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ABSTRACT

Multi-objective decision-making is often deemed overly complex in bandit set-
tings, leading to algorithms that are both complicated and frequently impractical.
In this paper, we challenge that notion by showing that, under a novel goodness of
arms condition, multiple objectives can facilitate learning, enabling simple near-
greedy methods to achieve sub-linear Pareto regret. To our knowledge, this is the
first work to demonstrate the effectiveness of near-greedy algorithms for multi-
objective bandits and also the first to study the regret of such algorithms for para-
metric bandits in the absence of context distributional assumptions. We further
introduce a framework for objective fairness, supported by strong theoretical and
empirical evidence, illustrating that multi-objective bandit problems can become
both simpler and more efficient.

1 INTRODUCTION

Multi-objective decision-making problems have become increasingly prevalent in today’s complex,
real-world applications. From recommendation systems to robotics, decision-makers must often
optimize multiple, potentially conflicting objectives simultaneously. This setting naturally gives rise
to multi-objective bandit problems (Drugan & Nowe, 2013} Turgay et al.,|2018;|Lu et al., 2019; Xu
& Klabjan, 2023} |Kim et al.l 2023; (Cheng et al., |2024; crepon et al.| 2024; [Zhang, [2024)), which
generalize the single-objective bandit framework by incorporating several objectives. Although this
extension may seem conceptually straightforward, balancing exploration and exploitation across
multiple objectives significantly increases the complexity of the problem.

To address multi-objective bandit problems, most existing approaches focus on achieving Pareto
optimality (Drugan & Nowe,|2013};|Yahyaa & Manderick,[2015}Tekin & Turgay, 2018 Turgay et al.,
2018 Lu et al., 2019; |[Kim et al., 2023} [Cheng et al.,[2024). However, these methods often involve
updating empirical Pareto fronts in each round, leading to substantial computational overhead and
limiting their suitability for often real-time and sequential decision-making applications.

While multi-objective problems are generally more complex than their single-objective counterparts,
it is natural to ask whether multiple objectives could, in some cases, facilitate learning rather than
hinder it. Formally, we pose the following research question:

Can the presence of multiple objectives actually facilitate learning rather than hinder it?

A priori, the answer is not always yes. Nonetheless, there may be scenarios in which multiple
objectives can be leveraged to achieve simpler, more efficient solutions. A positive answer to this
question could reshape our perspective on multi-objective problems: instead of always resorting to
increasingly complex methods, we might exploit a simpler, near-greedy approach to handle multiple
objectives more effectively. To our knowledge, this perspective has been largely overlooked, perhaps
because it appears counterintuitive that adding objectives could simplify the problem. Consequently,
an important research direction is to identify the precise conditions under which multi-objective
bandit problems become admissible—even potentially advantageous—for simple algorithms.

In this work, we show that the existence of good arms for multiple objectives can enable simpler
near-greedy algorithms to achieve strong performance. Such “goodness” means that, for each ob-
jective, there is at least one arm that performs sufficiently well (and these arms may differ across
objectives), a scenario commonly observed in practice. We show that this condition leads to what we
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call free exploration—the ability to collect informative feedback without incurring extra exploration
cost. Concretely, we propose a novel near-greedy algorithm, MOG (Algorithm [T, and its variants,

and prove that, under the suitable goodness assumption, they attain a regret bound of O(ﬁ ). To
our knowledge, these are the first explosion-free algorithms for multi-objective bandits.

From a broader perspective, our work is related to the literature on exploration-free linear bandits in
the single-objective setting (Kannan et al., |2018;|Raghavan et al.,|2018; |Bastani et al., 2021} |Kim &
Ohl, [2025)), where greedy (or near-greedy) strategies can be efficient if the contexts are sufficiently
diverse. However, our analysis here differs crucially: we do not rely on any stochasticity or diversity
in the contexts (features). Notably, our algorithms perform effectively even in fixed feature settings,
marking the first result (to our knowledge) in which a greedy-type algorithm achieves no-regret
without any diversity assumptions in parametric bandits. This new insight suggests that multiple
objectives can sometimes replace or augment the role that context diversity plays in single-objective
settings, which can be of independent interest.

We evaluate our proposed algorithms both theoretically and empirically, analyzing their regret per-
formance and introducing a novel fairness criterion to ensure that no single objective is neglected.
Our results show that these simple and efficient methods not only exhibit strong performance but
also satisfy fairness guarantees—representing, to the best of our knowledge, the first such theoreti-
cal result on fairness in multi-objective bandits. Consequently, our work opens new perspectives in
multi-objective bandit research by providing a new class of algorithms and offering stronger guar-
antees on both Pareto optimality and fairness.

1.1 CONTRIBUTIONS

* We present and rigorously analyze a novel, sufficient condition on the goodness of
arms (definition [5) under which near-greedy algorithms achieve statistical efficiency in
multi-objective bandit problems without relying on the commonly assumed context distri-
butional assumptions in the greedy bandit literature (Kannan et al., 2018; Raghavan et al.,
2018; Bastani et al., 2021; |Kim & Ohl [2025). Under this condition, free exploration can
be effectively leveraged. Notably, free exploration persists even in fixed context settings,
rather than just stochastic environments. Our key (and somewhat surprising) insight is that
having multiple objectives can enhance rather than hinder the learning process.

