
Under review as a conference paper at ICLR 2024

DIPDNN - DECOMPOSED INVERTIBLE PATHWAY DEEP
NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep neural networks (DNNs) enable highly accurate one-way inferences from in-
puts to outputs. However, there’s an elevated need for consistency in bi-directional
inferences, such as state estimation, signal recovery, privacy preservation, and
reasoning. Since standard DNNs are not inherently invertible, previous works use
multiple DNNs in a nested manner to obtain consistent and analytical forms of
inverse solutions. However, such a design is not only computationally expensive
due to DNN compositions, but also forces splitting the input/output equally, which
is inapplicable in many applications. To reduce the restriction, other works use
fixed-point iterations to enable approximation of one-to-one mapping, but the nu-
merical approximation leads to reconstruction errors compared with the analytical
inverse. To preserve the analytical form with minimum computational redundancy,
we proposed decomposed-invertible-pathway DNNs (DipDNN) that decompose
the nested design. We enforce one-to-one mapping in each layer by minimally
adjusting the weights and activation functions of standard dense DNNs. We prove
that such an adjustment guarantees strict invertibility without hurting the universal
approximation. As our design relaxes the alternative stacking of nested DNNs,
the proposed method does not need a fixed splitting of inputs/outputs, making it
applicable for general inverse problems. To boost the two-way learning accuracy
further, we show that the proposed DipDNN is easily integrated into a parallel
structure. With the analytical invertibility, bi-Lipschitz stability regularization
naturally fits into the scheme to avoid numerical issues. Numerical results show
that DipDNN can recover the input exactly and quickly in diverse systems.

1 INTRODUCTION

Deep neural networks have shown success in various examples to make inferences accurately (LeCun
et al., 2015; Schmidhuber, 2015). However, the high accuracy in one-way mapping is insufficient to
fulfill diversified needs (Raissi et al., 2019; Kamyab et al., 2022). For many deterministic systems,
especially physical systems, the complete modeling is bi-directional and covers both forward and
inverse mappings for inferences (Tarantola, 2005; Bu & Karpatne, 2021). For example, recovering
audio/image signals from data is the inverse process of regular transformations (Arridge et al., 2019).
For most physical and engineering systems, estimating the hidden states/parameters is based on
the forward system identification (Jensen et al., 1999). Therefore, the topics are popular in recent
years in retaining sensitive information in privacy-preserving models and providing explanations for
black-box models (Berman et al., 2019; Mahendran & Vedaldi, 2015). Both necessitate tracing back
the decision-making process to its origin.

However, making the forward and inverse DNN mappings compatible is difficult. The challenges
come from the multi-layered nonlinear structure and complex interconnections within layers of DNN,
which do not naturally have one-to-one correspondence. To avoid these issues, previous methods have
two major directions: either building a nested structure to avoid dealing with undesirable many-to-one
property from DNN or constraining DNN parameters for a contractive mapping numerically (Dinh
et al., 2014; Behrmann et al., 2019). Specifically, the nested structure requires a fixed splitting of
input and output dimensions to retain DNN nonlinearity in an analytically invertible model. However,
it raises problems with unfairly grouped data dimensions and the increased computational burden
of separate DNNs. For example, the heuristic grouping of variables in physical system creates
inconsistency to the physical structures. On the other hand, numerical approximation methods,

1

Under review as a conference paper at ICLR 2024

such as i-ResNet, relax the restrictive architecture with the cost of analytical inverse form. The
reconstruction error is thus unavoidable, e.g., dependent on the convergence and accuracy of the
fix-point iterations for inverse computation.

Therefore, is it possible to preserve the analytical inverse solution for applications that need accurate
point estimates while reducing the computation redundancy of previous methods? For such a question,
we firstly show how to convert the invertible structure with nested DNNs into a regular DNN with
Leaky ReLU activation functions with performance guarantees on both the forward mapping and
inverse learning. Such a design is based on the trade-off between the strict analytical invertibility
and the model’s approximation efficiency during the conversion. Motivated by that, we finalize our
design with a decomposed invertible pathway DNN (DipDNN) model (Fig. 2). DipDNN minimizes
the model redundancy/sparsity without hurting the approximation capability while ensuring an easy-
to-compute inverse solution. Moreover, our proposed method relaxes the restrictions on invertible
architecture, which does not require splitting input/output data or alternatively concatenating several
DNNs (i.e., at least three and normally uses four for full-dimension couplings). Such properties
greatly widened the application fields for inverse learning.

In addition to the analytical one-to-one correspondence, we introduce regularization on both forward
and inverse processes to boost performance. For many vision-related works, the inverse problem
has been formed as estimating the density of complex distribution, for which the generative learning
models can have poor generalizability for data beyond training ranges (Nalisnick et al., 2019; Fetaya
et al., 2020). To improve the extrapolation capability of the forward approximation, we introduce
a trusted physics expert to compete and collaborate with the DipDNN and find the optimal split in
function approximation. Although we have theoretical guarantees on the invertibility of DipDNN,
numerical errors are not rare when coding in practice. As there is a trade-off between enforcing
numerical inverse stability and maintaining approximation capability (Bal, 2012; Gottschling et al.,
2020), we propose to find the balance with moderate regularization (Amos et al., 2017), which is
shown to be both effective and robust in experiments. The numerical validation conducted on a
variety of systems assesses forward accuracy, computational efficiency, and inverse consistency. The
competitive performance shows that a basic adjustment of network layers can dramatically widen the
application fields for DNN with bi-directional information flow.

2 INVERSE PROBLEM AND THE INTRICACIES

2.1 DEFINE THE GENERAL INVERSE PROBLEM

System identification is a supervised learning task to recover the forward mapping f : Rn → Rn
with y = f (x) from measurements. There are cases when one need to know the hidden states or
original variables. The inference function to know x is in reverse to function f . And, this paper
focuses on a deterministic setup to obtain accurate point estimates of x, which is different from the
generative density estimation task via maximizing likelihood (Dinh et al., 2014). We aim to find an
inverse mapping g : Y → X corresponding with f , which satisfies x = g (y) = f−1 (y) , ∀y ∈
Y . Unlike forward mapping, which usually has a well-defined governing function, the inverse
counterpart is much more complicated to analyze (Bal, 2012). It can have multiple solutions due
to ill-posedness. Unifying the learning of bi-directional mappings can address the issues via a
consistent forward-inverse function pair. The learning task is to let y = g−1 (x) approximate the
analytical forward model y = f (x) using historical data {xi,yi}Ni=1, where the empirical errors are
minimized. And, the approximation model g−1 (·) is designed to be an invertible structure. After
the forward mapping is well-trained, the inverse mapping x = g (y) is obtained. It is expected
to be explicitly consistent with the forward counterpart, minimizing the reconstruction loss of
g∗ = argming∈}

∑N
i=1 ℓ2

(
xi, g

−1 (g (xi))
)
.

2.2 REVIEW ANALYTICAL INVERTIBLE TRANSFORMATION IN ADDICTIVE COUPLING LAYERS

Instead of recovering a direct inverse NN mapping, the unified learning strategy needs accu-
rate approximation, invertibility of the forward NN, and an easy inverse computation. In lit-
erature, the invertibility can be enforced by normalizing the Lipschitz condition for an over-
all contractive DNN mapping and stable inverse, but the non-analytical inverse form can rarely

2

Under review as a conference paper at ICLR 2024

reach zero error during training for a perfect match of the two-way mappings. On the con-
trary, an analytical inverse requires DNN reconstruction to build one-to-one correspondence.

