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Abstract. Reliable use of deep neural networks (DNNs) for medical
image analysis requires methods to identify inputs that differ signifi-
cantly from the training data, called out-of-distribution (OOD), to pre-
vent erroneous predictions. OOD detection methods can be categorised
as either confidence-based (using the model’s output layer for OOD de-
tection) or feature-based (not using the output layer). We created two
new OOD benchmarks by dividing the D7P (dermatology) and BreastM-
NIST (ultrasound) datasets into subsets which either contain or don’t
contain an artefact (rulers or annotations respectively). Models were
trained with artefact-free images, and images with the artefacts were
used as OOD test sets. For each OOD image, we created a counter-
factual by manually removing the artefact via image processing, to as-
sess the artefact’s impact on the model’s predictions. We show that
OOD artefacts can boost a model’s softmax confidence in its predic-
tions, due to correlations in training data among other factors. This
contradicts the common assumption that OOD artefacts should lead
to more uncertain outputs, an assumption on which most confidence-
based methods rely. We use this to explain why feature-based methods
(e.g. Mahalanobis score) typically have greater OOD detection perfor-
mance than confidence-based methods (e.g. MCP). However, we also
show that feature-based methods typically perform worse at distinguish-
ing between inputs that lead to correct and incorrect predictions (for
both OOD and ID data). Following from these insights, we argue that
a combination of feature-based and confidence-based methods should
be used within DNN pipelines to mitigate their respective weaknesses.
These project’s code and OOD benchmarks are available at: https:

//github.com/HarryAnthony/Evaluating_OOD_detection.

Keywords: Out-of-distribution · Uncertainty · Distribution shift.

1 Introduction

Deep Neural Nets (DNNs) have emerged as powerful tools for analysing medical
images, and have been found promising for various tasks such as classifying dis-
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eases [32]. However, when they encounter data that differ significantly from the
training data, out-of-distribution (OOD), their generalisation is unpredictable
[9]. This motivated research in OOD detection, to create methods to identify
when a model prediction is unreliable - mitigating risk of downstream errors.

We can separate OOD detection methods into two categories: internal meth-
ods (methods that use the parameters or outputs of a DNN which has been
trained for a specific task e.g. classification) and external methods (external to
the DNN). External methods encompass many approaches, such as one-class clas-
sifier methods [27,25], density-based methods [14,22] and reconstruction-based
methods [30,18]. Internal methods can be further separated into those that do
not require a DNN to be retrained (post-hoc methods) and those that require a
specific type of training (ad-hoc methods). Ad-hoc methods cover a broad spec-
trum of techniques, from altering the network’s architecture (e.g. Bayesian Neu-
ral Networks [31,2] and confidence enhancement methods [3,33]) to changing
how a network is trained (e.g. outlier exposure [10,19]). This paper focuses on
post-hoc internal methods, which have several benefits: they can be applied to
pre-trained networks, they typically don’t have restrictions on architecture de-
sign and are typically low computational cost. We can further separate post-hoc
internal methods into confidence-based methods, which use a model’s output layer
for OOD detection, and feature-based methods, which use other features for OOD
detection (e.g. hidden layer data) [23].

The primary goal of integrating OOD detection methods into a DNN pipeline
for image classification is to identify more trustworthy predictions, which are
likely to be accurate and less susceptible to unpredictable diagnoses caused by the
model’s interactions with OOD features. Most OOD detection studies evaluate
methods on their ability to separate ID and OOD inputs, using a metric like
AUROC [24]. However, there’s a growing body of research that have argued the
traditional OOD framework does not effectively reveal which method is best
at detecting errors [6,36,4,12]. They propose evaluating methods based on their
ability to specifically discard incorrect predictions, regardless of whether these
predictions are from OOD inputs (known as failure detection). To this end, we
analyse the strengths and weaknesses of both feature-based and confidence-based
methods at OOD detection and failure detection. By identifying the respective
weaknesses of these methods, we consider how they can be used to make DNN
predictions more trustworthy. We make the following contributions:

– Develop two OOD benchmarks by categorising all images from the D7P and
BreastMNIST datasets into those with and without artefacts (rulers and
annotations respectively). We manually create modified versions of each of
the 478 images with artefacts by removing the artefacts using a patch from
the same image, allowing for an analysis of their impact on the model’s
predictions. As a contribution, we made this data publicly available.

