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ABSTRACT

Steady-state visual evoked potentials (SSVEPs) provide a high-throughput testbed
for neural decoding, yet real-world deployment is hindered by subject-specific
calibration. We address this challenge by proposing DATCAN, a framework
that embeds domain-specific invariances into contrastive learning while aligning
feature statistics without supervision. DATCAN integrates three complementary
components: (i) a harmonic-aware contrastive objective that encodes frequency-
locked physiological priors directly into the embedding space, (ii) second-order
covariance alignment(CORAL) that stabilizes cross-subject transfer through closed-
form adaptation, and (iii) adaptive late fusion of interpretable classical heads
(Task-Related Component Analysis, TRCA; Filter-Bank Canonical Correlation
Analysis, FBCCA)(Nakanishi et al., 2018; Chen et al., 2015) with normalized
weighting.Contrastive pairing uses only source-subject labels: positives are other-
subject trials evoked by the same known stimulus frequency (including harmonics),
while negatives come from different frequencies. At inference, the TRCA/F-
BCCA heads score each frequency class, mapping embeddings to symbols without
any target-subject calibration. Evaluated under strict leave-one-subject-out trans-
fer, DATCAN achieves robust short-window decoding, sustaining >100 bits/min
information transfer rate at 1 s—a regime where existing calibration-free base-
lines substantially underperform. Ablation and interpretability analyses confirm
that each module contributes principled gains, yielding physiologically grounded,
subject-invariant representations. Beyond Electroencephalogram(EEG), our re-
sults highlight a general recipe for calibration-free domain adaptation: encode
physics-driven invariances in contrastive learning, align covariances without labels,
and integrate interpretable ensembles. This blueprint extends naturally to other
sequential and biosignal domains where distribution shift and data scarcity remain
central obstacles.
Reproducibility: Code, preprocessing scripts, and evaluation notebooks with fixed
seeds are provided in the supplementary material (anonymous).

1 INTRODUCTION

Calibration bottleneck. Brain–computer interfaces (BCIs) (Wolpaw et al., 2002) promise assistive
communication, yet per-subject calibration remains a barrier. In steady-state visual evoked potentials
(SSVEPs)—the workhorse for high-throughput BCIs—cross-subject performance deteriorates in
short windows (1–2 s), precisely where fast interaction is needed.

Domain-adaptation view. Across subjects, electrode placement, anatomy, and noise induce domain
shift, while stimulus-locked harmonics are preserved. The objective is to learn harmonic-invariant,
subject-agnostic representations without target labels. Classical TRCA/FBCCA pipelines (Nakanishi
et al., 2018; Chen et al., 2015) leverage reproducibility and harmonic priors but falter at 1–2 s; deep
models often require fine-tuning.

Our approach: DATCAN. DATCAN is a calibration-free framework that encodes physics into
contrastive learning, reduces subject shift with lightweight statistics, and fuses interpretable heads
at decision time: (i) harmonic-conditioned InfoNCE treats cross-subject trials sharing stimulus
frequency (and harmonics) as positives; (ii) CORAL performs closed-form second-order alignment
without target labels or adversarial training; and (iii) adaptive late fusion z-normalizes and combines
TRCA (reproducibility) with FBCCA (harmonic specificity).

1
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Calibration-free 1.0 s benchmark. Under strict LOSO with no target calibration/adaptation, prior
methods typically fall below ∼100 bits/min, whereas calibration- or adaptation-based approaches
(e.g., msSAME (Luo et al., 2023), SFDA-SSVEP (Guney et al., 2023)) report higher ITRs. DATCAN
achieves 141.4 bits/min (best subject) and ≈100+ bits/min on average at 1.0 s in a fully calibration-
free setting.

Contributions.
• Physics-guided SSL for EEG: a harmonic-conditioned contrastive loss that yields

frequency-aligned, subject-invariant embeddings in short windows.
• Label-free alignment: CORAL on dual-head embeddings provides stable cross-subject

transfer via a simple closed-form transform.
• Interpretable, robust decoding: an adaptive TRCA+FBCCA ensemble sustains calibration-

free performance on two multi-subject benchmarks, exceeding 100 bits/min at 1.0 s.