Figure 1: (a) - (b): Composition of ad-
dictive invertible transformation for full
coupling of input/output dimensions. (c):
A reduction of (b) that retains full dimen-
sion coupling.

A typical method of the analytical inverse is using the
addictive coupling for invertible transformation (Dinh
et al., 2014). For each layer, the invertibility is enforced
by a fixed split of inputs x = [xI1 ,xI2] and outputs
y = [yI1 ,yI2],

yI1 = axI1 ,yI2 = bxI2 + t(xI1); (1)
xI1 = yI1/a,xI2 = (yI2

− t(xI1
))/b. (2)

As shown in Fig. 1(a), t(·) can be arbitrarily complex,
and we assign an MLP with ReLU activation functions.
Invertibility requires the real function to have a one-to-
one correspondence (x1 ̸= x2 ⇒ f(x1) ̸= f(x2)) of the
inputs and outputs. Although t(·) creates a many-to-one
mapping with ReLU, Fig. 1(a) uses a nested structure to
build in the DNN without violating the overall invertibility.
Specifically, the nested design requires splitting inputs and
outputs, and the nonlinear coupling is limited between xI1
and yI2 within one layer of transformation. The invert-
ibility is thus intuitive in that xI1 and yI1 , xI2 and yI2
have one-to-one correspondence through the linear paths a
and b (identical in the original design). And, the coupling
between xI2 and yI1 is eliminated to easily derive the
analytical inverse in equation 2.

Therefore, to mimic the fully connected DNN, e.g., any
output can have a nonlinear correlation with any input, the
nested design needs to concatenate at least three layers alternatively. Mathematically, the necessity
of concatenating three or more layers is intuitive by deriving the Jacobian matrix (derivation in
Appendix A.1). Assuming we use the same architecture (i.e., K-layer ReLU-activated DNNs) for the
nonlinear function in each layer, Fig. 1(b) needs three such DNNs to complete the coupling among
all dimensions. The separate DNNs shall weaken the approximation capability so that four or more
layers are usually concatenated in implementation. It could also aggravate error propagation in the
inverse computation, which we will discuss later in Sec. 4.2.

3 ENFORCE INVERSE CONSISTENCY AND APPROXIMATION EFFICIENCY IN
NEURAL NETWORK ARCHITECTURES

3.1 CAN WE REDUCE COMPUTATIONAL TIME?

The addictive coupling layer provides an analytical inverse, but it requires at least three layers to
concatenate in turn for full nonlinear couplings of all the inputs with all the outputs, which normally
takes four or more. Can we reduce the computational time with a flexible invertible structure?

By observing Fig. 1(b) and the Jacobian matrix, the redundancy of the nested design comes from the
asymmetric coupling in a Z-shape. The sole purpose of the third stacking layer is to build a nonlinear
mapping from XI2 to yI2 . Can we reduce the layer for a lower computation burden? To shorten
three compositions to two, we need to let xI2 in the first layer contribute nonlinearity to the output at
the bottom while reserving the invertibility. The one-to-one correspondence can be maintained by
adding a Leaky ReLU activation function to the second path, which allows Fig. 1(b) to turn into Fig.
1(c). Based on the intuitive equation 1, we only change the direct path from linear correlation to a
strictly monotonic nonlinear mapping for each layer, thus preserving the invertibility.

The structure in Fig. 1(c) still needs a hard division of inputs/outputs. Although the nonlinear DNN
is nested in the middle, some interconnections among variables are eliminated due to the separated
input/output groups, for which the comparison with regular NN is in Appendix A.1. Thus, it could be
heuristic to find the optimal split for variables, e.g., measurements with physical meanings.

3

Under review as a conference paper at ICLR 2024

3.2 PROPOSED DECOMPOSED INVERTIBLE PATHWAY DEEP NEURAL NETWORKS

Previous methods have the typical splitting design to obtain an easy-to-compute Jacobian determinant,
e.g., all 1’s, for maximizing likelihood of training the generative model with unlabeled data. Since
we target accurate point estimates rather than density estimation, the sparse structure is not necessary.
We aim to construct one-to-one correspondence with minimum adjustment in DNN to maintain the
dense function representation for universal approximation.

Constructing Invertible DipDNN. To keep the dense representation in a regular neural net-
work layer: z = g(Wx + b), only two design choices are available for DNN layers: 1) acti-
vation function and 2) weights. For the nonlinearity g(·), the activation is element-wise such
that strict monotonicity is a necessary and sufficient condition for a one-dimensional function
to be invertible. We propose to use Leaky Rectified Linear Unit (Leaky ReLU) activation

Figure 2: The proposed invertible DipDNN.

which is a strictly monotone function
customized from ReLU.

To make the affine function Wx+ b
bijective, the weight matrix W needs
to be invertible. It indicates indepen-
dent correlation over all dimensions,
where the one-to-one (injective) map-
ping means full column rank of the
matrix and onto (surjective) means
full row rank of the matrix. A non-
singular square matrix always satisfies
such one-to-one correspondence, but
singularity issues may exist and cause
difficulty in inverse computation. Mo-
tivated by the triangular map, a basic
invertible unit (shown in the top right
corner of Fig. 2) can eliminate the is-
sue (details in Appendix A.2). As an

extension of the basic invertible unit in depth and width, we propose lower and upper triangular
weight matrices to render layers invertible. It can be seen as an equivalent adjustment using LU
decomposition if we let g1 be linear, i.e., W = WtrilWtriu and the easily computed matrix inverse
W−1 = W−1

triuW
−1
tril layer-by-layer. While any triangular matrix is invertible, if and only if all the

entries on its main diagonal are non-zero, we alternately enforce the lower and upper triangular
weight matrices in each block equation 3 to ensure the complete coupling over all the dimensions.

Therefore, Fig. 2 presents our compact invertible DNN structure. Mathematically, the proposed
model has K blocks, which indicate 2K layers. The representation for the kth block is:

z(2k−1) = g1(W
k
trilz

(
2(k−1)

)
+ bk1), z

(2k) = g2(W
k
triuz

(2k−1) + bk2). (3)

Each block h(k) consists of two layers z(2k−1) and z(2k). The model parameters include weight
matrices W k

tril, W
k
triu and bias bk1 , bk2 . g1, g2 are element-wise nonlinear activation functions, and we

use Leaky ReLU activation with a fixed parameter α ∈ R+ \{1}, g(x) = σα(x) =

{
x, if x > 0,

αx, if x ≤ 0,
.

The invertibility of the DNN model constructed in equation 3 is summarized in the following.

Proposition 1. The function of the neural network model h : Rn → Rn with h = h(1) ◦ · · · ◦ h(K) is
invertible if the weight matrices W k

tril,W
k
triu, k ∈ [1,K] are lower and upper triangular matrices

with non-zero diagonal components, and all the activation functions g1k, g
2
k are strictly monotonic.

As the proposed model is a deep neural network structure with Decomposed Invertible Pathways
layer-by-layer, we call it DipDNN, where “dip” also stands for the lower and raised connections.

Preserving Representation Power. Compared with Fig. 1, DipDNN relaxes the fixed input/output
dimension splitting, thus no need to stack multiple separate DNNs alternatively for full couplings
among groups. Meanwhile, instead of arbitrary nested DNN, DipDNN enforces the number of

4

Under review as a conference paper at ICLR 2024

neurons in all the layers to be the same for strict one-to-one correspondence. Will this weaken the
representation power?

