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ABSTRACT

Fine-tuned large language models (LLMs) often exhibit overconfidence, particu-
larly when trained on small datasets, resulting in poor calibration and inaccurate
uncertainty estimates. Evidential Deep Learning (EDL), an uncertainty-aware
approach, enables uncertainty estimation in a single forward pass, making it a
promising method for calibrating fine-tuned LLMs. However, despite its compu-
tational efficiency, EDL is prone to overfitting, as its training objective can re-
sult in overly concentrated probability distributions. To mitigate this, we propose
regularizing EDL by incorporating an information bottleneck (IB). Our approach
IB-EDL suppresses spurious information in the evidence generated by the model
and encourages truly predictive information to influence both the predictions and
uncertainty estimates. Extensive experiments across various fine-tuned LLMs and
tasks demonstrate that IB-EDL outperforms both existing EDL and non-EDL ap-
proaches. By improving the trustworthiness of LLMs, IB-EDL facilitates their
broader adoption in domains requiring high levels of confidence calibration. Code
is available at https://github.com/sandylaker/ib-edl.

1 INTRODUCTION

Large language models (LLMs) have revolutionized natural language processing, with fine-tuning
emerging as a prevalent method to adapt these models for specific tasks or domains (Houlsby et al.,
2019; Hu et al., 2022). However, fine-tuned LLMs often display overconfidence in their predic-
tions (Jiang et al., 2021; Yang et al., 2024), which compromises their reliability and limits their
applicability in critical domains where trustworthiness is essential.

Overconfidence in LLMs often manifests as poor calibration, where the predicted probabilities do
not accurately reflect the model’s uncertainty about its predictions. Uncertainty-aware methods im-
prove calibration by explicitly quantifying the uncertainty in the model’s predictions, allowing the
model to produce confidence scores that better correspond to the actual likelihood of correctness.
Traditional uncertainty-aware methods, such as MC-Dropout (Gal & Ghahramani, 2016) and Deep
Ensemble (Lakshminarayanan et al., 2017; Fort et al., 2019) are commonly used to mitigate overcon-
fidence in neural networks. However, these approaches typically require multiple forward passes,
significantly increasing the inference time for LLMs.

Evidential Deep Learning (EDL) (Sensoy et al., 2018; Malinin & Gales, 2018) offers a more efficient
alternative by providing uncertainty estimates with a single forward pass. Despite its success in
various tasks, recent studies (Deng et al., 2023; Chen et al., 2024) indicate that EDL can still yield
overconfident predictions which leads to inaccurate uncertainty estimates, degrading the model’s
calibration performance. This issue arises from the propensity of vanilla EDL to encourage models
to generate excessive evidence (i.e., support for a class) with extremely large magnitudes, leading to
overly confident predicted class probabilities.

Motivated by these challenges, we propose a novel regularization approach for EDL using an infor-
mation bottleneck, which we term IB-EDL. IB-EDL adaptively distorts the evidence generated by
the LLM while maximally preserving the model’s performance. In doing so, IB-EDL encourages the
model to suppress spurious or uninformative evidence that could lead to overconfident predictions.
Our theoretical analysis shows that the information bottleneck effectively penalizes the generation
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of disproportionately large evidence, thereby reducing overconfidence. Notably, our method intro-
duces less than 2% computational overhead compared to a pretrained LLM, maintaining the model’s
inference efficiency while significantly improving its calibration. Our contributions are as follows:

• We introduce IB-EDL, an information-theoretic framework for regularizing EDL. First, we iden-
tify a theoretical issue previously overlooked in the IB literature. In the context of EDL, we ad-
dress this challenge through a novel choice of the IB stochastic variable. Moreover, our solution
naturally imposes an ℓ2 regularization, effectively mitigating the issue of overly large evidence
highlighted in prior EDL research.

• We show that several existing EDL methods can be seen as a special case within the IB-EDL
framework. This unification offers a cohesive perspective on these approaches.

• We perform extensive experiments on calibrating fine-tuned LLMs using EDL, thereby extending
its applicability beyond the medium-sized networks commonly used in the EDL literature. Our
results across various LLMs and datasets demonstrate that IB-EDL scales effectively.

2 BACKGROUND

2.1 MLE FINE-TUNING OF LLMS

Let x ∈ VS represent the input sequence for an LLM, where V represents the set of tokens (vo-
cabulary) and S is the sequence length. The target space is denoted by Y , which may be identical
to V (e.g., in next-token prediction) or a different set (e.g., in sentiment analysis). We generally
assume that |Y| = C. As we focus on the context of LLMs, we will use the term “tokens” instead
of “classes” throughout this paper. In tasks like next-token prediction, the target can also be a se-
quence of tokens. For clarity in our theoretical analysis, we focus on a single-token target, with the
understanding that a token sequence can be treated as multiple single-token targets.

Let f be the LLM. The output logits of the LLM, f(x) ∈ RC , are passed through a Softmax func-
tion, yielding a vector π with entries πj = exp(f(x)j)/

∑C
j′=1 exp(f(x)j′), which represent the

probability for each token. Let y ∈ {0, 1}C be the one-hot encoded target. Then, y|x conforms
to a categorical distribution p(y|x) = Cat (y;π) =

∏C
j=1 π

yj

j . Fine-tuning LLMs on downstream
tasks typically involves minimizing − log p(y|x) which corresponds to maximum likelihood esti-
mation (MLE). However, fine-tuning LLMs on small downstream datasets can result in overfitting
and overconfident predictions. Additionally, MLE yields a deterministic model that cannot express
uncertainty in the predicted π.

2.2 UNCERTAINTY-AWARE MODELING VIA EDL

While conventional uncertainty-aware methods like a Deep Ensemble can alleviate overconfidence
and improve calibration, they require multiple forward passes during inference. This can be partic-
ularly challenging for LLMs due to their already substantial computational demands. EDL provides
a more efficient alternative by capturing uncertainty in a single forward pass, making it especially
suitable for large models. EDL builds on the principles of Subjective Logic (Jøsang, 1997; 2016),
which is derived from Dempster-Shafer Theory (DST) (Dempster, 1968; Shafer, 1976).

EDL inference pipeline: Instead of directly predicting the token probabilities π, EDL uses the
model to predict a Dirichlet prior on π. Specifically, the model’s output is interpreted as pre-
evidence ẽ = f(x) ∈ RC , which is converted into a non-negative evidence vector e = SoftPlus(ẽ)
using the SoftPlus activation. Each element ej of the evidence vector represents the amount of
support for token j being the correct prediction. Once the evidence is obtained, we can pro-
ceed to predict the Dirichlet prior Dir (π;α) over the simplex of possible token probabilities
π = [π1, . . . , πC ]

⊤ by computing the Dirichlet parameters αj = ej + 1,∀j ∈ [C]. More formally,

p(π|α) =
Γ(α0)∏C
j=1 Γ(αj)

C∏
j=1

π
αj−1
j , with α0 =

C∑
j=1

αj , (1)

where Γ(·) is the gamma function. The expected probabilities π̂j and the final predicted token ŷ are:

π̂j = Eπ∼Dir(π;α) [πj |α] =
αj

α0
=

ej + 1∑C
j=1(ej + 1)

, ŷ = argmaxj π̂j . (2)
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In summary, the EDL pipeline can be symbolized as: x→ f(x)→ ẽ→ e→ α→ π → y.

Uncertainty estimate: EDL also enables quantifying uncertainty in the model’s prediction. This is
done through the concepts of belief mass bj and uncertainty mass u in the Subjective Logic:

bj = (αj − 1)/α0, u = C/α0. (3)

Similar to the evidence, the belief mass bj indicates the support for token j being the correct pre-
diction, while the uncertainty mass u captures the model’s overall uncertainty about the prediction.
The sum of all belief masses and the uncertainty mass is normalized:

∑C
j=1 bj + u = 1.

2.3 TRAINING OF EDL NETWORKS

In EDL, models are usually trained by minimizing the Bayes risk, which involves the ex-
pected loss under the Dirichlet distribution. Given the predicted α from an input x, and
the target y ∈ {0, 1}C , the Bayes risk for the cross-entropy loss is defined as LCE(θ) =

Eπ∼Dir(π;α)

[
−
∑C

j=1 yj log(πj)
]
=

∑C
j=1 yj(ψ(α0) − ψ(αj)), where θ denotes the trainable pa-

rameters of the model, and ψ is the digamma function. To stabilize the training, Sensoy et al. (2018)
introduce the MSE loss as an alternative objective, which can be analytically computed using α:

LMSE(θ) = Eπ∼Dir(π;α)∥y − π∥22 =

C∑
j=1

(
yj −

αj

α0

)2

+
αj(α0 − αj)

α2
0(αj + 1)

. (4)

For detailed derivations, we refer to Sensoy et al. (2018). Furthermore, they introduce a reg-
ularization term to suppress evidence for non-target tokens, i.e., the tokens labeled as 0 in y.
This is achieved by first “removing” the evidence associated with the target token, using α̃ =
y + (1− y)⊙α, where 1 = [1, . . . , 1]⊤. The regularization term is then defined as

LReg(θ) = DKL (Dir (π; α̃) ∥ Dir (π;1)) , (5)

where DKL denotes the Kullback-Leibler (KL) divergence. The total loss for training is given by:

LEDL(θ) = LMSE(θ) + λ · LReg(θ), (6)

where λ > 0 is a hyper-parameter. Note that LMSE(θ) can be replaced with LCE(θ).

However, as the model is trained to minimize the empirical risk, it remains susceptible to overfitting
the data and producing overconfident predictions. The objectives in LCE(θ) and LMSE(θ) drive the
learned Dirichlet distribution towards a Dirac delta distribution. Consequently, the trained model
may produce αj with extreme magnitudes for the target token j (Chen et al., 2024). Eq. (5) also
does not fully address this issue, as it only suppresses the evidence of non-target tokens.

Recent efforts have sought to mitigate the overconfidence issue in EDL. For instance, I-EDL (Deng
et al., 2023) incorporates the Fisher Information matrix into the distribution of y. R-EDL (Chen
et al., 2024) alleviates overconfidence by relaxing αj = ej + 1,∀j to αj = ej + η,∀j with a hyper-
parameter η ∈ R+. Orthogonal to these approaches, we do not alter the assumptions on y or α in the
EDL formulation. Instead, we impose regularization on the model using an information bottleneck
(IB), which discourages the model from relying on irrelevant or spurious correlations that could lead
to an overly concentrated Dirichlet distribution, thereby preventing overconfident predictions.

3 INFORMATION BOTTLENECK-REGULARIZED EDL

We begin by adopting an information-theoretic perspective on neural networks and introduce the
IB objective. We then explain how to regularize EDL with IB and why the final IB-EDL objective
effectively mitigates overconfidence.

