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Abstract

India has a rich linguistic landscape, with languages from 4 major language families spoken by over
a billion people. 22 of these languages listed in the Constitution of India (referred to as scheduled
languages) are the focus of this work. Given the linguistic diversity, high-quality and accessible
Machine Translation (MT) systems are essential in a country like India. Prior to this work, there was
(i) no parallel training data spanning all 22 languages, (ii) no robust benchmarks covering all these
languages and containing content relevant to India, and (iii) no existing translation models which
support all 22 scheduled languages of India. In this work, we aim to address this gap by focusing
on the missing pieces required for enabling wide, easy, and open access to good machine translation
systems for all 22 scheduled Indian languages. We identify four key areas of improvement: curating
and creating larger training datasets, creating diverse and high-quality benchmarks, training multi-
lingual models, and releasing models with open access. Our first contribution is the release of the
Bharat Parallel Corpus Collection (BPCC), the largest publicly available parallel corpora for Indic
languages. BPCC contains a total of 230M bitext pairs, of which a total of 126M were newly added,
including 644K manually translated sentence pairs created as part of this work. Our second contribu-
tion is the release of the first n-way parallel benchmark covering all 22 Indian languages, featuring
diverse domains, Indian-origin content, and conversational test sets. Next, we present IndicTrans2,
the first translation model to support all 22 languages, surpassing existing models in performance on
multiple existing and new benchmarks created as a part of this work. Lastly, to promote accessibil-
ity and collaboration, we will release our models and associated data with permissive licenses upon
de-anonymization.

1 Introduction

India is a linguistically diverse region, with 1,369 distinct mother tongues identified in the census conducted in 2011.
Of these, 22 languages have been listed in the 8" Schedule of the Constitution of India. Approximately 97% of the
population of India speaks one of these 22 languages as their first language. English is widely spoken and serves as the
default medium of formal communication in many areas, particularly in business, education, government, and judiciary.
With such linguistic diversity, the importance in India of language translation for effective communication, social inclu-
sion, equitable access, and national integrity cannot be over-emphasized. For example, for effective dissemination of
information about government policies and welfare schemes, it is necessary to translate official documents and websites
into regional languages. In the context of the judiciary, it is crucial to translate court proceedings and judgments into
regional languages so that the petitioners, accused, and witnesses can understand and better participate in the judicial
process. Similarly, in the context of education, translation can ensure that high-quality content becomes accessible to
more learners in their regional languages. Lastly, translation also plays a vital role in national integration by ensuring
that people migrating/traveling to and from different parts of the country can communicate better with people in their
new locations.

The last decade has seen rapid progress in Neural Machine Translation, with the latest neural models (Johnson et al.,
2017; Liu et al., 2020a; Fan et al., 2020; Kim et al., 2021; Lepikhin et al., 2021; Ramesh et al., 2022; Team et al., 2022;
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Siddhant et al., 2022) supporting hundreds of languages and thousands of translation directions. However, these
models either do not have a good coverage of Indian languages, or their performance on Indian languages is poor, or
both. Further, none of these models are evaluated on a diverse set of domains or content of Indian origin, as there are no
robust benchmarks designed explicitly for Indian languages. Another evidence of the neglect for Indian languages is that
in the past 16 years since its inception, the shared tasks run under the Workshop on Machine Translation (WMT) have
only covered a total of 4 Indian languages summed across all these years.! While the Workshop on Asian Translation
(WAT) (Nakazawa et al., 2022) and the Workshop on Speech and Language Technologies for Dravidian Languages
(Madasamy et al., 2022) have made significant contributions, they have not garnered the same level of popularity or
academic participation as the WMT. As a result, despite the rapid progress in the broader field of Machine Translation,
no single commercial or open-source translation model supports all the 22 languages listed in the Constitution.

In this paper, we pose the following question: What are the missing pieces required for enabling wide and easy access to
high-quality machine translation for all 22 scheduled Indian languages? We believe there are four axes of improvement
required: (a) curation and creation of significantly larger training datasets, (b) creation of high quality and diverse
benchmarks, (c) training and evaluation of multilingual models, and (d) releasing of models with open access. For axis
(a) training datasets, we need to create high-quality “seed data” comprising of manually translated parallel sentences for
all the 22 languages with representation from diverse domains. It is to be noted that for several of the 22 languages, no
publicly available translation data exists. This manually created data has to be supplemented with a higher volume of
semi-automatically generated data by bitext mining from web-scale monolingual corpora and multilingual documents.
For axis (b) benchmarks, we need expert-created highly accurate benchmarks for all 22 languages across variations
such as formality of language, length of sentences, domain of text, and source originality. For axis (c) models, we
need to train accurate multilingual models that exploit the similarity between Indian languages and particularly benefit
low-resource languages. We also need to improve processes for the evaluation of models by choosing robust metrics
that are shown to correlate with human evaluation for Indian languages. In addition, we need to evaluate models with
other metrics, such as improvement in post-editing performance. Finally, for axis (d) open access, it is vital that created
models have permissive licenses which can be commercially deployed. For instance, Meta’s NLLB models, though
released in the open, have a CC-BY-NC license precluding commercial usage. In this paper, we contribute across these
four axes with many notable firsts that we highlight below.

Training datasets. We release the largest publicly available parallel corpora for Indic languages, the Bharat
Parallel Corpus Collection (BPCC). As summarized in Table 1, BPCC contains a total of ~230M bitext pairs, of
which a total of ~126M were newly added as part of this work. BPCC includes the following:

Seed training data containing human translations of English sentences to all 22 Indic languages spanning multiple
domains. This has a total of 644K En-X translation pairs across all languages, including 7 languages for which no
manually created parallel data existed prior to this work.

Bitext pairs from existing collections such as Samanantar (Ramesh et al., 2022) and NLLB (Team et al., 2022) which
were further filtered using LaBSE (Feng et al., 2022) based cosine similarity thresholds.

* New bitext pairs mined from additional monolingual sources such as archive.org and IndicCorpv2 (Doddapaneni
et al., 2023) which were not covered in the existing collections mentioned above.

New bitext pairs mined from additional document-aligned parallel sources such as NPTEL, UGCResources, Prabhu-
pada Vani, etc. which were not covered in the existing collections mentioned above.

A very large set of ~800 million back-translated sentences from diverse sources such as IndicCorpv2 (Doddapaneni
et al., 2023), monolingual side of NLLB data (Team et al., 2022) and CC-Matrix (Schwenk et al., 2021b).

We visualize these types of data in BPCC in Figure 7, to highlight the language coverage and our own contributions
in relation to existing data. As can be seen, for many languages, BPCC makes the first available datasets, and for all
languages, it makes a significant increase in the datasets available.

IThis is, of course, not a comment on the organizers of WMT but a reflection of the lack of academic interest in Indian languages due to the lack
of sufficient training and evaluation data
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Figure 1: A visual representation of the advancements in machine translation systems for Indic languages using the
IN22-Gen Evaluation set in the En-Indic direction. The depicted values have been subjected to minor adjustments to
enhance readability; however, they accurately convey the overall trend. Thresholds are utilized to estimate performance
boundaries for various systems across languages. The size of each language bubble is proportional to the speaker count
for that language (see Table 53).

Benchmarks. We create IN22, the first n-way parallel benchmark covering all 22 Indian languages with the
English side being source-original. For benchmarks to be of high quality, it is essential that they represent content from
diverse domains. We visualize the diversity of our created benchmark in Figure 8. Our benchmark contains high-quality
human translations for sentences taken from India-specific articles belonging to 13 different domains, viz., Culture,
Economy, Education, Entertainment, Geography, Government, Health, Industry, Legal, News, Religion, Sports, and
Tourism (see left chart of Figure 8). We refer to this subset as IN22-Gen. Our benchmark has another subset IN22-
Conv, that contains translations for sentences taken from everyday conversations in the Indian context from 16 different
domains, which were manually created by in-house experts starting from carefully created conversation prompts (see
right chart of Figure 8).

Models. We release IndicTrans2 (IT2), the first translation model to support all the 22 scheduled Indian lan-
guages, trained on the BPCC dataset. The progress made in the quality of translation in this work in relation to existing
open models is captured in Figure 1. The plot shows the ChrF++ metric for English to different languages (which is
usually the more challenging translation direction for low-resource languages). Each language is represented by circles,
where the size of the circle represents the number of speakers in that language. As can be seen, with IndicTrans2, we
made progress in translation quality across languages, and now support moderate to high-quality translation for most
speakers in India. Later in the paper, we also report COMET scores, comparisons with commercial models, and human
evaluations of our translations. We find that IT2 is the first model for Indian languages, which performs at par not only
with open-source models like NLLB (Team et al., 2022) but also with commercial models from Google and Microsoft.
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Table 1: Overall statistics for data collated from different sources (in thousands) for Indian languages and resources in
this work. In this document, each language is identified with a BCP 47 tag sequence comprised of ISO 639-3 language
subtag and ISO 15924 script subtag.

Existing BPCC (Newly Added)

Mined Human Mined Human
Name Language Samanantar NLLB NLLB ILCI MASSIVE Monolingual Comparable Wiki Daily
Assamese asm_Beng 58.8  506.3 - 821 - 712.5 37.8 447 113
Bengali ben_Beng 2,946.3 13,580.5 - 1238 16.5 16,055.1 2582 48.0 8.5
Bodo brx_Deva - - - 83.2 - - <1 227 10.3
Dogri doi_Deva - - - - - - - 187 55
Konkani  gom_Deva - - - 74.5 - - - 183 48
Gujarati  guj_Gujr 1,379.2  7,090.3 - 1074 - 11,630.3 573.0 250 3.2
Hindi hin_Deva 4,416.7 6,646.7 - 165.6 16.5 27,187.8 8533 403 84
Kannada  kan_Knda 1,692.2 8,871.1 - 76.4 16.5 12,501.0 380.2 322 85
Kashmiri kas_Arab - 124.9 6.2 - - - - 155 43
kas_Deva - 194.0 6.2 - - - - - -
Maithili mai_Deva - 62.2 - - - - <l 244 42
Malayalam mal_Mlym 2,029.2 8,818.2 - 87.9 16.5 12,378.6 3564 416 84
Marathi ~ mar_Deva 1,366.1 6,393.2 - 1170 - 10,806.0 4324 543 46
Manipuri mni_Beng - 346.9 6.2 13.1 - - 20.1 - <1
mni_Mtei - - - 16.0 - - - 199 6.8
Nepali npi_Deva - 1,5835 - 28.6 - 10.5 6.2 459 109
Odia ory_Orya 514.9 2,382.6 - - - 2,863.1 121.5 337 32
Punjabi  pan_Guru 1,418.3 1,978.3 - 71.5 - 6,275.8 2072 63 32
Sanskrit san_Deva - 244.1 - - - - <1 277 54
Santali sat_Olck - - - - - - - 225 1.8
. , snd_Arab - 2,1284 - - - - - - -
Sindhi snd_Deva - - - - - - - 10.5 -
Tamil tam_Taml 1,833.2 8,665.2 - 1207 16.5 9,690.3 452.8 21.0 8.6
Telugu tel_Telu 1,780.5 10,062.8 - 73.6 16.5 11,100.0 4372 297 8.5
Urdu urd_Arab - 5321.0 - 101.0 16.5 484.9 2253 413 84
# Total 19,4354 84,998.3 18.6 1,342.6 1154 121,695.8 4,353.1 644.3 139.7

Open Access. We aim to promote wider access to accurate translation models for all Indian languages. Therefore,
we will release IndicTrans2 under an open-source license, along with all training data, source code, and tools to enable
replication and further improvements by the research community. Additionally, we will provide IndicTrans2Mini,
approximately 1/5 the size of IndicTrans2 (~211M) with comparable performance to reduce deployment costs. We
hope our paper will serve as a starting point for future research on Indic machine translation.

Figure 2 provides a comprehensive overview of the entire workflow, which involved the development of requisite hu-
man infrastructure, building high-quality seed datasets and robust India-centric benchmarks, and culminates with the
release of IndicTrans2, which is the first model to support all the 22 scheduled languages. Section 3 describes the
process followed for the creation of high-quality benchmarks and seed training data, which entails the establishment of
a human infrastructure, followed by a detailed account of the translation workflow and the quality control procedures
implemented. Subsequently, Section 4 outlines our bitext mining pipeline, incorporating both manual and automated
checks that employ toxicity and language filters. After the creation of the benchmarks and training data, the next task as
covered in Section 5 is the training of IndicTrans2 with ablation of model architecture, dataset selections, and training
procedures. Furthermore, Section 6 describes the robust evaluation of IndicTrans2 across existing benchmarks such as
FLORES and the benchmarks we create, across diverse metrics, and against both open-source and commercial models.
The paper concludes with a comprehensive summary and outlines potential future research directions. The Appendices
provide supplementary results and additional details, including model and dataset cards.
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Figure 2: Overview of the workflow used for building Bharat Parallel Corpus Collection, IN22 and IndicTrans2.

2 Related Work

Languages of India. India, with a population of more than 1.4 billion, is a diverse country known for its rich linguistic
heritage, and home to some of the world’s most widely spoken languages. According to the Census of India 2011, 1369
mother tongues have been identified of which 121 languages have at least 10,000 speakers and 31 languages have at least
amillion speakers.” 22 of these languages have been listed in the 8! Schedule of the Constitution of India®, recognizing
them as the scheduled languages of the Republic of India. According to the schedule, the Government of India is under
an obligation to take measures to develop these languages such that they become an effective means of communication.
Nine of the Indic languages are amongst the most spoken languages across the globe*: Hindi (4'"), Bengali (6'"),
Marathi (13t"), Telugu (14*"), Tamil (17¢"), Urdu (20*"), Punjabi (22"%), Gujarati (24'") and Bhojpuri (26'").
Some of these languages are also widely spoken and/or are official languages in neighboring countries viz., Bangladesh,
Nepal and Pakistan. Indian languages are also fast-growing across the globe, particularly in North America, United
Kingdom, Australia, and the Middle East. Beyond the Indic languages, English is also widely spoken by in India, with
a speaker base of 246 million.”> However, even with a large speaker base, many of these languages still lack an online
presence and high-quality NLP technologies. Of the 22 scheduled languages, only 4 of them are so-called “Winners”
according to the classification by Joshi et al. (2020). It is thus essential to support translation technologies (and NLP
technologies in general) for such a large population base in order to bring the benefits of digital technologies to a
large audience. What distinguishes the Indian subcontinent is not only the large speaker base of many languages, but
also the linguistic diversity of its languages. Languages from four major language families (Indo-Aryan branch
of the Indo-European family, Dravidian, Tibeto-Burman and Austro-Asiatic) are spoken in the subcontinent.
According to Wikipedia,® India has amongst the highest linguistic diversity at around 0.914 to 0.93, depending
on the measure. Indic languages are written in a variety of scripts, the majority of which are derived from the Brahmi
script. Up to 12 major scripts spanning abugida, alphabetic and abjad script types are used (Daniels & Bright,
1996). Underlying this diversity in languages and scripts is also a great deal of similarity at various linguistic levels,
owing to language relatedness and contact over a long period of time (Emeneau, 1956; Subbarao, 2012; Kunchukuttan

’https://en.wikipedia.org/wiki/Languages_of_India
3https://rajbhasha.gov.in/en/languages-included-eighth-schedule-indian-constitution
4https ://en.wikipedia.org/wiki/List_of_languages_by_number_of_native_speakers
Shttps://en.wikipedia.org/wiki/Indian_English
Shttps://en.wikipedia.org/wiki/Linguistic_diversity_index
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& Bhattacharyya, 2020). The diversity of languages and their interactions provide for challenging problems and
opportunities in machine translation for Indic languages.

Datasets. We summarize some of the major parallel corpora created for Indian languages. The Indian Languages Cor-
pora Initiative (ILCI) (Choudhary & Jha, 2011) created n-way parallel annotated corpora containing SOK sentences per
language for 12 major Indian languages, covering Health and Tourism domains. However, with the advent of neural MT
models, it has been established that these models need large-scale parallel corpora for superior performance (Edunov
et al., 2018; Aharoni et al., 2019). Some early attempts include the IIT-Bombay English-Hindi corpus (Kunchukuttan
et al., 2018) and the PMIndia corpus (Haddow & Kirefu, 2020), which aligned sentences from the Prime Minister’s
speeches in English and 12 Indic languages. The CVIT-PIB corpus (Philip et al., 2021) aligned parallel documents
from the Press Information Bureau archives, resulting in English to 11 Indian language pairs. WAT 2021 shared task
compiled existing sources to create 9 million sentence pairs between English and Indic languages. Creating parallel cor-
pora for all Indic languages is challenging due to the lack of identifiable parallel documents and the effort required for
human annotation at scale. Consequently, attention has turned towards mining parallel corpora from non-comparable
sources, leveraging the multilingual nature of India’s information availability, though identifying parallel pages based
on URL patterns remains challenging (Resnik & Smith, 2003). Following prior works on mining data from web-scale
data (Schwenk et al., 2021b), Samanantar v1 (Ramesh et al., 2022) was mined from IndicCorp v1 (Kakwani et al., 2020)
using LaBSE (Feng et al., 2022) based sentence embeddings, resulting in a 3-fold increase in data compared to existing
parallel data. Combined with existing data, Samanantar contained 49.7 million sentence pairs between English and
11 Indic languages. In subsequent work, NLLB project (Team et al., 2022) mined parallel data from CommonCrawl
dumps (Wenzek et al., 2020) using LASER (Heffernan et al., 2022) based sentence embeddings. This corpus resulted
in 448 million sentence English-centric pairs covering 19 Indic languages. While NLLB (Team et al., 2022) had the
largest coverage so far, all these efforts still do not cover all the 22 scheduled languages of India. This necessitates the
need to create “seed” data (refer to §3) for the low-resource languages to help boost the performance of MT systems
for these languages.

Benchmarks and Shared Tasks. Benchmarks have improved NLP systems across various tasks (Rajpurkar et al.,
2016; Wang et al., 2018; 2019; Hu et al., 2020; Doddapaneni et al., 2023). Over the years, an increasing focus has
been on improving MT systems for Indic languages, with sustained endeavors to develop appropriate benchmarks. The
introduction of the Hindi-English MT challenge in WMT’ 14 marked one of the earliest attempts to establish benchmarks
for Indic languages (Bojar et al., 2014). Subsequently, WMT extended its efforts by incorporating the Gujarati-English
and Tamil-English language pairs in 2019 (Barrault et al., 2019) and 2020 (Barrault et al., 2020), respectively. WAT
(Workshop on Asian Translation) has continuously supported IndicMT with the inclusion of the IITB Hindi-English
dataset (Kunchukuttan et al., 2018) in the WAT 2016. Subsequently, WAT expanded its efforts, adding 6, 8, 10, and
15 languages in 2018, 2020, 2021, and 2022, respectively (Nakazawa et al., 2018; 2020; 2021a; 2022). Siripragada
et al. (2020) introduced a benchmark consisting of roughly 2K-3K sentences from Mann ki Baat’, covering 9 Indic
languages translated to English. FLORES 101 (Goyal et al., 2022) was one of the first attempts to create a large-scale
MT benchmark with n-way parallel devtest and held-out zest sets of around 1000 sentences for 101 languages, including
support for 14 Indic languages manually annotated from the Wikimedia content. This was followed up by NLLB (Team
et al., 2022), extending the total language coverage to 200, which includes 19 Indic languages listed in the Constitution
(plus a few more Indic languages). NTREX (Federmann et al., 2022) expanded coverage of languages of test data from
WMT 2019 (Barrault et al., 2019) to 128 languages and covers 16 Indic languages. The test set contains 1997 manually
translated sentences, primarily sourced from the news domain.

Neural MT models. The introduction of Neural MT and the creation of large-scale parallel corpora led to significant
advancements in the field of Indic MT. Broadly, they follow the Embed - Encode - Attend - Decode approach. Initial
approaches used Recurrent Neural Networks (Bahdanau et al., 2015) and later transformer-based approaches (Vaswani
et al., 2017) became more prominent. The introduction of attention and subword-based modeling addressed the issues
of word ordering and data sparsity. The models were able to generate grammatically fluent and accurate outputs. Some
noteworthy Neural MT models studying Indian languages include (Philip et al., 2021; Ramesh et al., 2022; Fan et al.,

"https://www.pmindia.gov.in/en/mann-ki-baat/
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2020; Team et al., 2022). These were followed up with multilingual and pre-trained MT models (Kudugunta et al.,
2019; Liu et al., 2020b; Xue et al., 2021; Dabre et al., 2022). These models were able to transfer knowledge from
high-resource to low-resource languages by leveraging large amounts of training data and language similarities across
languages, making it possible to train a good-quality MT system for low-resource languages (Dabre et al., 2021). Over
the last few years, large corpora (Ramesh et al., 2022; Team et al., 2022) and larger models (Fan et al., 2020; Team
et al., 2022) marked significant improvements in the translation quality. Recent work has also explored translation for
extremely low-resource languages with hardly any parallel corpora and limited monolingual corpora (Team et al., 2022;
Bapna et al., 2022; Maurya et al., 2023).

3 Creating High-quality Translation Datasets at Scale

In this section, we describe the translation process, and the Shoonya?® infrastructure to ensure a high-quality translation
workflow. We also describe in detail the translation workflow followed and quality control procedures and the salient
features of the resultant datasets created: (a) BPCC-Human, the training dataset from English to 22 Indic languages,
and (b) IN22, the test set for translation evaluation between English and Indian languages.

3.1 Translation Workflow

The overall translation workflow is described below and illustrated in Figure 3. The translation workflow comprises
four stages. First, sentences for translation are chosen based on criteria such as domain coverage, length, and licensing.
These sentences are sourced from diverse domains, including News, Business, and Health. Next, the selected sentences
undergo a verification process where annotators ensure their quality and correctness, tagging them accordingly. The
entire paragraph is rejected in case of any inaccurate sentences to prevent ambiguity. Once the verification is complete,
the sentences are translated into 22 Indic languages, adhering to rigorous guidelines. Lastly, the translated content is
reviewed by experienced translators who check for adherence to guidelines and overall quality, suggesting improvements
or corrections as needed. If a translation is rejected, it is sent back to the original translator for revision, ensuring the
highest translation standards. Specific customizations to the workflow depending on the kind of dataset being created
(training/test) are discussed in subsequent sections.

All the stages in the workflow are performed on Shoonya,® an open-source® platform which was developed as a part of
this work for supporting language annotation tasks customized for Indian languages. Additional information about the
translation stages, including translation guidelines, and the interface utilized for generating human-annotated translation
data along with its key features can be found in Appendix F.

8See specific page that will be added upon de-anonymization.
9See the specific page that will be added upon de-anonymization.
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3.2 Building the IN22 Test set

In this section, we describe the IN22 test set, which is a new manually created n-way parallel test set covering English
and 22 Indic languages. We motivate the need for such a benchmark, describe its features in detail, and explain the
construction of the test set.

While there are a few test sets for Indian languages, there is still a need for a comprehensive test set that satisfies the
following needs of Indian language machine translation and addresses the limitations of existing test sets:

* We need a test set that covers all 22 Indic languages and enables evaluation between all possible pairs of these
scheduled languages. FLORES-200 (Team et al., 2022) has the largest coverage amongst existing test sets (n-way,
19 languages). The other test sets WAT 2020 (Nakazawa et al., 2020), WAT 2021 (Nakazawa et al., 2021a), WMT
2014 (Bojar et al., 2014), WMT 2019 (Barrault et al., 2019), WMT 2020 (Barrault et al., 2020), UFAL (Ramasamy
etal., 2012) and NTREX (Federmann et al., 2022) have limited coverage, with the majority having only a few of the
top-10 languages represented at the most.

* The test set should be diverse in terms of domains covered and represent a realistic distribution of sentence lengths,
while also encompassing topics relevant to India, which would be the primary use case for models supporting Indic
languages. Existing test sets like WMT and FLORES are more general-purpose and have limited representation for
Indian topics like named entities, locale, culture-specific terms, etc.

Table 2 compares existing benchmarks based on test set size, language coverage, domain coverage, and the language
in which the dataset is source original.

3.2.1 Corpus Description

We describe the details and salient points of the IN22 test set. This test set comprises 3 subsets, which serve distinct
evaluation scenarios:

* Multi-Domain Wikipedia subset (512 sentences): This subset is designed to be multi-domain, expanding to at
least five more domains than the existing benchmarks like FLORES-200 (Team et al., 2022). Domain coverage is
presented in Table 50.

* Multi-Domain Web Sources subset (512 sentences): This subset was designed to represent content from sources
other than Wikipedia to have more diversity in content and writing style and with more focus on India-centric content.
These were mainly sourced from PDFs and from sources that are not accessible or crawlable on the web, thereby
reducing the possibility of these sentences already being part of any mined data.

* Conversation Translation Benchmark (1503 sentences): This subset was designed to evaluate the performance of
models in day-to-day conversations in applications like chat. The translations are drawn from a multi-turn English
dialog dataset we built, enabling evaluation across all the axes, including sentence level, turn level, and document
level (complete conversation).

The following are some key features of the benchmark:

* Itis an n-way parallel test set containing 2527 original English sentences translated into 22 Indic languages with high-
quality translations done by in-house translators from scratch without recourse to any existing MT system. Metadata,
consisting of domains and context sentences (in raw, unedited format) for source sentences, is provided in the test set
to enable a fine-grained analysis of translation quality for each example.

» IN22 enables evaluation in 500+ directions, including (i) source original translation from English to other languages.
(ii) Indic to English translation evaluation and the ability to study relative language performance since the underlying
sentence is the same, (iii) comparison of 462 inter-Indic translation directions.
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Table 2: Comparison of Various Benchmarks based on Test Set Size, Language Coverage, Domain Coverage, and
Source Original.

Dataset Test Set Size  Language Coverage  Domain Coverage  Source Original
FLORES-200 (devtest) 1012 19 8 eng
NTREX 1997 12 news(1) eng
WMT 2014 (hin) 2507 1 news(1) both
WMT 2019 (guj) ~ 1000 1 1 both
WMT 2020 (tam) ~ 1000 1 1 both
WAT 2020 ~ 3500 7 1 eng
WAT 2021 ~ 2390 10 1 eng
UFAL 2000 1 3 eng
IN22-Wiki 512 22 13 eng
IN22-Web 512 22 13 eng
IN22-Conv 1503 22 16 eng

* The test set is diverse in terms of the domains covered and the distribution of sentence lengths. The Web sources and
Wikipedia subsets cover 13 domains, while the conversational subset covers 16 domains. The length distribution is
chosen to reflect a realistic distribution, while also having a sufficient number of long sentences, which can present
a challenge to MT models. Figure 10 provide an overview of the domain v/s length distributions of our benchmarks,
while Table 50 provides an overview of the domain diversity.