Figure 1: DATCAN overview. Filter-bank EEG → dual heads (TRCA, FBCCA) → harmonic-
aware contrastive embeddings + CORAL alignment → adaptive fusion. The design preserves
interpretability while enabling calibration-free LOSO decoding at 1.0 s.

2 RELATED WORK

Classical SSVEP decoding. CCA/FBCCA correlate EEG with sinusoidal references (incl. harmon-
ics), while TRCA learns spatial filters maximizing trial-to-trial reproducibility (Chen et al., 2015;
Nakanishi et al., 2018). These pipelines are efficient and interpretable but degrade under cross-subject
transfer and short windows (<2 s) due to subject-specific covariance shift. DATCAN retains their
harmonic priors and transparency while adding learned invariances and alignment tailored for transfer.

Deep and hybrid EEG decoders. Compact CNNs (e.g., EEGNet) (Lawhern et al., 2018) can
match/exceed handcrafted methods in within-subject settings, whereas cross-subject generalization
typically needs calibration or fine-tuning. Hybrid filter-bank + CNN designs raise capacity but often
trade off latency, interpretability, or calibration-free transfer. DATCAN keeps linear-time classical
heads, using representation learning only where subject shift arises.

Domain adaptation and self-supervision. Adversarial alignment (e.g., gradient reversal) (Ganin
et al., 2016) can reduce domain gaps but is brittle for low-SNR EEG. CORAL (Sun et al., 2016; Sun
& Saenko, 2016) aligns second-order statistics via a closed-form linear map, avoiding adversarial
instability and extra labels. Generic contrastive SSL (Chen et al., 2020; van den Oord et al., 2018)
reduces label reliance but ignores SSVEP physics (harmonics, phase locking). DATCAN combines:
(i) harmonic-conditioned InfoNCE treating cross-subject trials at the same stimulus frequency (and
harmonics) as positives, and (ii) CORAL on dual-head embeddings, yielding label-free adaptation
with lightweight inference.

Positioning. Prior ingredients—FBCCA/TRCA, CORAL, and SSL—are partial. A unified,
calibration-free pipeline that (i) encodes harmonic priors in the embedding, (ii) performs closed-
form target covariance alignment, and (iii) adaptively fuses complementary classical heads has been
missing. DATCAN closes this gap, sustaining 1.0 s LOSO transfer with practical throughput (e.g.,
>100 bits/min) without per-subject calibration.

3 METHOD: DATCAN FRAMEWORK

DATCAN is a calibration-free SSVEP pipeline that (i) learns frequency-invariant embeddings via a
harmonic-conditioned InfoNCE objective using only source-subject labels, (ii) reduces inter-subject
covariance shift with label-free, closed-form CORAL in embedding space, and (iii) adaptively
late-fuses two interpretable heads—TRCA (trial-to-trial reproducibility) and FBCCA (harmonic

2
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Table 1: ITR for calibration-reduced / fully calibration-free methods at ∼1.0 s windows.

Method Calibration / Adaptation ITR (bits/min)

msSAME Luo et al. (2023) minimal calibration (∼24 s) 213.8
SFDA-SSVEP Guney et al. (2023) unlabeled adaptation 201.15 / 145.02
iFuzzyTL ? transfer learning 213.99 / 94.63
Ours (DATCAN) fully calibration-free (LOSO) 141.4 / ≈ 100+

Figure 2: Positioning. Classical (FBCCA/TRCA) are interpretable but weaken under cross-subject
transfer; deep CNNs typically need calibration. DATCAN integrates harmonic-aware SSL, CORAL
alignment, and adaptive TRCA/FBCCA fusion to preserve interpretability and achieve robust 1 s
decoding.

specificity). At test time, head scores map embeddings → symbols with no target calibration,
sustaining short-window (1.0 s) LOSO decoding.

Figure 3: DATCAN pipeline: filter-bank EEG→ dual heads (TRCA reproducibility, FBCCA har-
monic specificity)→ harmonic-aware contrastive embeddings + CORAL alignment→ adaptive
TRCA/FBCCA fusion.

3.1 PREPROCESSING AND DUAL-HEAD FEATURES

Trials x∈RC×S are band-pass filtered (e.g., 5–45 Hz) with notch and decomposed into M overlapping
sub-bands {x(m)}Mm=1.