– We challenge assumptions on which confidence and feature-based detection
methods rely: OOD artefacts should lead to uncertain (high entropy) model
outputs, and the distance of an input to the training data in the model’s
latent space is a reliable predictor of diagnosis accuracy.
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– We use these false assumptions to explain and demonstrate that feature-
based methods typically perform better at OOD detection than confidence-
based methods, whereas confidence-based methods typically perform better
at failure detection than feature-based methods.

– To our knowledge, be the first paper to motivate and demonstrate the benefit
of combining both confidence and feature-based OOD detection methods in
a DNN pipeline to mitigate their respective weaknesses.

2 Material and Methods

Primer on OOD detection. Consider a model’s input, x ∈ X and a label
y ∈ Y = {1, ...,K} from a label-space with K classes. Data used to train a
network, f , is from a sample Dtrain = {(xn, yn)}Nn=1 ⊂ X × Y. This paper
studies covariate-shifted OOD data ptrain(x) ̸= ptest(x), which has the same
label-space as the training data, but a distribution shift in x (i.e. unseen artefact)
- sometimes referred to as near OOD [35]. OOD detection can be viewed as a
binary classification problem, where we get a confidence scoring function from
our method S(x, f) for an input x. We label x as OOD when the scoring function
S(x, f) is below a threshold λ, and ID if it is above. The primary metric for
evaluating the performance of OOD detection is AUROCOOD, which assesses
the scoring function’s ability to distinguish ID from OOD inputs [9]. As outlined
in Sec. 1, our focus extends to evaluating the scoring function’s ability for failure
detection, which we quantify using AUROCf [12]. For AUROCOOD the true label
is ID and the false label is OOD, and for AUROCf the true label is a correct
diagnosis and false label is an incorrect diagnosis [12].

Confidence-based OOD detection methods use the model’s output layer for
OOD detection. An example is Maximum Class Probability (MCP) [9], which
uses the maximum class softmax probability as the scoring function

SMCP(x, f) = max
y∈Y

softmax[f(x|Dtrain)]. (1)

Other examples of confidence-based methods include Shannon Entropy (SE) [8],
Max Logit Score (MLS) [8], Energy score [19], MCP from Monte Carlo Dropout
(MCDP-MCP) [5], predicted entropy from Dropout (MCDP-PE) [12], Mutual
Information from Dropout (MCDP-MI) [12], MCP from Deep Ensembles (DE-
MCP) [15] and GradNorm [11]. Some methods increase the separation between
ID and OOD data by either increasing the model’s confidence in a diagnosis
(ODIN [17]) or reducing it (ReAct [28] and DICE [29]) - these methods have
hyperparameters that can be optimised on a validation OOD set.

In contrast, feature-based OOD detection methods don’t use the model’s
output layer. An example is Mahalanobis score, which uses a feature extractor
F (typically a section of the DNN) to extract feature maps from a hidden layer
h(x) ∈ RJ×J×M , where the maps have size J × J with M channels. The feature
map’s means can be used to define a vector z(x) ∈ RM = 1

J2

∑
J

∑
J h(x).