The universal approximation property of shallow wide networks (fixed depth such as one hidden layer
and arbitrary width) has been well-studied, but it is still enduring work for deep narrow networks
(bounded width and arbitrary depth). Especially, our DipDNN is a deep narrow network with weight
matrices being alternatively lower and upper triangular. Next, we present the preserved universal
approximation property in

Theorem 1. Let K ⊂ Rdx be a compact set, then for any continuous function f ∈ C(K,Rdy),
there is a positive constant ϵ > 0, ∥h(x) − f(x)∥ < ϵ, for neural network h : Rdx → Rdy, where
h = h(1) ◦ · · · ◦ h(K). h(k) is defined in equation 3 with Leaky ReLU activation function and
alternative lower and upper triangular matrices, Wtril for odd layers and Wtriu for even layers.

Proof. To describe the universal approximation of DNNs, we say the DNNs h are dense in C(X ,Y),
if for any continuous function f ∈ C(X ,Y), there is ϵ > 0, such that ∥h(x) − f(x)∥ < ϵ. To
prove the universal approximation of DipDNN, we first refer to the latest results on the deep narrow
Networks with Leaky ReLU activations as follows (Duan et al., 2023).

Theorem 2. Let K ⊂ Rdx be compact. Then the set of Leaky ReLU-activated neural networks with
fixed width d+ 1 (dx = dy = d) and arbitrary depth is dense in C(K,Rdy)C(Ω,Rm).

Theorem 2 indicates that there exists a neural network hϕ of lower bounded width d+ 1 such that
∥hϕ(x) − f(x)∥ < ϵ/2. To convert hϕ to networks with triangular weight matrices, we denote
the layer as hϕ(x)k = σ(W khϕ(x)

(k−1) + bk). Since the dimensions in all layers are equal, each
square matrix W k, k = 1, ·,K can be decomposed into a product of lower and upper triangular
matrices, W k = W k

trilW
k
triu. The layer function turns to hϕ(x)

k = σ(W k
trilW

k
triuhϕ(x)

(k−1) + bk).
Subsequently, we transfer hϕ(x)

k into two layers by first inserting an identity map I : Rd →
Rd and obtain hϕ(x)

k = σ(W k
trilIW

k
triuhϕ(x)

(k−1) + bk). Then we apply some function ρk :

Rd → Rd to approximate I with hψ(x)
k = σ(W k

trilρ
kW k

triuhϕ(x)
(k−1) + bk). From the theorem

on the identity mapping approximation (Liu et al., 2022), we construct ρk to obtain hψ(x)
k =

σ(W k
tril

′
σ(W k

triu
′
hϕ(x)

(k−1) + bk
′
) + bk), where W k

tril

′
,W k

triu
′ are scaled by ρk, with structures

remaining to be lower/upper triangular matrices. The approximation of identity mapping can reach
arbitrary accuracy, and thus we have ∥hϕ(x) − hψ(x)∥ ≤ ϵ/2. Given that ∥hϕ(x) − f(x)∥ < ϵ/2,
we obtain ∥hψ(x) − f(x)∥ < ϵ. Details of Theorem 2 and the theorem on the identity mapping
approximation are included in Appendix A.2.

The result shows that any continuous function f : Rdx → Rdy can be approximated. To fit perfectly,
DipDNN needs a slight construction to only expand the input and output dimensions from dx,dy to
d+ 1 by filling in zeros without changing the property (Zhang et al., 2020).

4 REGULARIZATION FOR BOOSTING PERFORMANCE IN DIPDNN

While the conditions mentioned earlier guarantee analytical invertibility for a consistent inverse, the
computation aspects of deep learning may raise a lack of generalizability and numerical stability issues,
as supported by empirical observations. Recent analyses further provide theoretical evidence for the
trade-off between approximation accuracy and inverse stability. In the following, we demonstrate the
regularization scheme to train DipDNN and compute the inverse.

4.1 PHYSICS EMBEDDING

Common to discriminative learning tasks, the forward learning process’s objective is to minimize
empirical errors, a goal that hinges on the model’s approximation capability. However, universal
approximators can have excellent performance on training data but significant deterioration on out-of-
distribution data. The unpredictable generalization is critical for physical systems that have changing
operation points.

For many cases, such as physical systems, the forward model f has specific priors or exhibits specific
properties. Recent works on physics-informed learning embed these properties into the DNNs to

5

Under review as a conference paper at ICLR 2024

improve the generalizability. However, when it comes to the inverse problem, directly adding the
symbolic embedding or extra constraints can break the invertibility of the forward mapping. Moreover,
the exact underlying function may not naturally satisfy one-to-one mapping, and the inverse learning
is only to approximate partially based on the observed data, which may cause conflict.

Figure 3: A parallel structure for physical regularization over
DipDNN.

Therefore, we propose a twin struc-
ture in Fig. 12. A physics embed-
ding is added in parallel with the
DipDNN instead of embedding it into
the forward model. It is a symbolic
regression to recover exact physical
expression. For physical systems with
known priors, we could use prede-
fined function forms as candidates.
Otherwise, we adopt a state-of-the-art
model such as equation learner to re-
cover the complex expression (Sahoo
et al., 2018a). Specifically, we define
split parameters to represent the hy-

brid representation of physics embedding and DipDNN: f(x) = λPhyf1(x) + λDipDNNf2(x), where
λPhy + λDipDNN = 1, λPhy, λDipDNN > 0. The hybrid models are trained simultaneously to mini-
mize empirical errors and recover the underlying function. Since DipDNN is invertible, we obtain
x̂ = f−1

1 (y) from the inverse counterpart and plug into the recovered physical function f2(x̂). It can
be used to verify the physical consistency of the forward approximation in DipDNN.

4.2 NUMERICAL REGULARIZATION

Even though the forward model is analytically invertible, numerical errors may be aggravated when
computing the inverse solution. Here we show the inverse computation sensitivity on well-trained
DipDNNs (MAPE < 0.01%) of different depths using various synthetic datasets (details in A.4).
We show in Fig. 4(a) the error propagation through layers compared with the ablation error of
each invertible block via testing on synthetic datasets with different dimensions and nonlinearity.

Figure 4: Compare the propagated errors
(blue) through layers and the ablation errors
(gray) without (left) and with (right) stability
regularization.

We observe an exponential increase in the propa-
gated error while the ablation error is nearly zero
(< 10−10). The numerical errors include round-off
in Python implementation, forward approximation
mismatches, data noises, etc. If the singular values
of the forward mapping approach zero (without actu-
ally being zero, thus maintaining analytical invertibil-
ity), the singular values of the corresponding inverse
mapping can become exceedingly large and amplify
numerical errors, which is termed as an exploding
inverse (Behrmann et al., 2021). Fig. 4(left) empir-
ically shows that such errors will be aggravated and
propagated as the problem size and network depth
increase.

We quantify the correlation between errors and inverse stability using bi-Lipschitz continuity with full
details in Appendix A.4. Based on that, we enforce moderate regularization in the inverse mapping.
For each layer, Leaky ReLU is a typical 1-Lipschitz activation function, and we adopt the L2 norm
of the inverse weights to smoothly clip large entries. While it is a moderate bound to regularize
bi-Lipschitz continuity, the effect on the synthetic examples shows a much smaller error ((< 10−10))
propagated through layers in Fig. 4 (right).

