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Abstract

Low-Rank Adaptation (LoRA) has been widely adopted as a Parameter Efficient
Fine-Tuning method for large models such as Large Language Models (LLMs) and
Vision Transformer (ViT). However, it encounters scalability limitations, particu-
larly in storage and deployment efficiency, when applied to large foundational mod-
els or a wide range of task-specific adaptations, due to the overhead of managing
multiple adapters and the reliance on linearly constrained spaces for representation.
To address these limitations, Fourier Fine-Tuning (FourierFT) has emerged as an
alternative, leveraging the Fourier transform to achieve comparable or superior
performance to LoRA while utilizing significantly fewer trainable parameters.
Nevertheless, FourierFT targets the entire frequency spectrum to apply updates,
which may cause inefficiency, particularly when the meaningful information is
concentrated within a specific set of frequency components. The magnitude of each
Fourier component reflects its contribution to the original weight update. Thus,
selecting Top-K components with the highest magnitudes effectively captures
the most informative changes. Therefore, we propose Layerwise Fourier Masked
Adapter (LFMA), which selectively fine-tunes using Top-K informative frequency
components and resulting in an enhancement of both parameter efficiency and
task-specific adaptation. Empirically, we showed similar or better performance than
FourierFT in four tasks: image classification, instruction tuning, natural language
generation, and natural language understanding. These results demonstrate that
selectively fine-tuning in the most informative frequency components is able to
push the limits of adapter-based fine-tuning further in terms of scalability and
expressivity.

1 Introduction

The advent of Large Foundation Models (LFMs) has marked a paradigm shift in artificial intelligence,
moving away from training task-specific models from scratch towards a pre-train and fine-tune
methodology. These models, such as GPT-3, RoBERTa, and Vision Transformer (ViT), are pre-
trained on vast unlabeled datasets, acquiring a broad and generalizable understanding of language or
visual data (125 [13}[14). Their impressive zero-shot and few-shot learning capabilities are a testament
to the power of scaling, with modern architectures often containing billions or even trillions of
parameters (17; 26)). However, this immense scale presents a significant challenge for adaptation to
specialized downstream tasks.

The conventional method for adaptation, full fine-tuning (FFT), involves updating all of the model’s
parameters on a task-specific dataset. While often yielding high performance, FFT is exceptionally
resource-intensive (13)). It creates a "vicious cycle" of operational complexity: for every new task,
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a complete, multi-gigabyte copy of the model must be stored, managed, and deployed. This not
only leads to exorbitant storage costs but also complicates model versioning and serving, creating a
significant barrier to the widespread, customized application of LEMs (18). This critical bottleneck
has catalyzed the development of more efficient adaptation strategies.

Parameter-Efficient Fine-Tuning (PEFT) methods have emerged as a compelling solution to this
challenge, aiming to match the performance of FFT while tuning only a minuscule fraction of
the model’s parameters (19;[25). These techniques generally follow an additive philosophy, where
the large pre-trained weights are frozen, and small, trainable modules are inserted into the model’s
architecture. Early approaches like Adapters introduced bottleneck-style modules between transformer
layers (1)). More recently, Low-Rank Adaptation (LoRA) has become the predominant PEFT method
(2). LoRA is predicated on the hypothesis that the weight update matrix during adaptation has a
low intrinsic rank. It operationalizes this by decomposing the update into two low-rank matrices,
dramatically reducing the number of trainable parameters. The elegance and effectiveness of LoRA
have made it a cornerstone of modern LFM customization (215 22} 23; 24).

Despite its success, LoRA’s reliance on a low-rank decomposition imposes a linear information
bottleneck on the adaptation process. This may not be sufficiently expressive for all tasks, potentially
discarding useful higher-rank information. This limitation motivates the search for alternative pa-
rameterization spaces that offer richer, non-linear representations. The frequency domain presents a
powerful candidate space. FourierFT recently pioneered this direction by using the Discrete Fourier
Transform (DFT) to perform fine-tuning directly on the spectral coefficients of the weight updates
(4). This shift in domain allows for capturing complex patterns with even greater parameter efficiency
than LoRA.

However, existing frequency-domain methods like FourierFT operate under a paradigm of uniform
updates, modifying all spectral components equally. This approach overlooks a fundamental principle
from signal processing: natural signals—and, by extension, the informational signals within neural
network weights—are often sparse in a transformed basis like the Fourier domain. This spectral
sparsity implies that the most crucial information for adaptation is concentrated in a small subset of
dominant frequency components. Updating the entire spectrum is therefore inefficient and potentially
detrimental, as it may introduce noise by altering low-magnitude, uninformative frequencies.