Firstly, the mean µy and covariance matrix Σy of each class in the training data
(x, y) ∼ Dtrain is calculated.
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The Mahalanobis distance between the vector z(x) of a test data point x and
the training data of class y can be calculated as a sum over M dimensions. The
Mahalanobis score dM is defined as the minimum Mahalanobis distance between
the test data point and the class centroids of the training data, and it can be
used as an OOD scoring function [16].

dMy (x) =

M∑
i=1

(z(x)− µy)Σ
−1
y (z(x)− µy), SMahal.(x, f) = −min

y∈Y
dMy (x) (2)

Previous works suggest the OOD detection performance of Mahalanobis score
could be improved by combining distances from different layers, called Multi-
branch Mahalanobis (MBM) [1], or by measuring the distance relative to the
distribution of all the training data, called Relative Mahalanobis Score (RMS)
[21]. Another feature-based method uses the differences in GRAM matrices [26].
Explainable AI (XAI) methods generate saliency maps to weight the rele-
vance of pixels of an image for a model’s diagnosis, aiming to make the model’s
decision-making process more understandable - an example method is Layer
Relevance Propagation (LRP) [20].

Datasets and Implementation. We manually annotated two datasets -
BreastMNIST (ultrasound images) [34] and D7P (dermatology images) [13] - into
subsets of images that contain an artefact (rulers and annotations respectively)
and images that do not. Models were trained on 90% of the images without the
artefact, with 10% used as held-out ID test cases (table 1). These tasks were
selected for OOD analysis because the artefacts do not provide clinically useful
information for diagnosing pathology, and are easy to localise and remove. The
models used were ResNet18 and VGG16, where we trained 5 seeds.

Table 1: Summary of ID and OOD data used for OOD detection evaluation.

Dataset Classes # ID img Train:Test OOD Artefact # OOD img

Breast- Normal 126 90:10 Annotations 7

MNIST Benign 269 168

[34] Malignant 157 53

D7P Nevus 832 90:10 Grid ruler 148

[13] Not Nevus 571 102

For each of the 478 OOD images, we made pixel-wise segmentation masks for
the artefact. We then manually replaced the pixels of the artefact with pixels in
the same image (intra-image interpolation), using a Gaussian smoothing filter to
ensure smooth boundaries. This was chosen over using a pre-trained generative
model to remove the artefact because we can ensure we are not introducing a
new unexpected OOD artefact into an image, and to prevent changing the true
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label of the image. This was done to approximate the image without the artefact,
allowing us to evaluate the impact of the artefact on a model’s diagnosis. The
dataset annotations, segmentation masks and synthetic image datasets have all
been made publicly available.

37% 30%

20%
13%

Create synthetic 
dataset w/o artefacts

Images categorised on model 
classification accuracy

Label Image with 
artefact

Synth Image 
without 
artefact

Correct 
regardless

Correct Correct

Incorrect 
regardless

Incorrect Incorrect

Correct only 
with artefact

Correct Incorrect

Incorrect only 
with artefact

Incorrect Correct

Categorise all images   
in OOD dataset 

Correct regardless

Incorrect regardless

a b c

Correct only with artefact
Incorrect only with artefact

Intra-image 
interpolation

Fig. 1: Workflow for categorising data based on the model prediction impact,
using intra-image interpolation to create synthetic images without artefacts.

Once the synthetic datasets were created, we compared the model’s classifi-
cation accuracy with the artefact (original image) and without the artefact. We
categorised the OOD data depending if the diagnosis changed with the removal
of the artefact (Fig. 1). After categorising the data, the next step involved in-
tegrating OOD detection methods into the DNN pipeline. The main focus was
to evaluate which of these methods could effectively identify and dismiss po-
tentially misleading predictions influenced by the OOD artefacts. To do this,
we applied an OOD detection method and calculated the scoring function for
each image in the ID and OOD test sets. We then set a threshold at the 75
percentile of the scoring function’s for the held-out ID data λID-75 [9], removing
all model predictions below this threshold. We did this for a confidence-based
method (MCP) and feature-based method (Mahalanobis score). The purpose of
this study was to determine which OOD methods made the predictions of the
DNN more trustworthy, defined here as being more accurate (diagnoses are more
often correct) and less likely to have its predictions influenced by OOD features
(it can reliably dismiss or handle artefacts that it wasn’t trained with).

