigger, if the trigger’s anomaly score,
which is defined as the absolute deviation divided by MAD, is larger than a given threshold, it is
detected as a backdoor class pair. The detection threshold can be easily found, as shown in the Fig. 4
and Fig. 5. Fig. 4 and Fig. 5 show the histograms of the anomaly scores for all class pairs under
all-to-one and all-to-all attacks, respectively. Here, we set the detection threshold at 7, which easily
catches all the backdoor class pairs under all the attacks, except for the all-to-all BadNet attack and
both attacks using WaNet trigger.

For the all-to-all BadNet attack, the outlier detector finds two source classes – 0 and 8 – for the
target class 1, where 0-1 is the true source-target class pair and 8-1 is falsely detected, as shown in
Fig. 5a. The l0 norm of the trigger estimated on class 0 clean images is 3.02, and that estimated on
class 8 images is 7.95. If class 0 and 8 are both the source classes involved in the backdoor attack,
then the trigger estimated on the clean images from class 0 and 8 should also have a small l0 norm.
Otherwise, the trigger estimated using class 8 images is an intrinsic backdoor pattern (Xiang et al.
(2022); Liu et al. (2022); Tao et al. (2022)), and 0-1 is the true source class pair, since the trigger
of 0-1 has smaller size than 8-1. By optimizing on clean images from class 0 and 8, the l0 norm of
the trigger that causes mis-classification to class 1 with high confidence is 27.18 – much larger than
the triggers estimated on either class 0 images or class 8 images. Thus, we detect 0-1 as the true
backdoor class pair and discard the trigger for class pair 8-1 in backdoor mitigation.

For the attacks using warping-based triggers (WaNet), unlike the other attacks, trigger size for clean
class pairs and backdoor class pairs are both small. However, there is still a “gap” between the
anomaly scores of clean class pairs and backdoor class pairs, as shown in Fig. 4f and 5f. The outlier
detector successfully detects all the backdoor class pairs by using a threshold at 3.
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(a) BadNet (b) CB

(c) SP (d) l0 inv

(e) l2 inv (f) WaNet

Figure 4: Histograms of anomaly scores for each class pair under all all-to-one attacks.
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(a) BadNet (b) CB

(c) SP (d) l0 inv

(e) l2 inv (f) WaNet

Figure 5: Histograms of anomaly scores for each class pair under all all-to-all attacks.
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D DISTRIBUTION DIVERGENCES

As stated in Thm. 3.1, for our backdoor mitigation method, the SIA monotonically increases as the
divergence between clean instances and backdoor-trigger instances decreases. We show the ACC,
ASR, and SIA for our method against all all-to-one attacks on CIFAR-10 dataset in Tab. 1. Here,
we show the corresponding distribution divergences under all attacks in Tab. 9. Tab. 9 shows the
average TV distance, JS divergence, and KL divergence between distributions of penultimate layer
activations of clean images and backdoor-trigger images in clean ResNet-18, backdoor poisoned
ResNet-18, and backdoor poisoned ResNet-18 with BNA. For the backdoor poisoned ResNet-18
with BNA, we use TV divergence in backdoor mitigation. For all attacks, all the three divergences
are small for a clean DNN, while relatively large for a backdoor-poisoned DNN. The distribution
of backdoor-trigger instances severely deviates from that of clean instances. However, with our
mitigation method, the distribution alteration is significantly relieved. All the three divergences are
drastically reduced, which is consistent with the results in Tab. 1.

Trigger type BadNet CB l0 inv l2 inv SP WaNet
KL divergence

clean 0.0022 0.001 0.0013 0.0085 0.0017 0.0037
poisoned 0.3211 0.752 0.4029 0.873 0.4385 0.2708

BNA 0.0291 0.0141 0.0337 0.0402 0.0146 0.0389
JS divergence

clean 0.0239 0.0166 0.0185 0.0461 0.0214 0.0311
poisoned 0.2867 0.3528 0.3275 0.3898 0.3041 0.2215

BNA 0.0952 0.0583 0.0847 0.0986 0.0582 0.0611
TV distance

clean 634.1953 376.4219 461.9531 1240.3359 554.3594 805.9648
poisoned 8877.2734 11177.3867 9203.9609 12482.4336 10119.3281 7237.7812

BNA 2463.582 1705.0156 2490.457 2794.7578 1761.2148 1749.2461

Table 9: Average TV distance, JS divergence, and KL divergence between distributions of clean
instances and backdoor-trigger instances in clean DNN, poisoned DNN, and poisoned DNN with
BNA using TV divergence in backdoor mitigation.
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E CHOICE OF DIVERGENCE FORMS