In this work, we embrace the principle of spectral sparsity to push the boundaries of parameter
efficiency. We propose the Layerwise Fourier Masked Adapter (LFMA), a novel PEFT method
that combines the benefits of frequency-domain adaptation with a targeted, sparsity-aware update
mechanism. Instead of a uniform update, LFMA identifies the Top-K most significant frequency
components—those with the highest magnitude—and exclusively optimizes this sparse subset (3 (7).
By concentrating the model’s learning capacity on the most impactful frequencies, LFMA achieves a
more precise and efficient adaptation. Our contributions are threefold:

1. We introduce and motivate the concept of spectral sparsity for parameter-efficient fine-tuning.

2. We present LFMA, a novel adapter that operationalizes this concept by selectively tuning
Top-K frequency components.

3. We conduct extensive experiments across diverse benchmarks in computer vision and
natural language understanding, demonstrating that LFMA achieves competitive or superior
performance to state-of-the-art PEFT methods while requiring a similar or often smaller
parameter budget.

2 Related Work

2.1 Parameter-Efficient Fine-Tuning

With the growing scale of large models, Parameter-Efficient Fine-Tuning (PEFT) methods have
received increasing attention as a way to adapt models to downstream tasks without updating all
parameters (19;25). These methods significantly reduce computational cost and storage requirements
while enabling efficient task-specific adaptation.

Adapter (1) One of the earliest PEFT methods, adapters introduce small trainable modules
in parallel to the pre-trained weights, allowing the base model to remain frozen. While effective,
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Method CIFAR10 | CIFAR100 | OxfordPets | RESISC45 | StanfordCars | EuroSAT | FGVC | Avg.
LFMA (ViT-L) 96.58 86.42 89.86 93.79 82.66 98.67 78.73 | 89.53
LFMA (ViT-B) 97.78 88.68 92.59 95.00 79.83 98.74 77.20 | 89.97
Full FT (ViT-L) 96.62 85.69 94.24 93.02 83.05 98.26 77.08 | 89.71
LoRA (ViT-L) 96.60 86.98 94.63 91.30 67.40 97.85 51.15 | 83.70
FourierFT (ViT-L) 96.55 85.48 94.65 91.79 73.29 97.88 60.11 | 85.68
Full FT (ViT-B) 97.32 89.02 91.58 94.24 80.33 98.59 7597 | 89.58
LoRA (ViT-B) 97.18 88.66 91.51 90.81 4593 97.95 46.29 | 79.76
FourierFT (ViT-B) 97.09 88.09 91.49 92.37 56.91 98.32 53.57 | 82.55

Table 1: Performance comparison on seven image-classification datasets based on accuracy (%). For
LFMA, we used following settings; top-k=0.05, o = 12.

this approach increases architectural complexity. LoORA (2) improves efficiency by decomposing
weight updates into low-rank matrices, tuning only a small number of parameters. It is now widely
regarded as the standard approach for PEFT in large-scale models such as LLMs (26). However, it
suffers from limitations in scalability, as managing numerous adapters across tasks incurs storage and
deployment overhead. Other popular PEFT methods include prompt-tuning and prefix-tuning, which
modify the input embeddings or attention mechanisms, respectively (27; 28)). Parameter-Efficient
Fine-Tuning with Discrete Fourier Transform (4)) This approach addresses LoRA’s limitations by
transforming model weights into the frequency domain using Discrete Fourier Transform (DFT)
(6), enabling richer, non-linear parameter updates. It marks a shift toward frequency-based PEFT,
offering greater expressive power with fewer trainable parameters.

Our work builds upon this foundation by introducing the Layerwise Fourier Masked Adapter
(LFMA), which extends parameter-efficient fine-tuning into the frequency domain. Unlike prior
methods such as LoRA or DFT-based tuning that update all parameters or spectral components (2; 14),
LFMA selectively tunes only the Top-K frequency components (5 [7) with the highest magnitudes.
This selective tuning significantly reduces the number of trainable parameters while maintaining or
improving performance across downstream tasks, thus advancing the scalability and practicality of
PEFT in large-scale models.

2.2 Frequency Domain Learning

Traditionally, neural networks operate in the spatial or temporal domain. Recently, frequency domain
learning (8 (9} [10; [11) has emerged as a promising direction for improving learning efficiency,
compression, and representation power by manipulating neural weights or features in the spectral
space (29;130).