3 Results

We tested 16 OOD detection methods (described in Sec. 2) for the D7P and
BreastMNIST OOD tasks, with results shown in Table 2 - evaluating their perfor-
mance for OOD detection (AUROCOOD) and failure detection (AUROCf ). For
MC dropout we used p = 0.3 with 100 samples. Some methods like ODIN have
hyperparameters, for which we show the optimised result as an upper bound.
Previous works have shown that OOD artefacts, such as rulers, are optimally
detectable in the early layers of a network, which are responsible for detecting
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low-level features [1]. So we applied Mahalanobis score and RMS on an early
layer of the network (module 5), and we apply MBM on the first branch [1].

Table 2: AUROCOOD and AUROCf (mean of 5 seeds) for OOD detection meth-
ods for a) D7P (ruler OOD) and b) BreastMNIST (annotation OOD) tasks.Bold
highlights best result. * methods with hyperparameters optimised on OOD data.

OOD-D method
D7P (ruler OOD) BreastMNIST (anno. OOD)

ResNet18 VGG16 ResNet18 VGG16
AUCOOD AUCf AUCOOD AUCf AUCOOD AUCf AUCOOD AUCf

Confidence-based Methods

MCP [9] 49.3 64.0 51.9 62.0 55.8 66.3 52.4 62.4
SE [8] 49.5 64.0 52.8 62.0 55.8 66.7 51.4 61.9
MLS [8] 48.6 63.7 51.5 61.9 57.9 69.7 52.4 64.2

Energy Score [19] 48.5 63.6 51.5 61.9 57.6 69.8 51.9 64.1
MCDP-MCP [5] 49.3 64.0 52.0 61.8 55.8 66.3 51.9 62.2
MCDP-PE [12] 49.5 64.0 51.7 61.9 55.8 66.7 50.3 62.2
MCDP-MI[12] 49.5 64.0 51.7 61.8 55.8 66.7 50.3 62.1
DE-MCP [15] 49.9 64.2 52.7 61.9 56.0 66.4 53.3 62.3
GradNorm [11] 49.4 63.9 51.9 61.9 60.2 53.8 53.2 54.1
ODIN* [17] 64.6 58.6 52.0 62.0 58.7 67.4 53.6 62.2
ReAct* [28] 67.2 60.6 61.5 58.9 60.2 65.2 58.0 64.4
DICE* [29] 68.5 67.8 57.7 59.2 58.0 70.9 59.1 64.0

Feature-based Methods

Mahal. Score [16] 76.9 62.1 72.5 57.8 77.1 52.7 72.5 52.2
MBM [1] 80.7 61.7 73.8 56.8 77.4 53.9 76.8 52.0
RMS [21] 70.2 57.1 60.5 57.1 62.7 50.5 52.7 51.9

GRAM [26] 53.6 54.8 72.3 55.8 63.6 51.4 71.3 52.0

From Table 2, it is observed that feature-based methods are typically more
effective at detecting OOD inputs than confidence-based methods, quantified
using AUROCOOD. To explain why, we visualise the model predictions for two
OOD images (both with and without the artefact) along with their eXplainable
AI heatmaps using LRP (Fig 2). We use this to challenge the assumption that
OOD artefacts will always cause a model to output a more uncertain (high en-
tropy) output. The analysis shows that OOD artefacts can actually lead to high
confidence predictions (high logit and hence softmax values), at comparable con-
fidence to ID data. This phenomenon undermines the utility of confidence-based
methods, that rely on the model’s output layer, for detecting OOD inputs. There
are several potential reasons for this phenomenon. One reason is the model can
learn to identify correlations in the training data, such as specific intensity pat-
terns in medical images. An OOD artefact that resembles these patterns can
lead the model to make high-confidence predictions, even though the artefact is
unrelated to the condition being diagnosed. Another cause is it has been the-
oretically demonstrated that ReLU networks inherently assign high confidence
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to images that are far from the training data [7]. The results also show that
feature-based methods perform comparatively worse at failure detection. This
implies that it may be a false assumption to consider the Mahalanobis distance
of an input to the training data as a reliable predictor of diagnostic accuracy
[16] - we experimentally observe this phenomenon regardless of the network layer
that the method is applied on (results not shown due to space constraints).
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Fig. 2: Comparison of the model’s (VGG16) output and XAI heatmap (LRP)
for D7P images with and without artefacts, showing cases where predictions are
correct (a) or incorrect (b) only with the artefact. Used to demonstrate that
OOD artefacts can lead to high confidence predictions.