TRCA head. For class c, TRCA learns wc via the Rayleigh quotient

wc = argmax
w ̸=0

w⊤Σc w

w⊤Σall w
, (1)

with Σc the inter-trial covariance for class c and Σall across classes. Scores correlate w⊤
c x

(m)

with class templates and are aggregated across m. Why Rayleigh: TRCA maximizes w⊤SITw
w⊤SWTw

,
emphasizing reproducible, phase-locked components while suppressing within-trial noise. Over
∼ 1.0 s windows, covariances are near-stationary, giving an efficient, closed-form, interpretable
solution.

3
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Algorithm 1 DATCAN: calibration-free training and inference (concise)
1: Inputs: labeled sources Ds = {(x, y, fc)}, unlabeled target Dt = {x}, class freqs {fc}Nc=1,

harmonics H
2: Preprocess: band-pass+notch; build sub-bands {x(m)}Mm=1
3: Dual heads: compute TRCA filters/templates and FBCCA sinusoid references for {fc} and

harmonics
4: Task-aware features: ϕ(x)← [TRCA proj.(x), CCA comps.(x)]; embed z = gθ(ϕ(x))
5: for epochs do
6: H-InfoNCE (sources): positives = other-subject trials with same fc (incl. harmonics);

negatives = c′ ̸=c; update θ by equation 2
7: CORAL (label-free): estimate Cs, Ct on mini-batches; align using equation 3
8: end for
9: Fusion selection (sources): choose (α, β) via cross-subject validation; freeze for target

10: Inference (target, no labels): compute ŝTRCA, ŝFBCCA; per-trial z-score; output
argmaxc{α ŝTRCA(c) + β ŝFBCCA(c)}

FBCCA head. For stimulus frequency fc, references are Rc(t) =
{sin(2πhfct), cos(2πhfct)}Hh=1. Filter-bank CCA takes the maximum canonical correla-
tion between x(m) and Rc and combines sub-band scores (e.g., weighted sum). In SSVEP spellers,
fc is known; no frequency search is done at test time.

Feature outputs. Per-class scores {sTRCA(c), sFBCCA(c)}Nc=1 and intermediate projections (e.g.,
w⊤

c x
(m), CCA components) form the task-aware features ϕ(x) used for representation learning.

3.2 HARMONIC-CONDITIONED CONTRASTIVE LEARNING

Let z = gθ(ϕ(x)) ∈ Rd be an embedding of dual-head features. We use harmonic-conditioned
InfoNCE (Chen et al., 2020; van den Oord et al., 2018):

LH-InfoNCE = − 1

|P(i)|
∑

j∈P(i)

log
exp(sim(zi, zj)/τ)∑
k ̸=i exp(sim(zi, zk)/τ)

, (2)

with cosine similarity and temperature τ . Positives P(i) share the same stimulus frequency and har-
monics (typically across subjects); negatives come from other frequencies. This clusters embeddings
by frequency, not identity, improving 1.0 s discrimination.

3.3 UNSUPERVISED COVARIANCE ALIGNMENT (CORAL)
To reduce second-order subject shift, whiten source features and re-color with target covariances in
embedding space:

X̃s = (Xs − µs)C
− 1

2
s C

1
2
t , Cs = Cov(Xs), Ct = Cov(Xt), (3)

where Xs/Xt are mini-batches of embeddings from Ds/Dt. CORAL is closed-form, label-free, and
adds negligible overhead (Sun & Saenko, 2016; Sun et al., 2016).

3.4 ADAPTIVE LATE FUSION

Fuse normalized head scores with fixed weights chosen on sources:

sens(c) = α ŝTRCA(c) + β ŝFBCCA(c), α, β ≥ 0, (4)

where ŝ are per-trial z-scores (mean/variance from the current trial only). Z-scoring removes
scale mismatches from covariance and window length while preserving within-trial ranking; rank-
normalization and temperature scaling behaved similarly, so we use z-scores for simplicity and CPU
speed.