5 RELATED WORK

5.1 DNN-BASED INVERSE LEARNING

Considering the approximation strategies, DNN-based inverse learning includes direct mapping
recovery and two-way mapping recovery that unifies the pair of forward and inverse mappings. The
inverse mapping is usually more complex than the forward (Kamyab et al., 2022). Thus, direct

6

Under review as a conference paper at ICLR 2024

mapping easily leads to overfitting and a mismatch in between. For example, unlike the physical
priors of the forward system model, the inverse does not have a pre-defined physical form as a
reference for interoperability (Raissi et al., 2019). Therefore, some studies combine forward and
inverse learning together to match the bi-directional information flow (Arridge et al., 2019). There
are various ways to realize such unified bi-directional learning: 1) minimizing the reconstruction
errors to approximate a pair of forward and inverse mappings (Pakravan et al., 2021; Goh et al.,
2019) and 2) enforcing invertibility in the forward model (Dinh et al., 2014; 2016; Ardizzone et al.,
2018). For 1), the reconstruction error is unavoidable to ensure a matched inverse. As DNNs are
not one-to-one mappings naturally, 2) includes invertible designs that either nest the DNNs in a
triangular map or normalize the parameters for the Lipschitz constraint. The former can obtain an
analytical inverse at the cost of stacking multiple layers with nested DNNs for full representation
power, which aggravates error propagation (Dinh et al., 2014). The latter relaxes the restrictions
on DNN architecture but relies on a fixed-point algorithm to approximate the inverse after forward
training (Behrmann et al., 2019). The comparison of different invertible models shows there is
a trade-off between the representation efficiency and inverse computation stability, which is also
supported by theoretical analysis (Gottschling et al., 2020). In this paper, we make an attempt to
minimize the adjustment on standard DNNs with respect to preserving the analytical inverse solution.

5.2 IDENTIFICATION-BASED STATE ESTIMATION

There are various inverse problems regarding the recovery of latent variables from physical measure-
ments, e.g., vision-related tasks and extracting true states from observation of physical/engineering
systems for monitoring and control (Gregor & LeCun, 2010; Engl et al., 1996; Benning & Burger,
2018). Traditional works solve such problems by iterative simulations, nearest search in a subspace,
or optimization-based algorithms (Kucuk & Bingul, 2006; Tinney & Hart, 1967; 141, 1992; Pei et al.,
2019). Typically, the identification-based state estimation differs from the traditional setting of state
estimation, which has a completely accurate system model. Instead, it is a blind scenario where only
measurements are available without knowing the full model (Liu et al., 2021; Haque et al., 2015;
Liao et al., 2003). Therefore, previous work starts with model-free methods to approximate a direct
mapping for state estimation (Chen et al., 2019). More works try to build in physical function in
the forward mapping and conduct state estimation in the inverse simultaneously using a variational
autoencoder (Goh et al., 2019; Dittmer et al., 2020; Hu et al., 2020; Pakravan et al., 2021). However,
they do not enforce strict one-to-one correspondence for inverse consistency. Even though some
generative models build bijectivity, the learning mechanism does not fit most of the discriminative
learning tasks in physical/engineering systems, which have a more critical requirement on accurate
point estimates for both in-distribution state restoration and extrapolation scenarios. Therefore, this
paper aims to show that strict one-to-one mapping is possible with proper regularization.

5.3 REGULARIZATION FOR INVERSE LEARNING

The performance of inverse learning is challenged in both directions based on the accuracy-stability
trade-off (Gottschling et al., 2020). Therefore, many regularization strategies are used to minimize
extrapolation errors and ensure stable inverse reconstruction. Typically, for systems with prior
knowledge, model-based regularizations include physics-informed deep learning via physics loss
embedding (Stewart & Ermon, 2017; Kaptanoglu et al., 2021; Raissi et al., 2019; Bu & Karpatne,
2021), sparse symbolic regression yields law of parsimony (Occam’s razor) (Brunton et al., 2016;
Sahoo et al., 2018b), restrict relationships and dependencies between variables (Cotter et al., 2019;
Udrescu & Tegmark, 2020; Fioretto et al., 2020; Zhao et al., 2019). While they solve specific problems
effectively with strong priors, the predefined physics bias and portion may limit DNN’s flexibility to
choose the optimal representation. Besides, the regularization over the forward system identification
may break the invertibility for inverse computation. Recent works attempt meta-algorithms to switch
between a trusted physics agent and an untrusted black-box expert for robustness-accuracy balance
in safety-critical control tasks (Li et al., 2022; Christianson et al., 2023). Such emerging research
inspired us to design a twin structure to find the optimal integration of physics embedding and
DipDNN approximation without hurting invertibility for general inverse problems.

7

Under review as a conference paper at ICLR 2024

6 EXPERIMENTS

In experiments, we test the capability of the proposed DipDNN on representative tasks, including
synthetic examples, system identification-based state estimation, privacy-preserving learning, and
image restoration. We aim to analyze the representation power and computation efficiency for
forward mapping approximation and the inherent consistency of bi-directional mappings for inverse
computation. Ablation studies are performed to understand better the model’s restrictiveness and
accuracy in practical implementation.

Evaluation Metrics and Baseline Methods. We use estimation errors to evaluate the forward
approximation accuracy and inverse reconstruction/prediction of the bi-directional model via mean
square error (MSE) and mean absolute percentage error (MAPE). For synthetic examples and
physical systems, we further use the recovery rate (%) for the parameters or functional forms. The
following methods are used in comparison: 1) Autoencoder: Autoencoders enforce invertibility in
two DNNs with a reconstruction loss, which is used by many discriminative learning tasks for its
flexible construction. We build the DNNs with the same architecture (depth, width, and activation)
as DipDNN in each case. 2) Addictive Coupling Layers: The NICE model (Dinh et al., 2014) is
designed for density estimation and trained with MLE using simple distribution sampling as inputs.
In our case, we only build the invertible model and train it with MSE (Ardizzone et al., 2018). 3)
Invertible Residual Neural Network (i-ResNet): While i-ResNet is similar to other generative models
built on the probabilistic setup, we can use ResNet + Lipschitz constraint for discriminative learning.
Its inverse is not analytically obtained from the forward model but needs an algorithm of fixed-point
iteration (Behrmann et al., 2019). Training details are included in Appendix A.5.

Figure 5: Correlate forward physical recovery rate
(left) with inverse prediction error (right).

Synthetic Examples. We use both synthetic
datasets of symbolic functions and elementary
physical functions from (Udrescu & Tegmark,
2020). The problem size is small (from 2 vari-
ables up to 9 variables), and the explicit func-
tions are intuitive for demonstration. Sec. 4.2
presents a simple experiment for inverse stabil-
ity. Fig. 5 shows that physics embedding im-
proves the generalization with data scarcity and
data variation.

Figure 6: Visualization examples of the face image completion experiment.

Image Construction and Face Completion. The imaging-related tasks have much higher dimen-
sions of input and output space, and the underlying mapping is difficult to interpret. MNIST (Deng,
2012; LeCun, 1998) has been used to test density estimation by NICE, transforming from a simple
distribution (logistic prior) to complex images. Here, we adopt a discriminative setting to sample
input data using logistic distribution. The NICE model, i-ResNet, and DipDNN are trained with MSE
for 1000 epochs, and we mainly compare prediction errors, reconstruction errors, and computation
time instead of log-likelihood in Fig. 7(b). With image dimension 28× 28 = 784, we use the same
architecture (MLP with 3-8 hidden layers and Leaky ReLU activation) for each model. For NICE,
it is four coupling layers, with each containing one MLP. Moreover, we consider a representative
bi-directional learning setup that x and y reveal similar features or nearly symmetric patterns, which

8

Under review as a conference paper at ICLR 2024

Figure 7: Compare the forward prediction errors and inverse reconstruction with baseline methods.

need consistency in the forward-inverse pair. We use the classic face completion task to impaint the
left face from the right (Pedregosa et al., 2011). The modified Olivetti face dataset (Roweis) is used. It
consists of 10 pictures, each of 40 individuals, and each image is reformed in 64× 64 grayscale. The
images are separated into the left and right halfs and reformed into vectors for learning. The visual
results in Fig. 6 intuitively show the reconstruction of the left half given the right half. Compared
with the blurring results of autoencoder, DipDNN reconstructs more details with analytical inverse,
so as NICE model in training. The differences are more evident in unseen data. NICE model takes
more time to build the same nonlinear couplings, and DipDNN tends to spend more time checking
the satisfaction of invertibility at each iteration with increasing depth.