* We propose and analyze three practical algorithms, MOG, MOG-R, and MOG-WR, showing

that under the goodness assumption, each algorithm attains O(\/T) Pareto regret, where T'
is the total number of rounds. Crucially, our proposed algorithms do not require construct-
ing or maintaining empirical Pareto fronts, significantly reducing computational overhead
compared to many existing algorithms.

* We introduce the notion of objective fairness (definition as a criterion for evaluating
multi-objective bandit algorithms. We prove that the MOG and MOG-R algorithm satisfies
objective fairness, while the MOG-WR algorithm satisfies a general version of this criterion
(definition @ To our knowledge, this is the first theoretical analysis of fairness in multi-
objective bandit problems.

* Through extensive numerical experiments, we demonstrate that MOG, MOG—R and MOG-WR
consistently outperform existing multi-objective methods across a wide range of scenarios.
These results empirically validate our theoretical claims.

1.2 RELATED WORK

The multi-objective bandit problem, an extension of the single-objective bandit framework that cap-
tures real-world scenarios with multiple conflicting optimization objectives, was first introduced by
Drugan & Nowe, (2013). They proposed two approaches using the UCB algorithm: one based on
Pareto optimality and the other on scalarization. While the scalarization approach simplifies the
problem by reducing it to a single-objective one (Drugan & Nowe| |2013}; [Yahyaa & Manderick,
2015; |[Zhang, 2024)), the Pareto optimality approach treats all objectives equally, without making
any assumptions about their interrelationships. This second approach inspired numerous studies on
multi-objective bandits focused on Pareto efficiency (Turgay et al.,2018};|Tekin & Turgay, [2018;|Lu
et al.,[2019; | Xu & Klabjan, [2023} |Kim et al.,2023; |Cheng et al., 2024; |crepon et al.| [2024)).
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Recent advancements have extended the multi-objective bandit framework to linear contextual set-
tings. [Lu et al.|(2019)) established theoretical regret bounds for the UCB algorithm within the gener-
alized linear bandit framework. |Kim et al.|(2023) explored Pareto front identification in linear bandit
settings. Additionally, Cheng et al.| (2024)) introduced two algorithms stochastic linear bandits un-
der a hierarchy-based Pareto dominance condition. In a different approach, Zhang| (2024) proposed
a hypervolume scalarization method in stochastic linear bandit settings and analyzed hypervolume
regret, a metric that measures how well the Pareto front is generated.

While these works made important strides, they largely overlook the potential for free exploration
that can arise from the existence of good arms for each objective, particularly in the absence of the
diversity in context stochasticity. Recent research on single-objective linear contextual bandits with
stochastic contexts has shown that when context diversity is sufficiently high, greedy algorithms
can achieve near-optimal regret bounds in terms of the total number of rounds. (Bastani et al.,
2021} |[Kannan et al., |2018; Raghavan et al., [2018; [Kim & Oh, [2025). However, the extension of
these results to multi-objective bandits has been limited by a diversity assumption on the context
distribution, leaving a gap in understanding how exploration can occur without the this assumption.

Our work addresses this gap by focusing on free exploration driven by good arms for different
objectives, even in the absence of context stochasticity. While Bayati et al.| (2020) demonstrated
that greedy algorithms perform well in non-contextual single-objective settings when the number
of arms is large, they relied on a [S-regularity assumption related to the reward distribution. In
contrast, we introduce the concept of y-goodness (Assumption[3), which generalize the notion of /3-
regularity to feature spaces in the multi-objective setting. Unlike|Bayati et al.|(2020), which provided
only Bayesian regret bounds—a weaker notion of regret than the frequentest regret, we rigorously
establish the frequentest regret bounds for our proposed algorithms, MOG, MOG-R, and MOG-WR,
under this generalized goodness assumption and for multi-objective problem settings. This is the
first time that a theoretical guarantee has been provided for exploration-free algorithms in multi-
objective linear bandits, without relying on the diversity assumption on context distribution, which
is a significant departure from existing literature.

2 PROBLEM SETTINGS

2.1 NOTATIONS

We denote by [n] := {1,...,n} forn € N. For a vector z € R, we use ||z||2 and ||z|| 4 = Vo T Az
to denote to denote the /s norm and the weighted norm of x induced by a positive definite matrix
A € R%*?4 We define the d-dimensional ball B4 = {z € R? | ||z||2 < R}. Finally, 1{condition}
means the indicator function that takes the value 1 if the condition is true and 0 otherwise.

2.2 MULTI-OBJECTIVE LINEAR BANDITS

In each round ¢ € [T, each feature vector z; € R? for i € [K] is associated with stochastic reward
Yi.m(t) for objective m € [M] with mean z, 6, where ¢}, € R? is a fixed, unknown parameter.
After the agent pulls an arm a(t) € [K], the agent receives a stochastic reward vector y, ) (t) =
(ya(t)’l(t), . ,ya(t)yM(t)) € RM as a bandit feedback, where Ya(t),m(t) = zaT(t)Ofn + Na(t),m ()
and 7)4(4),m (t) € R is zero-mean noise for objective m € [M]. To simplify notation, we denote by
2(t) == 240 and y(t) := ya (s (t), the selected arm vector in round ¢ and its rewards, respectively,
with slight notational overloading. We assume that for all m € [M], 74(s),m(t) is conditionally
o%-sub-Gaussian for some o > 0, i.e., for all A\ € R, E[e*Ma.m®)|F;,_;] < exp (A\202/2) where
F,is the o-algebra generated by ({2(5)}acir+1), {a(5)}ocig, {0(5) bactn)-