3.1 A CAREFUL EXAMINATION OF THE INFORMATION BOTTLENECK CRITERION

A high-level view of IB: Let X be the input random variable and Y represent the random variable
of the target token. We also introduce an intermediate representation Z, which serves as a stochastic
encoding of X . In the context of EDL, Z can take various forms, such as the internal features
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of any LLM layer, the pre-evidence ẽ (i.e., model output), evidence e, Dirichlet parameters α, or
token probabilities π. Choosing different forms of Z corresponds to selecting features that capture
different levels of abstraction. We will discuss our selection of Z in Section 3.2. Since input data
often contains redundant or irrelevant information, which may hinder the generalization ability of
Z, it is essential for Z to retain the most predictive information about Y while discarding irrelevant
information from X . This trade-off leads to better generalization. The Information Bottleneck
method (Tishby et al., 1999; Tishby & Zaslavsky, 2015) formalizes this principle through the concept
of mutual information. Specifically, the IB objective is:

max
θ

I(Z, Y ;θ)− βI(Z,X;θ), (7)

where I(·, ·) represents mutual information (MI), and β > 0 is a hyperparameter controlling the
trade-off between relevance and compression. Since Z is computed by the model f , optimizing the
model’s parameters θ is equivalent to optimizing Z. The term I(Z, Y ;θ) promotes Z to be predic-
tive of Y , while I(Z,X;θ) encourages Z to ignore irrelevant information from X . For simplicity,
we omit the model parameters θ in the following equations.

The mutual information terms in Eq. (7) are generally intractable. To address this, Alemi et al.
(2017) proposed to derive more tractable variational bounds. Following Wieczorek & Roth (2020),
we assume the Markov chain X − Z − Y 1 to derive the IB objective. Detailed derivations for the
following equations are provided in Appendix A.

Upper bound of I(Z,X): To derive a variational upper bound on I(Z,X), we first expand it as:

I(Z,X) =

∫
p(x, z) log

p(z|x)
p(z)

dzdx = Ep(z|x)Ep(x)[log p(z|x)]− Ep(z)[log p(z)].

Computing p(z) =
∫
p(z,x)dx is challenging as it involves marginalizing over x. Instead, Alemi

et al. (2017) suggest approximating it using a predefined prior r(z). We will discuss how to choose
r(z) in Section 3.2. By utilizing the Kullback–Leibler divergenceDKL (p(z)||r(z)) ≥ 0, we obtain:

I(Z,X) ≤
∫
p(z|x)p(x) log p(z|x)

r(z)
dzdx = Ep(x) [DKL (p(z|x)∥r(z))] . (8)

Lower bound of I(Z, Y ): Wieczorek & Roth (2020) derive the following lower bound:
I(Z, Y ) = Ep(x,y)Ep(z|x,y) [log p(y|z)] +H(Y )

≥ Ep(x)Ep(y|x)Ep(z|x) [log p(y|z)] ,
(9)

where H(·) denotes the Shannon entropy. By plugging the upper bound from Eq. (8) and lower
bound from Eq. (9) into Eq. (7), and flipping the max to a min, the IB objective becomes

min
θ
−Ep(x)Ep(y|x)Ep(z|x) [log p(y|z)] + β Ep(x) [DKL (p(z|x)∥r(z))] , (10)

where the expectations can be approximated using Monte Carlo samples. In the following paragraph
and Section 3.2, we will discuss how to compute p(y|z), p(z|x), and how to select the prior r(z).

Challenges when applying IB to an internal layer of an LLM: Previous works, such as Alemi
et al. (2017), typically apply IB to an intermediate layer within the neural network, treating the
features at that layer as the hidden variable Z. In this scenario, the earlier layers (a.k.a. the encoder)
learn p(z|x). However, since z represents the features at an intermediate layer, the true distribution
p(y|z) is unknown in practice. As a result, Alemi et al. (2017) use the later layers (the decoder) to
learn a distribution q(y|z) to approximate p(y|z). The approximate distribution q(y|z) serves as a
substitute for p(y|z) in Eq. (9). However, we argue that directly substituting p(y|z) with q(y|z) in
Eq. (9) requires a more careful examination. Specifically, expanding Eq. (9) yields:

I(Z, Y ) ≥ Ep(x)Ep(y|x)Ep(z|x)[log p(y|z)] = Ep(x)Ep(y|x)Ep(z|x)

[
log

(
q(y|z) p(y|z)

q(y|z)

)]
= Ep(x)Ep(y|x)Ep(z|x) [log q(y|z)]︸ ︷︷ ︸

(i)

+Ep(x)Ep(y|x)Ep(z|x)

[
log

p(y|z)
q(y|z)

]
︸ ︷︷ ︸

(ii)

.

(11)
1Alemi et al. (2017) initially derive the objective using the Markov chain Z−X −Y but implement it with

X − Z − Y .Wieczorek & Roth (2020) directly derive the lower bound from X − Z − Y .
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Term (i) is used for training the model in Alemi et al. (2017), including both the encoder and de-
coder. Term (ii) represents the gap between term (i) and the true lower bound in Eq. (9). Crucially,
term (ii) is not necessarily non-negative. If term (ii) is negative, it undermines the assumption that
term (i) serves as a valid lower bound on I(Z, Y ). This calls into question its suitability as a training
objective. Term (ii) remains small only when the model is well-trained so that q(y|z) closely ap-
proximates p(y|z). In summary, when introducing IB at an intermediate layer within an LLM and
substituting p(y|z) with q(y|z), we lose control over whether the training objective truly remains a
lower bound on I(Z, Y ). In the next section, we present our strategy to address this challenge.

3.2 REGULARIZING EDL WITH IB

So far we have not introduced how to apply IB to the EDL pipeline: x → f(x;θ) → ẽ → e →
α→ π → y. In this section, we focus on two key questions: (1) What should the hidden variable
Z be in IB-EDL? In other words, where in the EDL pipeline should we introduce IB? (2) What
prior distribution r(z) should we select?

Choice of hidden variable Z: As highlighted in Section 3.1, a key challenge in applying IB within
a neural network is the potential violation of the lower bound. We address this by choosing the pre-
evidence as the hidden variable Z, i.e., z = ẽ ∈ RC . By doing so, we can exactly evaluate p(y|z)
from the pipeline ẽ → e → α → π → y. Specifically, given ẽ, we can compute α = e + 1 =
SoftPlus(ẽ) + 1, from which π ∼ Dir(π;α) and y ∼ Cat(y;π) follow. As a result, there is no
need to learn q(y|z), allowing us to directly use the lower bound in Eq. (9) (and hence Eq. (10))
as the training objective, which only involves p(y|z). In other words, by choosing z = ẽ, we skip
the step of learning an approximated distribution q(y|z) and ensure that we are maximizing a valid
lower bound of I(Z, Y ). Next, we proceed to compute this bound, namely the first term in Eq. (10),
which can be analytically computed as:

LIB-NLL(θ) := −Ep(x)Ep(y|x)Ep(z|x)[log p(y|z)]

= Ep(x)Ep(y|x)Ep(z|x)

 C∑
j=1

yj(log(α0)− log(αj))

 , (12)

where we have omitted the dependency of α on z = ẽ. Furthermore, our method can be further
enhanced by integrating the finding of Sensoy et al. (2018), suggesting the MSE loss as a practically
more stable objective. This can be analytically computed from α (and ẽ) as follows:

LIB-MSE(θ) := Ep(x)Ep(y|x)Ep(z|x)
[
||y − π||22

]
= Ep(x)Ep(y|x)Ep(z|x)

 C∑
j=1

(
yj −

αj

α0

)2

+
αj(α0 − αj)

α2
0(αj + 1)

 . (13)

Choice of prior r(z): Having defined z = ẽ, we now require a suitable prior r(z) for z. Notably, ẽ
is the output of the LLM, and recent studies (Zhang et al., 2021; Hashemi et al., 2021) suggest that
activation distributions in the later layers of neural networks tend to resemble Gaussian distributions
more closely than those in earlier layers. Additionally, the pre-evidence ẽ represents the LLM’s out-
put values, typically ranging from -2 to 2. Therefore, a standard Gaussian prior, zj ∼ N (0, 1) ∀j,
represents a reasonable choice.2 Given that z = ẽ follows a Gaussian distribution, we leverage the
LLM f to learn the mean and covariance of this z’s distribution. Typically, an LLM comprises a
sequence of transformer layers, denoted as g, followed by a linear head h, such that f = h ◦ g. To
model the Gaussian distribution, we double the number of output neurons in h, partitioning it into
two equal-sized functional parts. One part, hµ, predicts the Gaussian mean, while the other, hσ ,
predicts the variances. Since hµ and hσ predictors share the same features from g, both predictions
can be computed in a single forward pass. We define µ = hµ(g(x)) and σ = SoftPlus(hσ(g(x))),
yielding p(z|x;θ) = N (z;µ, diag (σ)). Then the second term in Eq. (10) becomes:

LIB-Info(θ) := Ep(x) [DKL (p(z|x)∥r(z))] ∝
1

2
Ep(x)

∥µ∥22 + ∥σ∥22 − 2

C∑
j=1

log(σj)

 . (14)

2Alternatively, we can also choose z = e = SoftPlus(ẽ); however, the prior will be a truncated Gaussian.
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Algorithm 1 IB-EDL training and inference pseudocode.

Require: Data (x,y), LLM f = h ◦ g, weight β, sample size K, binary flag IsTraining.
1: µ,σ ← (h ◦ g)(x); and compute LIB-Info(θ) with µ,σ. ▷ Predict p(ẽ|x) using the LLM.
2: Draw {ẽ(k)}Kk=1 from N (ẽ;µ, diag (σ)). ▷ Parallelized in PyTorch.
3: if IsTraining then ▷ At training time.
4: Compute LIB-MSE(θ) for each ẽ(k) and take the average. ▷ Eq. (13). Also parallelized.
5: Backpropagate averaged LIB-MSE(θ) + β LIB-Info(θ).
6: else ▷ At inference time.
7: Compute average ẽ← 1

K

∑K
k=1 ẽ

(k); and α← SoftPlus(ẽ) + 1; and π̂j ← αj/α0 ∀j.
8: Final prediction ŷ ← argmaxj π̂j . Uncertainty mass: u← C/α0.

Overall IB-EDL loss and its interpretation: The final IB-EDL objective is:

min
θ
LIB-MSE(θ) + β LIB-Info(θ). (15)

Importantly, Eq. (14) imposes a ℓ2-regularization on µ, i.e. the mean of ẽ, and thus on α. Therefore,
IB-EDL penalizes the LLM for generating large α that lead to over-confident predictions.