System Identification-based State Estimation. DipDNN can fit into various scenarios
of state estimation. Fig. 8 and Fig. 7(a) show partial results of the follow-
ing: (1) Power System (PS) State Estimation: It is an essential inverse problem to es-
timate voltage phasor states from standard measurements (e.g., power injections, branch
power flows, and current magnitudes) (Hu et al., 2020; Sundaray & Weng, 2023).

Figure 8: Validating state estimation results on system nodes.

(2) False Data Injection Attacks:
User data are sensitive, and criti-
cal infrastructure can be vulnera-
ble. On the defender side, op-
erators need to understand at-
tacking mechanisms to design
countermeasures. By training a
proxy autoencoder model, they
incentivize the generation of tam-
pered measurements that will
produce indistinguishable mea-
surements in data acquisition sys-
tems (Costilla-Enriquez & Weng,
2023). We collect data from
real power systems and conduct
simulations in different scenar-
ios. Case details and more re-
sults are included in Appendix
A.5. (3) Sonar performance analysis: The signal-to-interference ratio (SIR) in the surveillance area
at each pixel is a function of a number of parameters, including sonar depth, wind speed, bottom type,
sound velocity, etc. (Jensen et al., 1999). With emulation data, DNNs are trained to map SIR pixel
values from sonar and environmental parameters. The inverse problem is to quickly determine a set
of input parameters that can yield a high SIR in the target area.

7 CONCLUSION

The proposed model can enforce strict one-to-one correspondence via relatively simple reconstructions
of standard neural networks. We further show that it relaxes the computation burden of previous
addictive coupling layers without hurting the universal approximation. Hence, it can better fit general
inverse problems that target inverse consistency and discriminative point estimates of system states.
Provided with certain prior knowledge and moderate stability regularization, the performance can be
further boosted on both the forward approximation and inverse computation. This work explored
only representatives of the possible applications of DipDNNs. The proposed designs, such as a twin
structure with physics embedding, open the door for many additional domains that need a robust and
consistent bi-directional information flow.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Transient stability test systems for direct stability methods. IEEE Transactions on Power Systems, 7
(1):37–43, 1992. doi: 10.1109/59.141684.

B. Amos, L. Xu, and J. Z. Kolter. Input Convex Neural Networks. In International Conference on
Machine Learning, pp. 146–155, 2017.

Lynton Ardizzone, Jakob Kruse, Sebastian Wirkert, Daniel Rahner, Eric W Pellegrini, Ralf S Klessen,
Lena Maier-Hein, Carsten Rother, and Ullrich Köthe. Analyzing inverse problems with invertible
neural networks. arXiv preprint arXiv:1808.04730, 2018.

Simon Arridge, Peter Maass, Ozan Öktem, and Carola-Bibiane Schönlieb. Solving inverse problems
using data-driven models. Acta Numerica, 28:1–174, 2019.

Guillaume Bal. Introduction to inverse problems. Lecture Notes-Department of Applied Physics and
Applied Mathematics, Columbia University, New York, 2012.

Jens Behrmann, Will Grathwohl, Ricky TQ Chen, David Duvenaud, and Jörn-Henrik Jacobsen.
Invertible residual networks. In International Conference on Machine Learning, pp. 573–582,
2019.

Jens Behrmann, Paul Vicol, Kuan-Chieh Wang, Roger Grosse, and Jörn-Henrik Jacobsen. Understand-
ing and mitigating exploding inverses in invertible neural networks. In International Conference
on Artificial Intelligence and Statistics, pp. 1792–1800. PMLR, 2021.

Martin Benning and Martin Burger. Modern regularization methods for inverse problems. arXiv
preprint arXiv:1801.09922, 2018.

Daniel S Berman, Anna L Buczak, Jeffrey S Chavis, and Cherita L Corbett. A survey of deep learning
methods for cyber security. Information, 10(4):122, 2019.

Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the national academy of
sciences, 113(15):3932–3937, 2016.

Jie Bu and Anuj Karpatne. Quadratic residual networks: A new class of neural networks for solving
forward and inverse problems in physics involving pdes. In Proceedings of the 2021 SIAM
International Conference on Data Mining (SDM), pp. 675–683. SIAM, 2021.

G. Cavraro and V. Kekatos. Graph Algorithms for Topology Identification Using Power Grid Probing.
IEEE Control Systems Letters, 2(4):689–694, 2018. ISSN 2475-1456. doi: 10.1109/LCSYS.2018.
2846801.

G. Cavraro and V. Kekatos. Inverter Probing for Power Distribution Network Topology Processing.
IEEE Transactions on Control of Network Systems, 2019.

Guorong Chen, Tiange Li, Qijun Chen, Shaofei Ren, Chao Wang, and Shaofan Li. Application of
deep learning neural network to identify collision load conditions based on permanent plastic
deformation of shell structures. Computational Mechanics, 64:435–449, 2019.

Y. Chen, Y. Shi, and B. Zhang. Optimal Control via Neural Networks: A Convex Approach. arXiv
preprint arXiv:1805.11835, 2018.

Nicolas Christianson, Junxuan Shen, and Adam Wierman. Optimal robustness-consistency tradeoffs
for learning-augmented metrical task systems. In International Conference on Artificial Intelligence
and Statistics, pp. 9377–9399. PMLR, 2023.

Napoleon Costilla-Enriquez and Yang Weng. Attack power system state estimation by implicitly
learning the underlying models. IEEE Transactions on Smart Grid, 14(1):649–662, 2023. doi:
10.1109/TSG.2022.3197770.

Andrew Cotter, Maya Gupta, Heinrich Jiang, Erez Louidor, James Muller, Tamann Narayan, Serena
Wang, and Tao Zhu. Shape constraints for set functions. In International Conference on Machine
Learning, pp. 1388–1396. PMLR, 2019.

10

Under review as a conference paper at ICLR 2024

Li Deng. The mnist database of handwritten digit images for machine learning research [best of the
web]. IEEE Signal Processing Magazine, 29(6):141–142, 2012. doi: 10.1109/MSP.2012.2211477.

Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: Non-linear Independent Components
Estimation. arXiv preprint arXiv:1410.8516, 2014.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using Real NVP. arXiv
preprint arXiv:1605.08803, 2016.

Sören Dittmer, Tobias Kluth, Peter Maass, and Daniel Otero Baguer. Regularization by architecture:
A deep prior approach for inverse problems. Journal of Mathematical Imaging and Vision, 62:
456–470, 2020.

Yifei Duan, Guanghua Ji, Yongqiang Cai, et al. Minimum width of leaky-relu neural networks for
uniform universal approximation. In International conference on machine learning. PMLR, 2023.

Heinz Werner Engl, Martin Hanke, and Andreas Neubauer. Regularization of inverse problems,
volume 375. Springer Science & Business Media, 1996.

Ethan Fetaya, Joern-Henrik Jacobsen, Will Grathwohl, and Richard Zemel. Understanding the limita-
tions of conditional generative models. In International Conference on Learning Representations,
2020.

