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ABSTRACT

Text-to-motion (T2M) generation aims to create realistic human movements from
text descriptions, with promising applications in animation and robotics. Despite
recent progress, current T2M models perform poorly on unseen text descriptions
due to the small scale and limited diversity of existing motion datasets. To ad-
dress this problem, we introduce OpenT2M, a million-level, high-quality, and
open-source motion dataset containing over 2800 hours of human motion. Each
sequence undergoes rigorous quality control through physical feasibility validation
and multi-granularity filtering, with detailed second-wise text annotations. We
also develop an automated pipeline for creating long-horizon sequences, enabling
complex motion generation. Building upon OpenT2M, we introduce no-frill,
a pretrained T2M model that achieves excellent performance without compli-
cated designs and technique tricks. Its core component is 2D-PRQ, a novel mo-
tion tokenizer that captures spatial and temporal dependencies by dividing the
human body into five parts. Comprehensive experiments show that OpenT2M
significantly improves generalization of existing T2M models, while 2D-PRQ
achieves superior reconstruction and strong zero-shot performance. We expect
OpenT2M and no-frill will advance the T2M field by addressing longstanding
data quality and benchmarking challenges. Our data and code are released on
https://anonymous.4open.science/r/OpenT2M.

(a) HumaML3D

(c) HumanML3D*

(b) Motion-X

(d) Motion-X*

Figure 1: (left) Visualization of text description embeddings for the training and validation sets of
HumanML3D and Motion-X. A substantial overlap between the sets indicates data leakage. The ∗
denotes our repartitioned versions (e.g., HumanML3D∗), where this overlap has been removed. (right)
Text-to-motion (T2M) performance comparison on the original versus repartitioned benchmarks. The
significant performance drop on the cleaned datasets reveals the limited generalization capability of
current methods when faced with out-of-domain data.

1 INTRODUCTION

Recent years have seen remarkable progress in generating human motion for video games, movies,
and humanoid robots. However, current state-of-the-art methods (Guo et al., 2024; Jiang et al.,
2023), which depend heavily on motion-capture data (Mahmood et al., 2019), struggle to create
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novel motions beyond what they’ve seen during training. We argue that this limited generalization
in text-to-motion (T2M) models comes from fundamental problems with existing datasets: they
lack both diversity and scale. In fact, we suppose that many reported improvements on standard
benchmarks may simply reflect overfitting to training data rather than real algorithmic advances. To
support this claim, we first perform a systematic statistical analysis.

We analyze the text descriptions in two widely-used benchmarks: HumanML3D and Motion-X (Lin
et al., 2023). Using CLIP text encoder (Radford et al., 2021) to encode the descriptions, we find
significant overlap between training and validation sets (Figure 1). Specifically, 10.62% validation
texts in HumanML3D appear word-for-word in the training set and this jumps to 16.97% for Motion-
X — most of them correspond to quite similar motions. We also find duplicate descriptions within
the validation sets themselves. This data contamination seriously undermines how we evaluate T2M
models. To fix this problem, we create a cleaned version of these datasets, called HumanML3D∗ and
Motion-X∗. As expected, model performance drops significantly on these cleaned benchmarks.
Another concerning issue is that modern T2M methods typically need hundreds of training
epochs to converge — a sign of overfitting. Together, these findings suggest that current performance
metrics are artificially inflated, leading to models that perform poorly on new tasks.

One straightforward thought is to create larger and more diverse motion datasets. However, progress in
high-quality human motion data has stalled since AMASS was released, mainly because professional
motion-capture equipment and facilities are extremely expensive. To avoid these costs, recent
work (Wang et al., 2024; Fan et al., 2025) has tried extracting human motion from internet videos
using existing motion estimation tools (Shin et al., 2024). While web videos provide access to diverse
motion patterns, this approach introduces significant noise. Most importantly, a large portion of
motions extracted from videos contain physically unrealistic artifacts like foot sliding, body drifting,
and limb intersections, which severely limit their usefulness for training reliable motion generation
models (Holden, 2024).

To solve these problems, we introduce OpenT2M, a large-scale, high-quality human motion dataset
containing over one million sequences. Our dataset focuses on bridging the quality gap towards
motion-capture databases like HumanML3D while being much larger in scale. The key advantage
of OpenT2M is that it’s freely available to researchers and uses a carefully designed curation
process. Unlike previous large-scale video-based motion datasets, which are either not publicly
available (Wang et al., 2024) or lack proper physical-aware quality control, we make our dataset
open-source with an effective refinement pipeline. To help get started, we’re initially releasing 10%
of the dataset along with curated text annotations. The download link is provided in the Abstract.
OpenT2M offers four key improvements over existing datasets. (1) Physically Feasible Validation:
We validate that all motion sequences are physically feasible and can be simulated, making them
suitable for training models that control humanoid robots. (2) Multi-granularity Quality Filtering:
We remove sequences with occlusions or partial body captures, ensuring that the full human body
is visible throughout each motion sequence. (3) Second-wise Descriptions: We generate detailed
text annotations for every second of motion, then combine them into comprehensive descriptions
that accurately capture all actions in the video. (4) Long-horizon Motions: Our dataset includes
extended motion sequences that enable models to generate realistic, long-term movements from
complex text descriptions. In addition, the increasing scale of motion datasets also poses a challenge
for motion tokenizers in accurately reconstructing motions. Inspired by residual vector quantization
(RQ) techniques (Lee et al., 2022; Guo et al., 2024) and MotionBook (Wang et al., 2024), we propose
a novel motion tokenizer, named 2D-PRQ, that shows superior reconstruction performance and great
zero-shot ability. Our contributions are summarized as follows:

• A Large-scale, High-quality Motion Database. We curate OpenT2M containing over one mil-
lion sequences. Our dataset ensures all motions are physically realistic through multi-granularity
quality filtering and manual validation. It also includes long-horizon motion sequences that enable
T2M models to generate complex movements from detailed text descriptions.