3.5 TRAINING AND INFERENCE

Efficiency. All operations are linear in C×S per sub-band. TRCA solves small-channel eigenprob-
lems; FBCCA and CORAL are closed-form; the embedding is a shallow projector. The pipeline is
CPU-friendly with real-time latency; timing/memory appear in Section 5.
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Hyper-parameters. Source-only nested cross-subject CV over d ∈ {32, 64, 128}, τ ∈
{0.05, 0.1, 0.2}, H∈{2, 3, 4}, batch∈{64, 128}; choose encoder by minimizing LOSO contrastive
loss and fusion by maximizing mean source-fold accuracy. Final (all runs): d=128, τ=0.1, H=3,
batch= 128. Seeds fixed; each fold repeated 3×.

4 EXPERIMENTAL SETUP

4.1 DATASETS

We evaluate on two multi-subject SSVEP benchmarks (Wang et al., 2017; Liu et al., 2020), using
occipital/parietal channels (e.g., O1/O2/Oz/POz) and harmonics up to the third.

Table 2: Benchmarks used. Benchmark A is the standard calibration-free set; Benchmark B adds
scale/heterogeneity.

Dataset Classes Subjects Channels Rate Trial dur.

Benchmark A 12 10 8 (occipital) 250 Hz ∼4.1 s
Benchmark B ≥12 >20 9 250 Hz 1–4 s

4.2 PREPROCESSING

Band-pass 5–45 Hz with 50 Hz notch. Filter-bank of five overlapping sub-bands (6–14, 14–22, 22–30,
30–38, 38–46 Hz). Windows: full (∼4.1 s), 2.0 s, and 1.0 s.

4.3 EVALUATION PROTOCOL

LOSO. Train on N−1 subjects; test on the held-out subject with no target labels; rotate across
subjects.

Metrics. Accuracy (%) and information transfer rate (ITR, bits/min) (McFarland et al., 2003):

ITR =
[
log2 N + P log2 P + (1− P ) log2

1−P
N−1

]
· 60T , (5)

with N classes, accuracy P , and trial duration T (s). Reported as mean ± 95% CI across subjects;
we also include best-subject ITR.

4.4 BASELINES

Strong calibration-free comparators spanning classical, compact CNNs, and transfer: FBCCA (filter-
bank sinusoidal refs), TRCA (trial reproducibility), EEGNet (depthwise-separable CNN), FB-CNN
(filter-bank hybrid), and transfer variants (shallow re-training / domain alignment without per-subject
labels). Additional details are in Appendix A.

4.5 IMPLEMENTATION DETAILS

NumPy/JAX for linear algebra; PyTorch for contrastive training. Adam (lr = 10−3), batch size
128, temperature τ=0.1. Inference on Intel Xeon CPU; training on NVIDIA A100. Fixed seeds;
three independent runs per subject. Anonymous scripts and code are provided in the supplementary
material (with anonymous URL) for reproducibility.

5 RESULTS

5.1 MAIN ACCURACY AND ITR
DATCAN improves LOSO accuracy and ITR across all windows, with the largest gains at 1.0 s.

Takeaways. At 4.1 s, DATCAN reaches classical ceilings while staying interpretable; at 2.0 s it adds
+12–15 pp over FBCCA/TRCA; at 1.0 s it sustains 55.6% mean accuracy and 141.4 best-subject
bits/min, surpassing typical calibration-free LOSO results (<100 bits/min).

5.2 ITR VS. WINDOW

DATCAN maintains high ITR below 2.0 s where FBCCA/TRCA collapse, confirming the value of
frequency-invariant embeddings (Fig. 4).

5
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Table 3: LOSO transfer across window lengths. Mean %±95% CI and ITR (bits/min) via Eq. 5.
Best-subject (Best) shown for reference. Bold = best per window.

Accuracy (%) ITR (bits/min)

Method Window Mean±CI Best Mean Best

FBCCA 4.1 s 81.7 ± 2.3 93.3 33.2 43.9
TRCA 4.1 s 87.5 ± 1.8 100.0 38.2 52.5
DATCAN 4.1 s 91.7 ± 1.5 99.2 42.2 51.1

FBCCA 2.0 s 41.7 ± 3.1 83.3 17.6 70.7
TRCA 2.0 s 55.0 ± 2.8 89.2 31.1 81.5
DATCAN 2.0 s 66.9 ± 2.5 89.2 45.7 81.5

FBCCA 1.0 s 15.8 ± 2.9 25.8 2.6 11.7
TRCA 1.0 s 46.5 ± 2.6 80.8 44.3 132.9
DATCAN 1.0 s 55.6 ± 2.3 83.3 63.5 141.4

Figure 4: ITR vs. window. DATCAN preserves ITR at 1.0 s; competitors deteriorate.