3.3 PRACTICAL IMPLEMENTATION

In this subsection, we focus on the implementation of IB-EDL, so we use ẽ instead of z. Eq. (13)
requires sampling ẽ from the predicted distribution N (ẽ;µ, diag (σ)) and using the sampled ẽ to
compute α. To handle the non-differentiable sampling operation, we apply the reparameterization
trick (Kingma & Welling, 2014), allowing gradients to flow through the LLM parameters θ. For each
input x, we sample K (e.g. K = 20) pre-evidences ẽ and compute the average loss derived from
them (see Algorithm 1). At inference time, we also sample K values and compute the average ẽ.
The extra time cost is minimal compared to the inference time of the LLM (detailed in Section 4.5).

3.4 VARIATIONAL BAYES-BASED EDL AS A SPECIAL CASE OF IB-EDL

Some EDL methods (Chen et al., 2018; Joo et al., 2020) are based on a variational Bayes (VB)
perspective and can be seen as a special case within the IB-EDL framework. More formally:
Proposition 1. The VB-based EDL methods, which minimize Ep(x,y) [DKL (p(π|x;θ)||p(π|y))],
are a special case of IB-EDL when the hidden variable is chosen as z = π (i.e. token probabilities)
and the prior r(z) is chosen as Dir (z;y ⊙α+ (1− y)).

The proof is detailed in the Appendix B. In the experiments, we will also compare our method with
VID (Chen et al., 2018), a representative EDL method from this category.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Models: We fine-tune Llama2-7B (Touvron et al., 2023), Llama3-8B (Dubey et al., 2024), and
Mistral-7B (Jiang et al., 2023) using LoRA (Hu et al., 2022) implemented via PEFT (Mangrulkar
et al., 2022) and Transformers (Wolf et al., 2020). Details on training configurations and β values
are provided in Appendix C. Due to space constraints, we primarily present results for Llama2-7B
and Llama3-8B, with Mistral-7B results provided in Appendix E.1.

Datasets: We compare methods on six multiple-choice classification datasets, including five for
commonsense reasoning, ARC-C and ARC-E (Clark et al., 2018), OpenbookQA (OBQA) (Mi-
haylov et al., 2018), CommonsenseQA (CSQA) (Talmor et al., 2019), and SciQ (Welbl et al., 2017),
alongside a dataset for reading comprehension, RACE (Lai et al., 2017). For these datasets, we
define the target space Y as the tokens corresponding to the possible options (A/B/C/D). When
fine-tuning LLMs, we select next-token logits (pre-evidences) corresponding to these options.

Baselines: We compare our method against a variety of baselines, including standard MAP training,
two conventional uncertainty-aware approaches: Deep Ensemble (Ens) (Lakshminarayanan et al.,
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Table 1: Calibration performance of uncertainty-aware methods on fine-tuned Llama2-7B. Arrows
(“↑” or “↓”) indicate whether higher or lower values signify better performance, respectively. The
best and second-best results are highlighted in bold and underlined, respectively. Additionally, ±
denotes the standard deviation of 3 runs. IB-EDL consistently achieves comparable accuracy while
significantly reducing ECE and NLL, thereby greatly mitigating the overconfidence of the LLM.

Metrics Method ARC-C ARC-E OBQA CSQA SciQ RACE

Acc ↑

MAP 68.00±1.72 85.07±0.11 79.86±0.12 78.67±0.26 91.30±0.17 81.29±0.29

MCD 68.01±1.71 85.10±0.09 79.70±0.46 78.65±0.30 91.33±0.23 81.26±0.31

Ens 67.46±0.21 85.16±0.25 79.72±0.61 78.84±0.16 90.83±0.60 81.26±0.18

LA 66.92±0.55 84.60±0.44 80.15±0.22 78.58±0.50 90.87±0.15 81.19±0.33

EDL 66.78±1.69 84.56±0.67 79.80±0.40 79.03±0.62 90.07±0.61 81.03±0.29

VID 67.40±0.90 84.69±0.61 78.93±0.50 78.46±0.25 91.13±0.42 81.33±0.55

I-EDL 66.98±0.37 84.76±0.69 81.79±0.53 79.22±0.39 90.43±0.70 78.06±0.32

R-EDL 70.37±0.47 84.53±0.16 81.13±0.51 78.64±0.16 90.49±0.36 79.29±1.57

IB-EDL 68.17±0.92 85.67±0.76 80.17±0.20 78.62±1.07 91.10±0.66 81.82±0.30

ECE ↓

MAP 30.08±0.96 13.66±0.14 17.81±0.14 19.06±0.25 6.85±0.21 9.62±0.32

MCD 30.08±0.97 12.87±0.71 17.14±0.77 19.06±0.25 6.83±0.20 9.62±0.32

Ens 28.26±2.78 12.64±0.72 15.19±0.94 17.82±0.17 6.77±0.33 9.51±0.43

LA 8.80±3.77 25.01±1.32 10.71±0.16 11.81±1.56 15.51±2.79 9.62±0.19

EDL 14.26±1.38 8.87±1.40 9.14±1.98 9.71±1.04 18.69±1.17 7.47±0.72

VID 13.94±0.87 4.78±0.23 10.06±1.51 8.25±0.27 6.26±0.54 4.56±0.81

I-EDL 12.39±0.16 11.33±0.27 10.84±1.18 11.66±0.61 15.13±0.08 13.52±0.85

R-EDL 15.34±2.81 4.68±0.41 7.10±0.68 5.77±0.66 6.13±0.25 4.48±0.59

IB-EDL 6.38±0.56 2.57±0.57 5.84±0.88 4.90±1.08 5.01±0.43 4.03±0.18

NLL ↓

MAP 2.98±0.11 1.09±0.04 1.14±0.03 1.26±0.01 0.38±0.01 0.61±0.01

MCD 2.98±0.11 1.09±0.05 1.11±0.04 1.26±0.01 0.38±0.01 0.61±0.01

Ens 2.90±0.19 1.08±0.03 1.05±0.05 1.12±0.06 0.39±0.02 0.59±0.01

LA 1.03±0.01 0.70±0.01 0.61±0.00 0.70±0.03 0.37±0.03 0.56±0.01

EDL 1.07±0.04 0.59±0.03 0.65±0.01 0.75±0.01 0.47±0.01 0.62±0.01

VID 1.07±0.01 0.60±0.02 0.71±0.02 0.77±0.01 0.31±0.01 0.63±0.03

I-EDL 1.08±0.01 0.60±0.02 0.62±0.01 0.75±0.01 0.46±0.01 0.71±0.01

R-EDL 1.07±0.05 0.57±0.01 0.61±0.01 0.74±0.01 0.35±0.01 0.61±0.03

IB-EDL 1.03±0.02 0.53±0.03 0.65±0.01 0.74±0.02 0.29±0.01 0.50±0.01

2017; Fort et al., 2019) and MC-Dropout (MCD) (Gal & Ghahramani, 2016), and Laplace-LoRA
(LA) (Yang et al., 2024), a recent calibration method tailored for fine-tuned LLMs. Additionally, we
include four baselines from the EDL family: vanilla EDL (Sensoy et al., 2018), VID (Chen et al.,
2018) from VB-based EDL, and two SOTA methods: I-EDL (Deng et al., 2023) and R-EDL (Chen
et al., 2024). We use their original implementations and hyperparameters where available. Addi-
tionally, although PostNet (Charpentier et al., 2020) is also a well-known EDL method, it is omitted
here because it requires a specialized Normalizing Flow design to be compatible with Transformers.

4.2 IN-DISTRIBUTION CALIBRATION

An effective uncertainty-aware method should 1) significantly improve model calibration and 2)
show accuracy comparable to standard MAP training. We therefore use Accuracy (Acc), expected
calibration error (ECE), and negative log-likelihood (NLL) as metrics for evaluating the fine-tuned
LLMs on the six aforementioned datasets. Table 1 and Table 2 present the results for Llama2-7B
and Llama3-8B, respectively. The accuracy of IB-EDL and other uncertainty-aware methods is on
par with, or even higher than, the MAP baseline, so we focus primarily on analyzing ECE and NLL.
MAP exhibits substantially higher ECE and NLL than other methods, suggesting that fine-tuning
LLMs on small datasets using MAP (or MLE) leads to significant overconfidence. Overall, IB-EDL
shows the lowest ECE and NLL, reducing ECE by several factors compared to MAP, MCD, and Ens.
This highlights IB-EDL’s ability to effectively mitigate overconfidence in fine-tuned models. The
superior performance of IB-EDL, compared to other EDL methods, can be attributed to the ℓ2 regu-
larization in Eq. (14), which discourages the model from generating excessively large evidences that
lead to over-concentrated Dirichlet distributions. Furthermore, the advantages of IB-EDL extend to
other architectures, such as Mistral-7B, as demonstrated in Appendix E.1.
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Table 2: Calibration performance of uncertainty-aware methods on fine-tuned Llama3-8B.

