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Abstract

Low-Rank Adaptation (LoRA) has been widely adopted as a Parameter Efficient1

Fine-Tuning method for large models such as Large Language Models (LLMs) and2

Vision Transformer (ViT). However, it encounters scalability limitations, particu-3

larly in storage and deployment efficiency, when applied to large foundational mod-4

els or a wide range of task-specific adaptations, due to the overhead of managing5

multiple adapters and the reliance on linearly constrained spaces for representation.6

To address these limitations, Fourier Fine-Tuning (FourierFT) has emerged as an7

alternative, leveraging the Fourier transform to achieve comparable or superior8

performance to LoRA while utilizing significantly fewer trainable parameters.9

Nevertheless, FourierFT targets the entire frequency spectrum to apply updates,10

which may cause inefficiency, particularly when the meaningful information is11

concentrated within a specific set of frequency components. The magnitude of each12

Fourier component reflects its contribution to the original weight update. Thus,13

selecting Top-K components with the highest magnitudes effectively captures14

the most informative changes. Therefore, we propose Layerwise Fourier Masked15

Adapter (LFMA), which selectively fine-tunes using Top-K informative frequency16

components and resulting in an enhancement of both parameter efficiency and17

task-specific adaptation. Empirically, we showed similar or better performance than18

FourierFT in four tasks: image classification, instruction tuning, natural language19

generation, and natural language understanding. These results demonstrate that20

selectively fine-tuning in the most informative frequency components is able to21

push the limits of adapter-based fine-tuning further in terms of scalability and22

expressivity.23

1 Introduction24

The advent of Large Foundation Models (LFMs) has marked a paradigm shift in artificial intelligence,25

moving away from training task-specific models from scratch towards a pre-train and fine-tune26

methodology. These models, such as GPT-3, RoBERTa, and Vision Transformer (ViT), are pre-27

trained on vast unlabeled datasets, acquiring a broad and generalizable understanding of language or28

visual data (12; 13; 14). Their impressive zero-shot and few-shot learning capabilities are a testament29

to the power of scaling, with modern architectures often containing billions or even trillions of30

parameters (17; 26). However, this immense scale presents a significant challenge for adaptation to31

specialized downstream tasks.32

The conventional method for adaptation, full fine-tuning (FFT), involves updating all of the model’s33

parameters on a task-specific dataset. While often yielding high performance, FFT is exceptionally34

resource-intensive (15). It creates a "vicious cycle" of operational complexity: for every new task,35
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a complete, multi-gigabyte copy of the model must be stored, managed, and deployed. This not36

only leads to exorbitant storage costs but also complicates model versioning and serving, creating a37

significant barrier to the widespread, customized application of LFMs (18). This critical bottleneck38

has catalyzed the development of more efficient adaptation strategies.39

Parameter-Efficient Fine-Tuning (PEFT) methods have emerged as a compelling solution to this40

challenge, aiming to match the performance of FFT while tuning only a minuscule fraction of41

the model’s parameters (19; 25). These techniques generally follow an additive philosophy, where42

the large pre-trained weights are frozen, and small, trainable modules are inserted into the model’s43

architecture. Early approaches like Adapters introduced bottleneck-style modules between transformer44

layers (1). More recently, Low-Rank Adaptation (LoRA) has become the predominant PEFT method45

(2). LoRA is predicated on the hypothesis that the weight update matrix during adaptation has a46

low intrinsic rank. It operationalizes this by decomposing the update into two low-rank matrices,47

dramatically reducing the number of trainable parameters. The elegance and effectiveness of LoRA48

have made it a cornerstone of modern LFM customization (21; 22; 23; 24).49

Despite its success, LoRA’s reliance on a low-rank decomposition imposes a linear information50

bottleneck on the adaptation process. This may not be sufficiently expressive for all tasks, potentially51

discarding useful higher-rank information. This limitation motivates the search for alternative pa-52

rameterization spaces that offer richer, non-linear representations. The frequency domain presents a53

powerful candidate space. FourierFT recently pioneered this direction by using the Discrete Fourier54