While we present our problem setting in the fixed-feature setup for clarity of exposi-
tion—highlighting our main idea of free exploration without relying on the context distributional
diversity assumption—we also provide results under a varying-context setting in Appendix [G]

2.2.1 PARETO REGRET METRIC

In this work, we use the notion of Pareto regret (Drugan & Nowe, [2013]; [Tekin & Turgayl, 2018;
Turgay et al., 2018; [Lu et al.| 2019; Xu & Klabjan, 2023; [Kim et al., 2023} |Cheng et al.l 2024;
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crepon et al., [2024) as the performance metric for multi-objective bandit algorithms. Before we
formally define the Pareto regret, we introduce the notions of Pareto order and Pareto front.

Definition 1 (Pareto order). For u = (ul, .. 7uM)7 v o= (vl, .. ,UM) € RM| the vector u
dominates v, denoted by v < w, if and only if vy, < u,, for all m € [M|, and there exists m’ € [M]
such that vy, < Uy, . We use the notation v A u when v is not dominated by u, and u || v when u
and v are incomparable, i.e., either u or v is not dominated by the other, respectively.

Definition 2 (Pareto front). Let y1; € RM be the expected reward vector of arm i € [K). Then, arm
i is Pareto optimal if and only if u; is not dominated by p;: for all i’ € [K]. The Pareto front is the
set of all Pareto optimal arms.

Definition 3 (Pareto regret). We denote Pareto suboptimality gap A; for armi € [K] as the infimum
of the scalar ¢ > 0 such that n; becomes Pareto optimal arm after adding € to all entries of its
expected reward. Formally,

A;:=inf{e | (u; +€) £ py,Vi' € [K]}.

Then, the cumulative Pareto regret is defined as PR(T) = Zle E[Aq )], where E[A o] repre-
sents the expected Pareto suboptimality gap of the arm pulled at round t.

The goal of the agent is to minimize the cumulative Pareto regret while ensuring fairness across
objectives, which is described in the next section.

2.2.2 OBIJECTIVE FAIRNESS

Beyond Pareto regret. Pareto regret minimization is often a central goal in multi-objective bandit
algorithms, but it does not fully capture the essence of the multi-objective problem. Paradoxically,
focusing solely on Pareto regret minimization itself allows algorithms to optimize for a single spe-
cific objective, potentially neglecting others. Specifically, an algorithm that behaves with respect to
a single-objective bandit problem may perform just as well in the Pareto optimal sense (Xu & Klab-
jan, [2023), hence defeats the purpose of the multi-objective problem. Therefore, multi-objective
bandit algorithms should aim to balance multiple objectives, typically incorporating additional con-
siderations such as fairness, alongside Pareto regret minimization.

Existing fairness criterion (Drugan & Nowe} 2013). In multi-objective bandits, how fairly an
algorithm handles multiple objectives is considered an important factor. Fairness in multi-objective
bandits was first introduced by Drugan & Nowe|(2013), who defined it as how evenly the Pareto front
is sampled (Definition [7). However, this definition requires tracking the selection frequency of each
true Pareto optimal arm, making it unsuitable for theoretical analysis. Many previous studies have
mentioned fairness in the selection process, but, to the best of our knowledge, none has provided a
theoretical analysis of fairness (Yahyaa & Manderick, [2015; Turgay et al., 2018} [Lu et al.,[2019)).

Furthermore, in practice, the fairness principle requires multi-objective algorithms to compute the
empirical Pareto front at each arm selection, resulting in significant computational overhead (Drugan
& Nowe, 2013 |Yahyaa & Manderick, 2015} Turgay et al., 2018; |Lu et al., [2019). Specifically,
algorithms that construct the empirical Pareto front in each round incur a time complexity of O(K?)
per round. This indicates that such algorithms may encounter scalability challenges in real-world
applications involving a significantly large arm set.

Objective fairness. To address these limitations, we propose a new notion of fairness in multi-
objective bandit problems. The fairness we introduce provides theoretical guarantees without im-
posing additional computational overhead on the algorithms. We present a new notion of fairness
based on the near-optimality in each objective in definition[T3]

Definition 4 (Objective fairness). Let ji; ., be the expected reward of arm i for objective m, a},, be
the arm that has the highest expected reward for objective m, and py, = [iqx m. Forall e > 0, we
define the objective fairness index OFl. 1 of an algorithm as

T
> {5, — Bawym < 6}]> :
t=1

Then, we say that an algorithm satisfies objective fairness if for a given ¢, there exists a positive
lower bound L. such that limr_,o OFl. 7 > L..

1
OFl. 7 := mi =E
T mnel%]I\lf] (T
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Intuitively, our perspective of objective fairness makes sure that the algorithms consistently consider
all optimal arms for each objective. The objective fairness index measures the proportion of rounds
in which the e-optimal arms are selected for the least selected objective. Therefore, objective fairness
is an asymptotic concept that ensures the consistent selection of near-optimal arms for each objective
as time progresses. Conversely, if limy_, ., OFI. 7 — 0, this implies that the algorithm ultimately
does not consider optimal arms for at least one objective.