Metrics Method ARC-C ARC-E OBQA CSQA SciQ RACE

Acc ↑

MAP 79.74±0.27 92.27±0.17 88.60±0.87 81.51±0.60 93.37±0.12 88.15±0.31

MCD 79.55±0.21 92.25±0.13 88.63±0.84 81.52±0.60 93.30±0.20 88.12±0.25

Ens 79.50±0.10 92.26±0.41 88.53±0.59 81.39±0.63 93.27±0.15 88.09±0.08

LA 77.79±0.39 92.18±0.24 88.34±0.62 81.30±0.44 93.37±0.15 88.09±0.19

EDL 79.35±1.11 92.31±0.76 87.67±0.31 80.67±0.29 93.13±0.36 87.76±0.21

VID 79.99±0.13 92.30±0.25 87.57±0.29 80.82±0.94 92.93±0.23 88.23±0.25

I-EDL 80.37±0.48 92.76±0.47 88.52±0.50 81.13±0.39 93.47±0.06 85.91±0.40

R-EDL 80.60±0.93 92.41±0.30 88.00±0.20 80.83±1.00 93.33±0.21 87.62±0.16

IB-EDL 81.14±0.09 92.55±0.15 89.00±0.40 81.71±0.38 93.57±0.15 88.03±0.21

ECE ↓

MAP 19.68±0.43 7.18±0.14 10.52±0.87 17.29±0.57 5.74±0.08 7.95±0.35

MCD 19.91±0.39 7.10±0.02 10.48±0.86 16.98±0.10 5.74±0.09 7.93±0.35

Ens 18.20±0.17 3.81±1.60 10.08±0.90 16.11±1.63 5.72±0.24 7.80±0.19

LA 18.49±0.44 3.33±0.66 5.26±1.30 6.62±0.10 2.47±0.08 3.61±0.27

EDL 6.52±0.12 5.94±0.87 8.28±1.62 7.43±1.48 11.13±1.11 6.51±0.80

VID 10.96±0.40 3.33±1.40 5.99±1.41 8.38±0.93 2.60±0.13 4.58±0.14

I-EDL 5.08±1.94 9.69±0.58 7.57±0.52 8.95±0.59 13.07±0.24 14.52±1.15

R-EDL 10.09±1.01 2.93±1.32 4.68±1.35 6.59±0.78 3.18±0.18 2.61±0.09

IB-EDL 2.78±0.87 2.70±0.58 2.34±0.61 4.34±0.20 3.86±0.86 4.47±0.31

NLL ↓

MAP 2.25±0.08 0.61±0.02 0.78±0.05 1.25±0.04 0.36±0.00 0.47±0.01

MCD 2.27±0.09 0.59±0.00 0.77±0.05 1.22±0.03 0.36±0.01 0.45±0.03

Ens 2.02±0.07 0.43±0.09 0.74±0.05 1.22±0.12 0.35±0.01 0.46±0.05

LA 0.80±0.01 0.33±0.04 0.42±0.01 0.62±0.04 0.22±0.00 0.37±0.01

EDL 0.74±0.02 0.33±0.01 0.45±0.02 0.68±0.01 0.31±0.01 0.43±0.01

VID 0.78±0.01 0.35±0.01 0.46±0.02 0.72±0.03 0.28±0.01 0.36±0.00

I-EDL 0.72±0.02 0.36±0.02 0.43±0.00 0.68±0.01 0.32±0.01 0.52±0.02

R-EDL 0.74±0.01 0.32±0.01 0.43±0.02 0.68±0.02 0.27±0.01 0.43±0.02

IB-EDL 0.69±0.01 0.32±0.02 0.40±0.03 0.66±0.01 0.25±0.01 0.35±0.00

Table 3: OOD detection performance on fine-tuned Llama2-7B and Llama3-8B.A→ B indicatesA
as the ID training set andB as the OOD test set. MP and UM are two scores for measuring AUROC.

Model Method
OBQA→ ARC-C OBQA→ ARC-E OBQA→ CSQA

AUROC ↑ AUROC ↑ AUROC ↑
MP UM MP UM MP UM

Llama2-7B

MAP 76.07±0.71 − 72.21±0.60 − 72.45±0.20 −
MCD 76.07±0.71 − 72.20±0.60 − 72.49±0.17 −
Ens 71.89±2.79 − 70.30±0.43 − 70.50±1.12 −
LA 72.85±0.86 − 67.46±0.87 − 70.71±0.40 −

EDL 68.42±1.72 74.89±1.12 78.34±0.45 74.75±0.59 76.46±1.71 72.56±1.99

VID 86.47±0.26 81.24±0.81 86.18±0.79 83.14±1.54 85.41±0.78 77.27±2.06

I-EDL 81.34±1.41 75.78±0.94 77.22±0.75 72.10±1.74 75.78±0.75 71.60±1.11

R-EDL 76.66±1.07 73.80±0.74 72.01±1.28 69.02±0.91 71.01±1.47 68.22±1.43

IB-EDL 87.47±0.91 88.34±3.07 86.42±0.87 88.52±2.90 86.38±0.53 79.79±4.64

Llama3-8B

MAP 63.12±1.21 − 58.11±1.55 − 64.43±1.63 −
MCD 62.81±1.00 − 58.30±1.98 − 64.05±2.09 −
Ens 62.70±1.04 − 58.19±1.72 − 63.79±0.82 −
LA 62.14±0.55 − 56.11±0.84 − 63.25±1.06 −

EDL 82.04±0.69 78.99±1.18 78.80±1.47 74.77±2.16 81.07±1.22 77.55±1.69

VID 88.85±1.57 89.95±1.59 87.55±0.94 90.02±1.72 88.66±1.75 84.37±0.20

I-EDL 81.31±0.52 78.54±0.61 78.29±1.14 74.79±1.43 77.85±3.29 73.80±4.23

R-EDL 75.79±0.51 73.64±0.49 71.51±0.79 68.81±0.79 70.60±0.82 67.42±1.30

IB-EDL 88.85±0.96 92.58±0.37 88.14±1.10 94.77±0.42 89.16±1.01 85.45±0.55

4.3 OUT-OF-DISTRIBUTION DETECTION

In addition to in-distribution (ID) calibration, out-of-distribution (OOD) detection serves as a key
benchmark for assessing the performance of uncertainty-aware methods. An effective approach
should reliably assign higher uncertainties to OOD samples compared to ID samples. This can
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Table 4: Fine-tuning Llama2-7B and Llama3-8B on noisy datasets. In each training dataset, the
labels of 30% samples are randomly perturbed. IB-EDL is more robust to noise than other baselines.

Metric Method ARC-C ARC-E OBQA CSQA SciQ RACE

Llama2-7B
Acc ↑

MAP 51.08±2.96 71.39±2.73 73.93±2.21 74.56±0.31 88.63±0.06 76.83±0.39

MCD 51.08±2.96 71.40±2.72 73.93±2.20 74.56±0.32 88.64±0.06 76.95±0.19

Ens 56.10±3.11 76.03±1.99 75.23±1.06 74.59±0.23 88.64±0.06 76.94±0.22

LA 53.38±2.17 74.90±1.76 74.57±2.22 74.59±0.20 88.47±0.21 77.04±0.39

EDL 57.16±3.33 76.16±1.12 74.46±1.33 74.65±0.05 89.03±0.25 77.69±0.44

VID 57.56±0.58 76.57±1.79 76.67±1.42 75.97±0.66 89.06±0.21 78.75±0.25

I-EDL 53.86±1.25 76.08±0.71 77.00±0.88 74.01±1.28 89.26±0.32 76.48±0.87

R-EDL 57.00±0.76 76.96±1.07 73.20±1.44 74.36±0.49 87.33±0.49 78.01±0.53

IB-EDL 59.06±2.07 80.27±0.48 78.13±0.99 76.35±0.66 89.06±0.50 79.41±0.59

Llama3-8B
Acc ↑

MAP 57.71±0.42 80.34±1.47 78.78±1.00 77.04±0.41 92.60±0.53 86.93±0.11

MCD 57.71±0.42 80.37±1.46 79.00±0.92 77.05±0.41 92.87±0.12 86.93±0.12

Ens 63.39±1.09 84.63±0.53 80.61±0.53 77.62±0.41 92.97±0.06 86.93±0.07

LA 66.62±1.08 82.64±0.50 79.59±0.72 77.80±0.49 92.93±0.21 87.00±0.01

EDL 69.43±0.98 87.57±0.13 85.60±0.72 79.14±0.41 92.90±0.40 86.26±0.76

VID 66.58±1.92 87.67±0.99 84.86±1.01 79.66±1.26 93.23±0.25 86.86±0.26

I-EDL 63.87±2.65 84.06±2.80 84.26±0.42 78.02±0.87 92.53±0.37 86.01±0.51

R-EDL 71.25±1.20 84.91±3.91 85.73±0.70 78.57±0.21 93.56±0.05 86.16±0.42

IB-EDL 68.53±0.25 88.05±0.43 86.13±0.51 79.59±0.79 93.46±0.38 87.01±0.20
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Figure 1: Ablation study. IB-EDL reduces ECE and NLL compared to MAP across a broad range
of β and K values. β controls the regularization strength and balances the calibration and accuracy.

be evaluated by labeling ID samples as class 1 and OOD samples as class 0, and measuring the
AUROC based on OOD detection scores derived from the fine-tuned model. A higher AUROC
indicates better OOD detection performance. Similar to Chen et al. (2024), we use two OOD detec-
tion scores: max probability (MP) and the reciprocal of uncertainty mass (UM). We fine-tune the
LLMs on OBQA (as the ID dataset) and test them on ARC-C, ARC-E, and CSQA (as OOD dataset).
Note that non-EDL methods, such as LA, do not provide UM, so we evaluate them using MP only.
As shown in Table 3, IB-EDL achieves the highest AUROC across all datasets using both scores,
surpassing both non-EDL and EDL competitors. Furthermore, IB-EDL also demonstrates supe-
rior OOD detection performance under large distribution shifts (see Appendix E.3). Its calibration
performance also generalizes well to OOD datasets (see Appendix E.4).

4.4 FINE-TUNING WITH NOISY LABELS

Datasets used for fine-tuning LLMs can contain a significant portion of mislabeled samples (Wang
et al., 2024b; Havrilla & Iyer, 2024), and label verification is often expert-knowledge demanding.
Therefore, it is crucial for fine-tuning algorithms to be robust to label noise (Wang et al., 2023a).
To assess this robustness, we perturb the A/B/C/D options for 30% of the samples in each training
set, fine-tune the models using the aforementioned methods on the noisy datasets, and evaluate
them on clean test sets. In this adversarial setting, the primary goal is to maintain accuracy despite
label noise, so we primarily evaluate accuracy, with additional metrics in the Appendix E.2. As
shown in Table 4, IB-EDL achieves the highest accuracy overall, demonstrating strong robustness
to label noise. This suggests that the information bottleneck effectively filters out spurious signals
and retains predictive information in the generated evidence.
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4.5 ABLATION STUDY

Hyperparameters: We study the weight β and sample size K (used for drawing ẽ), using ID cal-
ibration for Llama2-7B on ARC-C as the evaluation task. Fig. 1 shows that IB-EDL consistently
outperforms MAP across a broad range of values, demonstrating its robustness in reducing overcon-
fidence. While increasing K slightly improves accuracy, it does not necessarily improve ECE or
NLL. β plays a key role in balancing regularization and predictive performance. Nonetheless, all β
values reduce ECE by at least 40% and NLL by at least 50% compared to MAP. Additionally, we
also present a sensitivity analysis on the number bins of ECE in Appendix E.6.

Complexity analysis: Here, we consider Llama2-7B and assume the target space is the vocabulary
Y = V . Compared to the pretrained LLM, IB-EDL introduces an additional linear head hσ , adding
only 1.95% more parameters. The computational overhead stems from hσ and the evidence averag-
ing operation (see Algorithm 1), which amount to only 1.98% of the pretrained model’s GFLOPs.
In Appendix E.5, we provide detailed tests of training and inference time as well as memory usage.