• A New Robust Foundation Benchmark. In addition to improve the generalization of current
T2M models, more importantly, OpenT2M provides a reliable benchmark for fairly evaluating
existing methods.

• An Effective No-frill T2M Model. We develop a powerful yet “no-frill” motion generation model
that achieves excellent T2M performance without complicated designs or technical trick. Our
model, called no-frill, uses 2D-PRQ — a novel motion tokenizer that effectively captures
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Duration Filter

Curated 
Motion Data

(c) Second-wise Text Annotation

      Gemini-2.5

The person is bending at 
the waist and preparing 

to swing a golf club.

The person is swinging 
the golf club downwards 

towards the ball.

The person has 
completed the swing 

with the club extended.

The person is performing golf swings, involving 
bending at the waist, swinging the club downwards.

(a) Motion Data Curation

(b) Long-horizon Motion Curation

Step 1: Physically feasible  validation

Motion Dataset

Step 1: Slerp Interpolation  

Motion and 
Transition

Step 2: Physical Refinement

Avatar 
Trajectory

Orientation Alignment

Global Coordinate Alignment

Slerp Interpolation

Figure 2: Data Curation pipeline. (a) We adopt a two-stage pipeline, including physically feasible
validation and multi-granularity filter. (b) For text annotation, we generate temporally precise, second-
by-second descriptions and synthesize second-wise descriptions into a precise description. (c) We
adapt the interpolation-based method for motion curation and introduce an RL-policy for refinement.

how motion unfolds both in space and over time. After pretraining on our OpenT2M, no-frill
shows outstanding performance, especially when tested under zero-shot setups.

2 RELATED WORK

Human Motion Dataset. Dataset is the foundation of building a robust T2M model. Due to
pioneering datasets, like KIT (Plappert et al., 2016), AMASS (Mahmood et al., 2019) adapt motion
capture devices to obtain human motion data and manual text annotation, the scale and diversity of
these datasets are limited. BABEL (Punnakkal et al., 2021) provides frame-level text annotation
on AMASS and serves as a long-horizon motion generation benchmark. HumanML3D (Guo et al.,
2022) expands human motion datasets with 14.6K motions and 44.9K texts by merging AMASS and
HumanAct12 (Guo et al., 2020). Motion-X (Lin et al., 2024) further scales up the dataset by extracting
motions from monocular videos and annotating motions by PoseScript (Delmas et al., 2022), resulting
in a motion dataset comprising 81.1k sequences. Wang et al. (2024) introduces the first million-level
motion dataset, MotionLib, and highlights the importance of scaling datasets. HuMo100M (Cao
et al., 2025) is the largest motion dataset featuring 5M motion sequences with multi-granularity
text annotation. However, the scarcity of large-scale, high-quality, and open-source datasets hinders
building a generalizable T2M model. HumanML3D still contains redundant or highly similar text
descriptions. Meanwhile, Motion-X still contains motions that violate physical constraints, such as
floating, sliding, and penetration. In this work, we introduce OpenT2M, a large-scale, high-quality,
and open-source dataset that improves the generalization ability of current T2M models.

Motion Tokenization. Building an effective motion tokenizer is crucial for high-quality motion
generation. Motion tokenizer contains a motion encoder, a motion decoder, and a quantizer. T2M-
GPT (Zhang et al., 2023a) adapts VQ-VAE to discrete motion into motion tokens by applying the
1D convolution and an embedding to represent the whole body feature. Furthermore, to reduce
reconstruction error, Lee et al. (2022) introduces residual quantization (RQ), utilizing multiple layers
to quantify motion sequences iteratively. Recently, emerging research has explored fine-grained
motion tokenization. Chen et al. (2025) decouples the human body into the upper body and lower
body, and Cao et al. (2025) decouples the human body into five independent parts. However, these
methods encode and quantify different body parts independently without skeletal constraints. This
limitation motivates us to design 2D-PRQ, a novel motion tokenizer capturing spatial and temporal
dependencies and showing superior zero-shot performance.

3 THE OPENT2M DATASET

The development of robust T2M models is hindered by the lack of large-scale, high-quality data.
Prior datasets suffer from insufficient diversity, often leading to the artifact where R@1 exceeds R@1
Real (Zhang et al., 2025; Tanaka et al., 2025; Petrovich et al., 2023), a symptom of ambiguous, one-
to-many text-motion mappings. To address this challenge, we introduce OpenT2M, an open-source
dataset created through a rigorous curation pipeline designed with several key steps (Figure 2):

Physically Feasible Validation. Motion capture (MoCap) data provides high-quality human motion
sequences, valued for its inherent accuracy and adherence to physical constraints (Mahmood et al.,
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Table 1: Comparison with existing human motion datasets, where “#physically-feasible” refers to the
motion sequences that comply with physical laws and “#long-horizon” denotes the dataset that can
serve as a long-horizon benchmark.

#Clips #Hours #Avg. Length #long-horizon #physically-feasible

BABEL (Punnakkal et al., 2021) 52.9K 33.2 2.3s ! !
KIT (Plappert et al., 2016) 5.7K 11.2 9.5s % !
HumanML3D (Guo et al., 2022) 29.2K 28.6 7.1s % %
Motion-X (Lin et al., 2024) 81.1K 144.2 6.4s % %
MotionLib (Wang et al., 2024) 1.2M 1456.4 - % !
MotionMillion (Fan et al., 2025) 2M - - % %
HuMo100M (Cao et al., 2025) 5.7M 8508.3 5.3s ! !