Additionally, we extend Definition[I3]to consider not only the directions of objective parameters but
also the weighted sum of their directions, introducing the notion of generalized objective fairness
(definition [6). This extended definition ensures that optimal arms on the positive side of the Pareto
front (Figure[2) are selected in proportion to the total rounds 7. A detailed discussion, including the
improvement over Drugan & Nowe, (2013)’s fairness notion, is provided in Appendix

Pareto front approximation. We argue that algorithms pursuing (generalized) objective fairness
can address many challenges in real-world problems more efficiently than traditional approaches.
A major advantage of these algorithms is that they eliminate the need to construct the empirical
Pareto front at each iteration, which is typically required by traditional methods to ensure fairness.
Although these algorithms do not approximate the Pareto front in every round, they allow for on-
demand approximation of the Pareto front by estimating the parameters of each objective.

Lemma 1 (Connection from objective parameter estimation to Pareto front approximation). Sup-
pose ||xz;||2 < 1 holds for all arms i € [K]. Let 0., (t) be an estimator for 0 form=1,..., M,
and we define the empirical Pareto front 6(2?) with respect to the estimated expected reward
(x;rgl(t), .. ,CEZTgA{(t)) for each arm i € [K] in round t. If |0, (t) — 0%,||2 < € holds for all
m € [M)], then, for all arms i € (’3(15) the suboptimality gap satisfies A; < 2e.

3 PROPOSED ALGORITHM

3.1 MULTI-OBJECTIVE GREEDY (MOG) ALGORITHM

We propose a new algorithm named the MOG algorithm, that greedily selects arms based on a target
objective in each round. The default setting for determining the target objective is a round-robin
approach, where in each round ¢ we use the modulo operator (mod) to cycle through the objectives
as targets (Line 3). Initially, the algorithm greedily selects arms based on the initial parameters
B1, ...,y until the minimum eigenvalue of the Gram matrix V;_; = 22;11 z(s)z(s) T exceeds a
certain threshold B (Line 5). After the initial rounds, the algorithm greedily selects arms iteratively
using the OLS estimators 0., (¢) of 6%, (Line 8).

This simple approach is presented without loss of generality: various selection strategies can also be
employed, depending on specific problem requirements. For instance, if certain objectives are more
(or less) important, their selection frequency can be adjusted accordingly. Alternatively, the target
objective can be chosen randomly, an approach we denote by MOG-R (Algorithm [2)), and further
describe in Appendix [E]

The MOG algorithm is easy to implement and generic, making it easily extendable. While Al-
gorithm [1| represents the simplest yet efficient approach, we propose a more general algorithm,
MOG-WR (Algorithm[3). This algorithm selects arms greedily based on the direction of the weighted
sum of the estimated objective parameters. If the bandit problem has a convex Pareto front, MOG-WR
can fully explore the entire Pareto front. In general, MOG-WR explores the positive side of the Pareto
front (since one does not need to explore non-positive sides). Detailed descriptions and analyses of
MOG-WR can be found in Appendix [

If the feature vectors do not span R?, the minimum eigenvalue of the Gram matrix in Line 4 remains
zero. In such cases, the MOG algorithm can be implemented using the more general formulation
presented in Algorithm ] Further details are provided in Appendix|l|

Most existing algorithms regarding Pareto efficiency construct the empirical Pareto front on each
round, resulting in complex algorithm structure and less practicality. Compared to other multi-
objective bandit algorithms, our algorithms are very easy to implement and have significantly lower
computational overhead. Aside from these advantages, surprisingly, our simple algorithms can
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Algorithm 1 Multi-Objective Greedy algorithm (MOG)

Require: Total rounds 7', Eigenvalue threshold B
1: Initialize Vy < 0 x I, and f31, ..., Bm € R¢
2: fort =1to T do

3:  Select the target objective m < t mod M {If m = 0, then m + M}
4: if Amin(‘/;f—l) < B then

5: Select action a(t) € arg max;e (k] ; fm

6: else . A

7: Update the OLS estimators 61 (t), ..., 0 (1)

8: Select action a(t) € arg max;c(x] ] 0, (1)

9: endif

10:  Observe y(t) = (ya(tm(t), .. ,ya(t)yM(t))
11:  Update V; < Vi1 +z(t)z(t) "
12: end for

achieve theoretical performance guarantees, which are typically obtained by more complex algo-
rithms, when good arms exist for each objective.

3.2 FREE EXPLORATION INDUCED BY MANY GOOD ARMS

The MOG algorithm (Algorithm [1)) is built on the insight that exploration can arise naturally, even
when the algorithm is focused solely on exploitation, as long as the multi-objective bandit problem
has many good arms. In most existing multi-objective bandit studies, as the number of objectives
increases, the problem setup becomes more complex, leading to more sophisticated algorithms,
particularly in comparison to single-objective bandits.

However, we observe a surprising and beneficial effect: as the number of objectives increases, unlike
the single-objective case, the multiple directions of good arms can naturally induce free exploration.
This allows simple near-greedy algorithms like MOG to achieve statistical efficiency (see Theorem |T).