5 RELATED WORK

EDL: EDL leverages models to predict the Dirichlet prior distribution, with training typically done
using NLL (Haussmann et al., 2023), ℓp-loss (Tsiligkaridis, 2021), or MSE (Sensoy et al., 2018).
Chen et al. (2018); Joo et al. (2020); Shen et al. (2023) derive loss functions from a variational
Bayesian perspective, while Posterior Networks (Charpentier et al., 2020; 2022) optimize the pos-
terior via Normalizing Flows. EDL methods often incorporate two main types of regularization: (i)
encouraging uniformity in non-target Dirichlet parameters (Malinin & Gales, 2018; Sensoy et al.,
2018; Chen et al., 2018; Tsiligkaridis, 2021), or (ii) modifying assumptions in the EDL formu-
lation (Deng et al., 2023; Chen et al., 2024). IB-EDL differs by not requiring (i) and taking an
alternative approach to (ii), without altering EDL assumptions. Some EDL methods also incorpo-
rate OOD data during training (Malinin & Gales, 2018; 2019). Beyond classification, EDL has been
extended to regression (Amini et al., 2020) and other applications (Gao et al., 2024; Liu & Ji, 2024).
Recent works (Shen et al., 2024; Juergens et al., 2024) analyze EDL’s effectiveness and limitations.

Other uncertainty-aware methods: Besides EDL, there are other methods for uncertainty estima-
tion and calibration, including Bayesian Neural Networks via Variational Inference (Graves, 2011;
Blundell et al., 2015), MC-Dropout (Gal & Ghahramani, 2016), stochastic gradient MCMC (Welling
& Teh, 2011; Ma et al., 2015), and Laplace approximations (Ritter et al., 2018; Kristiadi et al., 2021),
recently extended to LoRA fine-tuned LLMs (Yang et al., 2024; Wang et al., 2024a; Li et al., 2024).

IB: The Information Bottleneck (IB) was introduced by Tishby et al. (1999) and later applied in neu-
ral networks for learning generalized representations (Tishby & Zaslavsky, 2015; Alemi et al., 2017;
Sun et al., 2022), and as a feature attribution method (Schulz et al., 2020; Zhang et al., 2021; Wang
et al., 2023b). Other works focusing on theory studied different Markov chains in IB (Wieczorek &
Roth, 2020) and the impact of IB on generalization errors (Kawaguchi et al., 2023).

6 CONCLUSION

Summary: We focused on a key challenge in fine-tuning LLMs: mitigating overconfidence and
improving calibration. We introduced an information-theoretic regularization to conventional EDL
to prevent over-concentrated distributions in predictions. Our method, IB-EDL, introduces minimal
computational overhead while significantly improving calibration in fine-tuned LLMs. Additionally,
IB-EDL maintains model performance even in the presence of substantial label noise. These results
highlight IB-EDL as a promising method for fostering more trustworthy LLMs.

Limitations and future work: Despite IB-EDL’s efficiency, there is room for improvement. To re-
duce the complexity of covariance matrix prediction, we assume the pre-evidences are uncorrelated,
but this assumption can be relaxed. Additionally, our evaluations primarily focused on conven-
tional classification tasks, where well-established metrics for calibration and uncertainty estimation
are available. In future work, it would be interesting to test IB-EDL on generative tasks. A great
challenge is that uncertainty estimation metrics for generative tasks are still an ongoing research
topic (Yadkori et al., 2024; Jesson et al., 2024).
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A DERIVATION OF THE VARIATIONAL BOUNDS

Upper bound of I(Z,X): We reproduce the derivation steps from Alemi et al. (2017) as follows:

I(Z,X) =

∫
p(x, z) log

p(z|x)
p(z)

dzdx = Ep(z|x)Ep(x)[log p(z|x)]− Ep(z)[log p(z)]. (16)

Given a prior r(z), we have DKL (p(z)∥r(z)) ≥ 0. This indicates that:

DKL (p(z)∥r(z)) =
∫
p(z) log

p(z)

r(z)
dz

= Ep(z)[log p(z)]− Ep(z)[log r(z)] ≥ 0.

Therefore,
Ep(z)[log p(z)] ≥ Ep(z)[log r(z)]. (17)

Plugging Eq. (17) into Eq. (16), we obtain

I(Z,X) = Ep(z|x)Ep(x)[log p(z|x)]− Ep(z)[log p(z)]

≤ Ep(z|x)Ep(x)[log p(z|x)]− Ep(z)[log r(z)]

≤ Ep(z|x)Ep(x)[log p(z|x)]− Ep(x)Ep(z|x) [log r(z)]

= Ep(x)Ep(z|x)

[
log

p(z|x)
r(z)

]
= Ep(x) [DKL (p(z|x)∥r(z))] .

(18)

Lower bound of I(Z, Y ): For clarity, we reproduce the derivation steps from Wieczorek & Roth
(2020) here. Unlike Alemi et al. (2017), who assume the Markov chain Z −X − Y , Wieczorek &
Roth (2020) assume the Markov chainX−Z−Y , implying the conditional independence p(y|z) =
p(y|z,x). The detailed steps are as follows:

I(Z, Y ) = Ep(x,y)Ep(z|x,y)[log p(y|z)] +H(Y )

= Ep(x)Ep(y|x)Ep(z|x,y)[log p(y|z,x)] +H(Y )
(19)

Now, we derive a lower bound on the term Ep(y|x)Ep(z|x,y)[log p(y|z,x)] in Eq. (19) as follows:

Ep(y|x)Ep(z|x,y)[log p(y|z,x)]

=

∫ ∫
p(z,y|x) log p(z,y|x)dzdy

=

∫ ∫
p(z,y|x) log p(y|x)p(z,y|x)

p(y|x)p(z|x)
dydz

= DKL (p(y, z|x)∥p(y|x)p(z|x)) +
∫ ∫

p(z,y|x) log p(y|x)dzdy

= DKL (p(y, z|x)∥p(y|x)p(z|x)) +
∫
p(y|x) log p(y|x)dy

= DKL (p(y, z|x)∥p(y|x)p(z|x)) +
∫ ∫

p(y|x)p(z|x) log p(z|x)dzdy

= DKL (p(y, z|x)∥p(y|x)p(z|x)) +
∫ ∫

p(y|x)p(z|x) log p(z|x)p(y|x)p(z,y|x)
p(z,y|x)p(z|x)

dzdy

= DKL (p(y, z|x)∥p(y|x)p(z|x)) +DKL (p(y|x)p(z|x)∥p(y, z|x))
+ Ep(z|x)p(y|x)[log p(y|z,x)]

≥ Ep(z|x)p(y|x)[log p(y|z,x)].
(20)

Plugging Eq. (20) into Eq. (19) and using p(y|z) = p(y|z,x) again, we obtain:
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I(Z, Y ) = Ep(x)Ep(y|x)Ep(z|x,y)[log p(y|z,x)] +H(Y )

= Ep(x)Ep(y|z)Ep(z|x)[log p(y|z)]
+ Ep(x) [DKL (p(y, z|x)∥p(y|x)p(z|x))]
+ Ep(x) [DKL (p(y|x)p(z|x)∥p(y, z|x))] +H(Y )

= Ep(x)Ep(y|z)Ep(z|x)[log p(y|z)]
+ I(Y,Z|X) + L(Y,Z|X) +H(Y )

≥ Ep(x)Ep(y|x)Ep(z|x)[log p(y|z)] +H(Y )

≥ Ep(x)Ep(y|x)Ep(z|x)[log p(y|z)],

(21)

where I(Y,Z|X) is the conditional mutual information, and L(Y, Z|X) is the conditional lautum
information (Palomar & Verdu, 2008), respectively.
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B PROOF OF PROPOSITION 1

A brief introduction to VB-based EDL methods: Some previous EDL methods (Chen et al.,
2018; Joo et al., 2020) derive the optimization objective from the variational Bayes (VB) perspective,
where the goal is to optimize the model’s parameters θ such that the posterior distribution p(π|x;θ)
aligns with the true posterior distribution p(π|y).
For notation simplicity, we omit the model’s parameters θ in p(π|x;θ) (or p(z|x;θ)) and use
p(π|x) (or p(z|x)) instead.
Remark 1. The condition in Proposition 1 is that the latent variable z = π, and the prior r(z) =
r(π) = Dir (π;y ⊙α+ (1− y)). In fact, the choice of the prior r(π) is not unique. For example,
Chen et al. (2018) present three options. The correctness of Proposition 1 remains unaffected by
the choice of prior. Proposition 1 uses one exemplary prior r(π) = Dir (π;y ⊙α+ (1− y))
suggested by Chen et al. (2018).

Proof. The target of VB-based EDL methods is:

min
θ

Ep(x)Ep(y|x) [DKL (p(π|x)∥p(π|y))] . (22)

Next, we show that the IB objective in Eq. (10) is an upper bound of Eq. (22) when z = π and
r(z) = r(π) for a given prior r(π), e.g., r(π) = Dir (π;y ⊙α+ (1− y)). Minimizing the IB
objective in Eq. (10) therefore provides a tractable way to approximate the minimization of Eq. (22).

If we choose β = 1, z = π and a prior r(z) = r(π), then the IB objective in Eq. (10) becomes

min
θ
−Ep(x)Ep(y|x)Ep(π|x) [log p(y|π)] + Ep(x) [DKL (p(π|x)∥r(π))] . (23)

Expanding Eq. (23), we have:

Ep(x) [DKL (p(π|x)∥r(π))]− Ep(x)Ep(y|x)Ep(π|x) [log p(y|π)]
= Ep(x,y) [DKL (p(π|x)∥r(π))]− Ep(x)Ep(y|x)Ep(π|x) [log p(y|π)]

= Ep(x)Ep(y|x)

[∫
p(π|x) log p(π|x)

r(π)
dπ

]
− Ep(x)Ep(y|x)

[∫
p(π|x) log p(y|π)dπ

]
≥ Ep(x)Ep(y|x)

[∫
p(π|x) log p(π|x)

p(π)
dπ

]
︸ ︷︷ ︸

Use DKL(p(π)∥r(π))≥0 (Similar to Eq. (18))

−Ep(x)Ep(y|x)

[∫
p(π|x) log p(y|π)dπ

]

≥ Ep(x)Ep(y|x)

[∫
p(π|x) log p(π|x)

p(π)
dπ

]
− Ep(x)Ep(y|x)

[∫
p(π|x) log p(y|π)dπ

]
−H(Y )︸ ︷︷ ︸

≤0

= Ep(x)Ep(y|x)

[∫
p(π|x) log p(π|x)

p(y|π)p(π)
dπ

]
+ Ep(y)[log p(y)]

= Ep(x)Ep(y|x)

[∫
p(π|x) log p(π|x)

p(y|π)p(π)
dπ

]
+ Ep(x)Ep(y|x) [log p(y)]

= Ep(x)Ep(y|x)

[∫
p(π|x) log p(π|x)p(y)

p(π,y)
dπ

]
= Ep(x)Ep(y|x)

[∫
p(π|x) log p(π|x)

p(π|y)
dπ

]
= Ep(x)Ep(y|x) [DKL (p(π|x)∥p(π|y))] ,

(24)

which is the target of VB-based EDL methods.
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Table 5: Loss weight β for IB-EDL.