Following that, we integrated a confidence-based method (MCP) and a feature-
based method (Mahalanobis score) into a DNN pipeline, placing threshold λID−75

and studying the predictions above the threshold (Fig. 3). We see that although
the confidence-based method improves accuracy of predictions, it does not no-
tably reduce the proportion of OOD images relative to ID images compared with
the original dataset. For predictions on OOD images above λID−75, the percent-
age which are correct only due to the presence of artefacts increases compared
with the original dataset, which could cause an inflated AUROCf metric. This
could give a misleading impression that applying MCP would lead to much more
trustworthy predictions, when in fact these predictions are heavily impacted by
the OOD artefact. This could be an issue if this results in an overconfidence
in the model’s ability to handle OOD data, masking its vulnerability and po-
tentially leading to performance breakdowns post-deployment if the correlation
between OOD artefacts and correct diagnoses changes. This also raises concerns
if the failure detection framework for evaluating OOD methods is too simplistic,
as these metrics don’t consider cases where the model is correct for the wrong
reasons. We also see the feature-based method does better at reducing the num-
ber of OOD images, but the predictions above λID−75 can have worse diagno-
sis accuracy compared with the original dataset (for both ID and OOD sets).
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Neither of these outcomes are ideal in terms of improving the trustworthiness
of DNN predictions. If we consider feature-based methods as those capable of
identifying images that look visually distinct from the training data (regardless
of diagnosis accuracy) and confidence-based methods as those that are better
at dismissing images with incorrect diagnoses (but struggle to identify visu-
ally distinct images), it motivates integrating both confidence and feature-based
methods to compensate for their respective weaknesses. We test this by first
removing predictions below λID−75 for Mahalanobis score, then removing pre-
dictions below λID−75 for MCP, to demonstrate that the remaining predictions
are more accurate while reducing the number of predictions influenced by OOD
features. Although it results in more predictions being dismissed, we argue that
this configuration leads to more reliable DNN predictions. Hence, we suggest the
community should consider systems which incorporate both a confidence-based
and a feature-based method.
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Fig. 3: a) BreastMNIST and b) D7P test sets were analysed using different OOD
methods, removing predictions from a VGG16 model below λ75−ID. The pie
charts illustrate the distribution of predictions (see Fig. 1), while the bar charts
display the percentage of ID and OOD data remaining after removing predictions
below λ75−ID, compared to the original dataset (i). The figure shows MCP’s lim-
itation in removing OOD data (ii) and Mahalanobis score’s tendency to reduce
prediction accuracy (iii). Combining these methods (iv) yields the most trust-
worthy predictions, but with a higher dismissal rate.
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4 Conclusion

This paper sheds light into the weaknesses of current OOD detection methods.
We show that confidence-based methods are less effective than feature-based
methods in OOD detection, partly due to the false assumption that OOD arte-
facts consistently lead to higher model uncertainty. This paper also explains that
feature-based methods, while superior at identifying OOD inputs, under-perform
in failure detection compared to confidence-based methods, which can reduce ac-
curacy of predictions when integrated into a DNN pipeline. The paper suggests
a step forward could be to seek combinations of confidence- and feature-based
methods that compensate for their respective shortcomings.
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