5.3 SUBJECT ROBUSTNESS

DATCAN improves both central tendency and dispersion: hard subjects gain +10–15 pp at 1.0 s; easy
subjects remain >90% (Fig. 5).

5.4 SIGNIFICANCE

Paired t-tests (accuracy, LOSO) show DATCAN > FBCCA/TRCA at 1.0 s and 2.0 s; no difference at
4.1 s.

Table 4: Paired t-tests (∆= mean pp). †p < 0.05, ‡p < 0.01, ⋆p < 0.001.

Comparison 1.0 s 2.0 s 4.1 s

DATCAN vs. FBCCA +31.8⋆ +25.2⋆ +10.0 (n.s.)
DATCAN vs. TRCA +9.1‡ +11.9† +4.2 (n.s.)

5.5 EFFICIENCY

DATCAN remains real-time and light-weight.

Reporting. Means are across LOSO subjects; “best-subject” is the top held-out subject per window.
ITRs follow Eq. 5.

6
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Figure 5: Per-subject accuracy at 1.0 s (LOSO). Lifts hard cases; preserves ceiling for easy ones.

Table 5: Efficiency at 1.0 s (CPU inference per trial), training overhead, and memory.

Method Inference Training Memory

FBCCA <20ms None ∼40 MB
TRCA <25ms None ∼45 MB
EEGNet ∼50 ms ∼3 h (GPU) ∼60 MB
DATCAN <30ms ∼2 h (GPU) ∼50 MB

6 ABLATION STUDIES

We test whether DATCAN’s gains arise from its modules—contrastive harmonic alignment, unsuper-
vised CORAL, and adaptive late fusion—by removing each under LOSO at 1.0 s and 2.0 s. Results
show that each component contributes materially to short-window robustness.

Module removals (effect sizes).
• No contrastive: 55.6%→ 47.9% at 1.0 s (−7.7 pp), 66.9%→ 61.2% at 2.0 s (−5.7 pp);

embeddings revert to subject-centric clusters with more harmonic confusions.
• No CORAL: 55.6% → 49.5% at 1.0 s (−6.1 pp), 66.9% → 62.7% at 2.0 s (−4.2 pp);

subject variance widens and difficult subjects regress toward 30–35%.
• No adaptive fusion: 55.6%→ 50.2% at 1.0 s (−5.4 pp), 66.9%→ 63.1% at 2.0 s (−3.8

pp); hurts robustness on difficult subjects where equal weights are insufficient.

Single-head baselines. TRCA-only reaches 46.5% / 56.2% at 1.0 s / 2.0 s (9.1 / 10.7 pp below full),
while FBCCA-only collapses at 1.0 s (23.8%) and trails at 2.0 s (53.3%; gaps 31.8 / 13.6 pp). Either
head alone is insufficient under calibration-free, short-window settings.

Table 6: LOSO ablations. Each module adds measurable robustness; full DATCAN is best in both
accuracy and stability.

Configuration 1.0 s Acc. 2.0 s Acc. Notes

Full DATCAN 55.6% 66.9% Highest, lowest variance across subjects
– Contrastive 47.9% 61.2% −7.7/ − 5.7 pp; embeddings cluster by

subject
– CORAL 49.5% 62.7% −6.1/ − 4.2 pp; variance widens; hard

cases regress
– Adaptive Fusion 50.2% 63.1% −5.4/− 3.8 pp; equal weights hurt diffi-

cult subjects
TRCA only 46.5% 56.2% −9.1/ − 10.7 pp vs. full; degrades for

<2 s
FBCCA only 23.8% 53.3% −31.8/− 13.6 pp; harmonic prior alone

insufficient

Takeaway. Contrastive alignment enforces frequency invariance, CORAL reduces inter-subject
shift, and adaptive fusion balances complementary heads; together they yield the highest accuracy
and stability at 1–2 s under calibration-free transfer.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

7 ANALYSIS AND INTERPRETABILITY

Summary. At 1.0 s, DATCAN’s calibration-free gains arise from three complementary effects:
(i) spatial attributions concentrate on occipital cortex, (ii) harmonic attributions emphasize the
fundamental and second harmonic in short windows, and (iii) embedding geometry aligns by stimulus
frequency rather than subject identity. Together with ablations (Section 6), these mechanisms explain
both accuracy and robustness.