Fourier Neural Operator (3) Proposed for solving partial differential equations, the Fourier
Neural Operator applies global convolutions in the frequency domain, demonstrating the repre-
sentational benefits of spectral operations and resolution-invariant learning in continuous settings.
Parameter-Efficient Fine-Tuning with Discrete Fourier Transform (4) This method applies the
Discrete Fourier Transform (6)) to model weights, enabling fine-tuning directly in the frequency
domain. By modifying the spectral coefficients instead of the raw weights, the method overcomes
linear constraints of LoRA and achieves comparable performance with significantly fewer trainable
parameters (2). However, it still updates the full frequency spectrum uniformly, which may include
components with negligible informational value.

In contrast to prior approaches that apply uniform updates across the entire frequency spec-
trum, our proposed Layerwise Fourier Masked Adapter (LFMA) focuses on selectively updating
only the Top-K most informative frequency components (5} [7)) per layer. These components are
identified based on their magnitudes, which indicate their contribution to the original weight update.
This spectral masking strategy enhances both representation precision and adaptation efficiency,
pushing the boundaries of frequency-based learning in terms of both task-specific expressiveness and
computational scalability (31).

3 Methodology



130
131
132
133

134

135
136
137
138
139

140
141
142
143
144
145
146
147
148
149
150
151

152

153
154
155
156

Algorithm 1 PyTorch-style pseudocode for LayerwiseFGFourierFTAdapter.

class LayerwiseFourierFTAdapter (nn.Module) :
def init (self, alpha, base_layer, delta_W_init, top_k_ratio):
super () .init ()
self.alpha = alpha
self.base_layer = base_layer
for p in self.base_layer.parameters():
p.requires_grad = False

dl, d2 = delta W _init.shape

W_freq = torch.fft.fft2(delta W_init)
magnitude = torch.abs (W_£freq)

k = int(dl * d2 * top_k_ratio)

topk_values, topk_indices = torch.topk(magnitude.view(-1), k)
self.mask = torch.zeros((dl, d2), dtype=torch.bool)
self.mask.view(-1) [topk_indices] = True

self.c = nn.Parameter (W_freq[self.mask].clone() .detach(), requires_grad=True)

def forward(self, x):
F = torch.zeros (self.base_layer.weight.shape, dtype=torch.complex64, device=x.device)
F[self.mask] = self.c
Delta W = torch.fft.ifft2(F) .real x self.alpha

h = self.base_layer (x)
if x.dim() == 2:
h += torch.matmul (x, Delta W)
elif x.dim() == 3:
h += torch.einsum(’'bnd,df->bnf’, x, Delta W)
return h

In this section, we introduce our proposed Layerwise Fourier Masked Adapter (LFMA), a parameter-
efficient method for adapting models to downstream tasks. By leveraging Fourier transforms, we
sparsify weight updates in the frequency domain, selecting and optimizing only the most significant
components. This approach reduces computational overhead while preserving performance.

3.1 Fourier Layer Adaptation

The core of our method is the LFMA module, which fundamentally leverages the properties of the
Fourier transform to facilitate efficient and targeted layer-wise adaptation in neural networks. At its
core, LFMA encapsulates the idea that weight perturbations W. W € R%* % can be effectively
represented and manipulated within the frequency domain (32).The adaptation process involves
constructing a small perturbation matrix AWy, which is transformed into the frequency domain:

Wfreq = }—(Awinit)a (D

where F(-) denotes the FFT (6), yielding complex-valued coefficients. To promote spectral sparsity
and focus the adaptation on the most influential frequencies, a top-k selection based on the magnitude
of these coefficients is performed (5 33)). The set of coefficients corresponding to the mask is then
designated as learnable parameters c, which are optimized during training. The adapted output in the
spatial domain is reconstructed via the inverse Fourier transform F !, scaled by a hyperparameter
a > 0, ensuring that the spectral modifications are smoothly integrated into the original weights. This
process emphasizes spectral regularization, constraining the adaptation to a compact set of critical
frequency components, which effectively mitigates overfitting and enhances interpretability (34)). The
LFMA module thus provides a principled mechanism for layer-specific, frequency-aware fine-tuning,
aligning with the signal processing intuition that the most salient features are often concentrated in a
subset of the spectral domain.