Transform (DFT) to perform fine-tuning directly on the spectral coefficients of the weight updates55

(4). This shift in domain allows for capturing complex patterns with even greater parameter efficiency56

than LoRA.57

However, existing frequency-domain methods like FourierFT operate under a paradigm of uniform58

updates, modifying all spectral components equally. This approach overlooks a fundamental principle59

from signal processing: natural signals—and, by extension, the informational signals within neural60

network weights—are often sparse in a transformed basis like the Fourier domain. This spectral61

sparsity implies that the most crucial information for adaptation is concentrated in a small subset of62

dominant frequency components. Updating the entire spectrum is therefore inefficient and potentially63

detrimental, as it may introduce noise by altering low-magnitude, uninformative frequencies.64

In this work, we embrace the principle of spectral sparsity to push the boundaries of parameter65

efficiency. We propose the Layerwise Fourier Masked Adapter (LFMA), a novel PEFT method66

that combines the benefits of frequency-domain adaptation with a targeted, sparsity-aware update67

mechanism. Instead of a uniform update, LFMA identifies the Top-K most significant frequency68

components—those with the highest magnitude—and exclusively optimizes this sparse subset (5; 7).69

By concentrating the model’s learning capacity on the most impactful frequencies, LFMA achieves a70

more precise and efficient adaptation. Our contributions are threefold:71

1. We introduce and motivate the concept of spectral sparsity for parameter-efficient fine-tuning.72

2. We present LFMA, a novel adapter that operationalizes this concept by selectively tuning73

Top-K frequency components.74

3. We conduct extensive experiments across diverse benchmarks in computer vision and75

natural language understanding, demonstrating that LFMA achieves competitive or superior76

performance to state-of-the-art PEFT methods while requiring a similar or often smaller77

parameter budget.78

2 Related Work79

2.1 Parameter-Efficient Fine-Tuning80

With the growing scale of large models, Parameter-Efficient Fine-Tuning (PEFT) methods have81

received increasing attention as a way to adapt models to downstream tasks without updating all82

parameters (19; 25). These methods significantly reduce computational cost and storage requirements83

while enabling efficient task-specific adaptation.84

85

Adapter (1) One of the earliest PEFT methods, adapters introduce small trainable modules86

in parallel to the pre-trained weights, allowing the base model to remain frozen. While effective,87
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Method CIFAR10 CIFAR100 OxfordPets RESISC45 StanfordCars EuroSAT FGVC Avg.
LFMA (ViT-L) 96.58 86.42 89.86 93.79 82.66 98.67 78.73 89.53
LFMA (ViT-B) 97.78 88.68 92.59 95.00 79.83 98.74 77.20 89.97
Full FT (ViT-L) 96.62 85.69 94.24 93.02 83.05 98.26 77.08 89.71
LoRA (ViT-L) 96.60 86.98 94.63 91.30 67.40 97.85 51.15 83.70
FourierFT (ViT-L) 96.55 85.48 94.65 91.79 73.29 97.88 60.11 85.68
Full FT (ViT-B) 97.32 89.02 91.58 94.24 80.33 98.59 75.97 89.58
LoRA (ViT-B) 97.18 88.66 91.51 90.81 45.93 97.95 46.29 79.76
FourierFT (ViT-B) 97.09 88.09 91.49 92.37 56.91 98.32 53.57 82.55

Table 1: Performance comparison on seven image-classification datasets based on accuracy (%). For
LFMA, we used following settings; top-k=0.05, α = 12.

this approach increases architectural complexity. LoRA (2) improves efficiency by decomposing88

weight updates into low-rank matrices, tuning only a small number of parameters. It is now widely89

regarded as the standard approach for PEFT in large-scale models such as LLMs (26). However, it90

suffers from limitations in scalability, as managing numerous adapters across tasks incurs storage and91

deployment overhead. Other popular PEFT methods include prompt-tuning and prefix-tuning, which92

modify the input embeddings or attention mechanisms, respectively (27; 28). Parameter-Efficient93