OpenT2M 1M 2815.6 10.1s ! !

2019). However, MoCap data is difficult to scale. To leverage more abundant but noisier video-based
motion data, we introduce an RL-based filter to ensure physical plausibility. We train a policy, πrefine,
based on (Luo et al., 2023), to track motions extracted from web videos. By retaining only the motions
the policy can successfully track, we eliminate artifacts like jittering and foot-sliding, guaranteeing
physical feasibility. Compared with MotionMillion (Fan et al., 2025), we conduct physically feasible
validation to ensure extracted motions from web videos adhere to physical constraints, significantly
enhancing realism and quality.

Multi-granularity Filtering. Web videos are a rich source of human motion (Kay et al., 2017;
Wang et al., 2023), but their quality is often compromised by occlusions, blur, and low resolution.
To construct a high-fidelity dataset, we extract 2D keypoints using a pre-trained detector (Xu et al.,
2022) and apply a set of quality criteria to retain only high-fidelity motions: (1) A minimum keypoint
count per frame to ensure structural completeness and reject occluded or partial-body sequences; (2)
A minimum bounding box area ratio to guarantee sufficient visibility and detail for accurate motion
estimation and text annotation; (3) A minimum motion duration to exclude fragmented clips and
retain continuous activities. This pipeline ensures high-quality motion sequences and provides clear
video clips for precise text annotation.

Second-wise Text Annotation. The precision of text annotations is critical for dataset integrity
and motion generation fidelity. Unlike prior works using a single-stage approach (Cao et al., 2025;
Wang et al., 2024) to generate a single, coarse description for an entire clip, which fails to capture all
activities within the video, leading to the omission of crucial motion details. Our method ensures finer
alignment. We implement a two-stage pipeline: first, Gemini-2.5-pro (Team et al., 2024) produces
temporal precise, second-by-second descriptions of human motions, including fine-grained limb
movements. These fine-grained descriptions are then synthesized into a coherent summary for the
entire clip. This process captures comprehensive action details, providing reliable text for building a
robust motion generation model.

Long-horizon Motion Curation. Existing motion datasets are predominantly short-duration, limiting
their utility for long-horizon generation benchmarks. While BABEL (Punnakkal et al., 2021) offers
long-horizon motions with fine-grained text labels, its scale and duration remain constrained. To
address this, we develop a strategy for synthesizing long-horizon sequences. We first connect raw
motions via interpolation with orientation and global coordinate alignment. Since this can create
physically implausible transitions, we apply a two-step refinement: an RL-based policy filters out
untrackable motions, and we use the avatars’ trajectories to ensure physically feasible transitions.
In addition, previous work (Cao et al., 2025) creates long-horizon text by directly concatenating
annotations, which introduces noise and inefficiency due to motion-irrelevant content. We overcome
this by using Gemini-2.5-pro to curate the text: first refining annotations into concise commands,
then connecting them to produce clean, user-friendly descriptions. Consequently, OpenT2M is the
first dataset with an average motion length exceeding 10 seconds. The statistical results of our dataset
compared with counterparts are illustrated in Table 1.

4 MODEL AND TRAINING

Overview. Inspired by large language models’ success in multimodal understanding (Luo et al., 2020;
Zhang et al., 2024), we frame human motion as a specialized “language”. Our approach, illustrated
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Part 
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Part 
Divider 2D 

Encoder

2D 
Decoder

Part-level
 Motion Codebook

Left Arm Code

<left_arm_0><left_arm_1><left_arm_2>

<torso_0><torso_1><torso_2>

Torso Code

<right_leg_0><right_leg_1><right_leg_2>

Right Leg Code

<right_arm_0><right_arm_1><right_arm_2>

Right Arm Code

<left_leg_0><left_leg_1><left_leg_2>

Left Leg Code Autoregressive Language Model

Input Text: A man lifts his right arm.

Text  Tokenizer

Motion Detokenizer

Figure 3: Model Overview. We propose an extendable, autoregressive (AR) and discrete T2M model
with no frills. (left) Our core design 2D-PRQ divides the entire body into five parts, encoding and
quantizing motion into a sequence of discrete part-level tokens. (right) The AR model takes text as
input and predicts part-level motion tokens. We call this model “no-frill” to show its simplicity.

in Figure 3, uses a motion tokenizer to discretize sequences into tokens, which are then generated
autoregressively by an LLM. To integrate motion tokens into the LLM backbone, we expand the
LLM’s vocabulary by incorporating the K discrete codes. We also introduce special tokens such as
<mot>, </mot> to delimit motion sequences. The overall training pipeline consists of two phases.
First, we train a motion tokenizer to discretize motion features into motion tokens while minimizing
reconstruction error. This is followed by a text-motion alignment training via motion instruction
tuning (Jiang et al., 2023), which is conducted on OpenT2M to achieve robust and general-purpose
text-motion alignment. We name our model as “no-frill” to denote its simplicity and extendable
capability without any complex design.