Spatial attribution (physiological plausibility). Across LOSO folds, TRCA filters within DAT-
CAN consistently up-weight O1/O2/Oz/POz with reduced spillover to frontal/temporal sensors.
Relative to stand-alone TRCA, topographies are sharper, indicating that harmonic-aware contrastive
learning suppresses subject-specific nuisance structure; effects are stable at 1.0 s and 2.0 s (Figure 6).

Harmonic attribution (frequency-locked evidence). Score decompositions show that 1.0 s deci-
sions rely primarily on the fundamental and second harmonics, where SSVEP energy is strongest
and variance is lower in short windows. FBCCA-only baselines over-weight higher harmonics under
noise, increasing neighbor/harmonic confusions. Frequency-aware positives (Section 3.2) steer the
representation toward these reliable bands.

Embedding geometry (subject-invariant structure). t-SNE indicates a shift from subject-
clustered embeddings without harmonic contrastive to frequency-aligned embeddings with DATCAN
(Figure 7); quantitative separation metrics in the Appendix corroborate this trend.

Failure modes and robustness. Low SNR, spectral leakage, and inter-subject covariance shift
present as neighbor/harmonic confusions. DATCAN mitigates these via filter-bank tuning, TRCA
projections that focus occipital activity, CORAL-based covariance alignment, and adaptive late fusion
that down-weights fragile template correlations when harmonic evidence is stronger (Figure 8). On
hard subjects, this sustains competitive 1.0 s accuracy; on easy subjects (>90% at 1–2 s), performance
remains at ceiling without added variance.

Takeaway. DATCAN (i) localizes to occipital sources, (ii) prioritizes fundamental/second harmon-
ics in short windows, and (iii) restructures embeddings to be subject-invariant and frequency-aligned,
accounting for the observed 1–2 s gains under calibration-free transfer.

Figure 6: Spatial attribution. DATCAN emphasizes occipital sensors (O1/O2/Oz/POz) with sharper
topographies than TRCA alone.

8 LIMITATIONS AND ETHICS

8.1 LIMITATIONS

Data & generalization. Benchmarks use lab-grade SSVEP with occipital montages; robustness to
mobile/dry-electrode/consumer EEG and underrepresented demographics is untested and should be
reported in future work.

Subject tail. DATCAN reduces but does not remove hard-subject gaps at 1.0 s; larger, more diverse
cohorts and/or lightweight personalization may be required.

8
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Figure 7: Embedding geometry. Without harmonic contrastive training, embeddings cluster by
subject; with DATCAN, they align by frequency across subjects.

Figure 8: Error modes and mitigations. Low SNR, spectral leakage, and inter-subject variability
drive neighbor/harmonic confusions; DATCAN counters via filter-bank design, TRCA projections,
CORAL alignment, and adaptive fusion.

Scope. The method is designed for frequency-coded SSVEP; transfer to other biosignals
(EEG/EMG/fNIRS) remains to be validated.

Compute & deployment. Inference is lightweight (<30ms/trial); harmonic-contrastive pretraining
adds cost (∼2 h on a single GPU). Edge use will benefit from pruning/distillation.

8.2 ETHICAL CONSIDERATIONS

Clinical use. Research prototype only—no clinical claims. Any medical application requires
population-scale validation and regulatory review.

Privacy & consent. EEG may encode biometric/cognitive traits. Beyond anonymized public
data, deployment needs strict governance, informed consent, and protections against unauthorized
monitoring.

Misuse risks. Neural decoding could be repurposed for surveillance/profiling. Releases should
emphasize assistive intent, document limits, and include safeguards.