Model ID Calibration

ARC-C ARC-E OBQA CSQA SciQ RACE

Llama2-7B 1× 10−3 1× 10−4 1.5× 10−4 5× 10−5 1× 10−6 1× 10−6

Llama3-8B 9× 10−5 2× 10−6 1× 10−5 3× 10−5 5× 10−7 1× 10−6

Mistral-7B 9× 10−5 1× 10−6 1× 10−5 5× 10−5 4× 10−6 2× 10−6

Model Learning with Label Noise

ARC-C ARC-E OBQA CSQA SciQ RACE

Llama2-7B 2× 10−3 1× 10−4 5× 10−4 1.6× 10−4 5× 10−6 1× 10−6

Llama3-8B 5× 10−6 2× 10−5 6× 10−5 3× 10−5 5× 10−6 2× 10−6

Mistral-7B 1× 10−5 2× 10−5 9× 10−5 1× 10−5 1× 10−6 7× 10−6

C DETAILED IMPLEMENTATION

Models: We fine-tuned three models: Llama2-7B (Touvron et al., 2023), Llama3-8B (Dubey et al.,
2024), and Mistral-7B-v0.1 (Jiang et al., 2023).

LoRA hyperparameters: We applied LoRA (Hu et al., 2022) finetuning using the PEFT (Man-
grulkar et al., 2022) library. For all models, LoRA adaptors were applied to the q proj, v proj,
and lm head modules. Additionally, we used Dropout with a dropout rate of p = 0.1, LoRA
α = 16, rank r = 8, and set bias = "lora only".

Training details: For the MAP baseline and all EDL methods, all models were trained for 30000
steps on the CSQA dataset and 10080 steps on the other datasets. The learning rate was set to
0.00005 and annealed using a cosine schedule. The maximum token length was set to 300 for the
RACE dataset and 256 for all other datasets. Training was conducted with bfloat16 precision.
For MCD (Gal & Ghahramani, 2016), we performed 10 forward passes. For Ens (Lakshminarayanan
et al., 2017; Fort et al., 2019), we used predictions from 3 models. For LA (Yang et al., 2024), I-
EDL (Deng et al., 2023), and R-EDL (Chen et al., 2024), we used the original implementations and
hyperparameters; please refer to the respective official codebases. For EDL methods, we follow the
previous works to apply gradient clipping with maximal gradient norm of 20 to stabilize the training.

IB-EDL implementation details: Both linear prediction heads (for µ and σ) are initialized using
the linear head from the pretrained LLM. Additionally, both heads are equipped with LoRA adapters
and are jointly trained alongside the LoRA weights of the transformer encoder layers. By default,
we used K = 20 for sampling pre-evidences from the predicted Gaussian distribution during both
training and inference. Table 5 lists the β values used in different experiments. Note that for OOD
detection experiments, the parameters are identical to those used for OBQA, as OBQA is the training
set for these experiments. We optimized β values using grid search. We suggest a guideline for
selecting β: if the MAP baseline shows lower accuracy and higher ECE, or in the presence of label
noise, a larger β may be chosen to encourage stronger compression and forgetting of the input.
Otherwise, a smaller β can be selected to allow more information from the input follow through the
pre-evidences.

D A POST-HOC CALIBRATION TECHNIQUE FOR IB-EDL

In this section, we introduce an additional post-hoc calibration technique aimed at further refining
the calibration of the IB-EDL finetuned model.

Intuition: The key motivation behind this calibration method is to account for an additional source
of uncertainty in IB-EDL: the variance σ2

j of the pre-evidences. In IB-EDL, the uncertainty mass
and belief mass are normalized by the constraint:

∑
j bj + u = 1, where bj =

αj−1∑
j αj

. To
incorporate the additional uncertainty arising from the variance of pre-evidences, we consider the
effect of increasing u, which leads to a reduction in

∑
j bj . This suggests the need to adjust αj by
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Table 6: Calibration performance of uncertainty-aware methods on fine-tuned Mistral-7B.

Metrics Method ARC-C ARC-E OBQA CSQA SciQ RACE

Acc ↑

MAP 80.19±0.68 92.07±0.12 88.06±0.61 83.24±1.47 94.73±0.06 86.61±0.28

MCD 80.26±0.52 92.13±0.15 88.07±0.61 83.24±1.47 94.73±0.06 86.64±0.22

Ens 80.48±0.45 92.41±0.12 88.51±0.18 83.41±1.44 94.80±0.10 86.81±0.21

LA 78.47±1.10 92.12±0.11 88.19±0.69 83.21±1.01 94.66±0.16 86.34±0.39

EDL 80.60±0.47 92.27±0.44 87.23±1.42 83.31±0.34 94.27±0.23 85.70±0.41

VID 80.37±0.39 91.85±0.13 88.33±0.81 82.52±0.54 94.17±0.12 86.40±0.21

I-EDL 80.46±1.63 92.28±0.15 88.06±0.31 82.91±0.20 94.03±0.32 85.11±0.61

R-EDL 80.12±0.97 92.20±0.15 88.33±0.91 83.07±0.83 94.03±0.31 86.07±0.28

IB-EDL 80.57±0.68 92.47±0.12 88.73±0.70 83.65±0.45 94.40±0.26 86.40±0.32

ECE ↓

MAP 19.42±0.68 7.63±0.16 11.29±0.31 15.72±1.46 4.98±0.06 8.43±0.46

MCD 19.26±0.52 7.62±0.16 11.22±0.40 15.72±1.46 4.98±0.06 8.42±0.47

Ens 17.04±1.58 7.03±0.79 8.87±0.90 14.18±2.52 4.78±0.13 8.21±0.62

LA 20.04±0.62 1.57±0.39 4.49±0.17 15.11±2.95 1.91±0.46 2.94±0.25

EDL 6.21±1.18 6.25±0.46 6.23±0.56 7.71±0.86 7.64±0.85 7.75±0.86

VID 9.38±0.46 2.44±0.16 4.88±0.77 7.32±0.74 5.62±0.52 4.20±0.13

I-EDL 4.70±2.15 10.94±1.27 9.63±0.75 8.85±0.44 11.00±0.30 13.16±0.87

R-EDL 11.26±0.18 2.86±1.07 5.43±0.65 6.30±0.65 4.48±0.23 3.69±0.52

IB-EDL 3.60±1.10 3.49±1.24 2.27±0.67 6.02±0.08 4.99±1.22 3.58±0.22

NLL ↓

MAP 2.18±0.14 0.85±0.03 0.85±0.02 1.18±0.06 0.31±0.01 0.52±0.01

MCD 2.18±0.13 0.84±0.04 0.84±0.03 1.18±0.07 0.31±0.01 0.52±0.02

Ens 1.82±0.17 0.78±0.10 0.67±0.04 1.01±0.13 0.28±0.01 0.51±0.03

LA 0.78±0.02 0.29±0.01 0.38±0.02 0.59±0.03 0.17±0.01 0.45±0.03

EDL 0.71±0.04 0.35±0.02 0.47±0.03 0.63±0.01 0.27±0.01 0.47±0.02

VID 0.76±0.03 0.36±0.01 0.46±0.01 0.68±0.02 0.24±0.01 0.41±0.01

I-EDL 0.71±0.05 0.38±0.02 0.45±0.01 0.65±0.01 0.29±0.01 0.50±0.01

R-EDL 0.77±0.02 0.33±0.01 0.41±0.03 0.64±0.01 0.24±0.01 0.45±0.01

IB-EDL 0.70±0.01 0.32±0.02 0.41±0.01 0.61±0.01 0.23±0.01 0.40±0.01

subtracting a term that is proportional to the standard deviation σj , which is predicted by IB-EDL.
We parameterize this adjustment as ζ · σj , where ζ is a scalar hyperparameter. Consequently, we
update αj as follows: αj ← αj−ζ ·σj . The intuition behind this update is that if the model exhibits
high uncertainty in predicting αj (i.e., predicting pre-evidences ẽj), we enforce a more conservative
belief representation by reducing αj accordingly. This adjustment prevents excessively large values
of αj and ensures a more calibrated uncertainty estimation. As a result, the updated uncertainty mass
is given by: u = C∑

j αj−ζ·
∑

j σj
. This approach effectively integrates the variance of pre-evidences

into the calibration process, leading to improved uncertainty quantification in IB-EDL.

Determining the optimal value of ζ: Theoretically, the EDL model can still be overconfident or
underconfident after training, leading to an overestimation or underestimation of the uncertainty
mass u. Since u may require adjustment in either direction, we allow the hyperparameter ζ ∈ R
to be either positive or negative, enabling calibration in both cases. To determine the optimal ζ,
we recommend to analyze the calibration curve (Guo et al., 2017) on the training or validation set,
which plots accuracy against confidence for binned samples. If the calibration curve lies below
the optimal diagonal line, it indicates that the model is overconfident. In this case, we set ζ > 0
to encourage greater uncertainty and improve calibration. Conversely, if the calibration curve lies
above the diagonal, the model is underconfident, and we set ζ < 0 to increase certainty and correct
for underconfidence.

Values of ζ used in additional experiments: It is important to note that this post-hoc calibration
technique is an optional component of IB-EDL and is not required in all cases. In the experiments
presented in the main text, we omit this technique. In the calibration experiment on OOD test sets
presented in Table 12, we use ζ = −1.0 for OBQA→ ARC-C, ζ = 3.0 for OBQA→ ARC-E, and
ζ = −5.0 for OBQA→ CSQA.
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Table 7: OOD detection performance on fine-tuned Mistral-7B. A → B indicates A as the ID
training set and B as the OOD test set. MP and UM are two scores for measuring AUROC.

Model Method
OBQA→ ARC-C OBQA→ ARC-E OBQA→ CSQA

AUROC ↑ AUROC ↑ AUROC ↑
MP UM MP UM MP UM

Mistral-7B

MAP 60.40±1.36 − 53.30±1.16 − 63.70±1.10 −
MCD 60.39±1.37 − 53.30±1.16 − 63.70±1.10 −
Ens 60.67±0.87 − 54.05±0.88 − 63.80±1.09 −
LA 61.61±1.05 − 53.14±0.93 − 68.31±1.11 −

EDL 84.17±1.87 77.34±6.97 81.81±2.31 74.18±6.38 83.55±2.67 78.28±5.81

VID 86.30±3.85 84.74±0.89 88.16±1.87 90.68±0.17 88.93±1.39 81.45±2.04

I-EDL 85.02±0.90 82.28±1.44 82.67±1.34 79.42±2.33 85.08±0.87 82.07±1.43

R-EDL 76.26±1.05 72.85±0.61 71.95±0.78 67.56±0.72 75.59±1.32 71.93±2.05

IB-EDL 90.28±1.22 88.53±1.08 89.54±1.16 94.29±0.49 90.45±1.13 83.85±2.55

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 ID CALIBRATION AND OOD DETECTION RESULTS OF MISTRAL-7B

In this subsection, we present the ID calibration and OOD detection performance of the fine-tuned
Mistral-7B model. Table 6 provides an overview of the calibration performance on ID datasets,
while Table 7 reports the OOD detection results.