Motion Instruction Training. Achieving robust text-motion alignment is essential for developing a
generalizable motion generation model. In the text-alignment training phase, 2D-PRQ first encodes
and quantizes the continuous raw motion features M ∈ RT×D sequence of discrete motion tokens
V ∈ Rn×p×l, using a temporal downsampling ratio of n/T . Here, p = 5 represents the number
of body parts, n is the number of temporal tokens, and l is the number of residual layers in the
quantization process, K is the size of the motion codebook. In addition to common motion tokens,
we also introduce another two special tokens <part>, and </part> to separate body-part-specific
subsequences in order to structure the input effectively. To enable autoregressive prediction of motion
tokens conditioned on descriptions, we design a standardized template for all text-motion pairs:

Input I: The person performs a salute and then shakes hands with another person.
Answer M: <mot> <part_1><motion_token><motion_token> ... < /part_1> ... < /mot>

To train our large motion model, we optimize the negative log-likelihood over the predicted tokens,
which is defined as:

L(Θ) = −
L∑

j=1

logPΘ(yj |desc, ŷ1:j−1), (1)

where ŷ and y denote the input and target token sequences, respectively. Θ represents the model
parameters and L is the length of the target sequence.

2D-PRQ: Towards Generalized Motion Tokenization. The increasing scale of motion datasets
demands more effective encoding. Current VQ-based methods (Zhang et al., 2023b;a) use 1D
temporal convolutions and a single embedding for the whole body, leading to information loss
and limited generalization. In this work, we propose 2D-PRQ, a novel tokenizer that captures
spatiotemporal dependencies by decomposing the body into parts. Given a motion sequence m1:T ∈
RT×D, 2D-PRQ first splits it into part-level features m̃1:T ∈ RT×p×d, where d is the part-level
feature dimension, and p=5 represents the body parts: {left arm, left leg, torso, right leg, right
arm}. Unlike methods that process parts in isolation (Chen et al., 2025), we conceptualize the
sequence as a 2D image: time as width and body parts as height. Such design allows us to use
a 2D convolution block for motion encoding, capturing both temporal correlations across frames
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and spatial dependency between different body parts, which is crucial for maintaining whole-body
coordination and consistency. The encoder outputs a latent sequence b̃1:p;1:n with a downsampling
ratio of n/T . Each latent vector b̃i,j is quantized via residual quantization (Lee et al., 2022) using a
shared codebook C, producing the token sequence [bk1:p;1:n]

K
k=0, where bk denotes the code sequence

at layer k. For the decoding, a symmetric 2D decoder reconstructs the part-level features m̂1:p;1:n

which are aggregated to restore the raw motion feature m̂j . The reconstruction loss is:

L =

p∑
||m− m̂||1 +

p∑
i=0

||mi − m̂i||1 + β

K∑
k=1

p∑
i=1

||rki − sg[bji ]||
2
2. (2)

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. To evaluate the performance and generalization capabilities of our model, we conduct
experiments on three diverse motion datasets: HumanML3D (Guo et al., 2022), Motion-X (Lin et al.,
2024), and our collected OpenT2M. HumanML3D is a widely adopted benchmark for text-to-motion
generation, comprising 4,616 high-quality motion sequences paired with 44,970 textual annotations
derived from sources like the AMASS dataset. Motion-X extends this scale with approximately
81,000 motion sequences, incorporating multi-modal data (e.g., video and audio cues) to enhance
diversity in complex interactions and long-horizon motions. For further validation on an even larger
scale, we utilize OpenT2M, a comprehensive dataset with over 1 million motion sequences sourced
from real-world human activities, which covers a broad spectrum of human activities, such as walking,
dancing, and sports, making it ideal for assessing motion synthesis from diverse language descriptions.
Following established protocols, we partition each dataset into training, validation, and test splits
using an 80%, 5%, and 15% ratio, respectively.

Evaluation Metrics. Our experiments center on two primary tasks to comprehensively assess
no-frill’s capabilities: text-to-motion (T2M) generation and motion reconstruction. For T2M
generation, we adopt standard metrics from the literature (Guo et al., 2022), including Motion-
retrieval Precision (R-Precision), Multimodal Distance (MMDist), and Frechet Inception Distance
(FID). In addition, the effect of motion tokenizers is assessed by the motion reconstruction task,
which reconstructs input motions through the tokenizer to verify discretization quality. We employ
FID to measure overall sequence realism and Mean Per Joint Position Error (MPJPE) to quantify
geometric accuracy. Details of these metrics can be seen in Appendix B.

Implementation Details. For the motion reconstruction task, we implement a motion encoder with
a temporal downsampling rate of α = 4 for fair comparison. The motion tokenizer is trained with
a learning rate of 2e-4 and a batch size of 256. We implement our no-frill-2D-PRQ4- with
three sizes of LLMs: GPT2-medium (Lagler et al., 2013), LlaMA2-7B (Touvron et al., 2023), and
LlaMA3.1-8b (Dubey et al., 2024). Full parameter training is performed on 8 × A800 GPU with a
learning rate of 2e-4 and a batch size of 1024 over 5000 steps on OpenT2M.

5.2 EFFECT OF OPENT2M: GENERALIZATION AND QUICK ADAPTION

While previous works have introduced large-scale datasets (Fan et al., 2025; Wang et al., 2024),
their impact on model remains inadequately explored. To address this, we conduct a rigorous T2M
evaluation focusing on following key aspects: (1) zero-shot generalization to out-of-domain (OOD)
cases, (2) adaptation to novel motion activities via instruction tuning.