8.3 BROADER IMPACT

Reducing calibration while preserving interpretability can lower barriers to plug/̄and/̄play BCIs
for assistive communication. Frequency-aware invariances, label-free alignment, and interpretable
fusion provide a blueprint for low-latency, calibration-free decoding beyond SSVEP, prioritizing
accessibility over opaque or coercive uses.
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9 APPENDIX

A ADDITIONAL ABLATIONS

To complement §6, we provide extended analyses:
Number of harmonics. Using only the fundamental reduces 1.0 s accuracy by ∼10%. Performance
stabilizes at 2–3 harmonics; adding more yields no further gains and risks leakage.
Filter-bank design. Narrow- vs. wide-band decompositions yield stable results, confirming robust-
ness of contrastive + CORAL alignment.
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Fusion strategies. Equal weights and learned weights underperform adaptive fusion; learned weights
risk overfitting to source distributions.
Loss variants. InfoNCE consistently outperforms cosine-only or margin-based losses under LOSO
transfer.

Table 7: Extended ablations under LOSO transfer (1.0 s). InfoNCE with 2–3 harmonics, robust
filter-banks, and adaptive fusion consistently yield the best performance.

Configuration 1.0 s Acc. (%) Observation

Fundamental only 45.0 ∼10% drop; insufficient harmonic evidence
2–3 harmonics 55.6 Stable; higher harmonics unnecessary
Narrow vs. wide filter-bank 54.8–55.2 Stable across designs
Equal fusion weights 50.2 Weaker on hard subjects
Learned fusion weights 52.5 Risk of source overfitting
Adaptive fusion (ours) 55.6 Best robustness; subject-agnostic
Cosine-only loss 48.9 Inferior alignment
Margin-based loss 49.7 Instability in low-SNR
InfoNCE (ours) 55.6 Best subject-invariant embeddings

B PER-SUBJECT PERFORMANCE

For transparency, we report subject-level LOSO results. DATCAN outperforms baselines on 9/10
subjects at 1.0 s and reduces variance at 2.0 s. At 4.1 s, all methods reach ceiling.

Table 8: Per-subject accuracies (%) under LOSO transfer at 1.0 s, 2.0 s, and 4.1 s windows. DATCAN
improves robustness at 1.0–2.0 s while preserving ceiling performance at 4.1 s. Bold indicates best
performance per subject per window.

1.0 s 2.0 s 4.1 s
Subject FBCCA TRCA DATCAN FBCCA TRCA DATCAN FBCCA TRCA DATCAN

S01 11.7 45.8 46.7 20.0 55.0 60.8 69.2 87.5 91.7
S02 5.8 17.5 17.5 20.0 24.2 25.8 40.0 40.0 46.7
S03 17.5 50.8 52.5 40.0 73.3 75.8 80.8 85.0 85.0
S04 8.3 18.3 16.7 15.0 25.8 25.8 32.5 35.8 40.8
S05 15.8 50.0 49.2 45.8 74.2 78.3 81.7 85.0 85.8
S06 17.5 66.7 64.2 50.8 80.8 80.8 89.2 97.5 95.8
S07 13.3 43.3 42.5 35.8 66.7 65.0 65.0 95.0 93.3
S08 13.3 84.2 80.0 58.3 89.2 82.5 90.8 100.0 99.2
S09 15.0 80.0 76.7 41.7 85.0 80.0 81.7 91.7 90.0
S10 25.8 80.8 83.3 83.3 84.2 89.2 93.3 95.0 95.8
Mean 15.8 46.5 55.6 41.7 55.0 66.9 81.7 87.5 91.7

C COMPLEXITY AND LATENCY

Runtime and memory benchmarks support §5.5:
• Inference: <30 ms per 1.0 s trial (CPU).
• Scaling: Linear in #channels (tested 8–64).
• Memory: <50 MB (TRCA templates, FBCCA references, CORAL matrices).

Table 9: Runtime and memory footprint under LOSO transfer. Inference latency is measured per 1.0 s
trial (CPU). DATCAN matches classical methods in efficiency while maintaining superior robustness.