Fine-Tuning with Discrete Fourier Transform (4) This approach addresses LoRA’s limitations by94

transforming model weights into the frequency domain using Discrete Fourier Transform (DFT)95

(6), enabling richer, non-linear parameter updates. It marks a shift toward frequency-based PEFT,96

offering greater expressive power with fewer trainable parameters.97

98

Our work builds upon this foundation by introducing the Layerwise Fourier Masked Adapter99

(LFMA), which extends parameter-efficient fine-tuning into the frequency domain. Unlike prior100

methods such as LoRA or DFT-based tuning that update all parameters or spectral components (2; 4),101

LFMA selectively tunes only the Top-K frequency components (5; 7) with the highest magnitudes.102

This selective tuning significantly reduces the number of trainable parameters while maintaining or103

improving performance across downstream tasks, thus advancing the scalability and practicality of104

PEFT in large-scale models.105

2.2 Frequency Domain Learning106

Traditionally, neural networks operate in the spatial or temporal domain. Recently, frequency domain107

learning (8; 9; 10; 11) has emerged as a promising direction for improving learning efficiency,108

compression, and representation power by manipulating neural weights or features in the spectral109

space (29; 30).110

111

Fourier Neural Operator (3) Proposed for solving partial differential equations, the Fourier112

Neural Operator applies global convolutions in the frequency domain, demonstrating the repre-113

sentational benefits of spectral operations and resolution-invariant learning in continuous settings.114

Parameter-Efficient Fine-Tuning with Discrete Fourier Transform (4) This method applies the115

Discrete Fourier Transform (6) to model weights, enabling fine-tuning directly in the frequency116

domain. By modifying the spectral coefficients instead of the raw weights, the method overcomes117

linear constraints of LoRA and achieves comparable performance with significantly fewer trainable118

parameters (2). However, it still updates the full frequency spectrum uniformly, which may include119

components with negligible informational value.120

121

In contrast to prior approaches that apply uniform updates across the entire frequency spec-122

trum, our proposed Layerwise Fourier Masked Adapter (LFMA) focuses on selectively updating123

only the Top-K most informative frequency components (5; 7) per layer. These components are124

identified based on their magnitudes, which indicate their contribution to the original weight update.125

This spectral masking strategy enhances both representation precision and adaptation efficiency,126

pushing the boundaries of frequency-based learning in terms of both task-specific expressiveness and127

computational scalability (31).128

3 Methodology129
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Algorithm 1 PyTorch-style pseudocode for LayerwiseFGFourierFTAdapter.

class LayerwiseFourierFTAdapter(nn.Module):
def init(self, alpha, base_layer, delta_W_init, top_k_ratio):

super().init()
self.alpha = alpha
self.base_layer = base_layer
for p in self.base_layer.parameters():

p.requires_grad = False

d1, d2 = delta_W_init.shape
W_freq = torch.fft.fft2(delta_W_init)
magnitude = torch.abs(W_freq)
k = int(d1 * d2 * top_k_ratio)

topk_values, topk_indices = torch.topk(magnitude.view(-1), k)
self.mask = torch.zeros((d1, d2), dtype=torch.bool)
self.mask.view(-1)[topk_indices] = True

self.c = nn.Parameter(W_freq[self.mask].clone().detach(), requires_grad=True)

def forward(self, x):
F = torch.zeros(self.base_layer.weight.shape, dtype=torch.complex64, device=x.device)
F[self.mask] = self.c
Delta_W = torch.fft.ifft2(F).real * self.alpha

h = self.base_layer(x)
if x.dim() == 2:

h += torch.matmul(x, Delta_W)
elif x.dim() == 3:

h += torch.einsum(’bnd,df->bnf’, x, Delta_W)
return h

In this section, we introduce our proposed Layerwise Fourier Masked Adapter (LFMA), a parameter-130

efficient method for adapting models to downstream tasks. By leveraging Fourier transforms, we131

sparsify weight updates in the frequency domain, selecting and optimizing only the most significant132

components. This approach reduces computational overhead while preserving performance.133