Zero-shot Motion Generalization. To rigorously assess the generalization of T2M models to unseen
data, we curate a held-out evaluation set OpenT2M zero comprising 12,000 motions excluded from
training data, including HumanML3D and OpenT2M, ensuring no domain overlap between the
evaluation and training sets. This OOD benchmark enables zero-shot evaluation, where models
generate motions for novel text prompts without task-specific fine-tuning. We benchmark three
representative baselines: MDM (Tevet et al., 2022), T2M-GPT (Zhang et al., 2023a), Being-M0 (Wang
et al., 2024), as well as our no-frill. As shown in Table 2, models trained on HumanML3D and
Motion-X exhibits limited zero-shot performance, with metrics like FID and R-Precision revealing
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degraded semantic alignment and motion diversity on OOD sequences. In contrast, training on
OpenT2M yields substantial improvements across all baselines, underscoring its role in enhancing
generalization through diverse, large-scale coverage of motion primitives and contexts.

Table 2: Comparison of zero-shot performance on OpenT2M zero using different datasets for training.
Models trained on OpenT2M consistently present significant OOD improvements.

#Model #training data R@1 ↑ R@3 ↑ FID ↓ MMDist ↓ DIV ↑

Real - 0.316 0.621 - 3.771 7.749

MDM HumanML3D 0.065 0.180 51.307 7.642 3.040
MDM Motion-X 0.055 0.160 56.257 8.008 3.019
MDM OpenT2M 0.194 0.447 8.153 4.889 7.136

T2M-GPT HumanML3D 0.070 0.186 62.036 8.093 2.586
T2M-GPT Motion-X 0.063 0.173 53.464 7.770 2.957
T2M-GPT OpenT2M 0.159 0.357 5.566 5.072 6.921

Being-M0 HumanML3D 0.073 0.190 58.541 7.956 2.932
Being-M0 Motion-X 0.057 0.157 46.222 7.652 3.220
Being-M0 OpenT2M 0.155 0.356 5.811 5.110 7.090

no-frill-2D-PRQ4 HumanML3D 0.061 0.173 60.177 8.059 2.674
no-frill-2D-PRQ4 Motion-X 0.052 0.152 55.47 7.841 2.433
no-frill-2D-PRQ4 OpenT2M 0.240 0.512 1.475 4.281 7.563

Motion Instruction Tuning. Inspired by the two-stage training paradigm in multimodal vision-
language models (Liu et al., 2023), we adopt a similar pipeline for T2M generation: an initial
pretraining phase on our large-scale OpenT2M dataset to foster robust text-motion alignment, fol-
lowed by targeted fine-tuning on downstream benchmarks. Specifically, we fine-tune the pre-trained
model on HumanML3D for a limited 50 epochs. Unlike previous works that train for up to 300
epochs on the same dataset — potentially leading to in-domain overfitting — we intentionally restrict
the number of training steps. This allows us to assess inherent generalization capabilities without
conflating them with the effects of prolonged training, a potential confound in prior evaluations. As
shown in Table 3, models pre-trained on OpenT2M consistently outperform their non-pre-trained
counterparts, indicating that pre-training equips the model with generalized motion patterns.

Table 3: Comparison of motion instruction tuning on HumanML3D. We apply a limited number of
training steps to avoid overfitting. Models with #pretrain consistently achieve significant improve-
ments across diverse #LLM backbones.

#Model #LLM backbone #pretrain R@1 ↑ R@3 ↑ FID ↓ MMDist ↓ DIV ↑

Real - - 0.519 0.801 - 3.176 10.954

no-frill GPT2-medium - 0.078 0.212 61.809 8.803 4.810
no-frill LlaMA2-7B - 0.472 0.741 0.619 3.572 11.226
no-frill LlaMA3-8B - 0.503 0.792 0.546 3.224 11.104

no-frill GPT2-medium ✓ 0.215 0.377 17.91 7.129 8.372
no-frill LlaMA2-7B ✓ 0.485 0.773 0.435 3.386 11.373
no-frill LlaMA3-8B ✓ 0.518 0.798 0.238 3.172 11.216

5.3 EFFECT OF OPENT2M FOR LONG-TERM MOTION GENERATION

Table 4: Ablation of text refinement on HumanML3D

#text refinement R@1 ↑ R@2 ↑ R@3 ↑

- 0.520 0.709 0.801
✓ 0.533 0.720 0.808

Before introducing long-horizon benchmark,
we first conduct text refinement. Text an-
notations in existing datasets, such as Hu-
manML3D, contain considerable redundant
details. Directly concatenating texts to con-
struct long-horizon benchmark will intro-
duce noise and inefficiency due to motion-
irrelevant content. To mitigate this issue, we
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design a specific prompt and utilize Gemini-2.5 to conduct text refinement: (1) removing motion-
irrelevant details; (2) converting text annotations into cleaned user commands. As illustrated in Table
4, this text refinement results in an improvement in R-Precision, achieving a better alignment between
the refined text and motion sequences.

Following text refinement, we introduce OpenT2M long, a long-horizon benchmark built with our
curation pipeline to evaluate T2M models on extended sequence generation. Our evaluation of a
leading model, no-frill, reveals a significant struggle to produce satisfied performance without
training on long-horizon motion data. In addition, text refinement further substantially improves this
ability by enhancing text-motion alignment. Visualizations of the generated sequences are provided
in Figure 4, and a detailed comparison with the BABEL dataset is available in Appendix A.2.

Table 5: Comparison on OpenT2M long, where “#text refinement” refers to converting raw texts
into cleaned user commands, "#long-horizon" denotes incorporating long-term data into OpenT2M.

Model #text refinement #long-horizon R@1 ↑ R@3 ↑ FID ↓ MMDist ↓ DIV ↑

Real - - 0.573 0.822 - 2.842 10.450

no-frill - - 0.091 0.226 36.837 7.976 5.871
no-frill - ✓ 0.484 0.738 0.430 3.520 10.682

no-frill ✓ ✓ 0.510 0.765 0.297 3.322 10.748

Input Text:  Do a 360 jump in the air. 
Hold a golf club and do a golf swing.