E.2 ADDITIONAL RESULTS OF FINE-TUNING MODELS ON NOISY DATASETS

Table 8 and Table 9, and Table 10 show the results of fine-tuning Llama2-7B, Llama3-8B, and
Mistral-7B on noisy datasets, respectively.

Results: In the context of noisy data, the primary objective is to preserve accuracy. Therefore, in
Section 4.4 of the main text, we focus primarily on accuracy results. As highlighted in Section 4.2,
a good uncertainty-aware method should achieve comparable accuracy while maintaining a low
calibration error, a position shared by many other current research efforts (see, e.g., Chen et al.,
2024). Here, we thus provide additional results for the ECE and NLL metrics. In the presence
of label noise, Non-EDL methods tend to underperform EDL methods significantly in terms of
accuracy. In the comparisons of Tables 8 to 10, we therefore focus on the comparison of EDL
methods, which manage to strike the right balance of good accuracy and uncertainty quantification.
Among these, IB-EDL demonstrates the highest accuracy and achieves the lowest ECE and NLL
compared to other EDL approaches, highlighting its robustness against label noise.

E.3 ADDITIONAL OOD DETECTION RESULTS ON MMLU-MATH DATASET

We conduct additional OOD detection experiments using Llama2-7B in a setting characterized by a
significant distribution shift. For this purpose, we select a subset of the MMLU dataset (Hendrycks
et al., 2021a;b) as the OOD test set, which includes data samples from the math-related topics
college mathematics, high school mathematics, and abstract algebra. We re-
fer to this subset as the MMLU-Math dataset. In addition, we use the OBQA dataset as the ID
dataset. While OBQA focuses on common-sense reasoning, the MMLU-Math dataset requires ad-
vanced mathematical knowledge to solve its questions. As a result, the distribution shift in this
setting is substantially larger compared to settings like OBQA→ ARC-C.

As shown in Table 11, IB-EDL consistently achieves the best OOD detection performance when us-
ing either MP or UM as the detection score. Additionally, a general trend is observed: the AUROCs
of IB-EDL and other baselines improve as the distribution shift increases compared to the setting
OBQA→ ARC-C.
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Table 8: Fine-tuning Llama2-7B on noisy datasets. In each training dataset, the labels of 30% sam-
ples are randomly perturbed. A robust uncertainty-aware method should not only maintain accuracy
but also exhibit low calibration error. Non-EDL methods tend to significantly underperform EDL
methods in terms of Accuracy. Therefore, the comparison for ECE and NLL is limited to EDL
methods, with the best and second-best values among them highlighted.

Metrics Method ARC-C ARC-E OBQA CSQA SciQ RACE

Acc ↑

MAP 51.08±2.96 71.39±2.73 73.93±2.21 74.56±0.31 88.63±0.06 76.83±0.39

MCD 51.08±2.96 71.40±2.72 73.93±2.20 74.56±0.32 88.64±0.06 76.95±0.19

Ens 56.10±3.11 76.03±1.99 75.23±1.06 74.59±0.23 88.64±0.06 76.94±0.22

LA 53.38±2.17 74.90±1.76 74.57±2.22 74.59±0.20 88.47±0.21 77.04±0.39

EDL 57.16±3.33 76.16±1.12 74.46±1.33 74.65±0.05 89.03±0.25 77.69±0.44

VID 57.56±0.58 76.57±1.79 76.67±1.42 75.97±0.66 89.06±0.21 78.75±0.25

I-EDL 53.86±1.25 76.08±0.71 77.00±0.88 74.01±1.28 89.26±0.32 76.48±0.87

R-EDL 57.00±0.76 76.96±1.07 73.20±1.44 74.36±0.49 87.33±0.49 78.01±0.53

IB-EDL 59.06±2.07 80.27±0.48 78.13±0.99 76.35±0.66 89.06±0.50 79.41±0.59

ECE ↓

MAP 21.89±0.11 8.95±1.04 8.21±0.78 4.45±1.51 19.05±0.17 15.87±0.30

MCD 21.87±0.12 8.91±1.10 8.23±0.82 4.47±1.55 19.04±0.16 15.84±0.26

Ens 8.24±1.18 7.83±0.28 11.63±1.12 4.42±1.52 18.91±0.12 15.90±0.94

LA 7.12±1.06 27.02±1.39 22.06±2.11 22.57±0.09 26.28±0.04 24.70±0.24

EDL 8.38±1.91 26.16±4.44 35.64±2.97 44.29±2.42 46.47±0.24 30.59±1.14

VID 19.14±0.99 13.28±1.84 15.00±0.98 13.76±0.90 23.49±0.34 21.22±0.63

I-EDL 13.97±9.04 35.30±1.74 37.56±0.53 38.77±1.59 48.60±0.37 36.34±1.09

R-EDL 12.25±1.18 20.67±2.30 28.02±2.63 33.64±0.29 39.58±0.56 30.42±0.89

IB-EDL 11.21±2.27 13.48±1.61 12.30±1.65 10.48±0.82 23.47±0.31 21.15±0.36

NLL ↓

MAP 1.94±0.06 1.05±0.09 0.74±0.03 0.84±0.02 0.50±0.01 0.73±0.00

MCD 1.94±0.05 1.05±0.09 0.74±0.03 0.81±0.02 0.49±0.01 0.72±0.02

Ens 1.37±0.21 0.73±0.06 0.73±0.03 0.83±0.01 0.49±0.01 0.73±0.01

LA 1.32±0.06 1.03±0.03 0.85±0.00 0.92±0.01 0.56±0.00 0.81±0.00

EDL 1.19±0.03 0.97±0.03 1.05±0.02 1.35±0.11 0.92±0.01 0.90±0.03

VID 1.27±0.01 0.83±0.03 0.76±0.03 0.85±0.01 0.54±0.01 0.71±0.01

I-EDL 1.29±0.12 1.09±0.02 1.03±0.01 1.20±0.01 0.95±0.00 1.02±0.01

R-EDL 1.24±0.01 0.92±0.01 0.95±0.03 1.13±0.01 0.83±0.01 0.93±0.01

IB-EDL 1.18±0.03 0.74±0.03 0.71±0.03 0.81±0.01 0.52±0.01 0.71±0.01

E.4 ADDITION CALIBRATION RESULTS ON OOD TEST SETS

In this section, we evaluate the calibration performance on OOD test sets to assess whether the
uncertainty-aware methods can generalize effectively to OOD datasets. Specifically, we fine-tune
Llama3-8B on the OBQA dataset and evaluate it on three OOD test sets. As shown in Table 12,
IB-EDL achieves the best ECE and NLL on two out of the three OOD test sets, demonstrating that
its calibration performance generalizes well to OOD datasets.

E.5 ANALYSIS ON TRAINING AND INFERENCE SPEED, AND MEMORY CONSUMPTION

In this section, we evaluate the complexity of uncertainty-aware methods using three key metrics:
(1) the number of samples processed per second during training; (2) the number of samples pro-
cessed per second during inference; and (3) GPU memory consumption during training. For this
experiment, we use Llama3-8B in mixed precision as the model and OBQA as both the training
and test dataset. All experiments are conducted on a single NVIDIA H100 GPU. As shown in Ta-
ble 13, IB-EDL demonstrates comparable training and inference speeds as well as similar memory
consumption to MAP and other EDL baselines. Moreover, IB-EDL attains faster inference speeds
compared to methods such as MCD and Ens, which require multiple forward passes, and LA, which
involves gradient computation during inference. This substantial improvement in speed further high-
lights the computational efficiency of IB-EDL.
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Table 9: Fine-tuning Llama3-8B on noisy datasets. In each training dataset, the labels of 30% sam-
ples are randomly perturbed. A robust uncertainty-aware method should not only maintain accuracy
but also exhibit low calibration error. Non-EDL methods tend to significantly underperform EDL
methods in terms of Accuracy. Therefore, the comparison for ECE and NLL is limited to EDL
methods, with the best and second-best values among them highlighted.