Ferdinando Fioretto, Terrence WK Mak, and Pascal Van Hentenryck. Predicting AC optimal power
flows: combining deep learning and lagrangian dual methods. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2020.

Hwan Goh, Sheroze Sheriffdeen, Jonathan Wittmer, and Tan Bui-Thanh. Solving bayesian inverse
problems via variational autoencoders. arXiv preprint arXiv:1912.04212, 2019.

Nina M Gottschling, Vegard Antun, Anders C Hansen, and Ben Adcock. The troublesome kernel–on
hallucinations, no free lunches and the accuracy-stability trade-off in inverse problems. arXiv
e-prints, pp. arXiv–2001, 2020.

Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In Proceedings of
the 27th international conference on international conference on machine learning, pp. 399–406,
2010.

Mohammad E Haque, Mohammad FM Zain, Mohammad A Hannan, and Mohammad H Rahman.
Building structural health monitoring using dense and sparse topology wireless sensor network.
Smart Structures and Systems, 16(4):607–621, 2015.

Xinyue Hu, Haoji Hu, Saurabh Verma, and Zhi-Li Zhang. Physics-guided deep neural networks for
powerflow analysis. arXiv preprint arXiv:2002.00097, 2020.

Craig A Jensen, Russell D Reed, Robert Jackson Marks, Mohamed A El-Sharkawi, Jae-Byung Jung,
Robert T Miyamoto, Gregory M Anderson, and Christian J Eggen. Inversion of feedforward neural
networks: algorithms and applications. Proceedings of the IEEE, 87(9):1536–1549, 1999.

Shima Kamyab, Zohreh Azimifar, Rasool Sabzi, and Paul Fieguth. Deep learning methods for inverse
problems. PeerJ Computer Science, 8:e951, 2022.

Alan A Kaptanoglu, Jared L Callaham, Aleksandr Aravkin, Christopher J Hansen, and Steven L
Brunton. Promoting global stability in data-driven models of quadratic nonlinear dynamics.
Physical Review Fluids, 6(9):094401, 2021.

Serdar Kucuk and Zafer Bingul. Robot kinematics: Forward and inverse kinematics. INTECH Open
Access Publisher, 2006.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

11

Under review as a conference paper at ICLR 2024

Tongxin Li, Ruixiao Yang, Guannan Qu, Guanya Shi, Chenkai Yu, Adam Wierman, and Steven Low.
Robustness and consistency in linear quadratic control with untrusted predictions. 6(1), feb 2022.

Lin Liao, Dieter Fox, Jeffrey Hightower, Henry Kautz, and Dirk Schulz. Voronoi tracking: Location
estimation using sparse and noisy sensor data. In Proceedings 2003 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453), volume 1, pp.
723–728. IEEE, 2003.

Michael Z Liu, Luis Nando Ochoa, Shariq Riaz, Pierluigi Mancarella, Tian Ting, Jack San, and
John Theunissen. Grid and market services from the edge: Using operating envelopes to unlock
network-aware bottom-up flexibility. IEEE Power and Energy Magazine, 19(4):52–62, 2021.

Yucong Liu, Simiao Jiao, and Lek-Heng Lim. Lu decomposition and toeplitz decomposition of a
neural network. arXiv preprint arXiv:2211.13935, 2022.

Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representations by inverting
them. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
5188–5196, 2015.

MATPOWER. MATPOWER. 2020. https://matpower.org/.

K. Moffat, M. Bariya, and A. Von Meier. Unsupervised Impedance and Topology Estimation of
Distribution Networks—Limitations and Tools. IEEE Transactions on Smart Grid, 11(1):846–856,
2020. ISSN 1949-3061. doi: 10.1109/TSG.2019.2956706.

E Nalisnick, A Matsukawa, Y Teh, D Gorur, and B Lakshminarayanan. Do deep generative models
know what they don’t know? In International Conference on Learning Representations, 2019.

Samira Pakravan, Pouria A Mistani, Miguel A Aragon-Calvo, and Frederic Gibou. Solving inverse-
pde problems with physics-aware neural networks. Journal of Computational Physics, 440:110414,
2021.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-
tenhofer, R. Weiss, V. Dubourg, and J. Vanderplas. Scikit-Learn: Machine Learning in Python.
Journal of machine learning research, 12:2825–2830, 2011.

Yan Pei, Swarnendu Biswas, Donald S Fussell, and Keshav Pingali. An elementary introduction to
kalman filtering. Communications of the ACM, 62(11):122–133, 2019.

PJM Interconnection LLC. Metered load data. 2018. https://dataminer2.pjm.com/feed/
hrl_load_metered/definition.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Sam Roweis. MS Windows NT kernel description. URL https://cs.nyu.edu/˜roweis/
data.html.

Subham Sahoo, Christoph Lampert, and Georg Martius. Learning equations for extrapolation
and control. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp.
4442–4450. PMLR, 10–15 Jul 2018a.

Subham Sahoo, Christoph Lampert, and Georg Martius. Learning equations for extrapolation and
control. In International Conference on Machine Learning, pp. 4442–4450. PMLR, 2018b.

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks, 61:85–117,
2015.

Russell Stewart and Stefano Ermon. Label-free supervision of neural networks with physics and
domain knowledge. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31,
2017.

12

https://matpower.org/
https://dataminer2.pjm.com/feed/hrl_load_metered/definition
https://dataminer2.pjm.com/feed/hrl_load_metered/definition
https://cs.nyu.edu/~roweis/data.html
https://cs.nyu.edu/~roweis/data.html

Under review as a conference paper at ICLR 2024

Priyabrata Sundaray and Yang Weng. Alternative auto-encoder for state estimation in distribution
systems with unobservability. IEEE Transactions on Smart Grid, 14(3):2262–2274, 2023. doi:
10.1109/TSG.2022.3204524.

Albert Tarantola. Inverse problem theory and methods for model parameter estimation. SIAM, 2005.

W. F. Tinney and C. E. Hart. Power flow solution by newton’s method. IEEE Transactions on Power
Apparatus and Systems, (11):1449–1460, 1967.

Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired method for symbolic
regression. Science Advances, 6(16):eaay2631, 2020.

Jingyi Yuan and Yang Weng. Physics interpretable shallow-deep neural networks for physical system
identification with unobservability. IEEE International Conference on Data Mining (ICDM), 2021.

Y. Yuan, S. Low, O. Ardakanian, and C. Tomlin. On the Inverse Power Flow Problem. arXiv preprint
arXiv:1610.06631, 2016. URL http://arxiv.org/abs/1610.06631.

Han Zhang, Xi Gao, Jacob Unterman, and Tom Arodz. Approximation capabilities of neural odes and
invertible residual networks. In International Conference on Machine Learning, pp. 11086–11095.
PMLR, 2020.

Wen Li Zhao, Pierre Gentine, Markus Reichstein, Yao Zhang, Sha Zhou, Yeqiang Wen, Changjie Lin,
Xi Li, and Guo Yu Qiu. Physics-constrained machine learning of evapotranspiration. Geophysical
Research Letters, 2019.

A APPENDIX

A.1 DERIVATION FOR COMPOSITION OF ADDICTIVE COUPLING LAYERS

Jacobian Derivation. For the kth unit of addictive coupling layers, the Jacobian is

Jk =

 ∂yI1
(k)

∂xI1
(k)

∂yI1
(k)

∂xI2
(k)

∂xI2
(k)

∂xI1
(k)

∂yI2
(k)

∂xI2
(k)

 =

[
a(k)I1 0

∂t(k)(xI1
(k))

∂xI1
(k) b(k)I2

]
. (4)

For every other layer, the columns exchange due to the in-turn composition in Fig. 1(b). Using
the chain rule, the Jacobian of the composited function is ΠkJk. Only when k ≥ 3, the 0’s can be
eliminated from the Jacobian matrix, and all the elements can be non-constant, thus indicating a full
transformation of all dimensions.