3.2 Inverse Fourier and Top-K Selection

In this section details the forward pass of the adapter, which reconstructs the weight perturbation via
the inverse Fourier transform, integrates only the real part into the computation, and optimizes the
selected top-k components during training. reconstructing a sparse frequency matrix, initialized to
Zeros.
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top k ratio (Params) | SST-2 (Acc.) | MRPC (Acc.) | QNLI (Acc.) | RTE (Ace.) | CoLA (MCC) | STS-B (PCC) | Avg.
FF (125M) 94.8 90.2 92.8 78.7 63.6 91.2 85.2
LoRA (0.3M) 95.1 +02 89.7 07 93.3 +03 784 +08 634 +12 91.5 +02 85.2
FourierFT (0.024M) 94.2 +03 90.0 + 0.8 92.2 +0.1 79.1 05 63.8 + 1.6 90.8 +0.2 85.0
0.0016 (0.023M) 94.4 +03 90.5 +03 92.2 +02 80.9 +02 60.1 £ 1.0 90.4 +03 84.8
0.001 (0.015M) 94.4 +02 90.5 +03 92.0 £0.1 79.4 + 08 60.0 £ 1.0 90.2 03 84.4
0.0005 (0.007M) 93.4 +o02 88.8 £05 90.6 +09 781 +19 579 1.1 88.2 +06 82.8

Table 2: Performance comparison on the GLUE benchmark with RoOBERTa-Base. Accuracy is used
for SST-2, MRPC, QNLI, RTE, and MCC and PCC are used for CoLA and STS-B respectively. We
report the main performance score using median among five different experimentation varying in
seeds setting. Avg. is average of six benchmark datasets.

top k ratio (Params) | SST-2 (Acc.) | MRPC (Acc.) | QNLI (Acc.) | RTE (Acc.) | CoLA (MCC) | STS-B (PCC) | Avg.
FF (356M) 96.4 90.9 94.7 86.6 68 924 88.2
LoRA (0.8M) 96.2 +05 90.2 +1.0 94.8 + 03 852 + 11 68.2 + 1.9 923 +05 87.8
FourierFT (0.048M) 96.0 +0.2 90.9 +03 944 +o04 874 +16 67.1 14 91.9 +04 88.0
0.0005 (0.025M) 96.5 +04 91.0 + 05 93.8 02 85.1+13 65.8 £03 90.9 +03 87.2
0.0003 (0.015M) 95.5 03 89.5 +09 92.1 +o02 83.0 £ 1.1 64.8 £1.1 90.3 £ 06 85.9
0.0001 (0.005M) 93.9 +03 88.2 £ 1.1 89.5 +03 783 +15 62.1 +12 86.6 + 1.0 83.1

Table 3: Performance comparison on the GLUE benchmark with RoOBERTa-Large. Accuracy is used
for SST-2, MRPC, QNLI, RTE, and MCC and PCC are used for CoLA and STS-B respectively. We
report the main performance score using median among five different experimentation varying in
seeds setting. Avg. is average of six benchmark datasets.

The inverse Discrete Fourier Transform (IDFT) is then applied to recover the spatial-domain pertur-
bation:

AW =R (FF)) -« 2)

where R(-) extracts the real number part, and F~!(-) is the inverse FFT. This ensures that only
a sparse subset of frequencies contributes to the adaptation, significantly reducing the parameter.
During fine-tuning, only the ¢ parameters in each adapter are optimized while the rest of the model
remains frozen. This approach exploits the low-rank structure of weight perturbations in the Fourier
domain, inspired by prior work on spectral methods in neural networks (3; 31). Hyperparameters
such as « control the adaptation strength and sparsity, respectively. The adapted output is computed
by adding this perturbation to the base layer’s computation. For an input tensor x, the base layer
produces h = layer(z). The perturbation is then integrated as follows:

» If xis 2D (e.g., batch size x input dimension), h <~ h + x - AW.

 Ifxis 3D (e.g., batch size x sequence length x input dimension), h < h-+einsum(x, AW),
using efficient tensor contraction.

During training, only the top-k selected components are optimized via backpropagation, as they
are the learnable parameters. This top-k learning strategy ensures that gradients flow exclusively
through the most impactful frequencies, further enhancing efficiency. The mask remains fixed after
initialization, preventing unnecessary exploration of low-magnitude components.

The pseudocode for LFMA is shown as Algorithm 1 in PyTorch style.