Method Inference Latency Memory Footprint

FBCCA <20 ms ∼40 MB
TRCA <25 ms ∼45 MB
EEGNet ∼50 ms ∼60 MB
DATCAN <30 ms ∼50 MB

D DATASET PREPARATION

To ensure reproducibility:
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Table 10: Preprocessing parameters for dataset preparation. Choices are consistent with prior SSVEP
decoding work to ensure reproducibility.

Step Parameterization

Band-pass 5–45 Hz FIR filter (order 128)
Notch 50 Hz ±0.7 Hz
Filter-bank 5 overlapping bands (6–14, 14–22, 22–30, 30–38, 38–46 Hz)
Windowing Non-overlapping: 4.1, 2.0, and 1.0 s
Splits LOSO folds; no target labels used

E PSEUDO-CODE FOR DATCAN
We restate Algorithm 1 (§3.5) as executable pseudo-code. The listing fits one ICLR column.

Listing 1: DATCAN (training + decoding) pseudo-code
Algorithm F1: DATCAN (training + decoding)
Inputs: Ds = {(x_i, c_i, subj_i)} labeled sources; Dt = {x_j} unlabeled

target
class freqs {f_c}_{c=1..N}, harmonics H
heads: TRCA templates, FBCCA sinusoids
features: phi(x) = [TRCA_proj(x), CCA_comps(x)]
embedding: z = g_theta(phi(x))

Output: predicted class for each target trial (no target labels)

# Precompute (once)
1 band-pass + notch; build M sub-bands
2 for each class c: fit TRCA filter/template; build FBCCA refs {h *

f_c}_{h=1..H}

# Training (sources only), epochs e = 1..E
3 sample mini-batches Bs subset Ds, Bt subset Dt
4 z_s = g_theta(phi(Bs)); z_t = g_theta(phi(Bt))

5 # H-InfoNCE (harmonic-aware contrastive)
6 for (x_i, c_i, subj_i) in Bs:
7 P(i) = { x_k in Bs : subj_k != subj_i and c_k == c_i } #

positives (same freq; harmonics)
8 N(i) = { x_k in Bs : c_k != c_i } #

negatives
9 apply small time-shifts per sub-band (phase robustness)
10 update theta using grad L_HInfoNCE(Bs; theta)

11 # CORAL (label-free second-order alignment)
12 C_s = Cov(z_s); C_t = Cov(z_t)
13 theta <- theta - eta * grad fro_norm(C_s - C_t)ˆ2

# or closed-form: z_s <- whiten(z_s, C_s); z_s <- recolor(z_s, C_t)

# Fusion selection (sources; cross-subject CV)
14 compute per-class scores s_hat_TRCA(c), s_hat_FBCCA(c); zscore within

trial
15 grid-search (alpha, beta) to maximize accuracy/ITR; freeze (alpha,

beta) for target

# Decoding (target; calibration-free)
16 for x in Dt:
17 get s_hat_TRCA(c), s_hat_FBCCA(c) for all c; zscore scores across

classes
18 s(c) = alpha * z(s_hat_TRCA(c)) + beta * z(s_hat_FBCCA(c))
19 predict c_star = argmax_c s(c)

F EXTENDED ETHICS AND BROADER IMPACTS

Building on §8:
• Bias: EEG benchmarks skew young/healthy. Broader cohorts needed for fairness.
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• Accessibility: Lower calibration improves real-time assistive BCI usability.
• Responsible release: Code and evaluation scripts shared; raw EEG not redistributed without

ethics approval.
• Misuse risks: Safeguards required to prevent surveillance or profiling misuse.

G REPRODUCIBILITY STATEMENT

• Scope: LOSO evaluation of calibration-free decoding.
• Environment: Kaggle Notebooks with fixed NumPy, JAX, PyTorch.
• Hardware: CPU inference; GPU (A100) for training.
• Artifacts: Code, preprocessing scripts, and evaluation notebooks with fixed seeds.

Table 11: Reproducibility statement. All experiments are designed to ensure transparency and
repeatability.

Aspect Details

Scope LOSO evaluation of calibration-free decoding
Environment Kaggle Notebooks with fixed NumPy, JAX, PyTorch versions
Hardware CPU inference; GPU (A100) for contrastive training
Artifacts Code, preprocessing scripts, evaluation notebooks with fixed seeds
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