The core idea is that, for each objective, rounds where greedy selections for other objectives can
simultaneously function as exploration rounds for the remaining objectives. In each round, exploita-
tion occurs for one objective, while inherently providing exploration for the others. This mechanism
enables automatic exploration without incurring additional Pareto regret, which offers a significant
performance advantage.

This phenomenon is intuitive, yet it has not been rigorously examined in multi-objective settings so
far. Our work is the first to formalize the conditions under which natural exploration can occur in
the presence of good arms for multiple objectives, paving the way for simpler and more efficient
algorithms for multi-objective bandit problems.

4 ANALYSIS

In this section, we analyze the algorithm MOG from the perspective of Pareto regret and objective
fairness. Our analysis is established in the fixed feature setup to expose our main idea clearly,
however, we also present similar results in a stochastic environment in Appendix [G] We start with a
boundedness assumption similar to those used in the linear bandit literature (Abbasi-Yadkori et al.
20115 |Chu et al., [2011b; |/Agrawal & Goyal, [2013}|Abeille & Lazaricl 2017; Li et al., [2017)).

Assumption 1 (Boundedness). Foralli € [K|andm € [M], ||z;||2 < 1 and ||0},||2 = 1.

m

Assumption [I] is used to make a clean analysis for convenience and the first part of it is in fact
standard in bandit literature. Notably, we can obtain a regret bound of the proposed algorithm that
differs by at most a constant factor under the conditions ||z;||2 < Zmax and [ < [|6F,||2 < L for all
i € [K] and m € [M]. Our analysis focuses on the insights that multiple objectives may enhance
learning under certain regularity (e.g. goodness of arms in Definition [3)) rather than always posing
hindrance. In light of these insights, the lower bound [ represents the minimum contribution of each
objective. We will later discuss how to extend our analysis to arbitrary bounds for feature vectors
and objective parameters in Appendix
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As stated earlier in the Introduction and Section [3.2] we are interested in the problem setting where
there exist good arms for multiple objectives. We start with a simple condition that there are enough
objectives to span the feature space without loss of generality.

Assumption 2. We assume 0%, ..., 0%, span R

It is important to note that Assumption [2]is used without loss of generality. We can actually relax
Assumption[2[so that 07, . .., 0%, span the space of feature vectors, span({z1, ..., 2k }) (see details
in Appendix . That is, it can be sufficient to assume that 07, ..., 6}, span a strict subspace of R% if
the feature vectors span such a subspace. Yet, for clear exposition of our main idea, we work with

Assumption and define A := Ayin (77 SSM_gx (6%)T), which is positive under Assumption

m=1"m
Next, we introduce the y-goodness condition of arms with feature vectors in multi-objective linear
bandits. In brief, this condition ensures the presence of good arms in every objective direction.

Definition 5 (Goodness of arms). For fixed v € (0, 1], we say that the feature vectors of the arms
{z1,..., 2K} satisfy y-goodness condition if there exists o > 0 such that

T B

forall B € BL(O)U...UBL(0})), there exists k € [K| such that x;] T
2

>,

and denote such x, as the y-good arm for direction f3.

Assumption 3 (Goodness). The feature vectors {x1,...,xxi} satisfy y-goodness for some v >

)\2
1—- 15
Assumption [3] states that there exists at least one -good arm for directions in the neighborhoods
of objective parameters. We relax the y-goodness condition by relaxing the requirement of the
existence of y-good arms and instead allowing a positive probability of their existence in a stochastic
setting (see Assumption []in Appendix [G).

Practical implication of arm goodness. The y-goodness condition often arises in real-world ap-
plications where each objective has at least one arm (or item) that performs reasonably well. For ex-
ample, in a personalized recommendation system optimizing multiple metrics such as click-through
rates, watch time, and user satisfaction, it is plausible to assume that there exists at least one item
among many that delivers high click-through rates, another (possibly different from the first one)
that increases watch time, and so on. Consequently, the existence of “good arms” across different
objective directions naturally aligns with many practical scenarios, reinforcing the applicability of
our theoretical findings.

Remark 1. The notion of y-goodness is related to the concept of B-regularity introduced by|Bayati
et al.| (2020) in the non-contextual multi-armed bandit framework. Specifically, they assume that
the prior distribution T' for each arm’s expected reward p satisfies P[> 1 — €] = O(€?) for
every € > 0. Our y-goodness generalizes this idea to linear reward bandit problems with multiple
objectives. Comparing Assumption@under d = M = 1 with [3-regularity in the stochastic context
setting shows that ~y-goodness is a weaker (and thus more general) condition than [(-regularity.
Appendix provides a detailed discussion contrasting these assumptions.

Remark 2. It is worthy noting that the above assumptions are irrelevant to the diversity assumption
on context distribution which is commonly used in the existing greedy bandit literature (Kannan
et al.| 2018 \Raghavan et al.||2018; \Hao et al., 20205 |Bastani et al., | 2021)). In particular, we explain
cases where ~y-goodness holds but the traditional diversity assumptions do not in Appendix|C.3|

Before we start our analysis, let « denote the value that satisfies the goodness condition defined
in Definition [5| together with ~ as specified in Assumption [3| If « is greater than ¢(\,y) =

v/ %2 - % N — (1 - %) \/1 — ~2, then we replace the value of o with ¢()\, v). Since a larger o

tightens the goodness condition, the condition remains valid even if « is reduced.