Π3J3 =

[
a3I1 0
∂t3
∂z2

I1

b3I2

]
·

[
a2I1

∂t2
∂z1

I2

0 b2I2

]
·
[
a1I1 0
∂t1
∂xI1

b1I2

]
(5)

=

[
a3a2a1I1 + a3

∂t2
∂z1

I2

∂t1
∂xI1

a3b1
∂t2
∂z1

I2

a2a1
∂t3
∂z2

I1

+ b3b2
∂t1
∂xI1

+ ∂t3
∂z2

I1

∂t2
∂z1

I2

∂t1
∂xI1

b3b2b1I2 + b1
∂t3
∂z2

I1

∂t2
∂z1

I2

]
. (6)

Fig. 1(b) shows intuitively that the second layer completes the nonlinear coupling between xI1 and
all y. However, as we highlight the paths in gray, xI2 has the first linear path towards yI2 and still
needs the third layer to nonlinearly map to yI2 . Assuming we use the same architecture (i.e., K-layer
ReLU-activated DNNs) for the nonlinear function in each layer, Fig. 1(b) needs three such DNNs to
complete the coupling among all dimensions. The separate DNNs shall weaken the approximation
capability so that four or more layers are usually concatenated in implementation.

Representation Efficiency and Computation Complexity. In Sec. 2.2, we show the typical
reconstruction to enforce strict invertibility. As we aim to minimize the adjustment on DNNs subject
to invertibility, we compare its representation power with regular DNNs. To compare with the dense
fully connected layers, Fig. 9(c) needs to be compressed further. To achieve this, we will have
to superpose the two layers as shown in Fig. 9(d). It can be seen as an equivalent architecture in
representation, e.g., the same nonlinear correlations between each input/output group. The unfolded

13

http://arxiv.org/abs/1610.06631

Under review as a conference paper at ICLR 2024

Figure 9: (a) - (b): Composition of addictive invertible transformation for full coupling of input/output
dimensions. (c): A reduction of (b) that retains full dimension coupling. (d) A further reduction of (c)
for equivalent representation.

Figure 10: The structure of regular DNN with Leaky ReLU activation function.

Figure 11: Unfold Fig. 9(d) as a sparse DNN.

model in Fig. 11 can be seen as a sparse connection of regular DNN in Fig. 10. Many interconnections
are eliminated due to the separation of input/output groups, i.e., the full connectivity is isolated within

14

Under review as a conference paper at ICLR 2024

each group coupling. Thus, the invertibility is enforced at the cost of ∼ 1.5× computation complexity
and sparse interconnections among different groups of variables.

A.2 PROPOSED DIPDNN

Basic Invertible Unit. Motivated by the triangular map, the neural representation of one invertible
unit (top corner of Fig. 2) is

z(1) = LeakyReLU(Wtrilx+ b1),

z(2) = LeakyReLU(Wtriuz
(1) + b2),

(7)

where Wtril =

[
w

(1)
11 0

w
(1)
21 w

(1)
22

]
,Wtriu =

[
w

(2)
11 w

(2)
12

0 w
(2)
22

]
. Subsequently, the corresponding inverse

function is

z(1) = W−1
triu(LeakyReLU−1(z(2))− b(2)),

x = W−1
tril(LeakyReLU−1(z(1))− b(1)).

(8)

The unit equation 7 is strictly invertible if w(1)
11 , w

(1)
22 , w

(2)
11 , w

(2)
22 ̸= 0, and the inverse is computed in

equation 8.

Supplementary Theorems. Details of Theorem 2 are as follows.

Theorem 3. Let K ⊂ Rdx be a compact set; then, for the continuous function class C(K,Rdy),
the minimum width wmin of Leaky-ReLU neural networks having C − UAP is exactly wmin =
max(dx+ 1, dy) + 1 = dx+ 1 + dy. Thus, NN(σ) is dense in C(K,Rdy) if and only if N ≥ wmin.

1dy=dx+1 =

{
1, if dy = dx+ 1,

0, if dy ̸= dx+ 1.

Lemma 1. For any continuous function f∗ ∈ C(K,Rd) on a compact domain K ⊂ Rd, and ϵ > 0,
there exists a Leaky-ReLU network fL(x) with depth L and width d+ 1 such that

∥fL(x)− f∗(x)∥ ≤ ϵ

for all x in K.

As a follow-up of Theorem 3, Lemma 1 specifies the condition for the case where the input and output
dimensions are equal, dx = dy = d. It provides the result that the Leaky ReLU-activated neural
network with width d+ 1 has enough expressive power to approximate the continuous function f∗.

The theorem on the identity mapping approximation is used to prove the decomposition of weight
matrices.

Theorem 4. Let I : Rn → Rn be the identity map. Then for any compact Ω ⊆ Rn and any ϵ > 0,
there exists a δ > 0 such that whenever 0 < |h| < δ, the function ρh : Rn → Rn, satisfies

ρh(x) :=
1

hσ′(a)
[σ(hx+ a1n)− σ(a)1n],

and
sup
x∈Ω

∥ρh(x)− I(x)∥ ≤ ϵ.

A.3 MODEL USED FOR PHYSICS EMBEDDING

Fig. 12 is a toy example to intuitively show the importance of physical guidance. See Fig. 13 for
the physics embedding model. For systems with prior functional forms, the passthrough is activated
to avoid complex symbolic regression. Otherwise, we use equation learner (Sahoo et al., 2018b) to
recover explicit function.

15

Under review as a conference paper at ICLR 2024

Figure 12: A toy example to motivate physics embedding.

Figure 13: The model to recover physical symbolic form and provide physical regularization over the
DipDNN.

A.4 INVERSE STABILITY

Toy Examples. Here, we test the performance of the inverse mapping based on a well-trained
invertible neural network model (forward error ≈ 0). For a comprehensive understanding, we test on
cases with different setups: 1) x,y ∈ Rm,m ∈ {2, 4, 6, 8}, 2) f is built based on the mix of different
basis {(·), (·)2, cos(·), sin(·), exp (·)}, 3) different depth of network K = {2, 4, 6, 8, 10}. We select
representative examples and show in Fig. 4 the error propagation through layers compared with the
ablation error of each invertible block.

Lipschitz and Bi-Lipschitz Continuity related to Inverse Stability The numerical invertibility is
related to Lipschitz continuous property for mapping contraction. As for the Lipschitz continuity of
both the forward and inverse mapping, we recall the definition of bi-Lipschitz continuity of invertible
function.
Definition 1. (Lipschitz and bi-Lipschitz continuity of invertible function) A function f : Rn → Rn
is called Lipschitz continuous if there exists a constant L := Lip(f) such that:

∥f(x1)− f(x2)∥ ≤ L∥x1 − x2∥,∀x1, x2 ∈ Rn. (9)

If an inverse f−1 : Rn → Rn and a constant L∗ := Lip(f−1) exists, then, for all y1, y2 ∈ Rn,

∥f−1(y1)− f−1(y2)∥ ≤ L∗∥x1 − x2∥,∀x1, x2 ∈ Rn. (10)

Thus, the function f is called bi-Lipschitz continuous.