3.1 Fourier Layer Adaptation134

The core of our method is the LFMA module, which fundamentally leverages the properties of the135

Fourier transform to facilitate efficient and targeted layer-wise adaptation in neural networks. At its136

core, LFMA encapsulates the idea that weight perturbations W. W ∈ Rd1×d2 can be effectively137

represented and manipulated within the frequency domain (32).The adaptation process involves138

constructing a small perturbation matrix ∆Winit, which is transformed into the frequency domain:139

Wfreq = F(∆Winit), (1)

140

where F(·) denotes the FFT (6), yielding complex-valued coefficients. To promote spectral sparsity141

and focus the adaptation on the most influential frequencies, a top-k selection based on the magnitude142

of these coefficients is performed (5; 33). The set of coefficients corresponding to the mask is then143

designated as learnable parameters c, which are optimized during training. The adapted output in the144

spatial domain is reconstructed via the inverse Fourier transform F−1, scaled by a hyperparameter145

a > 0, ensuring that the spectral modifications are smoothly integrated into the original weights. This146

process emphasizes spectral regularization, constraining the adaptation to a compact set of critical147

frequency components, which effectively mitigates overfitting and enhances interpretability (34). The148

LFMA module thus provides a principled mechanism for layer-specific, frequency-aware fine-tuning,149

aligning with the signal processing intuition that the most salient features are often concentrated in a150

subset of the spectral domain.151

3.2 Inverse Fourier and Top-K Selection152

In this section details the forward pass of the adapter, which reconstructs the weight perturbation via153

the inverse Fourier transform, integrates only the real part into the computation, and optimizes the154

selected top-k components during training. reconstructing a sparse frequency matrix, initialized to155

zeros.156
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top k ratio (Params) SST-2 (Acc.) MRPC (Acc.) QNLI (Acc.) RTE (Acc.) CoLA (MCC) STS-B (PCC) Avg.
FF (125M) 94.8 90.2 92.8 78.7 63.6 91.2 85.2
LoRA (0.3M) 95.1 ± 0.2 89.7 ± 0.7 93.3 ± 0.3 78.4 ± 0.8 63.4 ± 1.2 91.5 ± 0.2 85.2
FourierFT (0.024M) 94.2 ± 0.3 90.0 ± 0.8 92.2 ± 0.1 79.1 ± 0.5 63.8 ± 1.6 90.8 ± 0.2 85.0
0.0016 (0.023M) 94.4 ± 0.3 90.5 ± 0.3 92.2 ± 0.2 80.9 ± 0.2 60.1 ± 1.0 90.4 ± 0.3 84.8
0.001 (0.015M) 94.4 ± 0.2 90.5 ± 0.3 92.0 ± 0.1 79.4 ± 0.8 60.0 ± 1.0 90.2 ± 0.3 84.4
0.0005 (0.007M) 93.4 ± 0.2 88.8 ± 0.5 90.6 ± 0.9 78.1 ± 1.9 57.9 ± 1.1 88.2 ± 0.6 82.8

Table 2: Performance comparison on the GLUE benchmark with RoBERTa-Base. Accuracy is used
for SST-2, MRPC, QNLI, RTE, and MCC and PCC are used for CoLA and STS-B respectively. We
report the main performance score using median among five different experimentation varying in
seeds setting. Avg. is average of six benchmark datasets.