» Table 3 provides some statistics about the test set. Wikipedia and Web Sources have longer sentences than the
conversational dataset. Conversational sentences have a higher perplexity compared to the other subsets, perhaps
hinting at the lower representation of such scenarios in the GPT?2 training corpus.

3.2.2 Source Selection

We describe the selection of the source sentences for each of the three subsets: Wikipedia, Web Sources, and Con-
versation. The creation of the Wikipedia subset involved selecting English source sentences from various Wikipedia
categories to ensure broad coverage across different domains. Sentences were filtered based on length (less than 6
words or more than 80 words were discarded) and overlap with the FLORES-200 test set (4-gram overlap). For each
sentence, a context window of 3 sentences (typically one before and one after) was constructed. The Web Sources
subset focused on Indian topics and used Government of India websites and digital libraries as sources, with sentences
selected using a similar procedure. The Conversation subset involved creating English conversations with predefined
prompts and scenarios, which were then translated into 22 Indic languages. Overall, these subsets were created with
careful consideration for domain diversity and language coverage. Appendix E.1 provides detailed information about
the procedure followed for the selection of sentences for all the three subsets of IN22.

Table 51 contains the statistics of the conversation subset of IN22 test set. The subset contains conversations sampled
from 16 domains including ‘arts’, ‘history’, ‘school life’, etc. The domains cover a diverse set of topics such as ‘Govern-
ment schemes’, ‘Movies’, ‘Historical Architectures’, etc. Table 52 contains an English example from the conversation
subset of IN22 test set. The conversation subset of IN22 benchmark can also be repurposed as a document translation
task too and would be useful in the context of evaluating LLMs.

3.2.3 Quality Control Procedure.

In the process of test set creation, it is imperative to implement strict quality control guidelines to prevent the use of
MT outputs as a starting point by translators and ensure the fairness and reliability of the resulting benchmarks. As
a first step, we disable MT outputs in Shoonya for this translation task. To further ensure translators are not taking
recourse to MT outputs, we follow a systematic approach that involves conducting pairwise comparisons between
human translations and the outputs of widely accessible machine translation (MT) systems, such as Google, Azure,
NLLB (Team et al., 2022), and IndicTrans1 (Ramesh et al., 2022). The BLEU score (Papineni et al., 2002) serves
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Table 3: Statistics for the three subsets in the IN22 benchmark.

Subsets

Wikipedia Web Sources  Conversational

Number of sentences 512 512 1503
Average sentence length (number of English characters) 169.27 144.53 54.18
Average sentence length (number of English words) 26.30 23.20 9.88
Number of context sentences available 3 3 conversation'®
Number of domains 13 13 16
Average perplexity of English (computed using GPT-2) 63.67 67.22 72.33

as an effective metric for detecting exact matches between translations and MT system outputs. Initially, we generate
predictions from multiple MT systems for a batch of sentences translated by an annotator. Subsequently, we compute
BLEU scores, denoted as B(.S;, T'), with respect to the reference translations (") and each MT system output (S;). A
series of conditions are assessed based on the number of MT systems supporting a particular language (denoted as
k). For languages supported by multiple MT systems, the system with the highest BLEU score (5;) is selected, where
j = argmazx; B(S;,T).

If the pairwise BLEU score difference between any two systems falls within an acceptable threshold (see Equation (1))
then the translations are accepted. In this work, we set the § to be 10. Otherwise, a high difference in BLEU scores
indicates that the high-scoring model might have been a source for translation. In cases of high overlap with any of
the machine translation systems, a new annotator is assigned to the task, and the quality control procedure is repeated,
ensuring the creation of reliable and accurate benchmarks.

3.3 Building the BPCC Training Set

We create BPCC-Human (BPCC-H), a manually translated, multi-domain n-way seed parallel corpus between English
and 22 Indic languages. In this section, we motivate the need for high-quality, human-translated training data, provide
an overview of the dataset and describe the process of construction of the dataset.

Motivation for creating the seed dataset. The primary method to create parallel corpora at scale for many languages
is to mine data from publicly available sources. While this approach has shown success for languages that have good
representation in monolingual corpus and multilingual models (Ramesh et al., 2022; Philip et al., 2021; Kunchukuttan
etal., 2018), the same cannot extend to very-low resource languages. This makes it important to invest in building high-
quality, modest-sized parallel corpora. We take inspiration from previous efforts to manually create large multilingual
seed corpora explicitly for building machine translation models like ILCI (Jha, 2010), ALT (Riza et al., 2016), and
NLLB-Seed (Team et al., 2022; Maillard et al., 2023). These previous efforts have been instrumental in significantly
boosting MT efforts for low-resource languages; particularly, seed data also helps in bootstrapping the development
of various NLP tools such as language identifiers, topic classifiers, named entity recognition, etc., where minimal
monolingual sources exist.

3.3.1 Corpus Description

Following are some key aspects of the BPCC-H dataset:

* BPCC-H-Wiki is the largest publicly available manually translated multi-domain parallel corpora in terms of lan-
guage coverage. It contains a total of 644.3K sentence pairs, ranging from 6.3K to 54.3K pairs depending on the
language, averaging around 26K sentence pairs per language pair. These translations were performed by qualified
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professional translators following a high-quality translation process and a systematic review of the sentence pairs,
unlike crowdsourcing efforts. Per-language sentence counts can be seen in Table 1.

* BPCC-H-Wiki provides good seed parallel corpora for 4 extremely low-resource languages without public corpora,
viz. Bodo, Dogri, Santali, and Goan Konkani. More than 10K sentence pairs are available for each of these languages.
There are hardly any sources or models to mine parallel corpora for these languages.

* There are multiple scripts available for a few languages. However, for our current seed data creation efforts, we
restrict ourselves to only one script per language, choosing the most widely used script for administrative purposes.

* A subset of BPCC-H, BPCC-H-Daily comprises spoken text particularly covering various types of sentences com-
monly used in different day-to-day scenarios, such as queries, commands, and feedback, across a range of applica-
tions including digital payment apps, grocery/food delivery apps, and government services apps. Our goal was to
encompass diverse named entities in relevant domains, covering various expressions from these services. This sub-
set, comprising 139.7K bitext pairs in 21 Indic languages except Sindhi, was developed from English sentences to
expand the diversity of the parallel corpora.

3.3.2 Translation Details

The translation process has already been described above. Here, we discuss aspects of the translation process specific
to BPCC-H.

First, we choose to translate from English source sentences to Indic languages in order to simplify the source sentence
selection (easier availability of copyright-free English sentences for translation, diversity in domains, etc.). The Indian
language side therefore would exhibit translationese effects (Zhang & Toral, 2019). However, this is not uncommon,
and many parallel corpora are English original (Team et al., 2022; Maillard et al., 2023; FitzGerald et al., 2022).

The English source sentences were selected from Wikipedia. We identified various Wikipedia categories of interest,
then identified article pages within those categories. This was done to ensure broad coverage of domains. We identified
a block of three sentences following Goyal et al. (2022), of which one was to be translated, and the others would be
context sentences to resolve any ambiguities during translation. The translators had the option of post-editing MT
outputs from an existing model wherever feasible.

4 Mining Training Data at Scale

The quality of MT systems depends on access to good quality parallel data, and increasing parallel corpora improves
translation quality (Khayrallah & Koehn, 2018). However, obtaining high-quality parallel corpora in large quantities is
a challenging task. While human annotation is one way to source data, it is not scalable beyond a certain point to meet
the demands of data-hungry models. Thus, there is a growing need to (semi-)automatically mine large-scale training
corpora to address this issue.

Over the years, various approaches have been proposed for generating parallel data for machine translation (MT) train-
ing. One set of approaches focused on mining parallel corpora from aligned documents identified from web-corpora
(Resnik & Smith, 2003; Banén et al., 2020; El-Kishky et al., 2020) or from specific document collections like EuroParl
(Koehn, 2005) and the United Nations (Ziemski et al., 2016). Document alignment is a non-trivial problem for open
web-corpora and relies on URL matching or translation-based matching in constrained settings. Specific document
collections may be limited in domain coverage and are often scarce. Instead of limiting mining to comparable docu-
ments, recent methods have explored the mining of sentence pairs from large sentence collections using multilingual
embeddings without regard for document alignment. This has allowed the mining of parallel data from arbitrary and
diverse collections of data (Schwenk et al., 2021a;b; Team et al., 2022). Similar approaches have been extended to Indic
languages (Ramesh et al., 2022), establishing the utility of large-scale mining for building multilingual NMT models.

Major Indic languages have a reasonable online presence, with numerous websites publishing data in multiple Indic
languages, primarily pivoting through English or Hindi. Moreover, being a multilingual nation, several government
documents, books, judgments, legal proceedings, etc., are published in multiple Indic languages, which are directly
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Figure 4: Mining workflow for Monolingual corpora

comparable and are thereby aligned at a document level. Hence, we invest efforts in mining parallel corpora by lever-
aging large-scale monolingual data as well as document-aligned data from comparable sources.

Our mining efforts focus on 12 Indic languages: Assamese, Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi,
Odia, Punjabi, Tamil, Telugu, and Urdu. These languages have a good representation in monolingual corpora, as
reported in (Doddapaneni et al., 2023). However, the low-resource languages have comparatively lesser monolingual
data, and the quality of sentence embeddings is unknown. Therefore, we rely on high-quality human-translated data, as
described in Section 3, for training low-resource languages. Nepali was also considered in an initial round of mining,
and some bitext data was mined. However, it was dropped from mining subsequently since LaBSE embeddings (Feng
et al., 2022) were observed to be suboptimal for Nepali. Going forward, we only focus on mining parallel corpora for
the 12 languages mentioned above.

Table 1 provides statistics of the mined parallel corpora. The following is a summary of the mined corpora:

* In our mining efforts, a total of ~126 million sentence pairs were mined in addition to existing corpora, resulting
in an aggregated collection of ~230.5 million sentence pairs after deduplication, which is ~5X increase in parallel
corpora size as compared to (Ramesh et al., 2022).

* Mining from the monolingual corpus resulted in the largest parallel corpus gains, with 121 million sentence pairs
across 13 Indic languages.

* Mining from comparable corpora results in a diverse parallel corpus covering a wide range of topics like Religion,
Education, Legal, etc. In total 4.35 million sentence pairs were mined across 17 Indic languages.

* Filtering existing corpora turned out to be an important exercise, as we observed around 75% of the data was discarded
due to poor quality of alignment. In summary, Team et al. (2022) was filtered and thereby reduced from 448.1 million
to ~85 million sentence pairs, and Ramesh et al. (2022) reduced from 49.7 million to 19.4 million sentence pairs. We
describe the filtering process below.

4.1 Mining from Monolingual Corpora

The primary idea behind mining parallel sentence pairs from large corpora is to represent sentences from all languages in
a common embedding space using LaBSE (Feng et al., 2022), such that the distance between a pair of sentences reflects
their semantic difference. To achieve this, we project all the sentences into a shared space and search for the nearest
neighbors around a query sentence. Given a source sentence S in language L, we look for the closest Approximate
Nearest Neighbors (ANNs) to S, within a selected threshold. The main challenge lies in scaling this process efficiently
to project millions of sentences and compute nearest neighbors over a large search space in a scalable and efficient

12
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Table 4: The total number of monolingual sentences and extracted parallel sentences count (in millions). The size of
the English monolingual corpus is 429 Million. { indicates the mining for Nepali was performed on an intermediate
version of IndicCorp v2 (Doddapaneni et al., 2023).

Language  Monolingual Corpus  Extracted Pairs

asm_Beng 3.3M 0.7M
ben_Beng 269.5M 16.0M
guj_Gujr 115.5M 11.6M
hin_Deva 473.2M 27.1M
kan_Knda 101.7M 12.5M
mal_Mlym 91.8M 12.3M
mar_Deva 64.7TM 10.8M
npi_Deva' - 0.01M
ory_Orya 13.4M 2.8M
pan_Guru 38.6M 6.2M
tam_Taml 64.7TM 9.6M
tel_Telu 108.5M 11.1M
urd_Arab 76.2M 0.4M
# Total 2113M 121M

manner. Previous work, such as CCMatrix (Schwenk et al., 2021b), has demonstrated that ANN search can be efficiently
performed at scale using quantization, efficient indexing, and retrieval. Similar approaches have been used in prior work
on Indic languages, such as Samanantar (Ramesh et al., 2022). Our work follows the same approach as Samanantar
for mining parallel sentences from large-scale monolingual corpora. We differ from Samanantar (Ramesh et al., 2022)
primarily in the amount of monolingual data used for mining. We use a larger collection of monolingual corpora for our
work, comprising IndicCorp v2 (Doddapaneni et al., 2023), Wikipedia!' and data from Internet Archive.'? Specifically,
we have used 2.1 billion monolingual Indic sentences, significantly higher than Samanantar (Ramesh et al., 2022) (398.5
million). Moreover, the number of English sentences that we used for our bitext mining has increased from 54.3 million
to 429 million. Additionally, we have also mined bitext for Urdu and Nepali.

Figure 4 shows an overview of the mining process. We provide details of the mining workflow below. The mining
from monolingual sources resulted in 121 million bitext pairs. Table 4 shows the per-language statistics of the mined
corpora.

Data Curation. Our data curation process commenced with the collection of documents from diverse sources, in-
cluding IndicCorp v2 (Doddapaneni et al., 2023), Wikipedia!' and Internet Archive data'> which were aggregated at
the document level. However, as our objective was to mine sentence-level parallel data, we used the Indic NLP li-
brary (Kunchukuttan, 2020) to segment these documents into individual sentences. Subsequently, we implemented a
strict quality control procedure, where we perform language identification (LID) at the sentence level using LID filters
from Team et al. (2022). As previous studies have shown, web-scale data often contains offensive content (Kreutzer
et al., 2022), therefore we use an “offensive word list” to filter out such content. This list is augmented with data from
Toxicity-200 (Team et al., 2022) and Doddapaneni et al. (2023). Additionally, we remove sentences that are too short
(< 4 words) or too long (> 40 words) as we found that the quality and reliability of embeddings deteriorate beyond
these lengths. After this quality control procedure, we apply strict deduplication to eliminate any potential duplicates
on the normalized sentences in the monolingual corpora.

Sentence Embedding Model. Prior work such as Samanantar (Ramesh et al., 2022) and NLLB (Team et al., 2022)
have employed the LaBSE (Feng et al., 2022) and LASER3 (Heffernan et al., 2022) models for bitext mining respec-
tively. However, to determine the optimal sentence embedding model for our mining purposes, we conduct an analysis

Unttps://dumps.wikimedia.org/
2https://archive.org
12Complete conversation was available as the context for translation.
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Table 5: Pearson (p) and Kendal (7) correlation Cosine Similarity of LaBSE and LASER model with Human Ratings
on the STS data released by Ramesh et al. (2022).

LaBSE LASER

Language  Sample Size p T p T

asm_Beng 1,971 0.3942  0.2989 0.3797 0.3021
ben_Beng 3,797 0.5149 0.4392 0.3137 0.2522
guj_Gujr 2,298 0.5437 0.4475 0.2945 0.3429
hin_Deva 4,616 0.5575 0.4691 0.4550 0.4005
kan_Knda 2,838 0.5211 0.4184 0.2640 0.2634
mal_Mlym 2,760 0.5331 0.4354 0.4368 0.3339
mar_Deva 1,984 04773 03916 0.3540 0.2660
ory_Orya 1,264 0.1148 0.1152 0.0361 0.0332
pan_Guru 2,222 0.5952  0.4725 0.3812 0.3435
tam_Taml 2,882 0.5099 0.4084 0.2296 0.2367
tel_Telu 2,516 0.4426 03780 0.2164 0.1936
Average - 04731 03886 0.3055 0.2698

of the correlation of the Semantic Textual Similarity Rating (Agirre et al., 2016) with the cosine similarity scores ob-
tained using both sentence embedding models. We consider the STS dataset released by Ramesh et al. (2022) with
a human rating for a set of 11 languages. Our analysis suggests that the cosine similarity scores of LaBSE sentence
embeddings exhibit a stronger correlation with the human ratings on a macro scale, as shown in Table 5. Therefore,
we adopt the LaBSE model as the primary sentence embedding model for our bitext mining and filtering pipeline and
only fall back to LASER3 for the languages not supported by LaBSE. We use LASERS3 for languages such as Kashmiri
(Devanagari), Kashmiri (Arabic), Maithili, Manipuri (Bengali), Nepali, Sanskrit, and Sindhi (Arabic).

Indexing. To ensure a common embedding space for all languages, we utilized LaBSE (Feng et al., 2022) to compute
the sentence embeddings for all the sentences. Our approach for mining parallel sentences involves searching through
English; thus we indexed all the English sentences and treat the Indic language sentences as queries. To accommodate
the large corpus of 429 million English sentences, we partitioned them into 5 shards and indexed each shard separately.
In line with previous work (Ramesh et al., 2022), we utilized a FAISS Index'? with 100K clusters and employed Product
Quantization (Jégou et al., 2011) to reduce the dimensionality of the embeddings from 768 to 64, with each dimension
represented by an 8-bit integer value.

Retrieval. To retrieve parallel sentence pairs for a given query sentence (S) in language L, we use LaBSE (Feng
et al., 2022) to compute the embedding of the query sentence and perform a search on the FAISS Index constructed
from the English sentences. First, we retrieve the top k (K = 1024) clusters by computing the cosine similarity between
the cluster centroids and the query embedding. Subsequently, we search for ANNs within these clusters to retrieve the
closest match. However, as pointed out by Ramesh et al. (2022), the similarity scores can vary when using quantized
vectors (64d) while preserving the relative ranking among the sentence pairs. To ensure high-quality matches, we
recompute the cosine similarity using the original 768d vectors and only retain pairs with a similarity score above a
threshold of 0.80, indicating a strong semantic match. The process is repeated on each of the 5 English partitions, and
only the highest-scoring match is retained.

4.2 Mining from Comparable Corpora

For Indian languages, we explore mining of parallel corpora from comparable sources, i.e. multilingual websites
containing high-quality parallel documents. We first align potentially parallel documents using heuristics to reduce the
search space, followed by the extraction of high-quality parallel sentences from aligned documents.

Bhttps://github.com/facebookresearch/faiss
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Table 6: URLs and domains of the sources used for comparable corpora mining.

Source URL Domain

isha https://isha.sadhguru.org/in/en/wisdom Religion, Education, Culture
mkb https://www.pmindia.gov.in/en/mann-ki-baat Government, News, Education
nios https://nios.ac.in/online-course-material.aspx Education

nptel https://nptel.ac.in/courses Education

pib https://pib.gov.in/Al1Release.aspx Government, News, Legal
spoken tutorial https://spoken-tutorial.org/tutorial-search Education

uge http://ugceresources.in Education

vanipedia https://tinyurl.com/2sf547tn Religion, Education, Culture

Data Curation. We first identify several websites which publish content in multiple Indic languages. The articles on
these websites are aligned across different languages, indicating they are exact translations of each other. Owing to this,
the search space is reduced considerably as compared to monolingual corpus mining. The selected sources are diverse
in domains covering a range of topics like Education, Legal, Religion, etc., and of high quality as verified by language
experts. An overview of the sources is available in Table 6. We follow the same pre-processing steps to segment the
documents into sentences, followed by language identification and toxicity filters.

Indexing. Similar to monolingual corpora, we use LaBSE (Feng et al., 2022) model to index both the source and
target sentences. Since the search space is much smaller in comparable corpora, we perform a full search over the
entire target sentences in the corresponding document.

Retrieval. Let S = {s1,82, -, S} be the set of source sentences and T' = {ty,t2, - ,t,} be the set of target
sentences. Let f(s;,t;) be the scoring function for calculating the semantic similarity. Given that m and n are consid-
erably smaller than the size of the monolingual corpus, we perform a total of m x n scoring computations. Following
Artetxe & Schwenk (2019), we use the margin-based scoring (Equation 2) to find the closest semantic match between a
given source and target sentences. The sentences under consideration are represented by the pair (z,y). We denote the
k unique nearest neighbors of = and y in the other language as N Ny(,) and N Ny, respectively. We perform margin-
based mining in both forward and backward directions to eliminate the candidate pairs with inconsistent alignment and
retain only those that intersect, resulting in high-quality bitext pairs. Following Team et al. (2022) we use a margin
threshold of 1.06 with 4 nearest neighbors. Additionally, we set a cosine threshold of 0.80 for the high-resource lan-
guages and perform LID filtering to remove substandard sentence pairs. Considering the high memory requirements
and the high variability of margin scores based on cluster sizes when operating in shards, employing margin-based
mining for monolingual corpus with the current infrastructure was not feasible.

cos(z,y)

cos(z, 2) cos(y, 2)
D TR Dl

zEN Ny (x) zEN N (y)

(@)

margin(z,y) =

Following mining from Comparable Corpora, we extract 4.5 million sentence pairs across 17 Indic languages. The
statistics and the sources for the mined bitext are available in Table 7.

4.3 Filtering Existing Mined Parallel Corpora

Over the years, several parallel corpora have been released for Indic languages (Kunchukuttan et al., 2018; Nakazawa
et al., 2021b; Philip et al., 2021; Tiedemann, 2012) inter alia. The corpora are of varying quality and created using
different approaches. We filter these existing corpora using some of the well-known practices to ensure we retain a
high-quality subset for model training.
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Table 7: Statistics of the bitext mining from comparable corpora (till Oct 2022).

Language  Source Extracted Pairs
asm_Beng  mkb, nios, pib, spoken-tutorial, vanipedia 38,656
ben_Beng isha, mkb, nios, nptel, pib spoken-tutorial, ugc, vanipedia 263,394
brx_Deva spoken-tutorial 700
guj_Gujr isha, mkb, nios, nptel, pib spoken-tutorial, ugc vanipedia 594,847
hin_Deva isha, mkb, nios, nptel, pib spoken-tutorial, ugc vanipedia 891,464
kan_Knda  isha, mkb, nios, nptel, pib spoken-tutorial, ugc vanipedia 386,408
mai_Deva  spoken-tutorial 84
mal_Mlym  isha, mkb, nios, nptel, pib spoken-tutorial, ugc vanipedia 365,893
mar_Deva  isha, mkb, nios, nptel, pib spoken-tutorial, ugc vanipedia 453,371
mni_Beng  mkb, pib 22,322
npi_Deva isha, spoken-tutorial, vanipedia 6,247
ory_Orya mkb, nios, pib spoken-tutorial, vanipedia 125,143
pan_Guru  mkb, nios, pib spoken-tutorial, vanipedia 216,108
san_Deva spoken-tutorial 702
tam_Taml  isha, mkb, nios, nptel, pib spoken-tutorial, ugc, vanipedia 455,965
tel_Telu isha, mkb, nios, nptel, pib spoken-tutorial, ugc, vanipedia 449,239
urd_Arab mkb, nios, pib, vanipedia 232,496
# Total 4,503,039

Particularly, a large collection of parallel corpora was mined as part of the NLLB project (Team et al., 2022) using
LASER3 embeddings (Heffernan et al., 2022). The corpus was mined using the margin-based threshold described
in Equation (2), with a threshold of 1.06. The original dataset was not released by the authors of Team et al. (2022).
However, Allen AI'* has replicated the efforts of Team et al. (2022) and released the dataset closely matching the
numbers reported by the authors of (Team et al., 2022). Going forward, we use this dataset for our use-case and refer
to it as Allen-NLLB !°. The corpus contains 448 million sentence pairs across 19 Indic languages, with more than 10
million sentence pairs in 12 languages. However, on performing a manual inspection of the bitext, it was observed that
a large majority of the sentences had misalignment and suboptimal parallel sentence pairs. Therefore, before using this
corpus for training MT models, it is important to filter the corpus to remove the noisy sentence pairs.

Following our bitext mining in Section 4.1 and Section 4.2, we use LaBSE model (Feng et al., 2022) with a cosine
similarity threshold of 0.80 to filter the Allen-NLLB corpus. We also use LASER3 model (Heffernan et al., 2022)
as a fallback model for languages that are not supported by LaBSE (viz. Nepali, Maithili, Sanskrit, Sindhi (Arabic),
Kashmiri (Devanagari), Kashmiri (Arabic), Santali). Table 8 shows that upon filtering, the dataset is reduced from
448.1 million sentence pairs to 104.2 million sentence pairs, i.e. close to 76% of data has been dropped with quality
filtering. For Santali, post LASER3 filtering, it was observed that the majority of the sentence pairs were dropped
during the filtering process. Post-hoc human evaluation confirmed that most of the parallel data for Santali-English
in the Allen-NLLB is noisy. We see the highest drops in Maithili, Sanskrit, and Nepali, which are considered to be
low-resource languages. Surprisingly, even in high-resource languages like Hindi and Bengali, we see that close to
75% of the data has been dropped during filtering. Similarly, we also apply the same filtering criteria to Samanantar
Corpus (Ramesh et al., 2022), as it was noted that Samanantar was mined with an older version of LaBSE model (Feng
et al., 2022). Section 7.2 describes our analysis of the data quality v/s scale trade-off.

5 Modeling

5.1 Training Data

In order to train our translation models, we utilize a range of data sources, including data mined from text corpora
(monolingual corpora & comparable sources), human-annotated collections (BPCC-H-Wiki and BPCC-H-Daily), and

Yhttps://allenai.org/
https://huggingface.co/datasets/allenai/nllb
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Table 8: Statistics of pre-filtering and post-filtering on existing mined parallel corpora consisting of NLLB (Team et al.,
2022) and Samanantar (Ramesh et al., 2022).