16

Under review as a conference paper at ICLR 2024

From the mathematical definition, the Lipschitz constant reflects the amplification of errors in the
worst scenario during the reconstruction. For example, i-ResNet adopts a strict bound Lip(f) < 1
as a sufficient condition of invertibility and enforces stable inverse computation via fixed-point
iterations. But, recent theoretical results of no free lunches in (Gottschling et al., 2020) show an
accuracy-stability trade-off in inverse problems: high stability may be reached at the expense of
significantly poor approximation performance. In our case, DipDNN aims for the analytical inverse
without requiring a rigid Lipschitz bound. Meanwhile, we have proposed physics embedding to avoid
overperformance (only minimizing errors) on the training set. In order to further balance performance
and stability, we quantify the correlation between errors and the Lipschitz bound.

Correlation between Numerical Errors and Lipschitz Bounded Reconstruction Errors Let σ
denote the numerical errors (round-off, forward approximation errors, noises, etc.), then a forward
mapping z = h(x) becomes hσ(x) = z + σ = zσ . Subsequently, the inverse for input reconstruction
becomes xσ1 = h−1(zσ). According to Definition 1, with Lipschitz constant Lip(h−1), we derive
the bound of reconstruction error

∥x− xσ1
∥2 ≤Lip(h−1)∥z − zσ∥2

=Lip(h−1)∥σ∥2.
(11)

This is for errors propagated and aggravated from the forward mapping. As for the inverse mapping,
we use σ2 to denote errors for round-off and extrapolation (distribution shift), and get h−1

σ (zσ) =
xσ1

+ σ2 = xσ2
. Similarly,

∥x− (xσ1
+ σ2))∥2 ≤ ∥x− xσ1

∥2 + ∥σ2∥2
≤ Lip(h−1)∥z − zσ∥2 + ∥σ2∥2
= Lip(h−1)∥σ∥2 + ∥σ2∥2,

(12)

which shows how much the Lipschitz constant amplifies the errors. As we observe empirically, σ, σ2

will be increased with the problem becoming more complex. As long as we moderately regularize
the Lip(h−1), the reconstruction error can be bounded.

Proof of Bi-Lipschitz Continuity of Inverse Mapping If we can ensure the bi-Lipschitz continuity
of an invertible function, the corresponding inverse mapping is also bi-Lipschitz continuous. The
proof is simple in that, with equation 9, f has one-to-one correspondence f(x1) = f(x2) ⇔ x1 = x2.
With equation 10, for all y1, y2 ∈ f(X), there is a unique x1, x2 ∈ X such that f−1(y1) = x1 and
f−1(y2) = x2. By substituting them into equation 9 and equation 10, we obtain ∥y1 − y2∥ ≤
L∥f−1(y1) − f−1(y2)∥, meaning bi-Lipschitz of f−1. Considering equation 11 and equation 12,
with bounded Lipschitz constant throughout the network, we can guarantee stable performance in
two-way mapping numerically.

Therefore, we enforce moderate Lipschitz continuity in the inverse mapping. The exact computation
of DNN’s Lipschitz bound is NP-hard, but we can decompose it into layers with Lip(h(k−1) ◦h(k)) =
Lip(hk−1) · Lip(hk). For each layer, Leaky ReLU is a typical 1-Lipschitz activation function, so
we need to constrain the parameters of the inverse form to avoid arbitrarily large values. Both L1

and L2 norms can mitigate the weights explosion, but the L1 norm simultaneously encourages the
sparse connection of the network. In our case, the inverses of triangular weight matrices retain their
triangular form and inherently exhibit sparsity. Applying L1 norm regularization could potentially
hinder training efficiency and violate the conditions for invertibility. Therefore, we adopt the L2

norm of the inverse weights to smoothly clip large entries. While it is a moderate bound to regularize
bi-Lipschitz continuity, the effect on the synthetic examples shows a much smaller error ((< 10−10))
propagated through layers in Fig. 4 (right).

A.5 EXPERIMENTS

Training Details. The Pytorch platform is used to build and train models by Adam optimizer
for > 200 epochs for each experiment, and early stopping is used. Hyperparameters such as the
number of layers (blocks), negative slope coefficient of Leaky ReLU ({0.1, 0.2, 0.05}), learning rate
({0.001, 0.0002, 0.00005}), weighting factor for regularization ({0, 0.1, 0.5, 1}) and dropout rate,
are adjusted by grid search for each dataset on a validation set. All the experiments are implemented

17

Under review as a conference paper at ICLR 2024

on a computer equipped with Inter(R) Core(TM) i7-9700k CPU and Nvidia GeForce RTX 3090
GPU. Each experiment is run at least 3-5 times to record the average results and statistics for a fair
comparison.

As for DipDNN, we enforce non-zero entries on the diagonal of lower/upper triangular matrices
to ensure no violation of invertibility. Previous work on restrictive DNN of input convexity uses a
post-check on each training iteration, e.g., replacing negative weights with the opposite to enforce
positive weights (Amos et al., 2017; Chen et al., 2018). Empirically, we find this way takes effect
but slows down the training and may lead to non-convergence in large systems, with the parameters
getting trapped at zero sometimes. Instead, we add a mask (lower or upper triangular) over the weight
matrix, which alleviates the parameter fluctuations in experiments.

Details of Data Preparation for Physical Systems. Compared to the elementary physical systems,
the power system has a much larger problem size and more complex variable couplings due to the grid
connection. Moreover, to fulfill the need for downstream control and operations, the learning model
needs to have robust performance in extrapolation scenarios, such as increasing load and renewable
injection conditions. For the forward, the governing physical law is the grid power flow equations
expressed by system-wide power injections based on voltage phasors and system topology/parameters
(Yuan & Weng, 2021). Traditional methods assume an available model and linearize the model to
solve for the states. However, system parameters are unknown or incorrect in many secondary power
distribution systems (Cavraro & Kekatos, 2018; Cavraro & Kekatos, 2019; Yuan et al., 2016; Moffat
et al., 2020).

IEEE provides standard power system models (IEEE 8- and 123-bus test feeders), including the grid
topology, parameters, generation models, etc., for simulations. The model files and the simulation
platform, MATPOWER (MATPOWER, 2020), are based on MATLAB. For simulations, the load files
are needed as the inputs to the systems. Thus, we introduce power consumption data from utilities
such as PJM Interconnection LLC (PJM Interconnection LLC, 2018). Such load files contain hourly
power consumption in 2017 for the PJM RTO regions. For the Utility feeder, the collected data also
includes distributed photovoltaics generation profiles. With the above data, MATPOWER produces
the system states of voltages and nodal power injections. Furthermore, the loading conditions and
renewable penetration keep changing in the current power systems. We validate the extrapolation
capability of the proposed invertible model using out-of-distribution data (3× PV generation and
loads).

18

Under review as a conference paper at ICLR 2024

Figure 14: Validating state estimation results in physical system node.

19

	Introduction
	Inverse Problem and the Intricacies
	Define the General Inverse Problem
	Review Analytical Invertible Transformation in Addictive Coupling Layers

	Enforce Inverse Consistency and Approximation Efficiency in Neural Network Architectures
	Can we Reduce Computational Time?
	Proposed Decomposed Invertible Pathway Deep Neural Networks

	Regularization for Boosting Performance in DipDNN
	Physics Embedding
	Numerical Regularization

	Related Work
	DNN-based Inverse Learning
	Identification-based State Estimation
	Regularization for Inverse Learning

	Experiments
	Conclusion
	Appendix
	Derivation for Composition of Addictive Coupling Layers
	Proposed DipDNN
	Model used for Physics Embedding
	Inverse Stability
	Experiments