top k ratio (Params) SST-2 (Acc.) MRPC (Acc.) QNLI (Acc.) RTE (Acc.) CoLA (MCC) STS-B (PCC) Avg.
FF (356M) 96.4 90.9 94.7 86.6 68 92.4 88.2
LoRA (0.8M) 96.2 ± 0.5 90.2 ±1.0 94.8 ± 0.3 85.2 ± 1.1 68.2 ± 1.9 92.3 ± 0.5 87.8
FourierFT (0.048M) 96.0 ± 0.2 90.9 ± 0.3 94.4 ± 0.4 87.4 ± 1.6 67.1 ± 1.4 91.9 ± 0.4 88.0
0.0005 (0.025M) 96.5 ± 0.4 91.0 ± 0.5 93.8 ± 0.2 85.1 ± 1.3 65.8 ± 0.3 90.9 ± 0.3 87.2
0.0003 (0.015M) 95.5 ± 0.3 89.5 ± 0.9 92.1 ± 0.2 83.0 ± 1.1 64.8 ± 1.1 90.3 ± 0.6 85.9
0.0001 (0.005M) 93.9 ± 0.3 88.2 ± 1.1 89.5 ± 0.3 78.3 ± 1.5 62.1 ± 1.2 86.6 ± 1.0 83.1

Table 3: Performance comparison on the GLUE benchmark with RoBERTa-Large. Accuracy is used
for SST-2, MRPC, QNLI, RTE, and MCC and PCC are used for CoLA and STS-B respectively. We
report the main performance score using median among five different experimentation varying in
seeds setting. Avg. is average of six benchmark datasets.

The inverse Discrete Fourier Transform (IDFT) is then applied to recover the spatial-domain pertur-157

bation:158

∆W = R
(
F−1(F)

)
· α (2)

where R(·) extracts the real number part, and F−1(·) is the inverse FFT. This ensures that only159

a sparse subset of frequencies contributes to the adaptation, significantly reducing the parameter.160

During fine-tuning, only the c parameters in each adapter are optimized while the rest of the model161

remains frozen. This approach exploits the low-rank structure of weight perturbations in the Fourier162

domain, inspired by prior work on spectral methods in neural networks (3; 31). Hyperparameters163

such as α control the adaptation strength and sparsity, respectively.The adapted output is computed164

by adding this perturbation to the base layer’s computation. For an input tensor x, the base layer165

produces h = layer(x). The perturbation is then integrated as follows:166

• If x is 2D (e.g., batch size × input dimension), h← h+ x ·∆W.167

• If x is 3D (e.g., batch size× sequence length× input dimension), h← h+einsum(x,∆W),168

using efficient tensor contraction.169

During training, only the top-k selected components are optimized via backpropagation, as they170

are the learnable parameters. This top-k learning strategy ensures that gradients flow exclusively171

through the most impactful frequencies, further enhancing efficiency. The mask remains fixed after172

initialization, preventing unnecessary exploration of low-magnitude components.173

The pseudocode for LFMA is shown as Algorithm 1 in PyTorch style.174

4 Experiments175

In this section, we first evaluate the overall performance of our proposed method, Layerwise Fourier176

Masked Adapter (LFMA), by comparing it against several strong baseline methods across domains of177

Natural Language Processing (NLP) and Computer Vision (CV). We then conduct an ablation study178

to analyze the impact of our key hyperparameter, the top_k_ratio, which controls the parameter179

efficiency of our approach.180

4.1 Image Classification181

Datasets. To rigorously evaluate the efficacy and generalization capabilities of our proposed method,182

Layerwise Fourier Masked Adapter (LFMA), we conduct experiments on a comprehensive suite183

of seven widely-used image classification benchmarks. This collection includes generic object184
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recognition datasets (CIFAR-10, CIFAR-100 (35)), fine-grained visual classification tasks (Oxford-185

IIIT Pet (36), Stanford Cars (37), FGVC-Aircraft (38)), and remote sensing imagery datasets186

(EuroSAT (39), RESISC45 (40)). The diversity of these benchmarks allows us to thoroughly assess187

the robustness and adaptability of LFMA across various data domains and scales.188

Compared Schemes. We benchmark LFMA against several established fine-tuning paradigms. The189

performance of Full Fine-Tuning (Full-FT) is presented as a practical upper bound. We compare190

against Low-Rank Adaptation (LoRA) (2), a prominent and widely-adopted parameter-efficient191

fine-tuning (PEFT) technique. Furthermore, we include FourierFT (4), a state-of-the-art method192

operating in the frequency domain, which serves as our most direct and challenging baseline.193