Language  Pre-Filtering  Post-Filtering  Proportion (%)

asm_Beng 5,285,401 565,282 10.70
ben_Beng 70,400,333 16,514,684 23.46
guj_Gujr 14,458,054 8,442,476 58.39
hin_Deva 43,149,229 11,056,172 25.62
kan_Knda 38,368,723 10,532,571 27.45
kas_Arab 647,348 125,243 19.35
kas_Deva 1,042,450 194,528 18.66
mai_Deva 4,438,382 62,359 1.40
mal_Mlym 49,599,699 10,832,342 21.84
mar_Deva 35,585,104 7,742,065 21.76
mni_Beng 490,089 347,108 70.83
npi_Deva 19,624,054 1,583,922 8.07
ory_Orya 14,700,484 2,887,960 19.65
pan_Guru 14,057,042 3,391,710 24.13
san_Deva 3,095,396 244,367 7.89
snd_Arab 8,924,699 2,129,054 23.86
tam_Taml 47,777,362 10,489,852 21.96
tel_Telu 51,248,532 11,826,104 23.08
urd_Arab 25,303,579 5,322,290 21.03
# Total 448,195,960 104,290,089 23.27

filtered versions of existing corpora (Samanantar (Ramesh et al., 2022), NLLB (Team et al., 2022)). We describe
our filtering techniques in Section 4.3. While these sources constitute the majority of our training corpus, we also
incorporate additional human-labeled seed data from NLLB-seed (Team et al., 2022; Maillard et al., 2023), ILCI (Jha,
2010; Choudhary & Jha, 2011), and MASSIVE (FitzGerald et al., 2022), totaling approximately 1.47 million sentence
pairs. The ILCI (Jha, 2010; Choudhary & Jha, 2011) data is primarily distributed across domains such as health,
tourism, agriculture, and entertainment, and contributes around 1.34 million parallel sentences across 16 languages.
Furthermore, we augment our data with the Indic portions of MASSIVE (FitzGerald et al., 2022), which was released
as Spoken Language Understanding data and closely resembles the data in BPCC-H-Daily. Professional annotators
manually translate the sentences in this dataset and contribute 139,000 sentence pairs across seven languages. In total,
we have approximately 230.5 million sentence pairs, out of which 2.2 million are gold sentence pairs that are manually
annotated by professional translators. The distribution of the data sources across all languages is presented in Table 1.

5.2 Preprocessing

We follow the following steps in sequential order for our data preprocessing pipeline.

Standard Preprocessing. We apply standard preprocessing, which includes removing redundant spaces, removing
special characters, and normalizing the punctuations. Additionally, we convert the Indic numerals to English numerals
using a dictionary-based mapping. This facilitates the use of English numerals both at the input and output stages of
our model. However, a post-processing stage can be used to map English numerals back to their Indic equivalents, if
required.

Data Deduplication. To prevent any potential data leakages, we apply strict deduplication with all the available
benchmarks mentioned in Table 2. Our deduplication process involves standard preprocessing steps as mentioned
above, followed by text lowercasing, removal of all punctuations, removal of spaces, and identification of potential
matches on the monolingual side of both source and target sentences with the benchmarks. Correspondingly, any
bi-text pairs associated with these monolingual matches are discarded, and only the remaining data is considered for
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Table 9: Statistics of the bi-text training data after deduplication with benchmarks.

Language  Dataset Size  Language  Dataset Size

asm_Beng 1,443,125 mni_Beng 386,916
ben_Beng 32,725,076  mni_Mtei 42,753
brx_Deva 1,13,839  npi_Deva 1,687,436
doi_Deva 24,160  ory_Orya 5,834,074
gom_Deva 97,660  pan_Guru 9,816,009
guj_Gujr 20,491,094  san_Deva 278,374
hin_Deva 39,144,013 sat_Olck 25,128
kan_Knda 23,285,105  snd_Arab 2,128,391
kas_Arab 135,843  snd_Deva 10,503
kas_Deva 200,094  tam_Taml 20,740,179
mai_Deva 87,888 tel_Telu 23,250,217

mal_Mlym 23,521,937  urd_Arab 6,176,951
mar_Deva 18,932,834

# Total 230,579,599

training our models. As a result of this deduplication, our processed dataset contains a total of ~230.5M bi-text pairs.
The per-language distribution is presented in Table 9

Additional Preprocessing. Based on human evaluation of the IndicTrans1 model (Ramesh et al., 2022), it was ob-
served that the model exhibits poor performance in dealing with special cases: emails, URLs, dates, numbers, and
special characters like percentages. These special cases share a common characteristic indicating that they should ide-
ally not be translated by the model but should be reproduced as it is in the translation. To address this issue, we employ
regular expression patterns to identify text spans corresponding to these special cases. Subsequently, we wrap these
spans of text with special tags (<dnt> text span </dnt>) on the input side of the model, thereby providing implicit
supervision to the model to retain these special cases in their original form in the translation. Note that, during training,
we wrap the text spans within special tags only if they appear in both the source and target sentences.

Script Unification. Many Indic languages use scripts from the Brahmi family. To facilitate better transfer learning,
wherever feasible, we apply rule-based script conversion using IndicNLP library (Kunchukuttan, 2020) to represent
most of these languages in a single script (Devanagari). Thus, effectively our models are trained with five scripts,
namely Perso-Arabic (Sindhi, Urdu, Kashmiri), Ol Chiki (Santali), Meitei (Manipuri), Latin (English), and Devanagari
(all the rest of the languages).

5.3 Tokenization

Subword-level tokenization (Sennrich et al., 2016b; Kudo & Richardson, 2018) is an effective approach for segmenting
text into smaller sub-word units to build neural machine translation (NMT) systems that are robust against out-of-
vocabulary (OOV) issues. In this work, we train two separate tokenizers with the byte-pair-encoding (BPE) algorithm
(Sennrich et al., 2016b) using SentencePiece'® library (Kudo & Richardson, 2018) for English and Indic languages
using a sampled corpus comprising monolingual sentences from IndicCorp v2 (Doddapaneni et al., 2023) and NLLB
data (Team et al., 2022). We chose SentencePiece library because of its in-built support for normalization. In order
to ensure fair representation for each language, we upsample the low-resource languages and limit the high-resource
languages to 3M sentences each. We use a vocab size of 32K and 128K for our English and Indic SPM models,
respectively. We prepare the monolingual data for training our English and Indic SPM models using the preprocessing
pipeline described in section 5.2 except for the additional preprocessing. We also add special tags (<dnt> and </dnt>)
to the trained SPM models.

1onttps://github.com/google/sentencepiece
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After tokenization, we prepend special indicator tags following prior multilingual NMT models (Johnson et al., 2017;
Tanetal., 2019; Tang et al., 2021). In our case, we add both the source and target language tags to indicate the translation
direction. Specifically, when translating text from English to Hindi, we format the sample as eng_Latn hin_Deva
{processed text}.

5.4 Architecture

We train our English-centric neural models based on the transformer encoder-decoder architecture (Vaswani et al.,
2017) using the fairseq library!” (Ott et al., 2019). Our architecture comprises 18 encoder layers and 18 decoder layers,
an input dimension of 1024, pre-normalization Xiong et al. (2020) for all modules, a feedforward dimension of 8192,
and 16 attention heads. The total parameter count is 1.1B. Additionally, we use the GELU activation (Hendrycks &
Gimpel, 2016) instead of ReLU (Nair & Hinton, 2010).

5.5 Training

To perform well across a wide range of domains, we adopt FLORES-200 (Team et al., 2022) multi-domain development
set as our validation set rather than combining development sets from different benchmarks. However, this development
set does not cover all the languages supported by our models. As a result, we extend the FLORES-200 development
(Team et al., 2022) set to additionally incorporate five more languages (viz. Bodo, Dogri, Konkani, Sindhi (Devanagari),
Manipuri (Meitei)) to have a complete validation set to jointly optimize and achieve superior performance on all the
22 scheduled Indic languages (including 25 language script combinations). We also make the expanded version of the
FLORES-200 development set (Team et al., 2022) publicly available.

We employ the BLEU metric specifically for checkpointing purposes, using validation BLEU scores to indicate the
model’s performance on the aforementioned validation set. This choice is motivated by BLEU providing valuable in-
sights into the model’s macro-level performance, making it a useful diagnostic tool for tracking the model’s progress
during training. However, it may not be the most suitable choice for fine-grained evaluations. This differs from In-
dicTrans1 (Ramesh et al., 2022), which utilizes validation loss for checkpointing. By incorporating the checkpointing
based on validation BLEU scores, we can ensure that the training of our models progresses based on their performance
on the validation set, leading to an overall improved model.

Our model training paradigm comprises two distinct phases: auxiliary training and downstream training, which are
described below.

Auxiliary Training. The first phase of our model training paradigm, termed auxiliary training, which involves train-
ing intermediate models to augment large amounts of monolingual corpora through back translation. Back-translation
(Sennrich et al., 2016a; Edunov et al., 2018) is a technique that is effective in improving the performance of machine
translation models. We adopt a deterministic curriculum strategy as proposed by Mohiuddin et al. (2022), wherein we
first train the models from scratch on the entire parallel corpora listed in Table 1, followed by stage 2 fine-tuning on high-
quality seed data including BPCC-H-Wiki and the NLLB seed (Team et al., 2022; Maillard et al., 2023), to improve
the models further. Our approach differs from theirs in that we exclusively consider high-quality human-generated data
for stage 2 model fine-tuning, rather than selecting the top p% of bitext pairs from the original data based on a quality
measure. Another prominent advantage of using our human-generated data is that it provides multi-domain coverage,
thereby allowing us to optimize across multiple domains, which may not be feasible when selecting a subset of bitext
pairs based on quality. We list all the hyperparameters used in both stage 1 and stage 2 training in Table 10.

Downstream Training. In the second phase, we train our models on the augmented parallel corpora that combine
original data with back-translated data. Mainly, we follow tagged back translation (Caswell et al., 2019) to provide
additional supervision to the model to distinguish between the different data sources during training. We prepend the
special symbol to the synthetically augmented data while keeping the original data intact. We follow the same training
hyperparameters and two-stage training strategy as the auxiliary training. Table 10 shows all the hyperparameters used
in both stage 1 and stage 2 training.

"https://github.com/facebookresearch/fairseq
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Table 10: Details of the hyperparameters used for stage 1 training and stage 2 fine-tuning. Please note that we reset the
learning scheduler, dataloaders, and optimizer for stage 2 fine-tuning.

Hyperparameters Stage 1 training Stage 2 fine-tuning
Optimizer Adam (Kingma & Ba, 2014)  Adam (Kingma & Ba, 2014)
Beta values (81, 52) (0.9,0.98) (0.9,0.98)
Learning rate 5e-4 3e-5

Scheduler Inverse sqrt Inverse sqrt
Criterion Cross-entropy Cross-entropy
Label smoothing (Szegedy et al., 2016) 0.1 0.1

Warmup learning rate le-7 le-7

Warmup steps 4,000 2,000

Gradient clipping 1.0 1.0

Dropout (Srivastava et al., 2014) 0.2 0.2

Patience 10 10

Effective batch size 262K 32K

Mixed precision training FP16 FP16

Maximum update steps 1M 1M

Validation interval 2,500 1,000

Maximum sequence length 256 256

Checkpoint metric BLEU @ beam = 1 BLEU @ beam = 1

5.6 Data Augmentation

Using existing parallel corpora as training data may eventually lead to saturation in model performance. To address this,
researchers have proposed data augmentation techniques to enhance data diversity and improve model performance.
One such approach involves augmenting pseudo-parallel corpora by leveraging diverse monolingual corpora. Back
translation (Sennrich et al., 2016a; Edunov et al., 2018) is a widely used technique to synthetically augment training
data for improving translation models. Given the large scale of our models, we adopt this approach and generate back-
translated data, which is approximately 1.75 times the size of the original training data. To generate back translation
data, we first identify potential sources of monolingual data for English and Indic languages, intending to maximize
both domain coverage and distributional diversity to improve the models. We use the intermediate checkpoints of
IndicTrans?2 to generate the backtranslated data and combine the augmented data along with the training data to further
improve our models.

English Data for Back Translation. For back translation, we source English data from several sources, including the
English side of IndicCorp v2 (Doddapaneni et al., 2023), the English side of the Indic subset of the NLLB data (Team
et al., 2022), and English data from a few high-resource pairs (eng_Latn - {fra_Latn, por_Latn, spa_Latn,
ces_Latn}) of NLLB data (Team et al., 2022), along with additional miscellaneous sources like Simple Wikipedia'®
and DD News.!® We subjected this set of English sentences to standard preprocessing, as outlined in Section 5.2, and
then filtered the set to retain only sentences with a minimum of five and a maximum of 100 words. As described in
Section 5.2, we deduplicate this set of sentences with all the benchmarks available. Additionally, we also deduplicate
this set with the training data to ensure more diversity in English data and sample candidate sentences from a non-
overlapping set. From this reduced candidate set, we randomly sampled approximately 400 million sentences for back
translation, following an approximate distribution of 55% IndicCorp, 20% NLLB Indic, 20% NLLB HighRes, and 5%
Miscellaneous sources. To ensure language-script diversity, we randomly subdivide the 400 million set into 25 parts,
corresponding to the supported language-script combinations. We utilize the En-Indic model with a beam value of 5
to generate back-translated data. We proportionally distribute the English data across different language-script com-
binations based on the normalized ChrF++ (Popovié, 2017) scores across all language-script combinations described
below in Equation (3) on the expanded version of FLORES-200 validation set (Goyal et al., 2022; Team et al., 2022)

Bhttps://simple.wikipedia.org/wiki/Main_Page
Ynttps://ddnews.gov.in/
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Table 11: Statistics of the monolingual data used for backtranslation.

Language  English BT Data  Indic BT Data  Language  English BT Data  Indic BT Data

asm_Beng 14,569,760 5,433,796  mni_Beng 17,437,961 60,224
ben_Beng 17,928,856 34,987,743  mni_Mtei 17,709,470 33,233
brx_Deva 17,597,825 144,246 npi_Deva 20,567,992 29,997,511
doi_Deva 18,157,864 44291  ory_Orya 19,528,727 15,341,924
gom_Deva 13,478,802 2,937,179  pan_Guru 17,476,704 29,968,101
guj_Gujr 21,447,703 29,994,809  san_Deva 11,198,794 9,744,059
hin_Deva 20,648,256 37,472,261 sat_Olck 9,799,342 32,346
kan_Knda 10,970,576 32,496,971  snd_Arab 8,918,509 4,298,898
kas_Arab 12,717,571 44,276  snd_Deva 6,479,694 25,264
kas_Deva 11,599,085 154,465  tam_Taml 22,647,544 32,488,783
mai_Deva 15,598,363 1,813,669 tel_Telu 21,767,767 32,494,937
mal_Mlym 17,888,824 32,495,047  urd_Arab 20,006,656 33,471,969

mar_Deva 15,849,536 34,994,281
# Total 401,992,181 400,970,283

described in section 5.5. Table 11 describes the distribution of the English data we consider for back-translation for
each language-script combination.

ChrF++(lang;)
lang.) = ! N
Count(lang;) >_; ChrF++(lang;) % )

Here, ChrF++(lang; ) represents the normalized ChrF++ score for language-script combination lang;, and N is the total
number of English monolingual sentences to be used for back translation.

Indic Data for Back Translation. We source the Indic monolingual data from IndicCorp v2 (Doddapaneni et al.,
2023) and the Indic side of the NLLB data (Team et al., 2022) to generate back-translated data to improve our En-Indic
model. However, it is essential to note that our sources for Indic monolingual data are limited, which limits the amount
of data we can sample from each language-script combination. As a result, we do not adopt any proportional sampling
based on the model’s performance on the FLORES-200 validation set, as we do when generating back-translated data
from monolingual English data. Therefore, we follow a simple strategy to include all the available monolingual data
from languages, where the availability of diverse monolingual data is scarce (less than 20 million sentences) and uni-
formly sample from the high-resource languages. We apply the same preprocessing and data deduplication steps as
described above for back-translation from English. We use the Indic-En model with a beam value of 5 for generating
back-translation data. We provide the details of the Indic monolingual data distribution used for back translation in
Table 11.

5.7 Postprocessing

Since our En-Indic model is trained on script-unified data, the output it generates must be mapped back to the na-
tive script of the target language. Therefore, we perform rule-based script conversion using the IndicNLP library
(Kunchukuttan, 2020) and map the script-unified output to the corresponding native Indic script. Importantly, this post-
processing is only necessary for the En-Indic model, as the outputs of the Indic-En model are already in the desired
format.

6 Evaluation

6.1 Models Compared

We compare our trained models with publicly and commercially available existing models and systems:
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* IndicTransl. Ramesh et al. (2022) curated large parallel corpora by large-scale mining and trained multilingual
transformer models (474M parameters) on this mined Samanantar dataset. These models support only 11 major
Indian languages.

* NLLB. Team et al. (2022) trained a multi-way many-to-many 54.5B Mixture of Experts (MoE) model supporting
200 languages. This model supports 20 language-script combinations from the set of scheduled Indic languages,
providing coverage in at least one script for 19 of the 22 scheduled Indic languages.

* M2M-100. Fan et al. (2020) released many-to-many models supporting translation between 100 languages with
language-family specific decoders trained using English-centric data and non-English centric data. We use their best
model (12B parameters) supporting 12 of the 22 scheduled Indic languages for our comparison.

* Microsoft Azure Translate.”’ Microsoft Azure Translate is a commercial translation engine supporting translation
between 16 out of the 22 scheduled Indic languages at the time of writing.

* Google Translate.”! Google Translate is a commercial translation engine supporting translation between 19 out of
the 22 scheduled Indic languages at the time of writing.

» GPT-3.5. GPT-3.5 is a commercially available, large language model developed by OpenAl,?? based on the GPT-3
architecture (Brown et al., 2020), but with additional improvements and optimizations like instruction finetuning,
reinforcement learning with human feedback (Ouyang et al., 2022), and enhanced conversational support. It is a
decoder-only model trained using the causal language modeling objective and is currently available as a propriety
system accessible via a paid API. We evaluate the gpt-3.5-turbo model, which accepts chat format messages, on
our IN22 benchmark in a zero-shot setting.

For proprietary models, it is difficult to do fair comparisons since little information is available about models and
training. Thus, the reported results should be seen as a reasonable approximation. In this work, we will henceforth
adopt the specific shorthand notations: the IndicTrans1 model will be referred to as IT1, the M2M-100 model as M100,
the NLLB 1.2B distilled model as N1.2, the NLLB 54.5B MoE model as N54, Google Translate as Goog, Microsoft
Azure Translate as Az, and our IndicTrans2 model as IT2. The predictions of Microsoft Azure and Google Translate
and GPT3.5 were generated using the respective APIs, with data retrieved on 10th May 2023.

6.2 Benchmarks

We evaluate our trained models (auxiliary and downstream) on our IN22 benchmark and all the publicly available
benchmarks: FLORES-200 (Goyal et al., 2022; Team et al., 2022), WAT 2020 (Nakazawa et al., 2020), WAT 2021
(Nakazawa et al., 2021a), WMT 2014 (Bojar et al., 2014), WMT 2019 (Barrault et al., 2019), WMT 2020 (Barrault
et al., 2020), UFAL (Ramasamy et al., 2012) and NTREX (Federmann et al., 2022).

We list the details of the existing benchmarks below.

» IN22 is a comprehensive benchmark for evaluating machine translation performance in multi-domain, n-way parallel
contexts across 22 Indic languages. It comprises three distinct subsets, namely IN22-Wiki, IN22-Web, and IN22-
Conv. The Wikipedia and Web sources subsets offer diverse content spanning news, entertainment, culture, legal, and
India-centric topics. Meanwhile, the conversation domain subset is designed to assess translation quality in typical
day-to-day conversational-style applications.

From now on, we merge Wikipedia and Web Sources subsets, to create a consolidated set referred to as IN22-Gen
for translation evaluation. Our motivation for this is that these two subsets share a common language style, albeit
with varying topics, whereas the Conversation subset is different in both language style and usage context.

nttps://azure.microsoft.com/en-us/products/cognitive-services/translator
2lhttps://cloud.google.com/translate
2https://platform.openai.com/docs/models/gpt—3-5
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* FLORES-101/200 (Goyal et al., 2022; Team et al., 2022) is a multi-domain general-purpose benchmark designed
for evaluating translations across 200 languages, including 19 Indic languages. The English sentences are source-
original and have been translated into other languages. It comprises sentences sourced from Wikimedia entities with
equal portions of news, travel, and non-fiction content from children’s books. Tables 2 and 50 provide further details
on the statistics and fine-grained domain coverage.

* NTREX (Federmann et al., 2022) is a news-domain benchmark that expands coverage of languages of test data from
WMT 2019 (Barrault et al., 2019) to 128 languages. Out of these, 13 are scheduled Indic languages.

* WMT has created benchmarks for selected Indic languages as part of shared tasks in 2014 (Hindi) (Bojar et al.,
2014), 2019 (Gujarati) (Barrault et al., 2019) and 2020 (Tamil) (Barrault et al., 2020).

* WAT 2020/2021 (Nakazawa et al., 2020; 2021a) included support for translations for 8 Indic languages in the news
domain. In addition, they released data for Hindi-English in Information Technology and WikiNews domains. WAT
2021 (Nakazawa et al., 2021a) created a benchmark for translation between 10 Indic languages and English.

* UFAL (Ramasamy et al., 2012) is an English-Tamil bilingual benchmark created from publicly available websites.
The benchmark consists of English sentences from domains such as cinema, news, and some biblical sources.

Moving forward, we consider IN22 and FLORES-200 (Team et al., 2022) as the primary benchmarks to evaluate all the
translation models. The results obtained from these benchmarks are reported and discussed in Section 7. Additionally,
the results of the models’ performance on other benchmarks are presented in Appendix B. Note that almost all the
testsets are English-original, but have been used for Indic to English evaluation as well as Indic-Indic evaluation.

6.3 Metrics

Several metrics have been developed over the years for automatically assessing translation quality, including string-
based metrics such as BLEU (Papineni et al., 2002), ChrF (Popovi¢, 2015), and ChrF++ (Popovi¢, 2017), and model-
based metrics such as BLEURT (Sellam et al., 2020), COMET (Rei et al., 2020; 2022) and PRISM (Thompson &
Post, 2020). Recent research (Kocmi et al., 2021; Freitag et al., 2021; 2022) has shown that model-based metrics tend
to exhibit a stronger correlation with human judgment. However, these model-based metrics are limited to languages
represented in the underlying pre-trained model. They are trained on human judgment data from a few languages, and
their performance on many low-resource languages has not been evaluated. We briefly describe all the metrics used in
our work below.

BLEU. BLEU (Papineni et al., 2002) has been a standard and widely used metric for evaluating machine translation
quality. However, a significant limitation of the standard BLEU metric is its tokenization dependency. To overcome
this, sacreBLEU?® (Post, 2018) provides standardization in terms of tokenization to ensure a fair comparison. We use
sacreBLEU for evaluating our En-Indic and Indic-En trained models. We use the in-built default mteval-v13a tok-
enizer?* for Indic-En?’ and Indic tokenizer from IndicNLP (Kunchukuttan, 2020) for En-Indic?® evaluations. Therefore,
we first tokenize the machine translations and reference translations using Indic tokenizers from IndicNLP? (version
0.92) and Urduhack?® (ALAi, 2019) libraries before running sacreBLEU.

ChrF++. ChrF++ (Popovi¢, 2017), an extension of the chrF metric (Popovié, 2015) that additionally considers word
unigrams and bigrams, and is better correlated with human judgments and use sacreBLEU to compute ChrF++ scores.

Bhttps://github.com/mjpost/sacrebleu

2*https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/mteval-v1i3a.pl

25Indic-En sacreBLEU BLEU signature:
nrefs:1|case:mixed|eff:noltok:13alsmooth:exp|version:2.3.1

20En-Indic sacreBLEU BLEU signature:
nrefs:1|case:mixed|eff:noltok:nonel|smooth:explversion:2.3.1

?Thttps://github.com/anoopkunchukuttan/indic_nlp_library

Zhttps://github.com/urduhack/urduhack
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Similar to the tokenizers used for BLEU, for Indic-En?® evaluation, we use the in-built default mteval-v13a tokenizer,
while for En-Indic®® evaluation, we use Indic tokenizers from IndicNLP and Urduhack libraries to tokenize the machine
translations and reference translations before running sacreBLEU.

COMET. COMET is a model-based machine translation evaluation metric introduced by Rei et al. (2020) to address
some of the limitations of existing metrics such as BLEU. However, one of the prominent concerns about COMET
is its extensibility to low-resource languages. Therefore, in this study, we report COMET-DA scores for the top-13
Indian languages: Assamese, Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi, Nepali, Odia, Punjabi, Tamil,
Telugu, and Urdu that are supported by the XLM-RoBERTa (Conneau et al., 2020) model. Specifically, we conduct a
reference-based evaluation using the COMET-22 DA model®' (Rei et al., 2022).

Choosing the Primary Metric. COMET, the most recommended model-based metric (Kocmi et al., 2021), does
not support all the 22 Indic languages since they are not represented in XLM-R (Conneau et al., 2020) which is the
underlying model on which COMET is based. Conversely, BLEU has several significant limitations, including its
tokenization dependency and preferential bias towards translations that are closer to the reference translations in terms
of lexical and word order (Ananthakrishnan et al., 2006). Particularly in the context of morphologically rich Indian
languages, BLEU is limited in addressing morphological variants since it relies on exact word matches. Furthermore,
ChrF++ metric is more suitable for evaluating translation quality in languages with complex morphology and inflections,
such as Indian languages. In this work, we, therefore, primarily rely on ChrF++ as our primary metric for evaluating
translation quality. We also report additional metrics such as BLEU (Papineni et al., 2002) and COMET (Rei et al.,
2022). In addition, we also perform paired bootstrap resampling-based statistical significance tests (Koehn, 2004) for
all the metrics following the default configurations.

6.4 Generation

To generate predictions using IndicTrans2, initially, we preprocess and tokenize the source sentences from the bench-
mark test set, following the steps described in Section 5.2 and Section 5.3, respectively. Subsequently, we feed the
tokenized sentences into the trained models as input to generate candidate translations. We utilize beam search with a
beam value of 5 for our trained models. Finally, we employ post-processing techniques, as detailed in Section 5.7, to
map the script unified output to the corresponding native script. For other baseline systems, we follow their documented
inference procedure. For all the open-source baseline models, we use the same beam size of 5.

6.5 Evaluation

Following the generation of candidate translations, we evaluate their quality using the automatic metrics mentioned
in Section 6.3. We apply standard processing techniques to compute the evaluation metrics, followed by running
sacreBLEU. We use the standard Moses tokenizer for English, while for Indic languages, we perform tokenization
using IndicNLP and Urduhack libraries. We release our evaluation procedure and scripts to ensure reproducibility. We
follow the same evaluation procedure for all systems listed in Section 6.1.