4 Experiments

In this section, we first evaluate the overall performance of our proposed method, Layerwise Fourier
Masked Adapter (LFMA), by comparing it against several strong baseline methods across domains of
Natural Language Processing (NLP) and Computer Vision (CV). We then conduct an ablation study
to analyze the impact of our key hyperparameter, the top_k_ratio, which controls the parameter
efficiency of our approach.

4.1 Image Classification

Datasets. To rigorously evaluate the efficacy and generalization capabilities of our proposed method,
Layerwise Fourier Masked Adapter (LFMA), we conduct experiments on a comprehensive suite
of seven widely-used image classification benchmarks. This collection includes generic object
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recognition datasets (CIFAR-10, CIFAR-100 (35)), fine-grained visual classification tasks (Oxford-
IIIT Pet (36), Stanford Cars (37), FGVC-Aircraft (38)), and remote sensing imagery datasets
(EuroSAT (39), RESISC45 (40)). The diversity of these benchmarks allows us to thoroughly assess
the robustness and adaptability of LFMA across various data domains and scales.

Compared Schemes. We benchmark LFMA against several established fine-tuning paradigms. The
performance of Full Fine-Tuning (Full-FT) is presented as a practical upper bound. We compare
against Low-Rank Adaptation (LoRA) (2), a prominent and widely-adopted parameter-efficient
fine-tuning (PEFT) technique. Furthermore, we include FourierFT (4)), a state-of-the-art method
operating in the frequency domain, which serves as our most direct and challenging baseline.

Implementation Details. Our experiments leverage Vision Transformer (ViT) backbones (13),
specifically ViT-Base (ViT-B/16) and ViT-Large (ViT-L/16), both pre-trained on ImageNet-21k
(41). For model training, we employ the AdamW optimizer (42) with a learning rate of 1 x 104
and a weight decay of 1 x 10~%. A consistent batch size of 32 is used, and all input images are
resized to a resolution of 224x224. No learning rate scheduler is applied to ensure a fair comparison
of the models’ intrinsic learning capabilities. For our LFMA method, the adapter is integrated into
the query projection matrix within the self-attention mechanism of every transformer block. Based on
empirical validation, the primary hyperparameters for LFMA are set to a Fourier coefficient scaling
factor of o = 120 and a top-k masking ratio of 0.0003. Deviations from this configuration for specific
experiments, such as those presented in Table[T] are explicitly noted.

Main Results. The comparative performance of our LFMA model variants is summarized in Table
The results, obtained with specific hyperparameters (o« = 12, top-k=0.05), demonstrate the strong
performance of our approach. The LEFMA (ViT-B) variant achieves the highest accuracy on five of
the seven datasets, establishing its efficacy as a robust general-purpose adapter. Notably, the LFMA
(ViT-L) variant shows competitive or superior performance on challenging fine-grained datasets
like Stanford Cars and FGVC-Aircraft, suggesting its particular aptitude for tasks requiring detailed
feature discrimination. These results collectively validate that LFMA provides a compelling and
parameter-efficient alternative to full fine-tuning.

4.2 Natural Language Understanding

Datasets. To assess the effectiveness of our proposed LFMA in the natural language domain, we
evaluate on the GLUE benchmark (43)), a comprehensive suite designed to measure various aspects
of Natural Language Understanding (NLU). Specifically, we include SST-2, MRPC, QNLI, RTE,
CoLA, and STS-B, while excluding QQP, WNLI, and MNLI to compare with the baseline. We adopt
the standard GLUE benchmark splits for training, validation, and testing, ensuring consistency with
widely used experimental setups.

Compared Schemes. We benchmark LFMA against three strong baselines including Full Fine-tuning
(FF) and parameter-efficient fine-tuning, LoRA (2) and FourierFT (4)). We directly adopt the reported
results of baselines from the FourierFT paper. Together, these baselines provide a comprehensive
evaluation framework, as LoRA is the most commonly used PEFT method and FourierFT is the
conceptually related approach to LFMA.