Implementation Details. Our experiments leverage Vision Transformer (ViT) backbones (13),194

specifically ViT-Base (ViT-B/16) and ViT-Large (ViT-L/16), both pre-trained on ImageNet-21k195

(41). For model training, we employ the AdamW optimizer (42) with a learning rate of 1 × 10−4196

and a weight decay of 1 × 10−4. A consistent batch size of 32 is used, and all input images are197

resized to a resolution of 224x224. No learning rate scheduler is applied to ensure a fair comparison198

of the models’ intrinsic learning capabilities. For our LFMA method, the adapter is integrated into199

the query projection matrix within the self-attention mechanism of every transformer block. Based on200

empirical validation, the primary hyperparameters for LFMA are set to a Fourier coefficient scaling201

factor of α = 120 and a top-k masking ratio of 0.0003. Deviations from this configuration for specific202

experiments, such as those presented in Table 1, are explicitly noted.203

Main Results. The comparative performance of our LFMA model variants is summarized in Table 1.204

The results, obtained with specific hyperparameters (α = 12, top-k=0.05), demonstrate the strong205

performance of our approach. The LFMA (ViT-B) variant achieves the highest accuracy on five of206

the seven datasets, establishing its efficacy as a robust general-purpose adapter. Notably, the LFMA207

(ViT-L) variant shows competitive or superior performance on challenging fine-grained datasets208

like Stanford Cars and FGVC-Aircraft, suggesting its particular aptitude for tasks requiring detailed209

feature discrimination. These results collectively validate that LFMA provides a compelling and210

parameter-efficient alternative to full fine-tuning.211

4.2 Natural Language Understanding212

Datasets. To assess the effectiveness of our proposed LFMA in the natural language domain, we213

evaluate on the GLUE benchmark (43), a comprehensive suite designed to measure various aspects214

of Natural Language Understanding (NLU). Specifically, we include SST-2, MRPC, QNLI, RTE,215

CoLA, and STS-B, while excluding QQP, WNLI, and MNLI to compare with the baseline. We adopt216

the standard GLUE benchmark splits for training, validation, and testing, ensuring consistency with217

widely used experimental setups.218

Compared Schemes. We benchmark LFMA against three strong baselines including Full Fine-tuning219

(FF) and parameter-efficient fine-tuning, LoRA (2) and FourierFT (4). We directly adopt the reported220

results of baselines from the FourierFT paper. Together, these baselines provide a comprehensive221

evaluation framework, as LoRA is the most commonly used PEFT method and FourierFT is the222

conceptually related approach to LFMA.223

Implementation Details. We experiment with two models, which have been used in FourierFT224

paper, RoBERTa-Base and RoBERTa-Large (14). We utilized the AdamW optimizer (42), with225

hyperparameters (learning rate, epochs, batch size, seeds, and scaling factor α) based on those226

reported in the FourierFT (4) paper, making slight adjustments during experimentation to better fit227

our setting. We followed the experimental setup applied in LoRA (2) to conduct fair comparison with228

FourierFT, which is the main baseline, LFMA adapters are applied to the query and value projections229

in each transformer block as well. The top_k_ratio controls the proportion of frequency components230

retained for fine-tuning, and we evaluate multiple ratios as reported in Tables 2 and 3.231

Main Results. Table 2 and Table 3 present the GLUE benchmark results for RoBERTa-Base and232

RoBERTa-Large, respectively. Accuracy is used for SST-2, MRPC, QNLI, RTE, and MCC and PCC233

are used for CoLA and STS-B respectively. We report the main performance score using median234

among five different experimentation varying in seeds setting. Avg. is average of six benchmark235

datasets. Across both backbones, LFMA demonstrates that parameter-efficient fine-tuning in the236