7 Results and Discussion

7.1 Comparison with Existing Systems

Evaluation on IN22-Gen Set. We evaluate the translation quality of multiple En-Indic and Indic-En MT models
on the IN22-Gen set. The results are presented in Table 12. We observe that IndicTrans2 significantly improves
translation quality over IndicTrans1 (Ramesh et al., 2022) with an average improvement of 5.2 points in the En-Indic

Indic-En sacreBLEU ChrF++ signature:
nrefs:1|case:mixed|eff:yes|nc:6|nw:2|space:nolversion:2.3.1

30En-Indic sacreBLEU ChrF++ signature:
nrefs:1|case:mixed|eff:yes|nc:6|nw:2|space:no|version:2.3.1

3lhttps://huggingface.co/Unbabel/umt22-comet-da
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Table 12: ChrF++ scores of all the systems on the IN22-Gen Evaluation set in the En-Indic and Indic-En directions.
The best performing system is bolded, while underlined results indicate significant performance difference where 1T2
outperforms the system. The row Avg. means the average score of all the languages that system X supports. A represents
the difference between the average scores of IT2 and the average scores of system X for the subset of languages that
both X and IT2 support. A positive value for A indicates IT2 is better than X and vice-versa. { indicates completely
off-target translations.

En-Indic Indic-En

language IT1 M100 N1.2 N54 IT2 Goog Az |IT1 MI100 N1.2 N54 IT2 Goog Az
asm_Beng 359 - 41.7 429 47.1 455 45.0|56.1 - 63.1 66.5 65.8 65.1 60.8
ben_Beng 48.6 40.6 47.8 49.2 51.8 49.9 49.8(584 52.8 60.8 63.5 63.2 64.1 60.2
brx_Deva - - - - 478 - - - - - - 62.1 - -
doi_Deva - - - - 578 478 - - - - - 726 673 -
gom_Deva - - - - 452 414 41.1| - - - - 592 57.8 51.1
guj_ Gujr 472 199 483 49.5 535 522 50.8/60.3 11.8 63.9 663 66.5 66.5 62.4
hin_Deva 53.3 47.1 52.8 53.9 56.7 54.6 54.1(60.7 549 622 64.8 654 64.8 62.0
kan_Knda 46.7 153 47.3 48.6 51.0 48.1 49.4|58.8 12.6 624 651 642 645 61.7
kas_Arab - - 346 354 40.2 - - - - 549 582 604 - -
mai_Deva - - 449 447 487 383 452| - - 62.1 65.1 64.8 64.0 61.0
mal_Mlym 457 312 454 46.7 50.9 49.0 48.6|56.9 44.8 59.8 62.8 64.5 62.7 60.4
mar_Deva 44.3 345 447 46.1 51.0 47.1 48.2|57.7 46.9 60.9 63.6 63.7 644 60.3
mni_Mtei - - - - 44.6 350 - - - - - 579 507 -
npi_Deva - 177 44.8 44.8 49.0 455 463 - 40.1 65.0 68.0 67.7 69.0 63.8
ory_Orya 403 8.2 424 41.5 439 40.5 454(60.0 144 63.7 66.7 66.2 64.6 61.1
pan_Guru 48.0 25.0 48.5 49.5 50.6 52.7 504|572 382 604 63.1 634 62.7 585
san_Deva - - 25.5 28.1 38.8 32.0 - - - 48.2 51.3 54.8 53.8

sat_Olck - - 10T 255 334 - - - - 363 414 453 - -
snd_Deva - - - 36.6 - - - - - - 573 - -
tam_Taml 45.5 123 47.0 47.5 49.5 48.5 49.4(539 263 569 59.1 59.8 59.6 56.8
tel_Telu 46.5 - 48.1 49.5 524 50.8 50.6(57.7 - 61.3 644 64.8 64.6 61.2
urd_Arab - 450 62.1 63.7 682 639 690 - 52,6 683 71.2 73.0 71.8 68.2
Avg. 45.6 27.0 42.8 45.1 48.6 46.8 49.6|58.0 359 594 624 63.1 63.2 60.6
A 52 254 64 41 - 42 17163 293 37 07 - 1.1 42

direction and 6.3 points improvement in the Indic-En direction. The proposed model outperforms the best commercial
and open-source models for En-Indic translation by 1.7 and 4.1 points, respectively. For Indic-En translation, the
IndicTrans2 is comparable to existing models, with a delta of +0.7 and +1.1 for best open-source and commercial
models, respectively. The results further highlight the substantial improvements made on low-resource languages such
as Dogri (+10), Konkani (+3.8), Kashmiri (+4.8), Maithili (+3.8), Manipuri (+9.6) for En-Indic and Dogri (+5.3),
Manipuri (+7.2), Santali (+3.9) for Indic-En translations when compared to the next best model. The observed gains
can be attributed to using high-quality human-annotated BPCC-H Wiki data for training MT models. These findings
suggest that the proposed model is well-suited for adoption in the Indian subcontinent, aligning with the objective of
building models suitable for Indian languages. Additionally, we also report the COMET (Rei et al., 2022) and BLEU
(Papineni et al., 2002) scores for our models in Table 37 and Table 40 (in Appendix B) where we observe similar trends,
indicating that the observations are robust across different metrics.

Evaluation on FLORES-200. We also evaluate the MT models on the FLORES-200 benchmark (Team et al., 2022).
Through this evaluation, we aim to assess the model’s translation quality on more general content, complementing the
evaluation on our IN22 test set which is India-centric. Therefore, by evaluating our models on both IN22 and FLORES-
200, we can effectively gauge the model’s translation quality in different settings. The results in Table 13 obtained
from the FLORES-200 test set show a similar trend as IN22, with IndicTrans2 being the best open-source model
performing competitively with commercial models. The results also show a significant improvement from IndicTrans1
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Table 13: ChrF++ scores of all the systems on the FLORES-200 devtest set in the En-Indic and Indic-En direction.
The best performing system is bolded, while underlined results indicate significant performance difference where 1T2
outperforms the system. Avg. means the average score of all the languages that system X supports. A represents the
difference between the average scores of IT2 and the average scores of system X for the subset of languages that both X
and IT2 support. A positive value for A indicates IT2 is better than X and vice-versa. | indicates completely off-target
translations.

En-Indic Indic-En
language IT1 MI100 N1.2 N54 IT2 Goog Az |IT1 MI100 NI1.2 N54 IT2 Goog Az

asm_Beng 335 -  38.6 39.0 433 409 42.8|48.1 - 553 57.8 569 57.7 534
ben_Beng 49.5 443 50.1 52.2 543 53.8 534|569 547 603 622 624 632 599
guj_Gujr 504 219 52.0 53.6 56.0 555 55.6(58.7 12.1 652 66.6 67.0 68.0 62.9
hin_Deva 56.6 53.2 56.5 58.2 59.6 60.2 59.6|61.3 60.0 65.0 66.5 67.5 68.0 65.3
kan_Knda 509 16.5 53.0 543 56.1 56.2 56.1|54.6 12.0 59.5 61.0 61.5 62.1 58.6
kas_Arab - - 37.2 38.0 39.7 - - - - 57.8 60.2 59.7 - -
kas_Deva - - 187 188 19.2 - - - - 477 50.6 483 - -
mai_Deva - - 46.1 475 505 414 51.0| - - 66.6 683 69.5 688 65.2
mal_Mlym 49.8 37.8 49.2 52.6 57.3 57.3 56.8|57.2 51.7 61.8 629 643 64.5 61.3
mar_Deva 459 38.6 46.5 48.3 51.3 514 494|564 504 61.6 63.8 643 653 61.5
mni_Beng - 37.1 42.1 382 - - - - 50.5 50.7 529 - -
npi_Deva - 155 492 464 57.2 557 534| - 41.1 652 669 68.1 68.7 63.9
ory Orya 442 85 47.6 47.0 492 539 502|555 143 61.8 644 649 643 60.5
pan_Guru 50.6 26.8 509 51.3 53.5 543 54.2(60.0 445 0645 663 664 67.1 62.7
san_Deva - - 25.8 27.1 31.6 313 - - - 47.8 50.7 51.6 512 -
sat_Olck - - 09t 27.0 284 - - - - 38.7 443 393 - -
snd_Arab - 28.6 489 49.6 449 504 51.1| - 19.6 64.0 66.3 65.1 66.6 59.8
tam_Taml 49.5 13.2 533 54.0 57.2 56.0 56.1|54.1 33.0 589 60.8 61.3 61.5 579
tel_ Telu 526 - 550 56.5 594 59.0 575|582 - 634 655 66.1 66.7 63.4
urd_Arab - 399 494 50.3 522 513 51.6| - 48.8 609 629 62.0 63.7 59.3
Avg. 48.5 287 433 457 48.0 51.8 533|565 369 58.8 609 61.0 642 61.0
A 58 254 47 23 - 03 02|74 277 22 01 - -05 35

to IndicTrans2, with +5.8 and +7.4 points improvement in En-Indic and Indic-En translations, respectively. We also
report the COMET and BLEU scores for the FLORES-200 benchmark in Table 39 and Table 42 (in Appendix B).

Evaluation on IN22-Conv Set. While both the IN22-Gen Set and FLORES-200 (Team et al., 2022) focus on written
sentences, the real-world usage of MT is often task-oriented and involves conversational language. To address this, all
the models are further evaluated on the IN22-Conv Set, which is designed to test the translation quality of MT models
on conversational language and daily use scenarios. The results of all the models on the IN22-Conv Set are presented
in Table 14. Across the board, the results show moderately strong translation quality by all the models. Overall, a
similar trend is observed for En-Indic translations, with IndicTrans2 outperforming the best open-source models and
commercial models. Similarly, in the case of Indic-En translations, IndicTrans2 outperforms the best open-source
models and performs competitively with commercial models. The results further highlight significant improvements
in the quality of translations for low-resource languages such as Dogri (+13.8), Kashmiri (+8.5), Manipuri Meitei (+9),
Sanskrit (+2.7), and Santali (+16.6) in the En-Indic direction and Kashmiri (+7.4), and Santali (+6.1) in the Indic-En
direction respectively, compared to the best available existing systems. Given that IndicTrans2 supports all 22 scheduled
languages and performs well across all of them, the model is expected to have good usability in both informational and
conversational settings. Additionally, we also report the COMET (Rei et al., 2022) and BLEU (Papineni et al., 2002)
scores for our models in the Table 38 and Table 41 (in Appendix B).

Evaluation on Other Benchmarks. We perform evaluations on other publicly available benchmarks and the detailed
results are presented in Appendix B, while a summary of the observations is presented in this section. Specifically,
we evaluate the models on WAT 2020 (Nakazawa et al., 2020) and WAT2021 (Nakazawa et al., 2021a), which were
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Table 14: ChrF++ scores of all the systems on the IN22-Conv Evaluation set in the En-Indic and Indic-En directions.
The best performing system is bolded, while underlined results indicate significant performance difference where 1T2
outperforms the system. Avg. means the average score of all the languages that system X supports. A represents the
difference between the average scores of IT2 and the average scores of system X for the subset of languages that both X
and IT2 support. A positive value for A indicates IT2 is better than X and vice-versa. | indicates completely off-target
translations.

En-Indic Indic-En
language IT1 M100 N1.2 N54 IT2 Goog Az |IT1 MI100 N1.2 N54 IT2 Goog Az
asm_Beng 364 - 42.6 43.4 46.8 43.6 46.6|52.5 - 58.7 59.8 629 64.0 62.1
ben_Beng 47.5 39.7 47.1 48.5 49.7 48.9 48.8|552 48.1 554 57.0 584 59.6 583
brx_Deva - - - - 453 - - - - - - 563 - -
doi_Deva - - - - 539 40.1 - - - - - 65.0 629 -
gom_Deva - - - 42.5 403 38.7| - - - - 51.7 51.6 46.1
guj_Gujr 49.1 21.0 48.7 49.8 53.1 519 518569 6.5 608 614 62.0 62.2 61.1
hin_Deva 48.6 427 47.6 48.3 49.6 50.6 48.7(574 50.6 58.7 59.7 60.1 60.0 59.3
kan_Knda 32.6 13.7 32.2 33.3 33.8 33.1 335|440 7. 453 46.2 47.5 48.0 48.1
kas_Arab - - 25.7 27.1 35.6 - - - - 44.6 452 52.6 - -
mai_Deva - - 41.6 41.0 443 3 382 - - 55.2 56.7 57.8 59.1 55.8
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mal_Mlym 43.8 457 452 44.9|50.6 38.8 52.6 543 54.6 54.4
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mar_Deva 437 33.9 44.8 47.3 48.6 46.6 46.3|542 404 562 57.5 58.5 59.4 583
mni_Mtei - - - - 402 312 - | - - - - 525 463 -
npi_Deva 153 449 443 515 46.1 464| - 21.0 599 60.6 63.0 63.9 62.0

> B

ory_Orya 389 7. 413 409 402 37.7 421|556 11.5 59.3 59.8 60.3 59.0 58.7
pan_Guru 54.0 254 543 555 57.8 61.1 56.8|58.1 324 60.1 614 62.7 61.1 61.1

san_Deva - - 264 30.3 355 32.8 - - - 38.9 40.2 483 49.2 -
sat_Olck - - 0.8 18.0 346 - - - - 336 374 435 - -
snd_Deva - - - - 303 - - - - - - 49.6 - -
tam_Taml 37.7 19.2 37.2 37.1 39.1 38.7 39.1(44.1 22.5 457 46.8 45.8 46.8 46.4
tel_Telu 425 - 399 40.5 45.5 44.6 449|485 - 51.3 533 529 539 53.6
urd_Arab - 425 559 555 61.6 60.6 59.6| - 479 61.5 62.3 65.5 653 649
Avg. 432 266 39.5 413 448 43.8 458(525 29.7 527 54.0 56.0 57.1 56.7
A 32 216 57 39 - 28 15|44 283 33 20 - 0.1 0.9

created from the PMIndia corpus containing data from speeches and news from the Prime Minister of India. Across
the board, the results presented in Table 28 and Table 29 show that IndicTrans2 outperforms all open-source and
commercial models in both Indic-En and En-Indic translation directions, with the exception of IndicTrans1. However, it
is important to note that performance improvement for IndicTrans1 stems from the fact that their validation set consisted
of the development sets of various shared task benchmarks like WAT, WMT, and FLORES-200. On the contrary, our
work used the FLORES-200 development set as the validation set with the aim of attaining strong performance across
multiple domains. Along the same lines, we evaluate our models on the NTREX (Federmann et al., 2022) Evaluation
set, which is derived from the news domain. The results presented in Table 25 and Table 26 show similar findings with
IndicTrans2 performing the best among all the compared models with +3 and +2.6 points improvement over the best
open-source model in En-Indic and Indic-En directions respectively. However, on the UFAL test set involving Tamil
language, among open-source models, we observe that our model lags behind the IndicTrans1 and NLLB 1.2B model
in the En-Indic direction (Table 34).

Best Open-Source Model. Our study evaluated the translation quality of IndicTrans2 and other open-source models
on various benchmarks. While IN22 and FLORES-200 (Team et al., 2022) evaluated the models on diverse domain
content such as sports, news, and conversational texts, we further tested the models on WAT2020 (Nakazawa et al.,
2020), WAT2021 (Nakazawa et al., 2021a), and NTREX (Federmann et al., 2022). Across all multi-domain bench-
marks, we observed that IndicTrans2 consistently outperformed other open-source models, demonstrating its
better translation capabilities. However, it is important to note that performance improvement for IndicTrans1 on
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Figure 5: Average performance improvements in terms of ChrF++ across language families on IN22 and FLORES-200
(Team et al., 2022) benchmarks.

WAT2020 (Nakazawa et al., 2020) and WAT2021 (Nakazawa et al., 2021a) can be attributed due to explicit optimization
across different benchmarks by incorporating development sets of various shared tasks, in addition to FLORES-200.
In contrast, our development set only comprises FLORES-200. Detailed results for all the benchmarks and models
are presented in Appendix B (refer Tables 25, 28 and 29). Additionally, IndicTrans2 has the highest coverage of lan-
guages and written scripts, with support for 22 Indic languages and 25 language-script combinations. Further, while
the current SOTA open-source model, the NLLB 54B MoE model (Team et al., 2022), is impressive in its capabilities,
it is impractical for deployment due to its high latency and resource requirements. Our study addresses this challenge
by developing comparatively compact models that can compete with large-scale models even when trained on
smaller datasets, emphasizing quality and cost-effectiveness. Results on different benchmarks confirm the robust
performance of our model across various domains and distributions. Therefore, we can conclude that our model has
fair generalization capabilities, performing well across most of the benchmarks.

Supporting New Languages and Scripts. Our work bridges the gap left by existing open-source and commercial
systems by extending IndicTrans1 (Ramesh et al., 2022) to support all 22 scheduled Indic languages, including low-
resource languages and multiple scripts. We train the first open-source model with reasonable performance for the fol-
lowing languages: Bodo, Dogri, and Konkani. For some languages, we support translation in scripts that were hitherto
unsupported like Sindhi (Devanagari script) or are only supported by commercial systems like Manipuri (Meitei). In
addition, we also improve translation quality significantly for low-resource languages such as Dogri, Maithili, Manipuri
(Meitei), and Nepali. The human-annotated seed parallel data (refer Table 1) for these languages help us outperform
other models which rely on unsupervised methods and/or mined data for these low-resource languages. This suggests
that investments in creating small parallel corpora for low-resource languages can substantially improve translation
quality, corroborating findings from Team et al. (2022).
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Table 15: ChrF++ scores of the models trained on unfiltered (pre-filtering) and filtered data (post-filtering), on the
FLORES-200 Evaluation set in the En-Indic and Indic-En directions. The best performing system is bolded. A repre-
sents the difference between the scores of the model trained on filtered data and unfiltered data. A positive value for A
indicates that the model trained on filtered data (post-filtering) is better than unfiltered (pre-filtering) and vice-versa.

Dataset Size En-Indic Indic-En

language ‘ Pre-Filter  Post-Filter ‘ Pre-Filter ~ Post-Filter =~ A ‘ Pre-Filter ~ Post-Filter A

asm_Beng 5.3M 0.5M 34.6 39.0 4.4 49.2 51.9 2.7
ben_Beng 70.4M 16.5M 52.2 53.1 0.9 60.0 60.2 0.2
guj_Gujr 14.4M 8.4M 514 52.4 1.0 64.0 63.9 -0.1
hin_Deva 43.1M 11M 58.1 58.7 0.6 64.4 64.6 0.2
kan_Knda 38.3M 10.5M 52.7 53.3 0.6 58.6 58.7 0.1
mal_Mlym 49.6M 10.8M 52.8 55.1 2.3 60.2 61.1 0.9
mar_Deva 35.6M 7.74M 46.9 48.5 1.6 60.6 60.7 0.1
ory_Orya 14.7M 2.9M 42.6 46.1 3.5 58.8 60.0 1.2
pan_Guru 14M 3.3M 49.1 50.6 1.5 62.7 63.1 0.4
tam_Taml 47.7M 10.4M 53.3 55.3 2.0 58.0 58.2 0.2
tel_Telu 51.2M 11.8M 56.0 56.8 0.8 63.0 63.2 0.2
Avg. - - 50.0 51.7 1.7 60.0 60.5 0.6

Comparison across language families. Our analysis reveals that on low-resource languages from the Sino-Tibetan
and Austroasiatic language families models tend to consistently underperform compared to mid and high-resource
languages in the Indo-Aryan and Dravidian families. Conversely, on mid and high-resource languages, all models
seem to exhibit comparable performance. These observations suggest that the major differences in performance are
coming from the low-resource language families. Notably, no other open-source or commercial model covers all four
language families. The results for all the models on our primary benchmarks are presented in Figure 5.

Additionally, we conduct a small-scale human evaluation exercise to verify if the quality of our model outputs correlates
with the improvements observed using automatic metrics. This preliminary human evaluation exercise focused on the
En-Indic direction and included 50 examples each from the Wikipedia and Web sources subset to yield a total of 100
sentence pairs from IN22-Gen and is described in Appendix C. However, future efforts should focus on large-scale
human evaluation to understand the potential biases and shortcomings of our IndicTrans2 models and assess their
feasibility in practical use-case scenarios.

7.2 Understanding Data Scale vs Quality tradeoff

Prior works such as NLLB (Team et al., 2022) have focused on scaling the data in order to improve the model per-
formance. They use a margin-based mining approach with a threshold of 1.06. However, from an in-house manual
inspection, it was observed that the data is noisy. As a result, we conduct an ablation study to understand the trade-off
between data scale and quality for effectively training multilingual MT models. In this ablation, we consider existing
mined parallel corpora such as Samanantar (Ramesh et al., 2022) and NLLB (Team et al., 2022) and specifically focus
on the subset of 11 languages that are common to both. We apply an additional quality filter, where we eliminate the
bitext pairs that fall below the LABSE (Feng et al., 2022) cosine similarity threshold of 0.80. This resulted in a reduc-
tion from 384M (Unfiltered data) to 94M (filtered data) in total. Subsequently, we train two separate models with the
same architecture (refer to Section 5.4) and stage 1 hyperparameters (refer to Table 10) as our final IndicTrans2 mod-
els on filtered and unfiltered versions of the data. The results shown in Table 15 demonstrate that the models trained
on the high-quality filtered subset perform on par or even superior to the model trained on the unfiltered data. This
suggests that eliminating the noisy and suboptimal bitext pairs through this additional filter improves the model
performance and accelerates model convergence. We, therefore, adopt this filtering threshold for our final training,
ensuring that our model benefits from the improved data quality.
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Table 16: Performance improvements of En-Indic and Indic-En models on ChrF++ metric on our primary evaluation
benchmarks w.r.t. sequential training.

Benchmark En-Indic  Indic-En

FLORES-200 +1.5 +0.6
IN22-Gen +2.2 +0.5
IN22-Conv +2.7 +1.9
Average +2.1 +1.0

7.3 Impact of Sequential Training with Human Annotated Data

We train our models sequentially, where stage 1 involves training on a combination of all the existing data, mined
data, and high-quality seed data, while stage 2 involves fine-tuning with high-quality seed data (as described in Sec-
tion 5.5). Our seed data involves a combination of NLLB Seed (Team et al., 2022; Maillard et al., 2023) and our human-
annotated data BPCC-H-Wiki (refer Table 1). As seed data for Sindhi (Arabic) is not present in both the sources, we
use the Sangam transliteration API*? (Lehal & Saini, 2014) to transliterate the Sindhi BPCC-H-Wiki data (~10.5K)
from Devanagari script to Perso-Arabic script. We observe that fine-tuning our models with high-quality seed data
is beneficial and leads to an average improvement of 2.1 points and 1 point in En-Indic and Indic-En directions, re-
spectively, on our primary evaluation benchmarks in terms of ChrF++ metric (see Table 16). These findings align with
previous works (Mohiuddin et al., 2022), which show that deterministic data selection curriculum involves pretraining
on general domain corpora followed by fine-tuning with high-quality data subset of general domain corpora results in
solid performance improvements over the preliminary models. A critical distinction from the above approach is that
we only use the human-annotated seed data for fine-tuning, rather than retrieval of top p% samples from training data
based on lexical similarity. Our observations indicate that although sequential training yields gains on an aggregate
level, it is important to note that for specific languages such as Sindhi (Arabic) (where we use transliterated data), our
En-Indic model tends to degrade (~3 points in ChrF++) in terms of performance, highlighting that it is crucial to use
high-quality human annotated data for fine-tuning.

Furthermore, Table 17 reports the performance of IndicTrans2 models for various training stages on IN22-Gen Set.
Notably, the highest improvement was observed in Santali for the En-Indic direction in both A; and As. It is also worth
highlighting that the human-annotated seed data from previous work and our current work serves as the primary and
most influential source for mid-resource and low-resource languages, including Dogri, Konkani, Sindhi (Devanagari),
Santali, and Manipuri (Meitei) as shown in Table 1. Despite the smaller size of seed data compared to mined corpora,
finetuning on this leads to superior performance across different benchmarks (refer Tables 12 to 14). Although A; and
As may be smaller for a few languages due to the saturation of the data diversity during multi-stage training, the seed
data proves to be beneficial on an aggregate level, further reinforcing its positive impact.

7.4 Impact of Data Augmentation

Section 5.6 describes the procedure and heuristics for synthetic data generation to further improve our auxiliary models.
Initially, we adopted the back-translation approach for generating the augmented data. We primarily base our decision to
start with an auxiliary En-Indic model for generating back-translation data for Indic-En translation due to its competitive
or better performance compared to the best open-source baseline (see Table 18). We combine the original data and
the English back-translated data, obtained using our auxiliary En-Indic model, to train our new Indic-En model from
scratch, followed by high-quality seed data fine-tuning. In this case, in accordance with prior study (Caswell et al., 2019),
we use “__bt__" indicator tags to provide some supervision to the model to distinguish original data from the back-
translated data. We observe a considerable performance improvement across all our primary evaluation benchmarks on
our Indic-En model, as shown in Figure 6 when we perform training on the combination of original and back-translated
data (refer Table 17).

¥https://sangam.learnpunjabi.org/
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Table 17: ChrF++ score on IN22-Gen Evaluation Set for various training stages. OG refers to the model trained on the
original training corpora, while OG-Seed refers to the seed data fine-tuned version of the OG model. A; represents the
gains obtained by fine-tuning the original model with seed data. DA refers to the model trained on the combination of
original training data with augmented data, while DA-Seed refers to the seed data fine-tuned version of the DA model.
A, represents the gains obtained by fine-tuning on seed data after data augmentation.