Input Text:  Walk forward slowly. 
Kick the air with right foot.

Input Text: Walk forward, then stop. 
Sit down in a chair and then stand back up again.

Input Text:  Wave hand. Jump straight up once. Input Text: Kick and fight in place. 
Do jumping jacks.

Input Text:  Wave hands together in front of them. 
Throw something with right arm.

Figure 4: Visualization of generated long-horizon motions. Visualization results demonstrate the
ability to generate long-horizon motion sequences that accurately align with complex texts.

5.4 EFFECT OF MOTION TOKENIZER: 2D-PRQ VS. OTHERS

Motion Reconstruction Comparison. As shown in Table 6, our 2D-PRQ tokenizer outperforms
previous methods, including PRQ, on large-scale datasets. Under a consistent configuration (codebook
size 1024, feature dim 512, except for FSQ (Mentzer et al., 2023)) (codebook size 65536), 2D-PRQ
achieves substantially lower reconstruction error on Motion-X and OpenT2M while using a simpler
architecture. The key advantage lies in its 2D convolutional design, which jointly models spatial
and temporal dependencies. This leads to marginal gains on HumanML3D (MPJPE: 25.417 vs.
25.485) but dramatically larger improvements as the dataset scale increases, as evidenced by results
on Motion-X (54.493 vs. 73.989) and OpenT2M (49.134 vs. 95.743).

Motion Generation Comparison. The choice of motion tokenizer is critically dependent on the
scale of the training data. As shown in Table 2, replacing VQ-VAE with our 2D-PRQ tokenizer in the
Being-M0 model leads to a performance drop when training on smaller datasets like HumanML3D
and Motion-X. We attribute this to the increased number of motion tokens in 2D-PRQ, which requires
large-scale data for effective training. This hypothesis is confirmed when training on the large-scale
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Table 6: Comparison of motion reconstruction. Subscripts denote the number of quantization layers.

HumanML3D Motion-X OpenT2M

Motion Tokenizer Codebook Size FID ↓ MPJPE ↓ FID ↓ MPJPE ↓ FID ↓ MPJPE ↓

VQ-VAE1 1024 0.358 83.902 0.127 115.382 3.130 178.534
FSQ1 65536 0.151 70.480 0.828 110.021 1.962 165.084

RQ-VAE6 1024 0.031 48.696 0.013 67.390 0.080 96.753
RQ-VAE8 1024 0.021 45.633 0.020 65.484 0.062 84.655

PRQ4 1024 0.003 28.703 0.012 73.989 0.094 95.743
PRQ6 1024 0.005 25.485 0.009 58.155 0.029 67.569

2D-PRQ4 1024 0.003 28.628 0.011 54.493 0.022 49.134
2D-PRQ6 1024 0.005 25.417 0.008 48.099 0.021 37.922

OpenT2M: here, the no-frill-2D-PRQ4 model achieves superior zero-shot performance, even
exceeding strong baselines like T2M-GPT, Being-M0, and MDM. This result, also evident in Table 7,
underscores that 2D-PRQ unlocks the full potential of large datasets and highlights the critical role of
a well-designed motion representation. In Table 7, we observe scaling the LLM from GPT2-medium
to LLaMA2-7B brings significant gains. However, further scaling to LLaMA3-8B yields diminishing
returns, suggesting a saturation point where performance becomes less dependent on LLM size.

Table 7: Comparison of T2M on OpenT2M under different model parameters and motion tokenizers.

Model LLM R@1 ↑ R@3 ↑ FID ↓ MMDist ↓ DIV ↑

no-frill-VQ1 GPT2-medium 0.257 0.513 11.226 5.146 7.393
no-frill-VQ1 LlaMA2-7B 0.345 0.656 3.005 3.955 8.463
no-frill-VQ1 LlaMA3-8B 0.345 0.656 2.979 3.960 8.437

no-frill-2D-PRQ4 GPT2-medium 0.357 0.645 8.880 4.316 7.905
no-frill-2D-PRQ4 LlaMA2-7B 0.491 0.777 0.475 2.962 9.450
no-frill-2D-PRQ4 LlaMA3-8B 0.478 0.777 0.552 3.012 8.901

Table 8: Zero-shot comparison of motion tokenizers.

HumanML3D Motion-X

Motion Tokenizer FID ↓ MPJPE ↓ FID ↓ MPJPE ↓

VQ-VAE1 25.525 237.702 44.889 293.301
PRQ4 2.169 135.964 5.020 167.508

2D-PRQ4 0.107 77.695 1.606 108.921

Zero-shot Performance Comparison.
Previous work primarily adopts the
VQ-VAE1 tokenizer and trains it on
limited-scale datasets for extensive pe-
riods (e.g., 200K steps), which can
lead to overfitting and fails to assess
the tokenizer’s inherent zero-shot gen-
eralization ability. In contrast, we pre-
train various tokenizers on the large-
scale OpenT2M dataset and evaluate
their zero-shot performance on Hu-
manML3D and Motion-X. As shown in Table 8, 2D-PRQ4 significantly outperforms the alternatives,
demonstrating its superior generalization and its effectiveness in mitigating tokenizer overfitting.