Fourier domain is highly effective for natural language understanding tasks. Overall, LFMA achieves237
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performance comparable to or better than the FourierFT (4) baseline while using significantly fewer238

trainable parameters, thereby confirming its scalability and robustness beyond vision tasks.239

For RoBERTa-Base (Table 2), LFMA outperforms both LoRA and FourierFT (4) on MRPC and RTE,240

while maintaining performance comparable to or exceeding FourierFT on all datasets except CoLA.241

This highlights LFMA’s effectiveness in sentence-pair classification tasks. Although performance242

slightly decreases at the lowest top-k ratios, the method consistently delivers strong results with far243

fewer parameters, validating its efficiency. However, we note that variance across runs increases as244

the parameter budget becomes smaller.245

For RoBERTa-Large (Table 3), LFMA surpasses both baselines on SST-2 and MRPC, and delivers246

performance comparable to or better than FourierFT (4) on most other datasets, again with the247

exception of CoLA. These results indicate that LFMA scales effectively to larger backbones, retaining248

competitiveness even under strict parameter budgets. An additional observation is that as the number249

of trainable parameters decreases, the variance in performance tends to increase more noticeably than250

in the Base model, underscoring a trade-off between parameter efficiency and stability at scale.251

4.3 Ablation Study252

To analyze the impact of the top_k_ratio hyperparameter, which directly controls the number253

of fine-tuned frequency components, we conducted an ablation study. The number of trainable254

parameters is directly proportional to the top_k_ratio. In the image classification task, for255

the ViT-Base model, a top_k_ratio of 0.1, 0.05, and 0.0003 corresponds to 707,784, 353,892,256

and 2,112 trainable adapter parameters, respectively. For the ViT-Large model, these ratios result257

in 2,516,568, 1,258,272, and 7,536 trainable parameters. Our main results were achieved with a258

top_k_ratio of 0.0003, which isolates only a tiny fraction of the most significant frequency259

components. In the NLU task, we further examined the trade-off between parameter count and260

performance. Notably, for the RoBERTa-Base model, LFMA achieves competitive results with261

FourierFT (4) while using a nearly identical number of parameters. In the RoBERTa-Large setting,262

LFMA achieves comparable or even superior results to FourierFT (4) despite requiring only about263

half the number of parameters. Moreover, as the number of trainable parameters decreases, the264

decrease in performance remains modest rather than drastic. The strong performance obtained with265

this setting underscores our core hypothesis: a substantial portion of the frequency spectrum is266

redundant for task-specific adaptation, and focusing on a small, highly informative subset is sufficient267

for effective fine-tuning. This selective update strategy is the key to LFMA’s exceptional parameter268

efficiency, allowing it to push the boundaries of PEFT by achieving high performance with minimal269

computational overhead.270

5 Conclusion271

In this work, we presented the LFMA, an innovative adapter module that enhances efficient fine-272

tuning of pre-trained models through frequency-domain sparsity. By applying Fourier transforms to273

initial weight perturbations, selecting top-k high-magnitude frequency components for optimization,274

and integrating only the real part of the inverse transform into the forward pass, our method achieves275

a sparse yet effective adaptation strategy. This approach not only minimizes trainable parameters276

but also leverages signal processing principles to separate global and local adaptations, offering277

improved interpretability over traditional methods. Our experiments demonstrate LFMA is better278

than FourierFT (4). Across benchmarks in natural language understanding (e.g., GLUE (43)) and279

image classification (e.g., CIFAR-10/100 (35)), our adapter consistently outperforms FourierFT (4)280

with similar or lower parameters.281

5.1 Future work282

For the future work, we aim to investigate the way to use dynamic masking, allowing the mask283

to adapt during training based on real-time updating (? ). Second, extend the method to various284

models like Diffusion model (44), Graph Neural Network (GNN) (45) across domains. Third, we will285

research for theory of the convergence properties that are appropriate for top-k frequency optimization,286

solving bounds, and getting error lower. Finally, deploying the adapter in real-world settings, such as287

continual learning (46).288
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