En-Indic Indic-En
language OG OG-Seed A; DA DA+Seed AQ‘OG OG-Seed A; DA DA+Seed Aq

asm_Beng 434 456 22 448 471 23(619 621 02 649 658 09
ben_Beng 482 503 2.1 488 518 3.0(606 608 02 624 632 038
brx_Deva 44.5 47.1 2.6 46.3 47.8 1.5]58.1 58.4 0.3 619 62.1 0.2
doi_Deva 554 557 03 562 578 16|686 685 -0.1 727 726 -0.1
gom_Deva 422 438 1.6 432 452 20(559 565 0.6 587 592 05
gw_Gujr 494 516 22 500 535 35/640 639 -0.1 657 665 0.8
hin_Deva 535 546 1.1 536 567 3.1|628 634 06 647 654 0.7
kan_Knda 473 497 24 477 510 33|61.7 620 03 632 64.2 1.0
kas_Arab 3777 388 1.1 383 402 19|556 561 05 60.0 604 04
mai_Deva 459 473 14 462 487 25(621 619 -02 646 648 02
mal_Mlym 479 49.7 1.8 484 509 25[60.7 615 0.8 631 645 1.4
mar_Deva 4577 48.6 2.9 46.6 51.0 44160.7 61.1 04 623 63.7 1.4
mni_Mtei 39.6 413 1.7 41.8 446 28|532 533 0.1 576 579 03
npi_Deva 445 475 3.0 454 49.0 36|644 644 00 671 677 0.6
ory_Orya 40.1 419 1.8 410 439 29|631 634 03 653 662 0.9
pan_Guru 49.5 506 1.1 502 50.6 04610 614 04 629 634 05
san_Deva 359 3777 1.8 369 388 19509 51.1 02 544 548 04
sat_Olck 242  27.3 3.1 26.5 334 6.9143.6 438 0.2 445 45.3 0.8
snd_Deva 348 362 14 353 366 13(536 537 0.1 565 573 038
tam_Taml 473 487 14 479 495 1.61572 575 03 59.1 598 0.7
tel_Telu 49.6 513 1.7 50.0 52.4 241623 62.6 0.3 64.0 64.8 0.8
urd_Arab 63.8 67.1 33 654 682 28|695 699 04 725 73.0 05

Table 18: Comparison of average ChrF++ scores between our stage 2 auxiliary model and the best open-source baseline
on FLORES-200 (Team et al., 2022) Evaluation set at the end of stage 2 auxiliary training. OG-seed denotes the model
trained on the original data followed by fine-tuning with seed data. A denotes the difference between the scores of our
stage 2 auxiliary model and the best open-source baseline.

N54 OG-Seed A

xx-eng_Latn 60.9 58.1 -2.8
eng_Latn-xx 45.7 47.8 2.1

Following iterative back translation (Hoang et al., 2018), we use the stage 2 fine-tuned downstream Indic-En model to
generate the back-translation data due to its superior performance compared to the auxiliary Indic-En model. Similarly,
we combine the Indic back-translated data along with the original data using indicator tags and train our new En-Indic
model from scratch, followed by fine-tuning with seed data. However, we do not observe any gains for the new En-
Indic model compared to the stage 2 auxiliary fine-tuned En-Indic model. Further investigation is needed to determine
the exact reasons for the performance limitations of our newly trained En-Indic model, but we suspect that unlike for
Indic-En translation, the increase in the Indic target side data is insufficient, both in terms of domain coverage and
amount. This conjecture is based on the fact that a significant portion of both the original training corpus and the back-
translated data is sourced from the news domain, resulting in considerable overlap in their distributional coverage. The
lack of diversity in domains may potentially hinder the model from reaching its optimal capabilities. Furthermore, for
Indic-En translation, the amount of target side English data almost triples in amount when back-translated data is added
to the original parallel corpus. However, in the case of English-Indic translation, where multiple target languages are
involved, the relative augmentation per language is comparatively lower, which might potentially explain the marginal
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Stage-wise Improvements of Our Models
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Figure 6: Average Performance of our En-Indic and Indic-En models across different stages in terms of ChrF++ metric
on our primary evaluation sets.

enhancement observed in the English-Indic direction. Increased availability of Indic language monolingual corpora,
ideally from various domains, should help remedy this issue.

Since backtranslation did not help in the En-Indic direction, we looked at the findings from distillation works like Kim
& Rush (2016); Gumma et al. (2023), and trained an En-Indic model on the combination of original data and forward
translated data/distillation data (flipping the English BT data). In this case, we use “__£ft__" indicator tags instead of
“__bt__” indicator tags. Here, we observe marginal performance improvements for our newly trained En-Indic model
on combining original data and forward translated data, as shown in Figure 6 (refer Table 17). Although this model
is not particularly better than the one obtained using back-translation, it does exhibit better performance, and thus we
consider this as our final En-Indic model. Overall, our En-Indic model is competitive or better when compared to the
baselines, but further research is necessary to explore effective methods to improve the En-Indic model.

7.5 Indic-Indic Evaluation

Our IndicTrans2 models have exhibited strong performance across various benchmarks, as detailed in Section 7.1.
Building upon these findings, we aim to conduct a comprehensive evaluation of the Indic-Indic translation capabilities
of our IndicTrans2 models, employing the technique of pivoting. Pivoting (Gispert & Marifio, 2006; Utiyama & Isahara,
2007; Bertoldi et al., 2008) is a widely used approach in non-English centric translation scenarios, where direct parallel
corpora are limited or unavailable. It involves utilizing a high-resource language as an intermediary, translating from
the source to the pivot language and then to the target language. The pivot method is a strong baseline for non-English
centric translation compared to many other methods proposed to address this task (Freitag & Firat, 2020; Chen et al.,
2017, Firat et al., 2016; Arivazhagan et al., 2019; Al-Shedivat & Parikh, 2019). In our study, we leverage our Indic-
En model followed by the En-Indic model to facilitate Indic-Indic translation, as our IndicTrans2 models are trained
using English-centric parallel corpora and use English as the pivot language. To assess the Indic-Indic translation
performance, we evaluate our IndicTrans2 models on n-way parallel test sets such as FLORES-200 (Team et al., 2022)
and IN22 benchmarks. The generation and evaluation procedure for Indic-Indic translations is the same as described
in Section 6.4 and Section 6.5.

The performance in indic-indic translation for our pivot-based IndicTrans2 and NLLB (Team et al., 2022) is shown in
Table 19 for FLORES-200 and Table 20 for IN22, using average ChrF++ scores over common languages. For each
language (1ang), “xx-{lang}” denotes the average scores from all the common languages in that language, whereas
“{lang}-xx” denotes the average scores from that language into all the common languages. Table 19 shows that our
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Table 19: ChrF++ scores of Indic-Indic evaluation on FLORES-200 (Team et al., 2022) of our IndicTrans2 model.
“xx-{lang}” and “{lang}-xx” denote the average ChrF++ scores to that language and from that language, respec-
tively. A represents the difference between the average scores of Indic-Indic translations of IT2 and NLLB 54B MoE
model for a particular language direction.

xx-{lang} {lang}-xx
language ~ N54 IT2 A | N54 IT2 A

asm_Beng 362 376 14 | 382 392 1.1

ben_Beng 439 450 1.1 | 399 411 12
guj_Gujr 44,1 452 1.1 | 41.8 428 1.0
hin_Deva 477 48.0 0.3 414 42.7 1.3

kan_Knda 459 467 08 | 392 404 13

kas_Arab 326 337 1.1 | 395 399 05

kas_Deva 174 17.6 02 | 353 348 -04
mai_Deva 372 410 37 | 433 438 05

mal_Mlym 451 472 21 | 397 414 1.7
mar_Deva 41.3 43.0 1.7 | 40.8 42.1 1.3

mni_Beng 365 364 -0.1 | 344 373 30
npi_Deva  43.0 463 32 | 415 429 14
ory_Orya 40.6 411 05 | 41.1 423 12
pan_Guru 438 441 03 | 419 426 0.7
san_Deva 254 28.6 33 344 365 20
sat_Olck 256 204 09 | 314 302 -1.2
snd_Arab 413 374 -39 | 412 423 1.0
tam_Taml  46.6 481 14 | 387 399 1.2
tel_Telu 463 478 15 | 404 418 14
urd_ Arab 434 44.0 06 | 398 408 1.0

Table 20: ChrF++ scores of Indic-Indic evaluation on IN22-Gen (left) and IN22-Conv (right) of our IndicTrans2 model.
“xx-{lang}” and “{lang}-xx” denote the average ChrF++ scores to that language and from that language, respec-
tively. A represents the difference between the average scores of Indic-Indic translations of IT2 and NLLB 1.2B
distilled model for a particular language direction. } indicates completely off-target translations.

IN22-Gen IN22-Conv

xx-{lang} {lang}-xx ‘ xx-{lang} {lang}-xx
language N12 IT2 A |NL2 IT2 A |[N12 IT2 A |[NI2 IT2 A

asm_Beng 355 40.7 53 | 388 44.0 52 | 337 386 49 |358 411 53
ben_Beng 399 451 52 |374 432 59 |37.6 41.6 4.0 | 348 398 49
guj_Gujr 392 39.8 6.1 |39.0 43.8 4.8 |38.1 43.5 54 |365 409 43
hin_Deva 437 492 55 |39.1 434 43 |399 425 26 | 363 405 42
kan_Knda 394 44.6 52 | 384 439 55 (282 308 26 | 308 355 48
kas Arab 285 354 69 | 356 41.8 62 | 18.6 30.7 12.1|305 374 69
mai_Deva 36.6 420 5.4 |39.1 442 50 |322 379 57 | 348 400 52
mal_Mlym 385 449 63 |364 429 6.5 |349 397 48 |329 377 48
mar_Deva 37.6 444 68 | 382 438 55 (356 410 54 |357 40.0 43
npi_Deva 373 414 4.1 |39.0 448 5.8 |356 422 67 |362 411 5.0
ory_Orya 36.1 382 21 394 449 55 (337 344 07 |362 412 50
pan_Guru 39.0 432 42 | 368 41.7 49 | 409 455 4.6 |356 403 48
san_Deva 233 358 125|328 398 7.0 | 223 318 95 | 268 348 8.0
sat_Olck  00%' 312 312|007 350 350(00% 307 307|00" 321 321
tam_Taml 40.1 450 49 | 354 413 59 | 332 362 3.0 | 307 343 3.6
tel Telu 400 4577 5.7 | 375 432 57 350 39.6 46 |332 375 44
urd_ Arab 477 546 7.0 | 394 452 58 | 437 492 55 |365 417 52
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Table 21: ChrF++ scores of Indic-En and En-Indic distilled models on IN22-Gen. Distilled (Dist) is the model trained
with Word-level KD. A is the difference between the distilled Model fine-tuned on seed data (Dist-Seed) & IT2. Higher
values of A are preferable.

Indic-En En-Indic
language IT2 Dist Dist-Seed A ‘IT2 Dist Dist-Seed A

asm_Beng 658 652 652  -0.6(47.1 464  47.1 0.0
ben_Beng 632 63.0 63.1 -0.1]51.8 51.5 516 -0.2
brx_Deva 62.1 59.1  59.1 -3.0(47.8 476 477  -0.1
doi_Deva 72.6 70.2  70.1 -25(57.8 563 568  -1.0
gom_Deva 592 569 569 -23|452 445 448 04
guj_Gujr 665 655 654  -1.1/535 529 532 -03
hin_Deva 654 63.8 639 -15|56.7 564  56.7 0.0
kan_Knda 642 640 64.1 -0.1|51.0 504 509 -0.1
kas_Arab  60.4 57.1 574  -3.0(402 390 395 -0.7
mai_Deva 64.8 644 644  -04|48.7 485 487 0.0
mal_Mlym 645 63.0 630 -15|509 504 508 -0.1
mar_Deva 63.7 634 633 -04|51.0 504 506 -04
mni_Mtei 579 57.6 575 -04|44.6 432 436 -1.0
npi_Deva 67.7 674 675 -02(49.0 487 49.0 0.0
ory_Orya 662 66.0 660 -02(439 435 439 0.0
pan_Guru 63.4 61.3 61.5 -1.9(50.6 50.6 504 -0.2
san_Deva 54.8 53.6 53,6 -1.2|38.8 379 382 -0.6
sat_Olck 453 47.1 472 1.9 334 33.0 3338 0.4
snd_Deva 57.3 56.0 56.1 -12(36.6 36.6 36.6 0.0
tam_Taml 59.8 58.1 580 -1.8/49.5 493 493 -0.2
tel_Telu 648 63.0 63.0 -1.8|524 524 524 0.0
urd_Arab 730 704 704  -2.6|682 678 678 -04

Average 628 616 617 -1.1 ‘48.6 48.1 483  -03

pivot-based IndicTrans2 performs competitively with the multi-way trained NLLB 54B MoE model across all Indic-
Indic directions except Indic-Sindhi (Arabic) direction on FLORES-200 (Team et al., 2022). The performance drop
in the Indic-Sindhi (Arabic) direction is likely due to the lack of high-quality human-annotated seed data, resulting in
lower performance of our En-Indic model compared to its counterparts and subsequently affecting the performance of
all Indic-Sindhi (Arabic) translation directions. It is important to note that we directly evaluate the NLLB 54B model
by using the translation outputs*? released by Team et al. (2022). However, for the evaluation on the IN22 benchmark,
we use the NLLB 1.2B distilled model instead of the NLLB 54B MoE model due to resource constraints due to the
sheer number of translation directions. Our pivot-based IndicTrans2 significantly outperforms the NLLB 1.2B
distilled model, as shown in Table 20. A provides an upper-bound estimate of the performance difference between
our pivot-based IndicTrans2 and NLLB 1.2B distilled model. However, we anticipate a smaller difference between our
pivot-based IndicTrans2 and the best NLLB 54B MoE model. Based on our previous results, we expect IndicTrans2
scores to be comparable if not better than the best NLLB 54B MoE model. This highlights the effectiveness of our
robust English-centric models and their potential in Indic-Indic translation scenarios. In the future, we intend to explore
effective methods of knowledge distillation in a many-to-many setting, leveraging our strong English-centric models
to train a compact many-to-many (M2M) model and reduce the latency during inference without impacting the model
performance.

7.6 Distilled Models

We distill our IndicTrans2 (1.1B parameters, 12Gb size) models into smaller, efficient counterparts called Indic-
Trans2Mini (211M parameters, 2Gb size) to enhance deployment feasibility in low-infrastructure settings. Following

Bhttps://tinyurl.com/nllbflorestranslations
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the deep and thin architecture approach (Gumma et al., 2023), we retain the encoder-decoder layer count but reduce
other dimensions. Acknowledging our teacher model’s robustness, we leverage a smaller, representative dataset subset
of ~110 million pairs across all 22 languages for a more data-efficient distillation process. We adopt Word-Level dis-
tillation (Hinton et al., 2015; Kim & Rush, 2016), facilitating direct student model training without a separate distilled
dataset. The student model is initially distilled from IndicTrans2 and subsequently fine-tuned using the BPCC seed
data. Tables 45 to 47 in Appendix D list the hyperparameters and architecture of IndicTrans2Mini models.

In adherence to metrics used before, we report ChrF++ scores of the distilled models on IN22-Gen in Table 21. The
ChrF++ scores on FLORES-200 and IN22-Conv are presented in Tables 48 and 49 in Appendix D respectively. In
contrast to our earlier findings, we find that fine-tuning with seed data was not so beneficial for the distilled models. Our
distilled models trained with Word-Level distillation perform competitively with our best IT2 models and show
an average drop of 1.1 on Indic-En and 0.2 on En-Indic across all three benchmarks. It is important to note that
we do not use any backtranslation data for distillation. Notably, we observe higher gains due to distillation on the IN22-
Conv than on the IN22-Gen and FLORES-200 in the Indic-En direction. Low-resource languages like Dogri, Bodo and
Arabic script languages like Kashmiri and Urdu face a drop of more than 2 ChrF++ points in the Indic-En direction,
whereas Santali has a gain of 2 points in IN22-Gen and 3 points in IN22-Conv as compared to the Indic-En teacher
model. Almost all high-resource languages like Hindi and Bengali observe a negligible reduction in performance with
distillation. In contrast to the findings of Gumma et al. (2023), we observe that the most significant factor is a robust
teacher model coupled with high-quality diverse data to develop compact student models that are comparable to the
teacher. However, extensive experiments are needed to further validate and strengthen these observations in the future.

8 Conclusion

In this paper, we presented our efforts on building machine translation systems supporting all 22 languages in the 8"
schedule of the Constitution of India. We created the multi-domain IN22 benchmark and the BPCC parallel corpus, both
of which are first-of-their-kind evaluation and training corpora, the latter consisting of ~230M bitext pairs, covering 22
Indic languages. We trained and evaluated robust models containing 1.1B parameters as well as their compact versions
with 211M parameters, which can be used in compute-heavy as well as compute-scarce settings. Our evaluations
focus on multiple automatic metrics such as BLEU, ChrF++ (primary) and COMET which show that our results are
comparable, if not better, than publicly available open and commercial systems.

To summarize, our contributions comprehensively cover all three axes for translation systems, namely models, data,
and benchmarks. We will open-source the data, benchmarks, and model artifacts publicly and hope that our work will
serve as a foundation as well as a guide for further advancements in translation systems for Indic as well as low-resource
languages.

9 Limitations and Future Work

Our work has several significant positive outcomes, including the release of the first open-source model that is com-
petitive with commercial models and supports all 22 scheduled Indian languages. However, there are some limitations
that open up avenues for future research across each of the following axes: Data, Models, Benchmark, Evaluation, and
Efficient Deployment.

Data. One of the foremost challenges is the scarcity of high-quality human-annotated data for mid-resource or low-
resource languages, making it difficult to develop robust models on these languages. Furthermore, the limited avail-
ability of content in these languages on the web prevents the use of mining-based approaches to overcome data scarcity
effectively. As a result, our IndicTrans2 models demonstrate limited generalization capabilities for languages such as
Manipuri (Meitei), Santali, and Sindhi (Devnagari). Another important concern is the limited effectiveness of existing
sentence embedding models when applied to Indic languages, which can lead to noisy and suboptimal pairs. To address
these challenges, it is crucial to calibrate sentence embedding models using human-annotated data to improve their cor-
relation with human annotations. Moreover, expanding the language coverage of these sentence embedding models to
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encompass all 22 scheduled languages will be pivotal in facilitating mining efforts for mid-resource or low-resource
languages.

Modeling. Our current work serves as an initial effort to develop IndicTrans2 models supporting 22 scheduled Indic
languages, including low-resource ones. Although consistently outperforming baseline systems, a performance gap ex-
ists between low-resource and high-resource languages (as shown in Section 7.1). To bridge this gap, we need to explore
effective methods to leverage language relatedness for cross-lingual transfer and improve generalization in low-resource
settings. Furthermore, while our IndicTrans2 models released with this work prioritize general-purpose use cases, it
is equally important to also investigate sparse parameter-efficient approaches for effective domain adaptation while
also preserving the model’s general-purpose utility. Furthermore, our current IndicTrans2 supports translations across
22 scheduled Indic languages, encompassing multiple scripts that cater to a vast majority of Indian speakers. How-
ever, numerous Indic languages remain unincorporated, and exploring techniques to extend the current models without
catastrophic forgetting is an important research direction. Presently, our IndicTrans2 models are English-centric, ne-
cessitating a pivot-based solution for Indic-Indic translations. Future work should focus on building a general-purpose
many-to-many (M2M) model that supports all directions, thereby reducing inference latency and mitigating cascading
error propagation. Given the limited availability of direct parallel corpora for Indic-Indic language pairs, exploring
knowledge distillation-based techniques that leverage robust English-centric models for training M2M models emerges
as an alternative and promising avenue.

Benchmark. Accurate evaluation of translation models requires original test sets that encompass a wide range of
linguistic phenomena and translation challenges. The current test sets that are released are n-way constructed with
English as the original language, which is a common approach for including numerous languages. This implies that
when we evaluate Indic to English translation on benchmarks like FLORES-200 or IN22, our source is translationese
instead of original. Prior research has emphasized the importance of utilizing source-original test sets to get a fair
evaluation of translation performance (Zhang & Toral, 2019; Federmann et al., 2022). Moreover, the development of
an Indic original benchmark would provide an additional aspect for assessing whether the subtleties of Indic language
original sentences are accurately captured in English translations. Therefore, we are currently working towards creating
Indic-original benchmarks to facilitate the fair evaluation of Indic-En translations. In the near future, we intend to
release Indic-original to English translation benchmarks for all 22 scheduled Indic languages.

Evaluation. Evaluation of translation models is critical for understanding their strengths and weaknesses and guid-
ing further improvements. This evaluation typically involves two main approaches: human evaluation and automatic
evaluation. Our current work includes a preliminary human evaluation study on a sample of 100 sentences from our
IN22-Gen benchmark for En-Indic translations. However, future efforts should focus on conducting a broad and large-
scale human evaluation study that focuses on the free-form evaluation and task-oriented contexts to understand the
potential biases and shortcomings of our IndicTrans2 models and assess their feasibility in practical use-case scenarios,
thereby identifying areas for improvement. Additionally, developing better automatic evaluation metrics, particularly
suited for Indic languages, is vital for achieving a more comprehensive and quantitative assessment of translation quality
and facilitating model improvements. Current model-based metrics may not fully support certain languages, empha-
sizing the need to explore effective ways to calibrate them for Indic languages and improve the correlation with human
judgments.

Fairness. Our IndicTrans2 models are trained on extensive data collected from the web, which may introduce social
biases. To ensure broader and safer accessibility, it is crucial to thoroughly identify and address these biases. Prior
works demonstrate that distilled models can further propagate or amplify biases from the teacher model (Ahn et al.,
2022; Gupta et al., 2022; Dhar et al., 2021), underscoring the importance of conducting a comprehensive study and
developing alignment methods to mitigate such biases.
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A Data Contribution and Coverage
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Figure 7: Overview of our training data contributions across different axes: Seed, Mined, and Backtranslation. Indic

BT indicates bitext pairs with the English side as synthetic and Indic side as original, whereas English BT indicates
vice versa.
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B Additional Results

B.1 Zero-Shot Translation Capabilities of IndicTrans2 Through Cross-Lingual Transfer

Zero-shot translation (Johnson et al., 2017) is a challenging task, but it is becoming increasingly feasible with the
development of more powerful MT models. Zero-shot translation refers to the ability of an MT model to translate
from a source language to a target language, even if it has never seen any training data for the language pair before.
This is primarily attributed to cross-lingual transfer learning that involves knowledge transfer from one language to
another. There are several benefits to good zero-shot performance. First, it indicates that the MT model has good
generalization capabilities, which means that the model is able to learn the underlying structure of languages rather than
simply memorizing specific translation pairs. Second, it suggests that the MT model can learn language representations
shared across different languages. In addition, this makes it easier to extend the model to new languages, even with
limited data.

Table 22: ChrF++ scores of our IT2 in the zero-shot setting in the Indic-En direction on Indic languages on the FLORES-
200 Evaluation set. The best-performing system is bolded, and A represents the difference between the zero-shot score
of IT2 and the score of the SOTA model. IT2 results are presented based on the decoding with respect to the Maithili
language tag.

language N1.2 N54 IT2 A

awa_Deva 632 654 624 -3.0
bho_Deva 573 58.5 53,6 -49
hne_Deva 70.6 722 62.1 -10.1
mag_Deva 703 72.0 674 -4.6

In this study, we investigate the cross-lingual transfer and generalizability of our IndicTrans2 models. Our focus lies on
performing zero-shot evaluation on a set of additional low-resource Indic languages, which are supported by the NLLB
(Team et al., 2022) models (1.2B distilled and 54B MoE) and are included as part of the FLORES-200 (Team et al., 2022)
evaluation set. Specifically, we restrict our evaluations to the Indic-En model, as the structure and syntax of these low-
resource languages as target translation is unseen by the model and therefore, result in off-target translation. However,
in the case of the Indic-En direction, such an analysis is feasible since the target language, English, is supported by the
model. We consider languages like Awadhi, Bhojpuri, Chhattisgarhi, and Magahi that are written in the Devanagari
script, which is the prominent script supported by our models. We also have test sets available in FLORES-200 for
evaluation. We employ a top-down approach based on language similarity to facilitate zero-shot decoding. Specifically,
we select the top-3 related languages that are closest to the aforementioned languages under consideration. Using this
approach, we identify Hindi, Maithili, and Nepali as the three closest languages and leverage their language codes for
zero-shot decoding of the new Indic languages. We follow the same generation and evaluation procedure mentioned in
Section 6.4 and Section 6.5. We observe that decoding with the language tag of Maithili yields the best performance
on the test set across all four languages, followed by Hindi and Nepali. This finding highlights that Maithili is closer
to these languages in the embedding space than Hindi or Nepali. Table 22 demonstrates that our IndicTrans2 model
differs by around 4 points on average except for Chhattisgarhi when compared to the NLLB 54B MoE model that is
explicitly using the sentence pairs of the aforementioned languages in training. Overall, our IndicTrans2 model shows
promising results in zero-shot performance on low-resource languages, highlighting the potential for extending
to new languages with limited data in the future.

B.2 Translation Capabilities of Zero-Shot Prompted LLMs

Large language models (LLMs) such as GPT (Brown et al., 2020; OpenAl, 2023) have recently shown impressive
zero-shot performance on various tasks. In this work, we compare the zero-shot translation capabilities of GPT3.5
(as described in Section 6.1) with our best IndicTrans2 model. The prompt template “Translate the following
sentence into {{lang}}\n {{text}}” was used for evaluation. Table 23 demonstrates that our IndicTrans2
models outperform GPT3.5 by a significant margin on both the IN22-Gen and IN22-Conv sets in both En-Indic
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Table 23: ChrF++ scores of GPT3.5 (gpt-3.5-turbo) on the IN22-Gen (left) and IN22-Conv (right) Evaluation sets
in the En-Indic and Indic-En directions. Avg. means the average score of all the top-13 languages. A represents the
difference between the scores of IT2 and GPT3.5. Positive A indicates IT2 is better than X and vice-versa.

IN22-Gen IN22-Conv
En-Indic Indic-En ‘ En-Indic Indic-En
language  GPT3.5 IT2 A |GPT35 IT2 A ‘GPT3.5 IT2 A | GPT35 IT2 A

asm_Beng 259 471 212| 469 658 189 | 272 468 19.6| 436 629 193
ben_Beng 399 518 119 521 632 11.1| 399 497 98 529 584 55
guj_Gujr 356 535 179| 517 665 148 | 360 531 17.1| 509 62.0 11.1
hin_Deva 47.1  56.7 9.6 577 654 1.7 46.0 49.6 3.6 57.0 60.1 3.1
kan_Knda 345 51.0 165 | 51.7 642 125| 279 338 59 42.1 475 54
mal_Mlym 31.6 509 193 | 478 645 167 | 304 457 153 | 440 543 103
mar_Deva 339 51.0 17.1| 503 63.7 134| 340 48.6 146| 476 585 109
npi_Deva 372 490 11.8| 542 67.7 135| 383 515 132| 520 63.0 11.0
ory_Orya 27.8 439 16.1| 480 662 182 | 256 40.2 146| 452 603 15.1
pan_Guru 362 50.6 144 | 517 634 11.7| 406 578 172| 533 627 94
tam_Taml 340 495 155| 413 598 185| 297 391 94 380 458 7.8
tel_Telu 343 524 181 | 465 648 183 | 321 455 134| 424 529 105
urd_Arab 476 682 206 | 588 73.0 142| 490 61.6 12.6| 571 655 84

Avg. 358 520 162| 507 652 14.6| 351 479 128| 482 580 9.8

and Indic-En directions. However, it is important to note that this gap is comparatively lower on the IN22-Conv
set, likely because GPT3.5 was fine-tuned towards fluency in conversational and interactive contexts. In addition,
the average A across both the IN22-Gen and IN22-Conv sets is lower for high-resource languages such as Hindi (+6.6
for Indic-En and +5.4 for En-Indic) than low-resource languages such as Assamese (+19.1 for Indic-En and +20.4 for
En-Indic). Overall, our IndicTrans2 models outperform GPT3.5 by an average of 12.2 points and 14.5 points in Indic-
En and En-Indic directions, respectively, on our IN22 benchmark. Even though LL.Ms show promising zero-shot
capabilities in multilingual settings, we observe that these still lack behind the task-specific models, particularly
for low-resource languages. Exploring how richer translations can be extracted from LLMs is an open problem and
can be a worthy future study.