Implementation Details. We experiment with two models, which have been used in FourierFT
paper, RoOBERTa-Base and RoBERTa-Large (14). We utilized the AdamW optimizer (42), with
hyperparameters (learning rate, epochs, batch size, seeds, and scaling factor «)) based on those
reported in the FourierFT (4) paper, making slight adjustments during experimentation to better fit
our setting. We followed the experimental setup applied in LoRA (2) to conduct fair comparison with
FourierFT, which is the main baseline, LFMA adapters are applied to the query and value projections
in each transformer block as well. The top_k_ratio controls the proportion of frequency components
retained for fine-tuning, and we evaluate multiple ratios as reported in Tables 2] and [3]

Main Results. Table [2]and Table [3] present the GLUE benchmark results for RoBERTa-Base and
RoBERTa-Large, respectively. Accuracy is used for SST-2, MRPC, QNLI, RTE, and MCC and PCC
are used for CoLA and STS-B respectively. We report the main performance score using median
among five different experimentation varying in seeds setting. Avg. is average of six benchmark
datasets. Across both backbones, LFMA demonstrates that parameter-efficient fine-tuning in the
Fourier domain is highly effective for natural language understanding tasks. Overall, LEFMA achieves
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performance comparable to or better than the FourierFT (4) baseline while using significantly fewer
trainable parameters, thereby confirming its scalability and robustness beyond vision tasks.

For RoBERTa-Base (Table , LFMA outperforms both LoRA and FourierFT (4) on MRPC and RTE,
while maintaining performance comparable to or exceeding FourierFT on all datasets except CoLA.
This highlights LFMA’s effectiveness in sentence-pair classification tasks. Although performance
slightly decreases at the lowest top-k ratios, the method consistently delivers strong results with far
fewer parameters, validating its efficiency. However, we note that variance across runs increases as
the parameter budget becomes smaller.

For RoBERTa-Large (Table E]) LFMA surpasses both baselines on SST-2 and MRPC, and delivers
performance comparable to or better than FourierFT (4) on most other datasets, again with the
exception of CoLA. These results indicate that LFMA scales effectively to larger backbones, retaining
competitiveness even under strict parameter budgets. An additional observation is that as the number
of trainable parameters decreases, the variance in performance tends to increase more noticeably than
in the Base model, underscoring a trade-off between parameter efficiency and stability at scale.

4.3 Ablation Study

To analyze the impact of the top_k_ ratio hyperparameter, which directly controls the number
of fine-tuned frequency components, we conducted an ablation study. The number of trainable
parameters is directly proportional to the top_k_ratio. In the image classification task, for
the ViT-Base model, a top_k_ratio of 0.1, 0.05, and 0.0003 corresponds to 707,784, 353,892,
and 2,112 trainable adapter parameters, respectively. For the ViT-Large model, these ratios result
in 2,516,568, 1,258,272, and 7,536 trainable parameters. Our main results were achieved with a
top_k_ratio of 0.0003, which isolates only a tiny fraction of the most significant frequency
components. In the NLU task, we further examined the trade-off between parameter count and
performance. Notably, for the RoOBERTa-Base model, LFMA achieves competitive results with
FourierFT (4) while using a nearly identical number of parameters. In the RoOBERTa-Large setting,
LFMA achieves comparable or even superior results to FourierFT (4) despite requiring only about
half the number of parameters. Moreover, as the number of trainable parameters decreases, the
decrease in performance remains modest rather than drastic. The strong performance obtained with
this setting underscores our core hypothesis: a substantial portion of the frequency spectrum is
redundant for task-specific adaptation, and focusing on a small, highly informative subset is sufficient
for effective fine-tuning. This selective update strategy is the key to LFMA’s exceptional parameter
efficiency, allowing it to push the boundaries of PEFT by achieving high performance with minimal
computational overhead.

5 Conclusion

In this work, we presented the LFMA, an innovative adapter module that enhances efficient fine-
tuning of pre-trained models through frequency-domain sparsity. By applying Fourier transforms to
initial weight perturbations, selecting top-k high-magnitude frequency components for optimization,
and integrating only the real part of the inverse transform into the forward pass, our method achieves
a sparse yet effective adaptation strategy. This approach not only minimizes trainable parameters
but also leverages signal processing principles to separate global and local adaptations, offering
improved interpretability over traditional methods. Our experiments demonstrate LFMA is better
than FourierFT (4). Across benchmarks in natural language understanding (e.g., GLUE (43))) and
image classification (e.g., CIFAR-10/100 (33))), our adapter consistently outperforms FourierFT (4)
with similar or lower parameters.

5.1 Future work

For the future work, we aim to investigate the way to use dynamic masking, allowing the mask
to adapt during training based on real-time updating (? ). Second, extend the method to various
models like Diffusion model (44), Graph Neural Network (GNN) (45) across domains. Third, we will
research for theory of the convergence properties that are appropriate for top-k frequency optimization,
solving bounds, and getting error lower. Finally, deploying the adapter in real-world settings, such as
continual learning (460).
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