4.1 REGRET ANALYSIS OF MOG

We establish the lower bound of the minimum eigenvalue on the Gram matrix that grows linearly
with respect to t. Specifically, instead of assuming contextual diversity as in prior greedy bandit
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work, we leverage the presence of good arms for each objective to guarantee a constant lower bound
on the growth of the Gram matrix’s minimum eigenvalue over a single round-robin cycle. Let Ty
denote the number of initial rounds required until the condition A\, (V;—1) > B holds.

Lemma 2 (Increment of the minimum eigenvalue of the Gram matrix). Suppose that Assumptions
and @hold. If the OLS estimator satisfies ||0,,(s) — 0%, || < «, for all m € [M] and for all

s > Ty + 1, then the selected arms for a single cycle s = to, to+1, ... , to+M —1(tg > To+1)
by Algorithm/[I|satisfy
to+M—1 )\
Amin z(8)z(s)T | > M.
('S o) 2

The proof of the lemma is provided in Appendix

It is well known that if the minimum eigenvalue of the Gram matrix increases linear with ¢, a regret
bound of (’)(\/T) can be derived. The following theorem establishes the Pareto regret of MOG.

Theorem 1 (Pareto regret bound of MOG). Suppose that Assumptions 2} and [ hold. If we

run Algorithm |I|with B = min {%\/QdT log(dT?), 40%2 (% log (1 + %) +log (T')) }, then the
Pareto regret of Algorithm[l)is upper-bounded by

PR(T) < MT”\/sz log(dT) + 4T} + 10M.

The proof of the theorem is provided in Appendix

Discussion of Theorem[I, The theorem demonstrates that the cumulative Pareto regret bound of

MOG is O(\/diT ) in terms of d and T'. To the best of our knowledge, our study is the first to prove
the frequentiest regret bound of a greedy algorithm in the linear reward setting without relying on
context stochasticity. Notably, this bound does not include the term dependent on K, and our algo-
rithm performs well even when the number of arms is infinite. Furthermore, we show in Appendix [J]
matching lower bound of Q(\/ﬁ) under our problem setting. Theorem || provides the theoretical
foundation that if there are many good arms, simple near-greedy algorithms can outperform even
more complicated exploration-based algorithms for multi-objective linear bandits (see Section ).

Next, we analyze how quickly exploration can be completed. It is generally challenging to precisely
determine a bound on the number of initial rounds 7p. However, in the MOG algorithm, if the feature
vectors selected during the initial rounds span R¢, Tj) can be upper-bounded by O(B).

Corollary 1 (Number of initial rounds). Suppose that Assumptions [I| [2} and [3| hold. If the
feature set S selected during the initial rounds in Algorithmspcms R?, then Ty can be bounded by
To < | B/Amin (37 Ypesi(z) )| + M.

The proof of the corollary is given in Appendix [D.4]

The above corollary implies that 7 in the bound stated in Theorem |1} is of the order log7". No-
tably, Corollary [I|is valid for the deterministic version of MOG (Algorithm [I) in the case of fixed
arms; however, similar results can be derived with high probability for randomized algorithms or in
stochastic (varying) context settings (see Corollary [3)).

Remark 3. We can conclude the initial phase with minimal number of rounds by employing the
most diverse set of M feature vectors during the initial rounds.

4.2 OBJECTIVE FAIRNESS OF MOG

We have confirmed that the MOG algorithm satisfies objective fairness. In the regret analysis of the
MOG algorithm, we derived /5 bounds on the estimators of each objective parameter (see Lemma [g)).
This implies that for a given € > 0, there exists T, such that, after round T, only e-optimal arms are
selected with high probability. The following theorem establishes a lower bound on the objective
fairness index.

Theorem 2 (Objective fairness of MOG). Suppose that Assumptions and Bl hold. If we run
Algorithm|l|using B as given in Theorem/|l| the objective fairness index of Algorithm|l|is bounded
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below by

T-T. - M 3M
> (e 77 _ -
OFLer = ( MT ) (1 T )

where T, = max([%] +To+ M, 2T, +2M).

The proof of the theorem is provided in Appendix [D.3]

Discussion of Theorem 2} The theorem shows that Algorithm [I] satisfies objective fairness. No-
tably, for any given € > 0, limp_,c OFIl. 7 = ﬁ and the limit does not include a term with K.
Furthermore, we prove that with high probability, our algorithm selects near-optimal arms for each
objective at a ratio of ﬁ in the long run (this phenomenon is also observed in the experiments in
section3)), and it selects only e-optimal arms of an objective after a certain number of rounds 7. To
our knowledge, this is the first theoretical analysis of fairness in multi-objective bandits.

5 EXPERIMENT

ParetoUCB —A— MOGLM-UCB —¥— PFIWR —#— MOG (ours) —4— MOG-R (ours) —*— MOG-WR (ours)
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Figure 1: Evaluation of multi-objective bandit algorithms with tuned parameters. The top row
shows results for d = 5, K = 50, M = 5, and the bottom row shows results for d = 10, K = 100,
M = 10. The shaded areas and the error bars indicate £ half the standard deviation for each
algorithm.