In Tab. 1 and 3, we only show the results for our method of using TV distance in backdoor mitigation
(Eq. 3). Here we show that our method is not sensitive to the choice of distribution divergence form.
We respectively use TV distance, JS divergence, and KL divergence to mitigate the 5 all-to-one
CB attack against CIFAR-10, and show the average distribution similarity measured by the three
measurements after mitigation. The distribution similarity is calculated on the penultimate layer
activations. As shown in Tab. 10, the distribution alteration is significantly relieved after mitigation,
regardless the measurement used in mitigation (Eq. 3).

divergence form used in mitigation →
distribution similarity after mitigation ↓ TV JS KL

TV 1742 1730 1719
JS 0.0622 0.06172 0.0613
KL 0.0165 0.0163 0.0161

Table 10: Average TV, JS, and KL between clean instances and backdoor-trigger instances using
TV, JS, and KL for measuring distribution similarity in backdoor mitigation.
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F IMPACT OF PERTURBATION SIZE AND POISONING RATIO ON BACKDOOR
MITIGATION

To observe the impact of attack settings on the performance of backdoor mitigation methods, we
tune the poisoning ratio (i.e., the number of poisoned instances per source class) and perturbation
size used in all-to-one CB attacks, and apply all the mitigation methods on these poisoned DNNs.
The results are shown in Tab. 11. Generally, the metrics for all methods decrease with increasing
poisoning ratio and perturbation size. Although the performance for our BNA slightly declines as
the attack is strengthened, our method still outperforms other methods in terms of the SIA. Besides,
it achieves the best or comparable ACC and ASR to other methods.

Mitigation method the number of poisoned instances per class perturbation size (*255)
50 100 150 200 250 2 3 4 5 6

NC
ACC 0.8953 0.8734 0.8826 0.8943 0.8799 0.8734 0.8918 0.8667 0.8825 0.8709
ASR 0.0056 0.0238 0.0148 0.0057 0.0064 0.0238 0.0042 0.0157 0.0133 0.0065
SIA 0.8515 0.8412 0.8552 0.8579 0.8532 0.8412 0.8560 0.8283 0.8194 0.7883

I-BAU
ACC 0.8708 0.8473 0.8818 0.8941 0.8594 0.8473 0.8646 0.8822 0.9004 0.8919
ASR 0.0789 0.0043 0.0712 0.5074 0.0460 0.0043 0.3052 0.0247 0.0011 0.2048
SIA 0.6564 0.8399 0.7563 0.3802 0.6715 0.8399 0.5823 0.7712 0.8102 0.5153

ANP
ACC 0.8523 0.8271 0.8612 0.8204 0.7614 0.8271 0.8486 0.8156 0.8418 0.8249
ASR 0.1940 0.8535 0.5401 0.0031 0.0043 0.8535 0.9836 0.6394 0.3670 0.2548
SIA 0.5158 0.1047 0.2440 0.6157 0.3701 0.1047 0.0142 0.1911 0.3238 0.4606

NAD
ACC 0.8942 0.8745 0.8949 0.8902 0.8674 0.8767 0.8823 0.8745 0.8835 0.8990
ASR 0.0147 0.0086 0.0095 0.0106 0.0125 0.0070 0.0096 0.0086 0.0642 0.0586
SIA 0.8646 0.8504 0.8709 0.8695 0.8514 0.8631 0.8574 0.8504 0.8070 0.7896

ARGD
ACC 0.8743 0.8832 0.8693 0.8659 0.8415 0.8832 0.8872 0.8619 0.8508 0.8394
ASR 0.0106 0.0108 0.0097 0.0117 0.0121 0.0108 0.0073 0.0083 0.0085 0.0153
SIA 0.8590 0.8685 0.8528 0.8482 0.8267 0.8685 0.8574 0.8467 0.8373 0.8196

BNA
(ours)

ACC 0.9112 0.9094 0.9098 0.9102 0.9015 0.9094 0.9041 0.9079 0.8992 0.8912
ASR 0.0095 0.0141 0.0121 0.0170 0.0090 0.0141 0.0395 0.0222 0.0109 0.0388
SIA 0.8851 0.8837 0.8728 0.8840 0.8662 0.8851 0.8783 0.8711 0.8814 0.8435

Table 11: ACC, ASR, and SIA for our BNA, NC, I-BAU, ANP, NAD, and ARGD as a function of
(1) the number of poisoned instances injected into the training set; (2) the perturbation size under
all-to-one CB attack.
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