B.3 Comparison with SeamlessM4T Multimodal Translation Model

SeamlessM4T (Communication et al., 2023) is a recently released multimodal translation model supporting 16 Indic
languages. In the interest of the community, we report preliminary results of this model on our primary benchmarks,
such as FLORES-200 and IN22-Gen in Table 24. We use the SeamlessM4T-Large variant, which is a 2.3B parameter
model and the best model released as a part of the work.

B.4 Results on NTREX

NTREX (Federmann et al., 2022) is a news-domain benchmark that expands coverage of languages of test data from
WMT 2019 (Barrault et al., 2019) to 128 languages. Out of these, 13 are scheduled Indic languages. The detailed
results are reported in Tables 25 to 27.

B.5 Results on WAT2020 & WAT2021

WAT (Nakazawa et al., 2020; 2021a) included support for translations for 8 Indic languages in the news domain. In
addition, they released data for Hindi-English data in IT and WikiNews domains. WAT 2021 (Nakazawa et al., 2021a)
created a benchmark for translation between 10 Indic languages and English. The detailed results are reported in
Tables 28 to 33.
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Table 24: ChrF++ scores of SM4T (SeamlessM4T-Large) and IT2 on the FLORES-200 (left), IN22-Gen (center) and
IN22-Conv (right) Evaluation sets in the En-Indic and Indic-En directions. Avg. means the average score of all the
supported languages.

FLORES-200 IN22-Gen IN22-Conv
En-Indic Indic-En ‘ En-Indic Indic-En ‘ En-Indic Indic-En
language ~ SMAT IT2 | SMAT IT2 | SMAT IT2 | SMAT IT2 | SM4T IT2 | SM4T IT2

asm_Beng 414 433 | 564 569 | 438 47.1| 6383 658 | 455 46.8| 605 629
ben_Beng 52.0 543| 619 624 | 479 51.8| 61.7 63.2| 477 49.7| 57.8 58.4
guj_Gujr 533 56.0| 662 67.0| 49.1 535| 649 66.5| 49.7 53.1| 61.7 62.0
hin_Deva 583 59.6| 660 67.5| 535 56.7| 626 654 | 47.1 49.6| 595 60.1
kan_Knda 542 561 | 60.4 61.5| 475 51.0| 62.7 64.2| 323 33.8| 463 475
mai_Deva 46.8 50.5| 66.7 69.5| 454 48.7| 632 648 | 428 443 | 565 57.8
mal_Mlym 530 573| 632 643| 469 509 | 61.6 64.5| 420 457 | 534 54.3
mar_Deva 48.8 513 | 63.0 643| 453 51.0| 61.6 63.7| 460 48.6| 57.6 58.5
mni_Beng 382 38.2| 50.9 529 - - - - - - -
npi_Deva  52.8 57.2| 663 68.1| 46.8 49.0| 660 67.7| 47.7 51.5| 61.1 63.0
ory_ Orya 499 492 | 632 649 | 452 439| 642 662 | 427 402 | 602 60.3
pan_Guru 52.6 53.5| 654 664 | 49.7 50.6| 61.1 634| 565 57.8| 616 62.7
snd_Arab  51.8 449 | 643 65.1 - - - - - - - -
tam_Taml 54.8 572| 594 61.3| 475 49.5| 579 598 | 374 39.1| 462 458
tel_Telu 56.7 594 | 651 66.1| 49.1 524| 626 648 | 398 455 | 528 529
urd_Arab  50.1 522 620 62.0| 627 682 | 694 73.0| 550 61.6| 628 65.5

Avg. 50.9 525| 625 63.8| 486 51.7| 63.1 652 452 47.7| 570 580

Table 25: ChrF++ scores of all the systems on the NTREX (Federmann et al., 2022) Evaluation set in the En-Indic and
Indic-En direction. The best-performing system is bolded, while underlined results indicate significant performance
difference where IT2 outperforms the system. Avg means the average score of all the languages that system X supports.
A represents the difference between the average scores of IT2 and the average scores of system X for the subset of
languages that both X and IT2 support. A positive value for A indicates IT2 is better than X and vice-versa.

En-Indic Indic-En
Language IT1 MI100 N1.2 IT2 Goog Az ‘ITI M100 N1.2 IT2 Goog Az

ben_Beng 484 45.8 50.8 54.0 53.5 52.0(559 538 604 629 633 599
guj_Gujr 444 19.5 47.8 49.6 49.3 49.7|57.5 109 63.7 66.8 66.7 61.9
hin_Deva 50.0 48.0 51.6 53.3 53.7 52.1|574 559 61.5 637 63.6 59.7
kan_Knda 492 143 512 54.1 540 54.1/526 120 579 612 613 57.3
mal_Mlym 434 32.6 41.7 48.6 48.0 47.0(51.9 473 56.7 59.6 60.0 56.5
mar_Deva 40.6 36.5 43.5 47.0 464 445|540 483 59.7 62.7 63.0 57.5
npi_Deva - 142 417 45.0 447 415| - 374 622 644 655 59.8
pan_Guru 47.5 277 49.1 503 51.6 50.3|56.7 43.0 61.8 64.9 65.0 60.4
snd_Arab - 25.1 39.7 433 42.1 41.1| - 17.8 558 58.2 585 52.1
tam_Taml 41.8 148 43.7 459 454 454|494 295 545 57.0 572 534
tel_Telu 20 - 439 46.7 46.8 438|487 - 53.1 55.6 558 52.2
urd_Arab - 417 514 537 53.1 529| - 482 60.6 625 63.0 59.6

Avg. 453 29.1 463 493 49.1 479|538 36.7 59.0 61.6 619 57.6
A 46 204 30 - 02 14|77 255 26 - -03 40

B.6 Results on WMT & UFAL

WMT has created benchmarks for selected Indic languages as part of shared tasks in 2014 (Hindi) (Bojar et al., 2014),
2019 (Gujarati) (Barrault et al., 2019) and 2020 (Tamil) (Barrault et al., 2020).
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Table 26: COMET scores of all the systems on the NTREX (Federmann et al., 2022) Evaluation set in the En-Indic and
Indic-En direction. The best performing system is bolded, while underlined results indicate significant performance
difference where IT2 outperforms the system.

En-Indic Indic-En
Language IT1 MI100 N1.2 IT2 Goog Az ‘ITI M100 N1.2 IT2 Goog Az
ben_Beng 853 82.6 86.1 864 852 86.7|86.5 858 884 889 89.3 88.0

qui_Gujir 868 61.6 86.7 87.9 87.1 87.5(/86.3 364 88.8 89.6 89.7 87.6
hin_Deva 71.6 743 719 78.7 71.9 787|862 85.6 88.0 88.4 88.5 86.9
kan_Knda 84.1 51.6 845 85.6 84.2 858|845 359 86.7 87.7 877 86.2

mal_Milym 85.7 754 86.3 87.5 86.5 87.4(85.5 815 87.6 88.3 88.7 87.3
mar_Deva 718 658 73.9 74.6 73.1 74.5|854 804 87.6 88.4 88.5 86.5
npi_Deva - 518 79.1 80.6 79.8 79.9| - 684 89.1 89.4 90.1 87.8
pan_Guru 824 60.5 83.1 83.0 829 832|843 73.6 869 87.6 87.8 854
tam_Taml 85.5 534 860 864 862 87.3(82.9 62.6 85.2 859 862 84.2
tel_Telu 835 - 834 851 844 853(83.6 - 862 87.0 87.1 853

urd_Arab - 727 81.0 822 823 83.7| - 799 873 87.8 88.0 86.9

0
~

(o]

[0

[V}

Table 27: BLEU scores of all the systems on the NTREX (Federmann et al., 2022). Evaluation set in the En-Indic and
Indic-En direction. The best performing system is bolded, while underlined results indicate significant performance
difference where IT2 outperforms the system.

En-Indic Indic-En
Language IT1 M100 N1.2 IT2 Goog Az |IT1 MI100 N1.2 IT2 Goog Az
ben_Beng 17.7 153 19.8 229 23 20.8(30.7 27.7 36.6 40.2 40.5 354
guj_Gujr 154 3.1 18.7 204 20.7 20.5(32.1 0.5 405 452 446 374
hin_Deva 264 243 282 30.5 312 29 (31.1 289 37.7 41.3 40.7 34.6
kan_Knda 164 1.1 18.5 22 227 227|269 0.5 338 38.6 38.6 31.8
mal_Mlym 11 54 81 145 14.6 14 |25.6 195 314 348 359 289
mar_Deva 10.5 82 122 14.6 151 12.7| 28 21.8 35.6 40.1 40.1 31.1
npi_Deva - 0.8 11.5 13.7 13.7 10.8| - 103 389 424 434 35.1
pan_Guru 22.6 85 245 255 268 24.6(31.5 14 38.6 433 432 359
snd_Arab 64 137 187 16 15| - 2 333 371 37 285
tam_Taml 9 08 99 11.8 119 114|235 6.1 30.2 334 33.6 269
tel_Telu 11 - 121 154 156 12 228 - 287 326 326 27.1
urd_Arab - 183 27.7 30.5 30.1 29.5| - 22 36.5 394 39.6 35.1
Avg. 156 84 171 20 20.1 18.6| 28 139 352 39 392 323
A 41 121 29 - -0.1 14108 257 38 - -02 6.7

UFAL (Ramasamy et al., 2012) is an English-Tamil bilingual benchmark created from publicly available websites. The
benchmark consists of English sentences from domains such as cinema, news, and some biblical sources.

Detailed results are reported in Tables 34 to 36.

B.7 COMET Scores for IN22 & FLORES

We report COMET (Rei et al., 2022) scores for IN22 and FLORES (Team et al., 2022) in Tables 37 to 39

B.8 BLEU Scores for IN22 & FLORES

We report BLEU (Papineni et al., 2002) scores for IN22 and FLORES (Team et al., 2022) in Tables 40 to 42
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Table 28: ChrF++ scores of all the systems on the WAT-2020 (Nakazawa et al., 2020). Evaluation set in the En-Indic
and Indic-En direction. The best performing system is bolded, while underlined results indicate significant performance
difference where IT2 outperforms the system. Avg means the average score of all the languages that system X supports.
A represents the difference between the average scores of IT2 and the average scores of system X for the subset of
languages that both X and IT2 support. A positive value for A indicates IT2 is better than X and vice-versa.

En-Indic Indic-En
Language IT1 MI100 N1.2 IT2 Goog Az ‘ITI M100 N1.2 IT2 Goog Az

ben_Beng 38.9 317 36.6 379 364 37.5(44.0 36.1 42.5 442 429 432
guj_Gujr 427 182 412 419 412 454(48.6 9.2 48.1 49.3 48.0 49.6
hin_Deva 433 35.6 413 41.8 427 41.7|48.1 40.5 47.0 489 49.5 49.5
mal_Mlym 38.4 29.8 36.2 38.8 38.2 38.6|44.5 31 43.1 45.0 43.5 455
mar_Deva 41.6 319 39.8 41.0 40.5 40.7|449 344 442 458 450 449
tam_Taml 37.5 15.1 364 379 36.8 379|429 19.8 41.7 429 413 43.0

tel_Telu 372 - 367 377 36.8 38.0/43.0 - 422 43.77 425 438
Avg. 399 27.1 383 39.6 389 40.0[45.1 28.7 44.1 457 447 45.6
A -03 128 14 - 07 -04]06 173 16 - 1.0 0.1

Table 29: ChrF++ scores of all the systems on the WAT-2021 (Nakazawa et al., 2021a). Evaluation set in the En-Indic
and Indic-En direction. The best performing system is bolded, while underlined results indicate significant performance
difference where IT2 outperforms the system. Avg means the average score of all the languages that system X supports.
A represents the difference between the average scores of IT2 and the average scores of system X for the subset of
languages that both X and IT2 support. A positive value for A indicates IT2 is better than X and vice-versa.

En-Indic Indic-En
Language IT1 MI100 N1.2 IT2 Goog Az ‘ITI M100 N1.2 IT2 Goog Az

ben_Beng 454 347 414 424 39. 41.6]53.7 425 51.6 52.5 49.9 50.0
qui Gujr 539 214 51.8 52.1 48.9 58.2(628 8.0 612 629 599 62.1
hin_Deva 60.8 51.0 592 59.7 59.3 59.6|66.1 54.2 651 649 65.9
kan_Knda 525 17.6 502 509 49.0 51.860.0 60.3 57.0 55.0
mal_Miym 49.5 327 44.9 492 47.5 46.4|58.4 583 552 57.7
mar_Deva 50.4 362 47.8 49.0 47.5 48.0|57.1 571 543 55.1
ory_Orya 485 74 475 442 402 454|572 56.8 529 56.0
pan_Guru 56.1 25.6 53.0 542 52.6 58.7|65.2 64.8 622 63.5
tam_Taml 48.8 143 460 475 457 472(56.6 18. 556 51.6 54.0
tel_ Telu 467 - 449 453 43.0 43.0(59.7 - 59.6 560 58.3
593 564 57.8

Avg. 51.3 268 48.7 494 473 50.0(59.7 28.1
A -1.9 231 07 - 21 -06|312 1.8 - 29 15
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Table 30: COMET scores of all the systems on the WAT 2020 (Nakazawa et al., 2020). Evaluation set in the En-Indic
and Indic-En direction. The best performing system is bolded, while underlined results indicate significant performance
difference where IT2 outperforms the system.

En-Indic Indic-En
Language 1T1 M100 N1.2 IT2 Goog Az ‘ITI M100 N1.2 IT2 Goog Az

ben_Beng 86.4 827 86.1 86.6 856 86.5(83.6 782 83.6 839 83.8 83.5
guj_Gujr 902 66.6 89.9 904 90.1 90.5[/86.4 35.8 86.6 86.8 864 86.5
hin_Deva 815 77.0 813 81.5 817 813|842 76.8 83.8 84.1 840 84.0
mal_Mlym 879 80.5 882 88.1 87.6 88.5[83.9 73.0 84.0 84.6 84.3 84.5
mar_Deva 77.6 69.5 77.1 77.8 772 77.7|83.7 729 839 84.2 84.0 83.9
tam_Taml 89.0 57.1 88.7 89.4 88.8 89.3(824 557 82.7 82.8 82.5 82.5
tel_ Telu 863 - 86.1 869 863 869(83.1 - 83.2 837 83.4 834

54



Under review as submission to TMLR

Table 31: COMET scores of all the systems on the WAT 2021 (Nakazawa et al., 2021a). Evaluation set in the En-Indic
and Indic-En direction. The best performing system is bolded, while underlined results indicate significant performance
difference where IT2 outperforms the system.

Indic-En
N1.2 IT2

87.0 87.1
90.6 90.8
90.3 90.7
88.5 88.7
88.7 89.3
87.8 88.1
88.3 88.4
90.0 90.2
87.1 87.4
87.9 88.7

En-Indic
IT1 M100 N1.2 IT2

88.2 844 875 87.9
922 705 92.0 92.1
864 823 86.1 86.1
90.2 60.7 89.9 90.1
909 82.8 91.1 90.9
81.2 72.9 80.7 80.9
88.0 41.6 88.1 83.5
89.3 703 89.0 88.9
921 53.6 917 91.9
866 - 863 86.4

IT1 M100

869 82.6
904 35.0
90.5 86.2
88.2 347
88.7 74.6
87.8 713
88.0 3938
90.0 69.7
871 535
883 -

Goog Az ‘

86.6 87.6
915 92.6
86.1 862
89.3 90.2
90.3 91.5
80.1 80.7
83.0 87.7
83.9 89.6
91.3 91.8
85.8 86.3

Goog Az

86.7 86.5
90.3 90.5
90.7
87.1
89.0
87.6
88.0
89.7
86.6
88.1

Language

ben_Beng
guj_Gujr
hin_Deva
kan_Knda
mal_Mlym
mar_Deva
ory_Orya
pan_Guru
tam_Taml
tel_Telu

88.1
88.5
87.5
87.4
89.7
86.4

87.9

Table 32: BLEU scores of all the systems on the WAT-2020 (Nakazawa et al., 2020). Evaluation set in the En-Indic and
Indic-En direction. The best performing system is bolded, while underlined results indicate significant performance
difference where IT2 outperforms the system. Avg means the average score of all the languages that system X supports.
A represents the difference between the average scores of IT2 and the average scores of system X for the subset of
languages that both X and IT2 support. A positive value for A indicates IT2 is better than X and vice-versa.

En-Indic Indic-En
Language 1T1 M100 N1.2 IT2 Goog Az ‘ITI MI100 N1.2 IT2 Goog Az
ben_Beng 12 6.1 97 98 85 97 ‘19.9 127 18.1 195 17.5 18.1
guj_Gujr 155 24 14 142 135 18.6 241 03 23 242 22.1 243
hin_Deva 20.1 123 18 18 195 17.9|23.6 157 222 242 243 24.6
mal_Mlym 73 29 51 69 65 67204 9 18.8 20.5 18.5 20.7
mar_Deva 132 64 11.5 11.7 114 11.6(204 112 193 20.6 192 19.5
tam_Taml 62 0.7 54 59 55 61 182 2 16.8 179 16 17.1
tel_Telu 8 - 74 175 1 84 185 - 17.5 188 174 18.5
Avg. 11.8 5.1 102 106 103 11.3]20.7 85 194 20.8 193 204
Delta -12 6 04 - 03 -07]01 127 14 - 15 04
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Table 33: BLEU scores of all the systems on the WAT-2021 (Nakazawa et al., 2021a). Evaluation set in the En-Indic
and Indic-En direction. The best performing system is bolded, while underlined results indicate significant performance
difference where IT2 outperforms the system. Avg means the average score of all the languages that system X supports.
A represents the difference between the average scores of IT2 and the average scores of system X for the subset of
languages that both X and IT2 support. A positive value for A indicates IT2 is better than X and vice-versa.

En-Indic Indic-En
Language IT1 MI100 N1.2 IT2 Goog Az ‘ITI M100 N1.2 IT2 Goog Az

ben_Beng 158 7.4 12.1 126 9.5 12.1]295 154 259 257 22 225
gw_Gujr 258 35 23.8 239 204 32.7(40.2 0.1 37.2 388 347 369
hin_Deva 38.8 27.3 36.7 37.6 372 364|439 288 39.7 41.6 40.6 43.1
kan_Knda 19.2 1.1 16.6 167 149 183(365 0 33.8 363 31.3 29.5
mal_Mlym 151 39 9.2 137 124 9.5 (34.6 9.7 312 336 292 324
mar_Deva 203 8.6 17.5 18.1 169 17.3|33.5 144 302 322 28 29.7
ory_ Orya 191 0.1 179 136 10.6 15.1(344 0.2 31.6 32.7 27.7 30.6
pan_Guru 339 6.7 30 31.1 29.7 37.7|432 6.2 393 41.5 37.6 389
tam_Taml 13.6 0.8 114 123 11.1 126(33.1 1.8 29.1 31.1 256 27
tel Telu 145 - 129 12 102 9.6 361 - 316 344 29 3L1
Avg. 21.6 6.6 188 192 173 20.1|36.5 85 33 348 30.6 322
A 24 134 04 - 19 -09|-17 263 18 - 42 26

Table 34: ChrF++ scores of all the systems on the WMT (Bojar et al., 2014; Barrault et al., 2019; 2020) shared tasks
and UFAL (Ramasamy et al., 2012) in the En-Indic and Indic-En direction. The best performing system is bolded,
while underlined results indicate significant performance difference where IT2 outperforms the system.

En-Indic Indic-En
Benchmark Language I1T1 M100 N1.2 IT2 Goog Az ‘ITI MI100 N1.2 IT2 Goog Az

UFAL tam_Taml 455 154 449 439 439 457|533 253 524 532 512 538
WMTI14  hin_Deva 50.5 459 50.7 52.1 527 51.9|56.6 53.6 604 62.1 627 60.4
7.9
7.

WMT19  guj Gujr 48.8 20.7 554 563 568 622505 564 57 584 583
WMT20  tam_Taml 45.7 144 47.5 49.2 482 49.2(45.8 48.1 513 535 523

[0

Table 35: COMET scores of all the systems on the WMT (Bojar et al., 2014; Barrault et al., 2019; 2020) shared tasks
and UFAL (Ramasamy et al., 2012) in the En-Indic and Indic-En direction. The best performing system is bolded,
while underlined results indicate significant performance difference where IT2 outperforms the system.

En-Indic Indic-En
Benchmark Language I1T1 M100 N1.2 IT2 Goog Az ‘ITI M100 N1.2 IT2 Goog Az

UFAL tam_Taml 858 543 863 85.8 854 86.8|82.0 559 827 83.0 82.5 827
WMT14  hin_Deva 812 77.5 813 81.7 81.6 81.7|84.1 80.2 862 86.8 864 85.4
WMTI9  guj Gujr 864 61.0 86.7 87.8 87.3 88.3/82.6 30.6 84.9 859 857 85.1
WMT20  tam_Taml 817 53.4 879 83.4 87.8 89.1|81.2 46.0 83.1 84.4 84.0 83.5

56



Under review as submission to TMLR

Table 36: BLEU scores of all the systems on the WMT (Bojar et al., 2014; Barrault et al., 2019; 2020) shared tasks and
UFAL (Ramasamy et al., 2012) in the En-Indic and Indic-En direction. The best performing system is bolded, while
underlined results indicate significant performance difference where IT2 outperforms the system.

En-Indic Indic-En
Benchmark Language IT1 MI100 N1.2 IT2 Goog Az ‘ITI M100 N1.2 IT2 Goog Az
UFAL tam_Taml 109 09 106 89 9.6 10.8|30.2 43 285 288 25.7 283

WMTI14  hin_Deva 25.6 21.0 258 27.8 28.1 27.0|29.7 26.5 35.1 37.5 372 34.1
WMTI9  guj Gujr 195 4.2 260 266 27.9 33.8|251 05 31.1 31.6 33.2 33.2
WMT20  tam_Taml 103 0.7 109 12.6 12.0 12.1|185 1.7 20.6 232 255 224

Table 37: COMET scores of all the systems on the IN22-Gen Evaluation set in the En-Indic and Indic-En direction.
The best performing system is bolded, while underlined results indicate significant performance difference where IT2
outperforms the system.

En-Indic Indic-En
Language 1T1 MI100 N1.2 N54 IT2 Goog Az | IT1 MI100 N1.2 N54 IT2 Goog Az
asm_Beng 81.1 - 83.4 832 84.7 84.0 83.5|84.1 - 87.3 88.3 87.5 87.7 85.7

ben_Beng 854 80.6 85.6 85.7 86.8 852 86.2|86.8 83.8 87.8 88.6 88.1 88.7 87.5
qui_Gujr 875 62.0 87.6 87.6 88.6 87.7 88.0(88.0 34.7 893 89.9 89.7 89.5 88.1
hin_Deva 79.5 752 79.6 80.0 80.5 79.2 79.3|87.8 84.7 88.4 89.1 89.2 88.7 87.9
kan_Knda 84.0 52.7 84.5 84.9 85.7 83.6 85.3(86.5 34.1 879 88.5 87.9 88.0 86.8
mal_Mlym 86.1 73.7 864 87.1 87.7 86.7 87.3|86.5 772 87.6 88.5 88.9 879 86.9
mar_Deva 134 650 73.7 747 76.1 73.7 753|857 772 87.1 879 875 87.6 863
npi_Deva - 542 803 78.6 827 80.7 81.6| - 69.5 89.6 90.4 89.8 90.6 88.9
ory_Orya 822 39.1 829 828 79.5 774 83.6/87.4 332 88.5 89.4 89.0 88.4 86.7
pan_Guru 82.5 60.8 82.6 82.8 83.0 82.8 82.8(84.6 67.5 86.2 87.0 87.0 863 84.5
tam_Taml 87.1 450 87.3 87.5 88.2 87.5 885|849 564 862 87.0 87.0 87.2 86.0
tel_Telu 85.1 - 859 86.2 87.1 860 869|864 - 87.8 88.6 88.7 88.6 87.1
urd_Arab - 738 842 84.6 853 850 865| - 79.0 882 89.0 89.2 88.9 87.9

~
e}

Table 38: COMET scores of all the systems on the IN22-Conv Evaluation set in the En-Indic and Indic-En direction.
The best performing system is bolded, while underlined results indicate significant performance difference where IT2
outperforms the system.

En-Indic Indic-En
Language IT1 M100 N1.2 N54 IT2 Goog Az | IT1 MI00 N1.2 N54 IT2 Goog Az

85.7 85.6 86.5 84.7 85.8[84.7 - 879 88.1 89.3 90.4 88.7
89.4 89.7 90.1 88.3 89.8(88.3 89.0 89.5 89.7 89.9 89.7
90.7 91.2 92.1 91.6 91.5(90.1 917 91.7 919 91.1
83.9 833 852 85.1 84.7(89.9 90.8 90.8 90.8 90.5
83.7 84.7 85.1 84.3 84.9|81.6 82.0 84.0 832 834
89.7 90.2 90.1 89.4 90.0(87.2 88.3 88.5 88.8 88.5
81.0 82.1 81.9 80.9 81.3(87.8 89.1 89.4 90.0 89.3
84.6 83.5 86.8 85.1 85.0| - 90.9 914 922 914
87.1 87.3 82.9 82.3 86.8 90.6 90.4 89.5 89.3

88.8

84.5

83.0

85.1

asm_Beng 83.2
ben_Beng 89.5
guj_Gujr 914
hin_Deva 85.0
kan_Knda 84.2
mal_Mlym 89.4
mar_Deva 80.2
npi_Deva -

ory_Orya 86.2
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pan_Guru 88.2 88.3 88.8 89.1 88.6 90.1 90.2 90.2 89.2
tam_Taml  87.6 85.9 84.5 88.0 87.6 88.3 85.5 850 85.6 84.9
tel_ Telu 88.1 - 842 83.0 89.6 89.0 89.6 87.3 88.0 87.7 88.5 87.8
urd_Arab - 79.6 859 85.1 88.7 89.4 89.0 80.9 90.0 90.3 90.9 912 90.8
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Table 39: COMET scores of all the systems on the FLORES-200 (Team et al., 2022) Evaluation set in the En-Indic and
Indic-En direction. The best performing system is bolded, while underlined results indicate significant performance
difference where IT2 outperforms the system.