We evaluate our proposed algorithms —MOG, MOG-R, and MOG-WR~ in both fixed and stochastic
context settings, comparing them with ParetoUCB (Drugan & Nowel 2013), MOGLM-UCB (Lu
et all 2019), and PFIwR (Kim et al., [2023). Performance is assessed in terms of Pareto regret,
Pareto front estimation accuracy, and objective fairness under the linear bandit model y,,(t) ~
N(z]07,0.12) for all i € [K] and m € [M]. The detailed experimental settings are provided in
Appendix [K1] Figures [T]illustrates the performance of each algorithm in the fixed feature setup.

The result in Figures [Ta)and [Id]clearly demonstrates that our proposed algorithms outperform the
others empirically, despite their simpler structure. Moreover, in Figures[Tb|and [Te] we observe that
MOG, MOG-R and MOG-WR approach the true Pareto front more efficiently than the empirical Pareto
fronts used by other algorithms. Additionally, we confirm that the objective fairness indices of MOG
and MOG-R (with uniform objective distribution) converge to approximately ﬁ, regardless of K
(Figures[Ic]and [Tf). Additional results, including performance evaluations in various settings and
under stochastic contexts, the effect of parameter settings on algorithm performance, experiment
results based on real-world data, and a more in-depth analysis are presented in Appendix
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LLM USAGE

We employed an LLM for typo correction and grammar checking.
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A ADDITIONAL NOTATIONS

We define the d-dimensional ball B = {z € R? | ||z|s < R} and the (d — 1)-dimensional sphere
St = {o € R?| ||z|2 = R}. R can be omitted for simplicity if R = 1, ie. B? := B,
and %1 := S9!, We define AM as the M-dimensional simplex, given by {(wi,...,wy) €
RY| ZmE[M] w; = 1, wy,...war > 0}. We also denote the positive orthant of R? by ]Rff_. For
matrices A and B, we write A > B to indicate that A — B is positive definite. The i-th unit vector
in R? is denoted by ez(-d), and when the dimension d is clear from the context, we simply write e;.
We define the spanning space of feature vectors 1, ...,z as S,, and its orthogonal complement
as S;-. The projection map onto S, is denoted by g, : R — S, and when the space S, is clear
from the context, we simply write 7.

B GENERALIZED OBJECTIVE FAIRNESS

In Section[2.2.2] we defined the objective fairness of a multi-objective algorithm. Objective fairness
guarantees that the near-optimal arms in each objective direction are consistently selected without
neglecting any objective. Building on this principle, we propose a generalized objective fairness
criterion that ensures a multi-objective algorithm continues to select the near-optimal arms across
all weight-sum directions of the objectives.

Definition 6 (Generalized objective fairness). Given a weight vector w € AM, let ji; ., =
Zme[ M) wmx;r 0, be the expect weighted reward of arm i, o, be the arm that has the largest
expected weighted reward with respect to the weight vector w, and piy, = pigx m. For all € > 0,
define the generalized objective fairness index GOFI. 1 of an algorithm as

T
Z ]l{mL — Ma(t),w < 6}‘|> :
t=1

Then, we say that the algorithm satisfies the generalized objective fairness if for given €, there exists
a positive lower bound L. that satisfies limp_, o, GOFl. 7 > Le.

1
GOFI, 7 := inf <]E
’ weAM \ T

Intuitively, generalized objective fairness considers intermediate arms on the Pareto front, which
are not optimal for individual objectives. It ensures the consistent selection of the optimal arms
corresponding to some weight-sum reward functions. The next lemma explains that the generalized
objective fairness criterion guarantees that the algorithm consistently selects Pareto near-optimal
arms that lie within the positive side (Figure 2)) of the Pareto front.

Lemma 3 (Boyd & Vandenberghe|(2004)). Consider a multi-criterion problem, minimizing F (x) =
(fi(z),..., fim(x)) with respect to R'". In scalarization, we choose a positive vector w, and mini-
mize the scalar function w' F(z). Then, any minimizer for scalarization is guaranteed to be Pareto
optimal, and conversely, every Pareto optimal of a convex multi-criterion problem minimizes the
function W' F(x) for some nonnegative weight vector w.

Corollary 2. In a multi-objective bandit problem, the optimal arms corresponding to weight-sum
scalarized reward functions are contained in Pareto Front. Conversely, every Pareto optimal arms
that lie within the positive side of the Pareto front are optimal for some weight-sum scalarized reward
function.

Remark 4. In a multi-objective bandit problem, if the true Pareto front is convex, the generalized
objective fairness ensures consistent selection of the entire Pareto front.

In some cases, it may be important to determine whether an algorithm fully explores the entire Pareto
front. If we aim to evaluate whether an algorithm consistently selects the entire Pareto front, we can
further extend the concept of GOF. In such cases, fairness can be redefined by employing alternative
scalarization methods that enable full exploration of the Pareto front (Paria et al.| 2020; Golovin &
Zhang, |2020; /Zhang} 2024), rather than relying on the weighted sum.

14



Under review as a conference paper at ICLR 2026

Figure 2: The two axes in the graph represent the expected rewards for each objective in a two-
objective multi-objective problem. The six points, A, B, C, D, E, and F, in the figure represent
the Pareto front, while the dashed polygon outlines the convex hull of the Pareto front. Within the
Pareto front, the positive side of the Pareto front refers to the points located on the positive side of
the convex hull, highlighted in red, corresponding to points A, C, F, and F'.