Metrics Method ARC-C ARC-E OBQA CSQA SciQ RACE

Acc ↑

MAP 57.71±0.42 80.34±1.47 78.78±1.00 77.04±0.41 92.60±0.53 86.93±0.11

MCD 57.71±0.42 80.37±1.46 79.00±0.92 77.05±0.41 92.87±0.12 86.93±0.12

Ens 63.39±1.09 84.63±0.53 80.61±0.53 77.62±0.41 92.97±0.06 86.93±0.07

LA 66.62±1.08 82.64±0.50 79.59±0.72 77.80±0.49 92.93±0.21 87.00±0.01

EDL 69.43±0.98 87.57±0.13 85.60±0.72 79.14±0.41 92.90±0.40 86.26±0.76

VID 66.58±1.92 87.67±0.99 84.86±1.01 79.66±1.26 93.23±0.25 86.86±0.26

I-EDL 63.87±2.65 84.06±2.80 84.26±0.42 78.02±0.87 92.53±0.37 86.01±0.51

R-EDL 71.25±1.20 84.91±3.91 85.73±0.70 78.57±0.21 93.56±0.05 86.16±0.42

IB-EDL 68.53±0.25 88.05±0.43 86.13±0.51 79.59±0.79 93.46±0.38 87.01±0.20

ECE ↓

MAP 13.26±0.85 8.52±0.63 3.72±1.06 8.43±1.04 16.29±0.43 19.61±0.25

MCD 12.96±1.15 8.51±0.62 4.17±1.45 8.40±1.07 16.29±0.43 19.64±0.26

Ens 10.41±0.74 11.09±0.59 4.24±1.91 8.21±0.21 16.15±0.16 19.69±0.23

LA 19.02±0.78 23.63±1.74 11.61±0.29 18.05±0.86 18.36±0.37 20.99±0.18

EDL 11.01±0.79 24.29±0.81 41.29±0.62 34.19±1.93 48.36±0.43 34.92±0.46

VID 5.90±0.97 19.58±0.29 19.53±0.77 15.22±1.15 26.30±0.22 22.25±0.25

I-EDL 9.57±2.10 33.57±6.96 42.64±0.36 41.89±1.18 50.13±0.31 42.49±0.20

R-EDL 14.50±2.55 23.91±2.93 35.09±0.84 30.95±2.78 41.89±0.15 30.74±0.94

IB-EDL 6.73±1.30 19.49±0.38 17.38±0.52 11.73±1.11 25.00±0.33 23.43±0.32

NLL ↓

MAP 1.39±0.05 0.78±0.03 0.64±0.01 0.83±0.01 0.39±0.01 0.56±0.01

MCD 1.38±0.02 0.78±0.03 0.64±0.03 0.82±0.02 0.40±0.01 0.57±0.01

Ens 1.15±0.05 0.64±0.03 0.61±0.01 0.78±0.02 0.39±0.01 0.57±0.02

LA 1.11±0.01 0.80±0.02 0.63±0.02 0.85±0.01 0.39±0.00 0.57±0.01

EDL 0.94±0.02 0.70±0.01 0.92±0.01 1.04±0.03 0.85±0.00 0.78±0.01

VID 0.98±0.03 0.62±0.02 0.63±0.01 0.80±0.02 0.49±0.01 0.57±0.01

I-EDL 1.03±0.03 0.87±0.06 0.96±0.01 1.16±0.00 0.89±0.01 0.91±0.00

R-EDL 1.00±0.02 0.76±0.05 0.83±0.02 0.99±0.02 0.72±0.00 0.73±0.01

IB-EDL 0.99±0.02 0.60±0.01 0.57±0.01 0.74±0.02 0.46±0.01 0.57±0.01

E.6 SENSITIVITY ANALYSIS ON THE NUMBER OF BINS OF ECE

Following Yang et al. (2024), we use 15 bins by default when measuring ECE. To assess the im-
pact of this hyperparameter, we conduct a sensitivity analysis by varying the number of bins across
{10, 15, 25, 35}. For this experiment, we train and test Llama3-8B on the OBQA dataset and calcu-
late the ECE for each bin setting. As shown in Table 14, although ECE values increase slightly with
a higher number of bins, the relative rankings of the methods remain largely consistent.
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Table 10: Fine-tuning Mistral-7B on noisy datasets. In each training dataset, the labels of 30%
samples are randomly perturbed. A robust uncertainty-aware method should not only maintain ac-
curacy but also exhibit low calibration error. Non-EDL methods tend to significantly underperform
EDL methods in terms of Accuracy. Therefore, the comparison for ECE and NLL is limited to EDL
methods, with the best and second-best values among them highlighted.

Metrics Method ARC-C ARC-E OBQA CSQA SciQ RACE

Acc ↑

MAP 50.65±0.30 66.30±2.16 75.72±0.46 69.81±0.55 92.96±0.32 85.47±0.35

MCD 50.65±0.30 66.21±2.04 75.46±0.24 69.77±0.51 92.93±0.31 85.46±0.35

Ens 58.16±0.47 76.10±0.86 76.93±2.14 74.18±1.50 92.93±0.39 85.62±0.28

LA 66.35±0.63 75.48±1.88 78.20±1.25 74.24±1.01 93.02±0.29 85.57±0.06

EDL 61.63±1.80 85.01±0.23 83.20±1.25 76.63±0.98 93.33±0.06 84.91±0.10

VID 62.27±2.18 76.98±1.13 82.06±1.51 77.31±1.01 93.20±0.17 85.59±0.06

I-EDL 68.28±1.19 79.73±0.57 81.06±0.81 77.41±0.09 93.33±0.31 84.44±0.28

R-EDL 76.39±0.60 86.85±0.69 82.76±1.73 77.10±1.10 93.09±0.78 85.07±0.34

IB-EDL 66.44±0.80 85.17±1.39 84.33±0.51 77.44±0.39 93.63±0.21 85.68±0.20

ECE ↓

MAP 18.08±0.45 9.95±1.18 7.83±0.62 9.61±0.98 15.11±0.28 17.80±0.33

MCD 18.24±0.65 9.94±1.18 7.82±0.61 9.60±0.99 15.10±0.27 17.80±0.33

Ens 10.94±0.21 12.40±0.34 7.02±0.61 8.72±0.29 15.09±0.17 18.58±0.46

LA 18.50±1.46 17.31±0.23 13.92±1.45 15.04±0.41 18.13±0.19 18.32±0.59

EDL 12.76±0.41 19.84±0.95 32.57±1.89 25.26±5.63 48.55±0.33 34.06±0.14

VID 6.27±0.66 13.17±0.76 13.92±0.97 11.66±1.17 26.45±0.16 22.01±0.08

I-EDL 13.14±1.17 21.44±1.54 35.10±1.07 33.29±1.04 50.90±0.44 41.19±0.27

R-EDL 17.63±2.83 17.57±0.42 18.55±1.68 21.35±1.24 41.48±0.26 29.40±0.31

IB-EDL 7.46±1.58 19.08±3.68 14.90±0.50 11.58±0.43 25.08±0.27 22.04±0.06

NLL ↓

MAP 1.67±0.03 0.98±0.06 0.73±0.05 0.98±0.03 0.38±0.01 0.56±0.00

MCD 1.67±0.03 0.98±0.06 0.70±0.03 0.98±0.03 0.38±0.01 0.56±0.01

Ens 1.32±0.01 0.73±0.03 0.64±0.04 0.81±0.02 0.39±0.01 0.57±0.02

LA 1.08±0.03 0.83±0.03 0.70±0.03 0.93±0.01 0.40±0.01 0.56±0.00

EDL 0.93±0.05 0.67±0.00 0.82±0.03 0.99±0.04 0.85±0.00 0.78±0.01

VID 1.04±0.06 0.74±0.02 0.63±0.01 0.84±0.01 0.50±0.01 0.60±0.01

I-EDL 0.96±0.04 0.76±0.02 0.90±0.01 1.05±0.02 0.89±0.00 0.91±0.01

R-EDL 0.93±0.03 0.64±0.02 0.64±0.03 0.97±0.04 0.72±0.01 0.72±0.01

IB-EDL 0.98±0.02 0.69±0.03 0.57±0.01 0.81±0.01 0.45±0.01 0.60±0.01

Table 11: OOD Detection AUROC on Llama3-8B in the setting OBQA→ MMLU-Math. IB-EDL
achieves the best performance even under significant distribution shifts, such as transitioning from a
common-sense reasoning dataset like OBQA to a math-focused OOD dataset.

Method
OBQA→MMLU-Math

AUROC ↑
MP UM

MAP 91.36±0.57 -
MCD 90.85±0.33 -
Ens 90.68±0.80 -
LA 91.09±0.41 -

EDL 92.78±0.26 92.86±0.21

VID 91.64±0.79 66.61±4.98

I-EDL 91.48±0.72 90.67±0.88

R-EDL 88.44±2.11 88.22±1.70

IB-EDL 93.63±0.66 93.64±0.56
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Table 12: Calibration performance of uncertainty-aware methods on fine-tuned Llama3-8B in the
OOD setting. The model is trained on OBQA and tested on three different OOD test sets.

Metrics Method OBQA→ ARC-C OBQA→ ARC-E OBQA→ CSQA

Acc ↑

MAP 79.18±0.45 88.06±0.20 69.37±0.67

MCD 79.16±0.43 88.05±0.20 69.38±0.68

Ens 79.27±0.25 88.15±0.02 69.14±0.47

LA 79.38±0.40 88.36±0.24 69.34±0.58

EDL 78.27±0.79 86.38±0.87 69.34±0.88

VID 78.27±0.57 87.41±0.82 69.99±1.07

I-EDL 78.55±0.30 87.55±0.20 70.49±0.56

R-EDL 78.32±1.24 87.31±0.93 70.62±1.28

IB-EDL 78.31±1.14 87.94±0.22 71.29±0.96

ECE ↓

MAP 18.04±0.38 9.63±0.47 27.85±0.53

MCD 18.06±0.36 9.63±0.46 27.86±0.46

Ens 16.74±0.13 9.19±0.65 27.07±1.32

LA 6.61±0.41 3.02±0.15 11.99±0.72

EDL 7.65±0.47 10.11±0.85 8.32±1.33

VID 8.74±1.19 3.19±0.19 16.66±0.73

I-EDL 7.68±1.19 11.38±0.65 5.96±0.71

R-EDL 5.03±0.62 5.32±0.46 12.84±1.73

IB-EDL 4.67±1.09 5.03±0.15 4.51±0.15

NLL ↓

MAP 1.30±0.02 0.71±0.03 2.06±0.04

MCD 1.33±0.06 0.70±0.04 2.13±0.13

Ens 1.19±0.03 0.68±0.05 2.01±0.10

LA 0.73±0.02 0.42±0.02 1.15±0.01

EDL 0.74±0.01 0.52±0.01 0.98±0.03

VID 0.78±0.01 0.46±0.02 1.06±0.02

I-EDL 0.73±0.02 0.53±0.01 0.94±0.01

R-EDL 0.73±0.04 0.46±0.01 1.00±0.05

IB-EDL 0.72±0.02 0.44±0.02 0.93±0.02

Table 13: Comparison of computational efficiency for various methods using Llama3-8B on the
OBQA. IB-EDL demonstrates comparable training and inference speeds as well as memory con-
sumption compared to MAP and other EDL methods, confirming its computational efficiency.

Method Test Samples/s ↑ Training Samples/s ↑ Memory (GB) at Training↓
MAP 69.55±2.86 26.57±1.96 21.21±0.35

MCD (10 forwards) 9.79±1.21 - -
Ens (3 models) 25.77±3.54 - -

LA 5.95±0.49 - -
EDL 68.99±1.59 26.44±1.11 21.23±0.15

VID 69.17±0.99 26.69±1.37 21.29±0.37

I-EDL 68.94±2.18 26.02±0.71 21.33±0.11

R-EDL 68.84±1.09 26.47±1.09 21.27±0.21

IB-EDL 68.08±1.75 26.41±1.04 21.88±0.66
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Table 14: Sensitivity analysis of ECE with respect to the number of bins. We train and test Llama3-
8B on the OBQA dataset. The results show that while the ECE values increase slightly as the number
of bins increases, the relative rankings of the methods remain consistent.

Method Bins = 10 Bins = 15 Bins = 25 Bins = 35

MAP 10.45±0.52 10.52±0.87 10.89±0.67 10.99±1.01

MCD 10.31±0.37 10.48±0.86 10.69±0.59 10.83±0.76

Ens 10.11±0.13 10.08±0.90 10.91±0.40 10.92±0.84

LA 5.20±1.29 5.26±1.30 6.33±1.11 6.42±0.96

EDL 8.16±1.25 8.28±1.62 8.78±1.27 9.44±1.79

VID 5.29±0.50 5.99±1.41 7.16±1.59 7.34±1.17

I-EDL 7.31±0.33 7.57±0.52 8.20±0.46 9.01±0.50

R-EDL 4.64±0.87 4.68±1.35 4.81±1.09 5.47±0.82

IB-EDL 2.77±0.61 2.34±0.61 3.91±0.77 4.54±0.52
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