En-Indic Indic-En
Language IT1 M100 N1.2 N54 IT2 Goog Az | IT1 MI100 N1.2 N54 IT2 Goog Az

82.2 83.7 82.6 826|810 - 854 86.6 858 86.4 83.5
86.3 87.5 86.6 87.2/87.3 85.8 88.7 89.3 89.1 89.6 88.3
87.6 89.1 88.7 88.9/883 36.1 902 90.8 90.7 91.1 89.4
811 81.5 81.3 80.9/88.4 87.6 89.8 90.3 90.3 90.4 89.5
86.3 874 86.5 87.4/858 344 88.0 88.6 88.5 88.7 87.2
87.7 89.5 89.0 89.3/87.2 83.1 89.0 89.5 89.6 89.9 88.4
74.7 764 759 762|864 814 83.4 89.0 88.8 89.3 87.9
80.0 84.5 83.5 83.0| - 90.7 91.1 912 91.5 89.8
84.4 799 80.9 84.8)86.8 89.1 89.9 89.8 89.6 87.9
pan_Guru 83.8 84.1 84.4 84.5 84.6|87.6 89.3 89.9 89.7 89.9 882
tam_Taml 88.0 89.1 89.9 89.5 89.9|85.1 87.4 88.0 87.7 882 862
tel_Telu 859 - 865 87.8 87.5 87.8)86.6 88.6 89.4 89.3 89.5 88.0
wrd_Arab - 82.2 82.6 83.0 83.6| - 87.5 88.3 87.7 88.4 86.4
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asm_Beng 79.4
ben_Beng 86.1
guj_Gujr 87.9
hin_Deva 80.6
kan_Knda 85.5
mal_Mlym 87.1
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Table 40: BLEU scores of all the systems on the IN22-Gen Evaluation set in the En-Indic and Indic-En direction.
The best performing system is bolded, while underlined results indicate significant performance difference where 1T2
outperforms the system. Avg means the average score of all the languages that system X supports. A represents the
difference between the average scores of IT2 and the average scores of system X for the subset of languages that both X
and IT2 support. A positive value for A indicates IT2 is better than X and vice-versa. | indicates completely off-target
translations.

En-Indic Indic-En
Language 1T1 MI100 N1.2 N54 IT2 Goog Az | IT1 MI100 N1.2 N54 IT2 Goog Az
asm_Beng 9.9 - 139 154 194 169 16.2|325 - 404 44.6 43.1 42 354
ben_Beng 18.1 11.3 16.6 18.3 20.8 183 18 (334 263 36.1 39.3 39 398 349
brx_Deva - - - - 169 - - - - - - 402 - -
doi_Deva - - - - 335 222 - - - - - 535 451 -
gom_Deva - - - - 188 11.6 11.5| - - - - 353 33 258
guj_ Gujr 179 39 18.7 203 25.7 233 212|363 04 402 434 437 43 37.1
hin_Deva 283 22.1 27.6 28.9 33.5 30.2 29.2(36.1 27.1 374 41 425 39.8 36.1
kan_Knda 134 1 134 149 18 142 152|348 0.1 39 427 40.8 41 35
kas_Arab - - 9.9 10.5 144 - - - - 315 35 383 - -
mai_Deva - - 155 15.1 193 9.3 14.5| - - 379 41.8 40.8 39.8 36.2
mal_Mlym 139 44 119 13.1 164 13.7 136|314 17.5 34.8 38.6 414 379 333
mar_Deva 13.9 7 14.5 15.6 21.7 162 17.5(335 20 37.2 40.8 40.2 40.6 35.1
mni_Mtei - - - - 175 108 - - - - - 351 275 -
npi_Deva - 26 144 148 168 13.8 144| - 12.8 422 46 451 46.8 39.9
ory_Orya 102 0.1 122 11.8 145 10.7 14.1(36.7 0 40.7 44.7 43.8 404 34.7
pan_Guru 235 7.2 239 253 255 299 252(335 104 374 40.6 414 39.6 34.7
san_Deva - - 37 43 111 55 - - - 242 272 298 28.6 -
sat_Olck - - 00" 38 55 - - - - 123 187 218 - -
snd_Deva - - - - 14 - - - - - - 35 - -
tam_Taml 119 14 12.6 13 144 14 145289 49 325 35 359 349 294
tel_Telu 155 - 15.1 17.1 194 17.7 17.7|33.5 - 37.6 41.5 423 41.3 357
urd_Arab - 231 42 43.8 49.7 44.1 514 - 26,5 46.5 50.5 53.7 50.9 46.3
Avg. 16 7.6 156 16.8 203 179 19.6(33.7 133 358 39.5 40.1 39.6 353
A 73 158 48 17 - 44 27|86 292 44 09 - 23 6.6
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Table 41: BLEU scores of all the systems on the IN22-Conv Evaluation set in the En-Indic and Indic-En direction.
The best performing system is bolded, while underlined results indicate significant performance difference where IT2
outperforms the system. Avg means the average score of all the languages that system X supports. A represents the
difference between the average scores of IT2 and the average scores of system X for the subset of languages that both X
and IT2 support. A positive value for A indicates IT2 is better than X and vice-versa. { indicates completely off-target

translations.
En-Indic Indic-En
Language 1T1 MI100 N1.2 N54 IT2 Goog Az | IT1 MI100 N1.2 N54 IT2 Goog Az
asm_Beng 11.6 - 16.7 17.8 19.7 17.6 195|313 -  38.6 404 43.8 44.6 41.7
ben_Beng 20.1 13 19.3 20.7 21.3 21.5 20.3(329 25.8 333 35 364 37.6 36
brx_Deva - - - 154 - - - - - 355 - -
doi_Deva - - - - 324 176 - - - - - 456 426 -
gom_Deva - - - - 142 12 104 - - - - 299 295 237
guw_Gujr 232 4 228 24.1 272 26.7 257|347 03 39.7 399 411 41 39.1
hin_Deva 28.4 223 27.1 284 30.1 30.7 28 [35.5 28.3 37.3 384 393 38.3 37.7
kan_Knda 6.1 0.5 58 65 6.7 63 62 (21.1 02 225 229 249 244 236
kas_Arab - - 45 4.6 11.3 - - - - 233 24.1 318 - -
mai_Deva - - 154 157 189 10.6 11.9| - - 32.6 33.8 353 36.6 32.1
mal_Mlym 11.1 39 83 7.6 11.3 11.1 10.8(27.6 162 28 29.5 31.6 31.1 30.8
mar_Deva 155 8.9 169 18.6 194 17.7 17.6(322 189 34.1 35.7 36.7 37.7 359
mni_Mtei - - - - 142 69 - - - - - 319 257 -
npi_Deva - 1.6 157 164 212 164 15.8| - 3.5 389 39.6 424 43.1 40.8
ory_ Orya 113 0.3 13.8 13.8 123 103 14.1(336 0.2 384 389 38.8 374 353
pan_Guru 32 7 321 33.8 357 413 332|368 73 39.6 41.1 43 39.5 40.7
san_Deva - - 28 47 63 52 - - 17.8 17.2 26.1 26.7 -
sat_Olck - - 00" 3 6.6 - - - 113 17.8 231 - -
snd_Deva - - - - 7.4 - - - - - - 275 - -
tam_Taml 77 1.5 71 74 7.6 8 84 (208 4 23 241 22.7 233 228
tel_Telu 12 - 9.8 10.5 14.1 134 13.8(263 - 29.5 316 31 315 31.1
urd_Arab - 194 35.6 353 43.7 422 40.1| - 265 403 41.7 459 45.6 449
Avg. 163 7.5 149 158 18 175 18.4|30.3 11.9 31.1 325 347 353 344
A 45 14 35 28 - 27 18| 6 247 38 34 - 09 1.8
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Table 42: BLEU scores of all the systems on the FLORES-200 (Team et al., 2022) devtest set in the En-Indic and
Indic-En direction. The best performing system is bolded, while underlined results indicate significant performance
difference where IT2 outperforms the system. Avg means the average score of all the languages that system X supports.
A represents the difference between the average scores of IT2 and the average scores of system X for the subset of
languages that both X and IT2 support. A positive value for A indicates IT?2 is better than X and vice-versa. { indicates

completely off-target translations.

En-Indic Indic-En
Language IT1 M100 N1.2 N54 IT2 Goog Az | IT1 MI100 N1.2 N54 IT2 Goog Az
asm_Beng 7.6 - 114 11.7 14 122 138|234 - 31.3 339 325 329 27.1
ben_Beng 19.7 153 20.2 22.1 24.7 243 234(31.8 294 36.6 38.7 38.6 39.7 353
gu Guwjr 221 4.8 239 252 27.8 27.1 26.6(34.1 12 425 44.6 453 46.2 38.6
hin_Deva 34.5 309 343 36.7 386 39 38.4 (375 356 42.1 444 46.1 464 43.1
kan_Knda 183 1.6 20.6 22.1 241 24.6 24.2(28.7 0.7 34.8 369 37.8 384 325
kas_Arab - - 10 105 119 - - - 33.7 36.7 36.1 - -
kas_Deva - - 19 2 22 - - - - 239 27 251 - -
mai_Deva - - 165 182 19 11.8 20.8| - - 44.1 46.7 48.2 46.6 41.8
mal_Mlym 159 79 14.1 183 22 224 22 (314 253 37.6 39.1 41 41 358
mar_Deva 15.8 10.1 162 179 199 20.7 18.3| 31 24.6 37.1 40.3 41.1 421 37.3
mni_Beng - - 7.7 104 8.6 - - - - 27 275 28,5 - -
npi_Deva - 1.7 187 185 255 239 209| - 14 423 445 463 46.5 39.8
ory_Orya 13.6 03 17.1 169 173 244 18.6(29.8 0.5 38.2 41.6 424 41.6 35.1
pan_Guru 26.7 8.6 27.1 27.7 29.6 31.1 30.1|35.8 152 42.2 44.8 449 458 38.2
san_Deva - - 22 23 32 34 - - - 23.3 26.1 26.6 25 -
sat_Olck - - 01t 49 41 - - | - - 145 217 167 - -
snd_Arab - 10.8 253 264 202 273 27.7| - 27 42 45 43.6 455 363
tam_Taml 15.6 09 18.6 19.8 22.6 21.1 21.3|284 83 344 36.8 378 37.7 31.1
tel_Telu 213 - 231 253 278 27.2 253|334 - 409 43.6 44.7 451 39.6
urd_Arab - 169 258 27.2 291 282 282| - 222 36.8 39.6 38.1 40 344
Avg. 192 92 167 182 196 230 24 (314 15 353 38 38.1 413 364
A 52 159 29 14 - -02 01]97 269 28 01 - -03 55
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C Human Evaluation

Automated evaluation metrics provide a convenient and quick way to evaluate MT systems. However, as reported by
previous works (Kocmi et al., 2021; Moghe et al., 2022), the degree of correlation between automatic evaluation metrics
and human ratings is not particularly strong. In order to obtain a more comprehensive understanding of the model’s
performance, it is imperative to conduct human evaluations (Kocmi et al., 2021).

We conduct a small-scale human evaluation exercise to verify if the quality of our model outputs correlates with the
improvements observed using automatic metrics. This exercise focused on the En-Indic direction and included 50
examples each from the Wikipedia and Web sources subset to yield a total of 100 sentence pairs from IN22-Gen. We
seek to study human evaluation of sentences of diverse lengths (refer Figure 10) and uniformly sample sentences from
each bucket. Our human evaluators belong to the same pool of translators who created the IN22 benchmark. They are
fluent speakers of English and the respective native language under study. Based on the availability of annotators, we
conduct human evaluation studies for the following languages: Assamese, Bengali, Bodo, Dogri, Konkani, Gujarati,
Hindi, Kannada, Malayalam, Marathi, Nepali, Punjabi, Santali, Tamil, Telugu and Urdu. We compare IndicTrans2
model outputs along with those of NLLB (Team et al., 2022), Google Translate, and Azure Translate. The annotators
were not specifically aware of which output was generated by which system.

We use the XSTS methodology proposed by Licht et al. (2022) and adopted by Team et al. (2022) for comparing different
multilingual machine translation (MT) systems. XSTS relies on human raters to assess translations without using
reference translations, focusing more on adequacy (meaning preservation) than fluency. This approach is particularly
suitable for low-resource languages with relatively lower translation quality. XSTS also exhibits better inter-annotator
agreement than Direct Assessment (Graham et al., 2013) as demonstrated by prior research Licht et al. (2022).

Brief instructions for human annotations are provided below. Raters choose scores between 1 to 5. We refer the readers
to Figure 1 in Licht et al. (2022) for the detailed definition of the scores.

» Score of 1 indicates the sentences are unrelated to each other or maybe in similar topics but differ in more
than half of their core concepts.

» Score of 2 indicates that the sentences are about similar topics but some key details about the main subject,
verb, or object are either different or absent.

 Score of 3 indicates that the sentences are equivalent to each other but with unimportant differences.

 Score of 4 indicates that the sentences are paraphrases of each other but have minor differences in emphasis,
formality, idioms, etc.

* Score of 5 indicates the sentences mean the same with no difference in emphasis, formality, idioms, etc.

It is known that there is some variance in human evaluators, with some being overly critical while others being exces-
sively generous when assessing MT outputs. Recent studies by Licht et al. (2022) and Team et al. (2022) emphasize
the importance of having a calibration set to ensure that XSTS scores are comparable across languages. To address this
concern, our evaluation methodology employs a sample of the calibration set, comprising pairs of English sentences
released by NLLB Team (Team et al., 2022). From each of the 5 scoring classes described in Licht et al. (2022), we
uniformly sample 10 sentences, forming a calibration set with 50 sentence pairs. The task framework employed for this
purpose closely aligns with the approach suggested in Team et al. (2022). To account for extreme calibration shifts, we
use the moderated calibration adjustment as proposed in Team et al. (2022).

Overall results. Our findings indicate that IndicTrans2 outperforms Google and NLLB 54B significantly, and per-
forms comparably with Azure. Statistical significance is computed using ANOVA with posthoc Tukey HSD test
(p < 0.05) following similar human evaluation in data-to-text generation (Puduppully & Lapata, 2021; Puduppully
et al., 2022). However, it should be acknowledged that the sample size of sentences used for human evaluation is lim-
ited, and therefore, these results must be interpreted with caution. Future work should expand the human evaluation to
cover all 22 Indic languages and also include IN22-Conv set to gain more fine-grained insights.
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Figure 9: Distribution of XSTS scores for low, medium and high resource languages in IN22

High vs. Low Resource Languages. Figure 9 in Appendix C depicts the trends in the distribution of ratings for a
selected set of languages, with low and medium resource languages in the upper half, and high resource languages in
the lower half. IndicTrans2 outperforms other models significantly in low-resource languages like Konkani, Sanskrit,
and Nepali. Most languages supported by IndicTrans2 achieve close to a4 XSTS rating. High-resource languages, such
as Hindi, Bengali, and Telugu, show a right-skewed distribution with many sentence pairs receiving higher ratings. On
the other hand, medium-performance languages like Bodo exhibit a more symmetrical distribution around the rating.
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Table 43: Post calibration results for human evaluation for En-XX language pairs using XSTS methodology. We
compare between four model outputs: Azure, Google, NLLB (N54B) (Team et al., 2022), and IndicTrans2 (IT2).
— indicates languages not supported by a model. The T after a value indicates statistically significant difference from
IndicTrans2 using ANOVA with post-hoc Tukey HSD test (p < 0.05). A represents the difference of pre-calibration and
post-calibration XSTS score for IndicTrans2, with a positive value indicating improvement in scores post-calibration
and vice-versa. Overall, IndicTrans2 is the top-ranked system comparable with Azure, and significantly better than
Google and NLLB.

language Azure Google N54B IT2 A

asm_Beng 3.44 3.63 383 362 -0.61
ben_Beng  3.94" 3.92F 405 418 -0.18

brx_Deva - — - 3.75 0.04
doi_Deva - 4.13 - 432 0.08
gom_Deva 3.841 445 -0.09

guj_Gujr 450 426" 428" 453 012
hin_Deva 4271 423" 440 456 0.05
kan_Knda — 4.12 3.86 401 418 008
mal_Mlym 396 3737 384 406 023
mar_Deva 4.27 3.89" 412 441 -0.11
npi_Deva  3.897 3870 3817 441 013
pan_Guru 4.09 3.94 4.10 4.25 -045

san_Deva - 2871 283" 368 -037
tam_Taml 4.00 379 379 390 040
tel_Telu 4.29 3.947 424 429  0.03
urd_Arab 4.06 3.680 376" 425 024
Average 407 384" 393" 418 -0.02

Calibration. The column A in Table 43 indicates the revision in scores post-calibration for IndicTrans2, with a posi-
tive value indicating improvement in scores and vice-versa. We present the results comparing pre and post-calibration
procedures for all the models in Table 44 in Appendix C. We see that scores of languages get adjusted. Assamese and
Bengali are two related languages written using the same script and sharing substantial vocabulary. At the same time,
Bengali is high-resource in comparison to Assamese; Bengali belongs to class 5 whereas Assamese belongs to class
2 in terms of the language resourcefulness classification (Joshi et al., 2020). From Table 44, we see that the scores
for Assamese and Bengali are comparable pre-calibration; however, after calibration, the scores for Assamese drop
compared to that of Bengali. Among languages for which the scores change by more than 0.2 points, Punjabi and San-
skrit scores drop post calibration whereas Malayalam, Tamil, and Urdu scores improve. These findings underscore the
significance of calibration in ensuring the reliability and comparability of XSTS scores across different languages and
models. Overall, we see an average change of 0.23 in XSTS scores for IndicTrans2. Importantly, the relative ranking
of the machine translation models based on XSTS scores remains unchanged, with IndicTrans2 outperforming NLLB,
and Google, and comparable with Azure.

Correlation with Automatic Metrics. The correlation between XSTS scores and automatic metrics is an important
aspect of evaluating machine translation performance. Our analysis reveals that XSTS scores for IndicTrans2 exhibit
moderate correlation with two widely used automatic metrics, namely BLEU, and ChrF++. Specifically, we observe
Spearman rank correlations of 0.49 and 0.12, respectively, with BLEU and ChrF++ across all languages, but the cor-
relations increase to 0.67 and 0.25, respectively, when Urdu is excluded from the analysis. This observation can be
partly attributed to the influence of Urdu tokenization, which had a greater impact on the BLEU and ChrF++ scores
when compared to other languages. This can be due to the higher fertility of Urdu when using the UrduHack tokenizer,
which led to inflated scores for both metrics. As a result, the correlation was reduced between these metrics and the
actual quality of translations, deviating from the trend observed in other languages. In contrast, we find no correlation
between XSTS scores and the COMET metric, which is designed to assess the fluency and adequacy of machine trans-
lations. Additionally, we observe no correlation between BLEU/ChrF++ and COMET scores, indicating that these
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Table 44: Comparison of XSTS score before and after applying calibration

Pre-Calibration Post-Calibration
language  Azure Google N54B IT2 Azure Google N54B IT2

asm_Beng 4.05 424 444 423 344 363 383 3.62
ben_Beng 4.13 411 424 436 394 392 405 4.18

brx_Deva - - - 3.71 - - - 3.75
doi_Deva - 4.03 - 424 - 4.13 - 432
gom_Deva 3.93 - 454 3.84 4.45

qui_Gujir 437 410 4.12 441 450 426 428 4.53
hin_Deva 420 415 434 451 427 423 440 456
kan_Knda 4.04 377 392 410 412 386 401 4.8
mal_Mlym 3.72 347 359 383 396 373 384 4.06
mar_Deva 438 400 423 452 427 389 412 441
npi_Deva 371 369 363 428 389 387 381 4.4l
pan_Guru 454 439 454 470 409 394 410 4.25
san_Deva - 323 319 405 - 287 283 3.68
tam_Taml 3.61 339 339 350 400 379 379 3.90
tel Telu 426 390 421 426 429 394 424 429
urd_Arab 380 339 347 401 406 368 376 4.25

Average 4.07 385 395 420 407 3.84 393 4.18

metrics capture different aspects of machine translation quality. Nonetheless, further investigation is necessary to gain
a deeper understanding of the relationship between metrics.
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D Distilled Models

This section presents a detailed description of our student model architecture and distillation training hyperparameters.
We share the weight of the decoder embedding and output projection to compress the student models as much as
possible. This also allows us to have equal-sized student models for both directions. This is particularly useful for the
En-Indic model, as the output projection is a significant fraction of the model parameters (= 60M). Tables 48 and 49
present the comparison between the student and teacher models on FLORES200 and IN22-Conv respectively.

Table 45: Student architecture description. Specifically, our student models use the basel8L architecture, following

Gumma et al. (2023).

Hyperaparameter Value

Model dim 512

FFN dim 2048

Encoder Layers 18

Decoder Layers 18

Activation GELU (Hendrycks & Gimpel, 2016)
Pre-Normalization True Xiong et al. (2020)

Embedding LayerNorm True

Share decoder input output embed True

Table 46: Number of parameters in teacher and distilled student models.

#Params Indic-En En-Indic

Teacher  1.02B 1.11B
Student 211.77TM 211.77TM

Table 47: Hyperparameter set for Knowledge Distillation. The rest of the parameters not mentioned in the table are the

same as the ones used for training IT2 (see Table 10).

Stage 2 fine-tuning

Hyperparameters Stage 1 Distillation
Learning rate Te-4

Criterion KL-Divergence
Label smoothing (Szegedy et al., 2016) —

Effective batch size 262K

Checkpoint metric BLEU @ beam =5

3e-5
Cross-entropy

0.1

8K

BLEU @ beam =5
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Table 48: ChrF++ scores of Indic-En and En-Indic distilled models on FLORES-200. Distilled (Dist) is the model
trained with Word-level KD. A is the difference between the distilled Model fine-tuned on seed data (Dist-Seed) & 1T2.
Higher values of A are preferable.

Indic-En En-Indic
language  1T2 Dist Dist-Seed A ‘ITZ Dist Dist-Seed A

asm_Beng 569 558 557 -12|433 427 430 -03
ben_Beng 624 612 614 -1.0|543 540 540 -03
guj_Gujr 670 655 655 -15(56.0 559 558 -02
hin_Deva 67.5 659  66.0 -15|59.6 593 593 -03
kan_Knda 615 600 599 -1.6|56.1 56.0 559 -02
kas_Arab 59.7 569  56.7  -3.0|39.7 40.0 40.1 0.4
kas_Deva 48.3 452  45.1 -3.2119.2 193 19.8 0.6
mai_Deva 69.5 67.0  67.1 -2.41505 50.8 51.0 0.5
mal_Mlym 643 625 62.6 -1.7|573 57.0 57.1 -0.2
mar_Deva 643 629 629 -14|513 513 511 -0.2
mni_Beng 529 505 50.7 -2.2|382 375 372 -1.0
npi_Deva 68.1 664 662  -1.9|57.2 57.1 572 0.0
ory_Orya 649 630 63.1 -1.8149.2 48.6 487 -05
pan_Guru 664 646 64.6  -1.8/535 535 535 0.0
san_Deva 51.6 495 495 -2.1|316 315 313 -03
sat_Olck 393 40.0 40.2 09 (284 282 286 0.2
snd_Arab 65.1 634 633 -1.8|449 45.1 45.0 0.1
tam_Taml 613 594 594  -19|572 570 570 -0.2
tel_ Telu  66.1 646 646 -1.5|594 594 595 0.1
urd_Arab 62.0 60.5 604 -1.6(522 520 522 0.0

Average 61.0 59.2 59.2 -1.8148.0 47.8 479 -0.1
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Table 49: ChrF++ scores of Indic-En and En-Indic distilled models on IN22-Conv. Distilled (Dist) is the model trained
with Word-level KD. A is the difference between the distilled Model fine-tuned on seed data (Dist-Seed) & IT2. Higher
values of A are preferable.

Indic-En En-Indic
language  1T2 Dist Dist-Seed A ‘IT2 Dist Dist-Seed A

asm_Beng 629 62.3 628  -0.1]468 46.1 466 02
ben_Beng 584 58.8 587  03(49.7 496 498 0.1
brx_Deva 563 54.6 548  -1.5|453 454 454 0.1
doi_Deva 650 638 639 -1.1/539 523 530 -09
gom_Deva 517 50.7 507 -1.0|42.5 418 417 -08
qui_Gujr 620 61.7 618 -02[53.1 531 531 0.0
hin_Deva 60.1 59.9 60.1 0.0 |49.6 493 494 -0
kan_Knda 475 478 479 04338 336 338 00
kas_Arab 52.6 49.8 501  -2.5(35.6 33.6 349 -0.7
mai_Deva 578 573 572  -0.6|443 438 443 0.0
mal_Mlym 543 53.9 539  -04|457 455 456 -0.1
mar_Deva 585 584 585 0.0 |48.6 484 487 0.1
mni_Mtei 525 51.0 507 -1.8]/402 395 400 -0
npi_Deva 63.0 634 635 05|515 51.1 513 -02
ory_Orya 603 604 604  0.1]402 398 400 -0
pan_Guru 62.7 617 618 -09|578 576 575 -0.3
san_Deva 483 46.7 467  -1.6(355 346 348 0.7
sat_Olck 435 46.1 465  3.0(34.6 342 348 02
snd_Deva 49.6 502 502  0.6/303 30.1 300 -03
tam_Taml 458 457 458  0.0[39.1 386 387 -04
tel_ Telu 529 527 528 -0.1]455 447 451 -04
urd_Arab 655 642 644  -1.1|61.6 615 614 -02

Average  56.0 55.5 556 04448 443 445 -0.3
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E Additional details about IN22 Benchmark

This section provides a detailed overview of the source and domain diversity of the different subsets of the IN22
benchmark.