6 CONCLUSION

This paper introduces OpenT2M, a large-scale, high-quality human motion dataset with physically
feasible validation, multi-granularity filtering, and second-wise annotation. We also introduce a
pipeline that synthesizes long-horizon motion autonomously, containing motion connection and text
connection to equip T2M models with the capability to generate complex and long-horizon motion
sequences. Leveraging OpenT2M, we introduce no-frill, a pretrained T2M model achieving
superior performance without complicated designs. As the core component of no-frill, 2D-PRQ,
a novel motion tokenizer, decouples human body features into five parts and captures spatiotemporal
dependencies by applying 2D convolution, showing superior reconstruction performance on large-
scale datasets and zero-shot ability. Comprehensive experiments demonstrate that OpenT2M shows
benefits in improving generalization on unseen motion sequences and motion instruction tuning. We
hope that our findings and the release of OpenT2M will benefit this field.
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Appendix
In this appendix, we provide additional details of OpenT2M in Section A. We also provide details
of evaluation metrics in Section B. We provide visualization examples of OpenT2M in Section C.
Finally, we provide the usage of LLMs in Section D.

A DETAILS OF OPENT2M

A.1 STATISTICAL ANALYSIS OF DATA AND WORD DISTRIBUTION

Figure 5 shows the number distribution of motion sequences across different subsets in OpenT2M on
a logarithmic scale, demonstrating variations in dataset sizes. OpenT2M integrates 21 curated subsets,
amounting to a comprehensive collection of 1 million motion sequences. A substantial portion of
motions in OpenT2M are extracted from web videos utilizing motion estimation models (Shin et al.,
2024), such as Kinetics-700 (Kay et al., 2017), Internvid (Wang et al., 2023). These motions undergo
rigorous physically feasible validation and multi-granularity filtering. Each motion sequence accounts
for over 50% of the duration of the corresponding original video, ensuring temporal consistency and
semantic validity. OpenT2M also integrates open-source human motion datasets, such as Motion-
X (Lin et al., 2024). Leveraging the proposed long-horizon motion curation pipeline, we construct
190K long-horizon motion sequences. The OpenT2M long comprises motions spliced from two,
three, four, and five individual motion sequences. Figure 6 shows the average length distribution of
OpenT2M across different subsets. We observe that the dataset with the shortest average sequence
length is Postrack, comprising merely 16.12 frames, while 3DPW exhibits the longest average length,
exceeding 500 frames. Following a meticulous curation process, OpenT2M exhibits a substantially
longer average length compared with previous work (Cao et al., 2025).
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Figure 5: Distribution of motion sequences across different subsets in OpenT2M (logarithmic scale)

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500 600

3dpw

egoexo4d

mpi-inf-3dhp

arctic

fit3d

rich

openvid-1m

internvid-text-human

OpenT2M-long

egobody

talkshow

internvid-holistic2d

kinetics-700

bedlam

kit

motionx

chi3d

babel

gta-human

ntu-rgbd-120

posetrack

572.92

551.01

500.19

494.9

472.63

407.26

321.62

319.3

309.87

299.83

225.31

194.89

156.6

134.67

132.86

127.29

67.96

67.24

46.19

44.48

16.12

Average Length across Different Datasets

Figure 6: Average Length Distribution of OpenT2M across different subsets.

A.2 LONG-HORIZON MOTION COMPARISON

We first detail the pipeline for long-horizon motion curation. Two different motion sequences are
initially aligned in orientation by rotating the initial frame of the second sequence to match the facing
direction of the last frame in the first sequence. Subsequently, the entire second sequence is translated
spatially to align its position with that of the last frame of the first sequence. Finally, a fixed transition
duration is applied, during which spherical linear interpolation is performed between the last frame of
the first motion and the initial frame of the second motion to ensure smooth kinematic continuity. To
ensure that long-horizon motion sequences adhere to physical constraints, we utilize the concatenated
motion sequence as reference poses for an RL policy, driving the avatar in the IsaacGym to track the
reference motion. The resulting motion, refined through physical simulation, is adopted as the final
long-horizon motion sequences.

Figure 7 shows the length distribution comparison between OpenT2M long and BABEL (Punnakkal
et al., 2021). BABEL labels about 43 hours of mocap sequences from AMASS (Mahmood et al., 2019)
with fine-grained action labels. BABEL exhibits a substantial variation in motion length, containing
motion sequences from 5s to over 100s. In BABEL, 37.9% of motion sequences last 5s or less, which
significantly limits its effectiveness for evaluating the long-horizon motion generation capability of
T2M models. In contrast, OpenT2M long contains only 0.33% of motions within 5s. Furthermore,
OpenT2M long contains 20 times motion sequences than BABEL. As a result, even intervals with
relatively low proportions in OpenT2M long may contain a larger number of motions compared to
BABEL. For instance, motions lasting from 35s to 40s only constitute 0.76% in OpenT2M long, yet
OpenT2M long contains 1,454 motion sequences from 35s to 40s. Meanwhile, although the same
interval accounts for a higher proportion (0.9%) in BABEL, it represents merely 89 motions.
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(a) OpenT2M long Length Distribution (b) BABEL Length Distribution

Figure 7: Length distribution comparison between OpenT2M long and BABEL datasets.

A.3 SECOND-WISE TEXT ANNOTATION

Previous works (Wang et al., 2024; Cao et al., 2025) typically annotate motion sequences by directly
feeding corresponding videos into Vision-Language Models (VLMs) to generate coarse textual
descriptions. While this approach offers efficiency, it suffers from a critical limitation: motion
sequences extracted from web videos often comprise complex and continuous motion clips. When
VLMs are applied in an end-to-end manner to entire video clips, they tend to overlook fine-grained and
crucial motion details. Such omissions impact the quality and utility of annotated texts, particularly
for applications requiring high temporal precision or detailed kinematic analysis.