IN22-Web
e 1-10 w117 mmm 18-25 . 26 - 45 46 - 60 e 61-80

-
IN22-Wiki

e 1-10 w11 -17 mm 18-25 . 26 -45 46 - 60 e 61-80
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Figure 10: Domain vs. length distribution for the sentences from Web Sources (top) and Wikipedia (bottom) subsets
of IN22

Table 50: Comparison of diversity of domains in FLORES-200 and IN22

FLORES domain IN22 domain
crime, disasters, politics news
entertainment entertainment
geography geography
health health
nature, science education
sports sports

travel tourism

- culture
politics government
- industry

- economy

- legal

- religion
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Table 51: Statistics of the Conversational Subset of IN22

Statistic Value

Number of unique conversations 44

Average turns per conversation + std 34.2 +£4.9

dev

Number of unique topics 23

Randomly selected 5 topics ‘Government schemes’, ‘Movies’, ‘Historical Architectures’,
‘Geography of India’, ‘Legal Affidavit/documents’

Number of unique domains 16

Randomly selected 5 domains ‘arts’, ‘history’, ‘school life’, ‘healthcare’, ‘legal’

Number of unique prompts 44

Randomly selected 5 prompts ‘Joint Affidavit for Registration of Marriage’, ‘Diploma in web

designing’, ‘Qutub Minar- visiting time and student discounts’,
‘How do you take out time for your hobbies ?’, ‘Social and Eco-
nomic inequalities’

Number of unique scenarios 37

Randomly selected 5 scenarios ‘How to apply for a loan’, ‘Asking for the date/timing of the vot-
ing date’, ‘Housing/Colony’, ‘Learning Music’, ‘Challenges/Is-
sues in Sports sector’

Avg number of speakers per conversa- 2.0 + 0.0

tion =+ std dev

E.1 Source Selection

For the Wikipedia subset, we carefully chose English source sentences from various Wikipedia categories to ensure
broad coverage across different domains. Initially, we selected article pages within those categories and identify all the
sentences as potential candidates. For each of these sentences, we construct a context window with a block size of 3,
which typically includes one sentence before and after the candidate sentence. To satisfy the length criteria, we filter
out sentences that are less than 6 or more than 80 words. To minimize overlaps with the FLORES-200 test set (Team
et al., 2022), we discard the sentences that share 4-gram or higher overlaps with any sentence in the FLORES-200
dev and devtest sets. The candidate sentence domains are manually annotated as described above. Following this, we
randomly select the final set of sentences based on domain and length constraints. The detailed buckets are presented
in Figure 10. It is important to note that we did not translate all the sentences within the context block, deviating from
the approach followed in FLORES. This deviation was necessary to ensure the optimal length and domain diversity
constraints were met.

For the Web Sources, we identified various Govt. of India websites and digital libraries that could be sources of
multi-domain content with a focus on Indian topics. Many benchmarks like FLORES (Team et al., 2022), NTREX
(Federmann et al., 2022) do not have a fair representation of India-centric content, and we try to address this in the
creation of this subset. We relied on PDF format documents to discover sentences that are hopefully not part of publicly
available crawls like CommonCrawl (Xue et al., 2021; Conneau et al., 2020) or IndicCorp (Kakwani et al., 2020;
Doddapaneni et al., 2023). The selection of sentences for translation follows a similar procedure to the Wikipedia
subset. Figure 10 provides the bucket-wise and domain-wise distribution.

For the Conversation subset, we first create English conversations with a set of prompts and scenarios. The prompts are
predefined topics or themes that are used to initiate a conversation. A prompt can be thought of as the starting point of
a conversation, which sets the tone and direction for the interaction between the two speakers. For example, a prompt
could be “Travel plans for the summer” or “Discussing a new project at work”. The prompt is designed to encourage the
speakers to discuss a particular topic or theme, and it serves as the foundation for the conversation. On the other hand,
a scenario is a specific situation or context in which the conversation takes place. It provides additional context for the
speakers and helps to shape the conversation. For example, a scenario could be “Planning a family vacation to Europe”
or “Brainstorming ideas for a marketing campaign”. The scenario provides a specific context for the prompt, which
guides the speakers in their conversation. To create a conversation, two annotators from our annotator team played out
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Table 52: An example from the Conversation subset of IN22 featuring a conversation between two speakers: a kid and
his mother. The example belongs to the cultural domain, with festivities as a topic, the prompt of 14th April being a
holiday, and the scenario being ‘Historical importance’. Note that the speaker information is part of metadata and is not
part of the text to be translated. Each turn in the conversation is a distinct instance from the benchmark. It is possible
to reconstruct a conversation using the metadata released along with the translations.

Speaker Turn

Speaker 1 Mom, let’s go for a movie tomorrow.

Speaker 1 Idon’t have to go to school.

Speaker 1 It is a holiday.

Speaker 2 Oh, tomorrow is the 14th of April right?

Speaker 2 Your dad will also have the day oft from
work.

Speaker 2 We can make a movie plan!

Speaker 1 That’s a good news!

Speaker 1 Why is it a holiday though?

Speaker 1 Are all schools, colleges and offices
closed tomorrow?

Speaker 2 It is Ambedkar Jayanti tomorrow!

Speaker 2 This day is celebrated annually to mark
the birth of Dr. B. R Ambedkar.

Speaker 2 Have you heard of him?

Speaker 1 I think I have seen him in my History
and Civics book.

Speaker 1 Is he related to our Constitution?

Speaker 2 Absolutely! He is known as the father
of the Indian Constitution.

Speaker 2 He was a civil rights activist who played
amajor role in formulating the Constitu-
tion.

Speaker 2 He played a crucial part in shaping the
vibrant democratic structure that India
prides itself upon.

Speaker 1 I remember now!

the two speaker roles. Once a conversation is ready, it is then translated into 22 Indic languages. During translation,
the translators have the entire conversation context available to them.
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F Translation Workflow

F.1 Translation Stages

Source Sentence Selection Stage. The workflow begins with the selection of sentences to be translated based on
various criteria to be met like domain coverage, length distribution, licensing constraints, efc. This helps in ensuring
the right set of sentences as required for the project are shortlisted for translation. To ensure a broader vocabulary
coverage, the sentences are taken from multiple domains such as News, Tourism, Business, Entertainment, History,
Geography, Culture, Sports, and Health.

Source Verification Stage. Once the candidate pool of source sentences is created, it is verified by annotators to
ensure the correctness of the source sentences and metadata. This ensures that the sentences selected are valid, of good
quality, and translatable. Shoonya efficiently supports a verification workflow where the annotator reads a sentence
(with context) and selects any one of the given tags: I. Clean, 2. Difficult vocabulary, 3. Context Incomplete, 4.
Ambiguous sentence, and 5. Profane. Sentences with minor errors such as spelling mistakes, and punctuation errors
are corrected manually. If any sentence in a paragraph is discarded, the whole paragraph gets rejected, as context-
agnostic translations might turn out ambiguous. In addition, the annotators might also add metadata like the domain
and the topic to the source sentences.

Translation Stage. The selected source sentences are translated by translators across all 22 Indic languages. To en-
sure quality, standard translation guidelines have been developed and iterated before starting the translation task. There
is an active discussion amongst translators to ensure consistency. Translators of one language team help translators
of another language team who are from the same language family or share geographical boundaries. This ensures the
authenticity of transliterated words and cross-cultural nuances and gives a human touch to the output.

The translator is provided with:

 Source sentence and three context sentences around the source sentence to help resolve translation ambiguities.

* Translation outputs from one of the following engines (IndicTransl with fallback to Google Translate for
unsupported language), which can be post-edited. Translators could post-edit, translate from scratch, or use
any alternative MT system as a starting point. Note that post-editing support is provided only for the creation
of training data. Providing MT as a reference helps translators speed up and overcome the existing mistakes
in current translation models. A few low-resource languages like Kashmiri, Konkani, and Santali, where
MT systems are not available, are supported by the output of other related languages such as Urdu, Marathi,
and Bengali. This helps translators of low-resource languages to reuse syntactic structures and vocabulary
from related languages (as long as such vocabulary is acceptable in the target language). To create test sets,
the translators are expected to translate the sentences from scratch and not shown any outputs from an MT
system.

* To help translate technical vocabulary, the translators can consult dictionaries and glossaries using IndicGlos-
sary>*. IndicGlossary contains approximately 2 million glossary items across 13 different Indic language
pairs and about 20 domains aggregated from various sources. These glossaries are sourced from the Commis-
sion for Scientific and Technical Terminology (CSTT) and Technology Development for Indian Languages
(TDIL) which are the recommended sources for translation terminologies for different domains (Science, En-
gineering/Technology, Medical Science, Humanities, Social Sciences, Agricultural Science, and Veterinary
Science).

For some low-resource languages, some translators were not proficient in English but had proficiency in another Indic
language (called the pivot language). For these languages, the translators are provided with the pivot language trans-
lation, which they use to translate into their native language. We used this method for the following languages: Dogri
(pivot Hindi), Konkani (pivot Marathi), Maithili (pivot Hindi), and Santali (pivot Bengali).

34See specific page that will be added upon de-anonymization.
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Quality Check Stage. Simultaneous review of the translated sentences is required, as it helps provide feedback to the
translators and improves the overall quality. For this, we have dedicated reviewers in each language who are translators
with 5+ years of experience. The job of the reviewer is to improve the overall quality of the translation by correcting
grammatical errors (if any), choosing better syntactic structures (if required), and rectifying inappropriate dialectical
features to make the translations more standard. The reviewer manually verifies and corrects each translated sentence (if
needed) to ensure adherence to the guidelines by selecting any one of the options on Shoonya, 1. Accepted, 2. Accepted
with Changes, and 3. Rejected. Rejected sentences go back to the translator with a note from the reviewer. The reviewer
then corrects the translation based on the inputs provided in the note from the translator. The corrected sentences then
go back to the translator for a second round of review.

F.2 Translation Guidelines.

We developed an extensive set of translation guidelines to help the translators and ensure translation consistency and
quality across annotators and languages. These have been developed starting with the guidelines prepared by LDC??
for the BOLT Chinese-English translation task and further adapted for our scenarios and tasks. It is challenging to
translate in 22 languages from 4 different language families, following the same set of rules, as syntax and availability
of resources vary drastically across them. However, the guidelines were created considering the main goal of “getting
as natural translations as possible”. In the guidelines, we ensured the inclusivity of all unique linguistic features such
as distinct word orders (SVO in Kashmiri), PNG agreement, tense/aspect differentiation in Manipuri, sociocultural
nuances, extreme dialectic variations and challenges like right-to-left writing (Urdu), scripts like Meitei Mayek and Ol
Chiki, languages which don’t support longer syntactic structures like English, sentences with many subordinate clauses,
languages spoken in multiple regions such as Sindhi, unavailability of modern vocabulary in languages like Sanskrit,
inaccessibility of domain-specific dictionaries and glossaries in languages like Bodo, Santali and reviving the original
form of languages like Assamese, Odia which are highly influenced by high resource languages in the same area (e.g.,
Bengali). The detailed guidelines are published as a standalone document here.>® Some key highlights from these
guidelines.

* The general principle is that the translation should maintain the meaning, style, tone, and register of the source.
No information should be added or deleted.

* Official native scripts of the languages should be used.

* Named entities and borrowed words can either be translated or transliterated. The exact choice depends on
the accepted convention in the language, if both choices exist. We avoid coining new translations if none exist,
and the words are transliterated instead.

* Numbers, dates, and units are to be handled as per natural conventions in the target language.

* In the context of historical events/people, translators can use more formal/older conventions or terms. For
more recent events/people, using more casual/colloquial conventions or terms is preferred.

* For test sets, sentences would be translated from scratch without aid from any MT output to avoid bias towards
outputs of any MT system.

F.3 Shoonya Translation Interface

Translations are performed using the translation task supported in Shoonya®. Shoonya has helped improve transla-
tor productivity and project management by providing features like transliteration support, context view, post-editing,
quality control, and cross-lingual support. Performing reviews in real-time has helped the team improve the quality
of translations whilst rectifying their mistakes. Shoonya supports right-to-left writing, which helps Urdu and Kash-
miri translators to speed up their typing. Simple features like ‘Find and Replace’, marking sentences as drafts, getting

3https://catalog.ldc.upenn.edu/docs/LDC2008T18/
36See specific page that will be added upon de-anonymization.
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randomized sentences across domains, daily progress tab, etc. helped translators improve their productivity and col-
laborate closely with their peers. Below is a short summary of Shoonya’s features that have benefitted the translation
task.

* Transliteration Support: Romanized input with automatic transliteration to native scripts to help translators
not proficient in native script keyboards. The transliteration is powered by the open-source IndicXlit models
(Madhani et al., 2022), which provide transliteration support for 20+ Indian languages.

* Context View: When translating a sentence, it helps to have the context in which the sentence is being translated
to resolve any ambiguities. Shoonya allows translators to see paragraph-level context when translating an
individual sentence.

* Post-Editing: Shoonya enables populating automatic translations from IndicTrans1 models, currently support-
ing 11 Indic languages. The translators can post-edit these initial translations.

* Quality Control: Shoonya offers various automated maker-checker flows to evaluate the quality of translated
data. To further ensure quality, we implement a two-level maker-checker paradigm, in which an experienced
reviewer verifies each translation for conformance to the translation guidelines. This approach involves two
levels of processing for each sentence, providing a robust mechanism for ensuring high translation quality.

* Cross-lingual Support: For low-resource languages, Shoonya supports showing annotators translations in
other related languages. For instance, given the task of translating English to Santali, the translators may
have difficulty fully understanding the English sentence. In such cases, we also show the translators a Bengali
translation (a language they are proficient in) of the same sentence to aid them with the task. This is a common
scenario for many low-resource languages (Team et al., 2022; Ebrahimi et al., 2022; Marivate et al., 2020).
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G Language of India

This section provides an overview of Indian languages based on the 2011 census data, employing language classification

by Joshi et al. (2020).

Table 53: Overview of Indian languages. Number of Native Speakers as per 2011 census. Language classification done
according to the taxonomy introduced by Joshi et al. (2020), which classifies languages into 6 classes from 0 to 5 with 0
indicating extremely low resource and 5 indicating high resource language. Many of these languages are spoken across
multiple states in the country. Sample column indicates the word “Bharat” written in different scripts.

Language . . . #Native
Famil -famil t ! 1
Code Name amily Sub-family Scrip Sample  Class Speakers
East
asm_Beng Assamese  Indo-Aryan astern Bengali ©l9© 2 15.3M
Indo-Aryan
. Eastern .
ben_Beng Bengali Indo-Aryan Indo-Aryan Bengali REIS) 5 97.2M
brx_Deva Bodo Sino-Tibetan Boroic Devanagari  HRd 1 1.4M
doi_Deva  Dogri Indo-Aryan Il\jlzzlj;;an Devanagari  ¥Rd 1 2.5M
. Southern .
gom_Deva Konkani Indo-Aryan Devanagari ¥R 1 2.2M
Indo-Aryan
uj_Gujr  Gujarati Indo-Aryan Western Gujarati HIRd 4 55.4M
g1t 4 Y Indo-Aryan J '
. Lo Central .
hin_Deva  Hindi Indo-Aryan Devanagari  ¥IRd 5 528.3M
Indo-Aryan
. South
kan_Knda Kannada  Dravidian L Kannada 25003° 5 43.7TM
Dravidian
kas_Arab . Northern Perso-Arabic )l
kas_Deva Kashmiri  Indo-Aryan Indo-Aryan Devanagari  IRd ! 6.7M
mai_Deva Maithili Indo-Aryan Eastern Devanagari  Rd 1 13.5M
Indo-Aryan
. Southern o
mal_Mlym Malayalam Dravidian . Malayalam  B2®®) 4 34.8M
Dravidian
. Southern .
mar_Deva Marathi Indo-Aryan Devanagari  IRd 4 83.0M
Indo-Aryan
mni_Beng . . . Central Bengali T
M. -T 1 1.7M
mni_Mtei anipuri . Sino-Tibetan Tibeto-Burman  Meitei REIO) 7
Northern
i_D. Nepali Indo-A D | HRd 2 2.9M
npi_Deva Nepali ndo-Aryan . Aryan evanagari 9
East
ory_Orya Odia Indo-Aryan astern Odia QARG 3 37.5M
Indo-Aryan
North Western
Punjabi Indo-A j g3d3 .IM
pan_Guru  Punjabi ndo-Aryan Indo-Aryan Gurmukhi 3 33
san_Deva  Sanskrit Indo-Aryan  Indo-Aryan Devanagari  9Rd 2 0.02M
sat_Olck  Santali Austroasiatic Munda Ol Chiki O8N0 1 7.3M
snd_Arab R R North Western  Arabic ) )l.)
snd_Deva Sindhi Indo-Aryan Indo-Aryan Devanagari IR ! 2M
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tam_Taml Tamil Dravidian South Dravidian Tamil u I'I'Ij'g} 4 69.0M
tel_Telu Telugu Dravidian South. Cjentml Telugu eSS 4 81.1M
Dravidian
urd_Arab  Urdu Indo-Aryan Central Urdu 2l 5 50.7M
- Y Indo-Aryan = ’
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H Examples of language translation

This section shows a sentence translated into all Indian languages as an illustrative example.

Table 55: The table shows an example of the same sentence translated into all 22 Indian languages. The sentence
translated is “All human beings are born free and equal in dignity and rights.” from the UN Declaration on Human

Rights.

Language  Translation Romanized Sentence
asm_Beng STP(ETl WIqR TR 0% S &% FE SF  Xokolu manuh swadhin hoi jonmogrohon kore
W ST SIYFF AFCATE TN aru marjyada aru odhikaar xokolure xoman.
ben_Beng WY Srislowlq FIFT QI AT 3 WY~ Manush jonmogotobhabe swadhin ebong som-
B SRR A man o odhikar sobari soman.
brx_Deva A& @3@ I TFA SR IR ke gasibw subungyanw udangywi jwnwm jadwng
Qj@%{ M IRT AFLTRIBRT THH| arw gasibw subungni man arw mwnthaiphwra
soman.
doi_Deva ~ T&X RRCACIINES UfdeaT O IfAHR < Fef I Sabhe  manukh maan-pratishtha teh ad-
ﬁﬁﬂ'\’ d 3% SRR UaT Bl I hikaarein de sandarbh ch sutaintar teh ek
barobar paida haundey n.
gom_Deva TS AN Taa FRUT STeHTh YcTd 3T U sagle manis swatantra mhun jalmak yetat and
93T T BB A GHM AT, pratishtha and hakkache nadren samaan astat.
guj_Gujr ol Hju-fl A o-H & A 2RML 44 wi(E- badha manushyo swatantra janme chhe ane
SRIML AHA sl B, garima ane adhikaro ma saman hoy chhe.
hin_Deva &+t 3 a7 Ut 8 8 3R TRAT 3iR 1f8- sabhi manushya swatantra paida hote hain aur
HRI F T 81 &l garima aur adhikaron mein samaan hote hain.
kan_Knda €53 SHIHD ®BeddorSe JBZo38w ella manushyaru huttinindale  svatantrard
RS Borw BR,NY TG Gdow Je35oI3Be  ghanate hagi hakkugala drishtiyinda sama-
esNHZ3. naril agiruttare.
kas_Deva Tl M B ST 3Twie  sRmeR S 9 salim insaan chi janmi Azad be braaber dignity
ah be haq
kas_Arab  ales Hlwil g2 ST o5 je a3 Gudgé> jio plp Tamaam insaan chi Azad ta yezath ta hagoogs
- Manz braaber.
mai_Deva 9 HJY T Ut B S1fS ST3IR 3TfIdHR  Sabh manukh swatantra paida hoyat achhi aaor
3T ST A SRR B AD| adhikaar aa prtishtha me barabar hoyat achhi .
mal_Mlym ag)gJ0 @MaH|@o M@ 23Mla)- cllaa manushyarum swathanthrarayi
QU@©Fo qlo @RODMIIRIo @RAIGIUBEE3- janichavarum oppam anthassilum
gleo myel@a6eM. avakaashangalilum thulyarumaanu.
mar_Deva 4 HI™ SERE I FUI STHIefl YdTd M0 sarv manushya swatantrya vyakti mhanun jan-
gfasT amfor WWW 3AId.  mala yetat aani pratishtha ani hakkanchya
dushtikonatun samaan astat.
mni_Beng 13331 0N F1eeq SOOIR SFTTYHEAT SM- Mioiba  khudingmak ningtamba amasung
BN THECTASNT SR 55 TR AT ikaikhumnaba amasung hakselgi lamda chap
mannana leiminnari.
mni_Mtei WfUSE JIAFCKIT CfO¥FS THKQD Mioiba pumnamak ningtamba amasung
SHSAFCE THRQD AIOfI& KRCCT  ikaikhumnaba amasung haksing mannana pok
IS I L
npi_Deva T T T ST X FHHTE AT 37fe~ sabai maanis swatrantra janmanchan ra sam-
PRAT FHE g7+ Bl maan tathaa adhikaarmaa samaan chan.
ory_Orya QfIQ £19Q4Y @Q0le Q6@ QI B Qi@ @2ll  samasta manushya janmagata bhaabe swad-
YRR QTR AAIR hina 0 sammaana tathaa adhikaara drushtiru
samaan.
pan_Guru H3 HQY W der Je 95 M3 HS-AGH'S 3 Sabh manukh azaad paida hunde han ate mann

fgergr f€9 g9vad I&|
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san_Deva

sat_Olck

snd_Arab

snd_Deva

tam_Taml

tel_Telu

urd_Arab

T AHESI: S0 Tq TG, AHgsed
JNfePRGSCIT T

L2Lad U2.2Uz G2 TRYNGA.P 202¢ by
NAZAUDGE-D 2D UD.Z DD 2.€9D.D N2 bd
K20t GAcd

G Ol 3T ¢ e ¢ > @ b lag LS ol
S A JASE, ¢ HF ¢ g | feep Sifesr
Srerel 3fe |

w63l SF&6T LNMLUILITEL &&HETLOmEsT-
6UJ&6T, WLOHMID & 2 flenLD&(THLD
&H660T6EusT 1WI(LPLD )& TEBoTL 6UITE6T.
208050008 g FESRTgSen, T5,08°
S8I8508° DT

pled sl 3BT by Sor o gl je yol God>
oS Bl o sy o

janmanah  eva
adhikaaradr-

sarve  maanavajivinah
svatantraah, = maanadrishtyaa
ishtyaa samaanaashca.

Sanam manmi ge phurgal ated ku janamog-a ar
man ar aydar re ku soman giya.

Sabh insaan aazad paida thiya aahin, ain izzat
ain hakkan mein barabar aahin.

Sabhai Insan aazad, ain maan ain hakan mein
hik jahida javal aahin.

manitharkal pirappaal suthanthiramaanavarkal,
matrum sama urimaykalum kanniyamum kon-
davarkal.

manushulantaa svecchagaa gouravamaryadalu,
hakkulalo samantvamto pudataru.

tamam insan azad paida hue hain aur izzat aur
huqooq ke lihaz se barabar hain.
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I Language Coverage of various MT models

This section provides an overview of the Indian languages supported by different open-source and commercial NMT
systems.

Table 57: Coverage of the 22 languages listed in the 8" Schedule of the Constitution of India by various NMT systems

NMT Systems
language IndicTransl IndicTrans2 Azure NLLB-200 Google Translate
v

asm_Beng v
ben_Beng
brx_Deva
doi_Deva
gom_Deva
guj_Gujr
hin_Deva
kan_Knda
kas_Arab
kas_Deva
mai_Deva
mal_Mlym
mar_Deva
mni_Beng
mni_Metei
npi_Deva
ory_Orya
pan_Guru
san_Deva
sat_Olck
snd_Arab
snd_Deva
tam_Taml
tel_Telu
urd_Arab

AN

|N N ;X ;X ZX ™%X XX NN XX XN N XXX
NN N N S N N S NS S N S NN
AR R N N N O  NENE N NN
NN N N N N N N N N N S N LR
NN N N N S S N O NN NN

o =
S O
— =

# languages
# language-script combinations

—_—
—_ =
NN
(9, \S]
—_ =
[o)We)
O O
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J Model Card

Following (Mitchell et al., 2019), we will provide a model card for our IndicTrans2 models upon de-anonymization.
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K Dataset Card

Following (Gebru et al., 2021; Pushkarna et al., 2022), we will provide a dataset card for our Bharat Parallel Corpus
Collection, the dataset used to train IndicTrans2 as well as IN22, our benchmark testsets for Indic languages upon
de-anonymization.

80



	Introduction
	Related Work
	Creating High-quality Translation Datasets at Scale
	Translation Workflow
	Building the IN22 Test set
	Corpus Description
	Source Selection
	Quality Control Procedure.

	Building the BPCC Training Set
	Corpus Description
	Translation Details


	Mining Training Data at Scale
	Mining from Monolingual Corpora
	Mining from Comparable Corpora
	Filtering Existing Mined Parallel Corpora

	Modeling
	Training Data
	Preprocessing
	Tokenization
	Architecture
	Training
	Data Augmentation
	Postprocessing

	Evaluation
	Models Compared
	Benchmarks
	Metrics
	Generation
	Evaluation

	Results and Discussion
	Comparison with Existing Systems
	Understanding Data Scale vs Quality tradeoff
	Impact of Sequential Training with Human Annotated Data
	Impact of Data Augmentation
	Indic-Indic Evaluation
	Distilled Models

	Conclusion
	Limitations and Future Work
	References
	Data Contribution and Coverage
	Additional Results
	Zero-Shot Translation Capabilities of IndicTrans2 Through Cross-Lingual Transfer
	Translation Capabilities of Zero-Shot Prompted LLMs
	Comparison with SeamlessM4T Multimodal Translation Model
	Results on NTREX
	Results on WAT2020 & WAT2021
	Results on WMT & UFAL
	COMET Scores for IN22 & FLORES
	BLEU Scores for IN22 & FLORES

	Human Evaluation
	Distilled Models
	Additional details about IN22 Benchmark
	Source Selection

	Translation Workflow
	Translation Stages
	Translation Guidelines.
	Shoonya Translation Interface

	Language of India
	Examples of language translation
	Language Coverage of various MT models
	Model Card
	Dataset Card