  

{
    "second-wise": [
        {
            "second": 0,
            "start_frame": 0,
            "end_frame": 2,
            "text": "The person is standing still and looking to their right."
        },
       . . . . . .
        {
            "second": 2,
            "start_frame": 4,
            "end_frame": 6,
            "text": "The person raises their right hand to their forehead."
        },
        {
            "second": 3,
            "start_frame": 6,
            "end_frame": 8,
            "text": "The person continues to hold their right hand to their forehead."
        },     
        {
            "second": 4,
            "start_frame": 8,
            "end_frame": 10,
            "text": "The person lowers their right hand."
        },
        . . . . . . 
        {
            "second": 6,
            "start_frame": 12,
            "end_frame": 14,
            "text": "The person is shaking hands with their right hand."
        },
        . . . . . . 
        {
            "second": 9,
            "start_frame": 18,
            "end_frame": 20,
            "text": "The person is shaking hands with their right hand."
        }
    ],
    "summary": "The person performs a salute and then shakes hands with 

another individual."
}

  You are a video annotation AI that describes and analyzes ONLY the visible 
physical motion of the person within the given BBOX in the videos.

    ## Input

    You will receive a series of video frames in chronological order, with each 
frame sampled every0.5 seconds.

    To analyze motion over each 1-second segment, group every three 
consecutive frames as follows:

        • Second 1 : frames 0, 1, 2 (time 0.0s-1.0s)

        • Second 2 : frames 2, 3, 4 (time 1.0s-2.0s)

        • Second 3 : frames 4, 5, 6 (time 2.0s-3.0s)

        • And so on.

    In general, for the i-th second, analyze frames at indices (2i - 2), (2i - 1), and 
2i, covering the time interval from (i - 1) to i seconds.

    ## Task

    Your task consists of 2 parts:

    1. Second-wise Caption

For each 1-second segment of video, give one sentence to describe the 
physical motion of the person within the given BBOX.  If the person within 
the given BBOX is not visible during that second, return null.

    2. General Summary 

       After listing the second-wise results, give one sentence that summarizes the 
overall physical motion of the person within the given BBOX. This 
summary should:

        •  Describe the overall physical motion of the person in the BBOX to 
highlight common types of motion (e.g., walking, playing basketball, 
pivoting), but ONLY when 100% certain.

        •  Add some action details about the limb ONLY if clearly visible (e.g., 
left hand).

Prompt Template Text Annotation

Figure 8: Prompt template for generating second-wise text annotations utilizing Gemini-2.5.
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In this work, we design a second-wise annotation scheme as shown in Figure 8. The annotation task
mainly contains second-wise captions and a general summary. The process begins by uniformly
extracting video frames every 0.5s. Each second video frames are first annotated individually with
second-wise descriptions. These second-wise captions are then summarized to form a precise caption
for the entire video clip. In the annotation process, we deliberately exclude any descriptions of
backgrounds, facial expressions, clothes, and other attributes that are irrelevant to human motion. We
computed the word cloud of OpenT2M’s text annotations, as shown in Figure 9, revealing that the
annotations encompass not only diverse motion patterns but also detailed descriptions of limbs.

Figure 9: Word cloud visualization of OpenT2M text annotations.

B EVALUATION METRICS

Text-to-motion. We adapt R-precision, MMDist, and FID to evaluate T2M model follow Guo et al.
(2022). Each metric is illustrated as follows:

• R-precision: The retrieval metric is designed to evaluate the semantic consistency between
text and generated motion. The R-precision is computed as the accuracy of its ground-truth
text description being ranked Top-1 when retrieved by the generated motion from a text
pool. Following Guo et al. (2022), we set the size of the description pool to 32.

• MMDist: MultiModel Distance is computed as the average Euclidean distance between
motion feature and corresponding text feature.

• FID: Frechet Inception Distance is designed to measure the similarity between the distribu-
tion of generated motions and ground-truth motion in the feature space. It is computed as the
Fréchet distance between the feature distributions of the generated motion and ground-truth
motion.

Motion Reconstruction. We adapt FID and MPJPE to evaluate motion tokenizers on the motion
reconstruction task.

• FID: Similar to T2M, Frechet Inception Distance for motion reconstruction is computed
as the Fréchet distance between the feature distributions of reconstruction motion and
ground-truth motion.
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• MPJPE: The metric is computed by averaging the L2 distances between all joints of
reconstruction motion and ground-truth motion across all frames.

C VISUALIZATION EXAMPLES

We provide visualization examples of OpenT2M in Figure 10. Visualization examples demonstrate
that OpenT2M encompasses a diverse range of motion patterns and exhibits strong text-motion
alignment, providing a high-quality data foundation for building large motion models.

Text Annotation:  The person repeatedly lunges forward 
with their right arm extended and then retracts their arm while stepping back.

Text Annotation: The person is performing a series of dance moves, involving rotations, leans, and arm extensions.

Text Annotation:  The person is performing push-ups, moving their chest up and down towards and away from the floor.

Text Annotation: The person performs a series of slow, deliberate movements, 
characterized by shifting weight between legs, extending and retracting arms in a flowing motion.

Text Annotation: The person is a softball pitcher who performs a pitching motion including shifting weight, 
raising their arm, and releasing the ball, followed by recovery.

Figure 10: Visualization examples of OpenT2M, each example is annotated with precise text.

D USE OF LARGE LANGUAGE MODELS

In this work, the large language model (LLM) is employed exclusively for text polishing purposes.
Its role is limited to refining the linguistic quality, coherence, and stylistic consistency of the textual
content, without involvement in data generation and substantive content creation.
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