B.1 GENERALIZED OBJECTIVE FAIRNESS VS FAIRNESS SUGGESTED BY [DRUGAN & NOWE
(2013)

In this section, we explain how our fairness criterion differs from and improves upon the one pro-
posed by Drugan & Nowe| (2013)). The fairness criterion defined by [Drugan & Nowe, (2013)) is as
follows, and we refer to it as Pareto front fairness.

Definition 7 (Pareto front fairness (Drugan & Nowel 2013)). Let T (n) be the number of rounds an
optimal arm i is pulled, and B[T*(n)| be the expected number of times optimal arms are selected.
The unfairness of a multi-objective bandit algorithm is defined as the variance of the arms in Pareto

Sfront A%,
1 . A7) 2
o= A4 Z (Tz (n) — E[T (")]) .
ESp
For a perfectly fair usage of optimal arms, we have that ¢ — .

Now, we compare our generalized objective fairness (GOF) with Pareto front fairness (PFF). The
key differences and improvements are summarized as follows:

* GOF guarantees consistent selection of Pareto-optimal arms lies within the positive side of
the Pareto front, while PFF considers the entire Pareto front (see Corollary .

* Statistical analysis is feasible with GOF but not with PFF, as PFF requires the number of
times each true optimal arm is pulled, which can only be computed in simulated studies. In
contrast, the definition of GOF incorporates an € argument, enabling theoretical analysis.
Detailed theoretical analysis of fairness is provided in Appendices[D.3] [E.3] and [F4]

* GOF accommodates differences in the importance of objectives, whereas PFF assumes
equal importance across objectives. These differences are reflected in the indices of the
two fairness criteria. GOF uses the lower bound of the selection ratio for each optimal arm
as its index, whereas PFF employs the variance in the frequency of selecting each optimal
arm.

* Algorithms based on the GOF perspective do not require computing the empirical Pareto
front, whereas PFF-based algorithms incur additional computational costs for empirical
Pareto front estimation.

C ~7-GOODNESS

In this section, we introduce the concept of v-goodness, compare it with the alternative regularity
condition employed in another greedy bandit study Bayati et al.| (2020)), and clarify the distinction
between y-goodness and context diversity (Assumption 3 in Bastani et al.|2021]) assumption, which
is commonly used in the existing greedy bandit literature.
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We first extend the definition of a y-good arm in Definition [3]to an arbitrary vector.
Definition 8 (y-good vectors) For fixed v € (0,1], we say that the vector x € R is y-good for the

direction of 0 € R if 7 \GH >~ holds.

The following naturally arises from the definition; however, it plays a pivotal role in applying the
goodness assumption to the analysis.

Proposition 1. If there exists a y-good arm for 0, then the optimal arm for 6 is also y-good.
Proposition 2. Suppose x is a random variable that can only take values corresponding to y-good
arms for 0. Then, E|x] is also y-good for 6.

The above proposition holds because the region {z € B¢ | T ‘99”2 > ~} is convex.

C.1 ~y-GOODNESS CONDITION FOR STOCHASTIC CONTEXTS SETUP

Before explaining the meaning of y-goodness, we first extend the y-goodness condition to be ap-
plicable in a stochastic context setup. In a multi-objective linear contextual bandit framework, the
stochastic context setup assumes that the context set x(t) = {z;(t) € R%,i € [K]} in each round ¢
is drawn from some unknown distribution P, (¢). Detailed explanations regarding this problem can
be found in Section[G.1] Under the stochastlc context setup, we introduce the definition of goodness
with respect to the context distribution and present the y-goodness assumption as follows.
Definition 9 (Goodness of arms — stochastic context version). For fixed v < 1, we say that the
distribution Py (t) of feature vector set x(t) satisfies y-goodness condition if there exists a positive
number q. that satisfies

forall B € S, Py y[3i € [K], () B> 1] > g,
Assumption 4 (y-goodness — stochastic context version). We assume P, (t) satisfies y-goodness
condition for all t € [T, withy > 1 — %.

Different from fixed version, the goodness condition requires only the positive probability g, of the
presence of y-good arms not the existence of them (i.e. g, = 1). Instead, the condition requires
~-good arms for not only the neighborhood of objective parameters but also all directions. In other
words, y-goodness signifies that for any direction 3 € S9!, there exists at least one v-good arm
with a probability of at least ¢.,. Intuitively, if the union of the supports of each arm x;(¢) for i € [K]
covers all of S¥~1, y-goodness will be guaranteed for all v < 1. The following lemma formalizes
this concept.

Lemma 4. Suppose x1(t), ...,z (t) are continuous variables with density function f1,..., fk. If
f = fi+...+ fx is a bounded function and positive near S*=! (i.e., there exist r € (0,1) satisfies
[ is always positive at {x € R? | r < ||z||2 < 1}), then P, (t) satisfies y-goodness for all v € (0, 1).

Proof. Fix v € (0,1). From the definition of f f/ K is the probability densuy function of X =
Uniform(zy(t), ..., 2zk(t)). Define ps = Py ;) [X T 8 > 7] for unit vector 3 € S~ 1. Then,

pﬁ:PX(t)[XTBZ’Y]:/ @dxz/ fa )dw>0
{zeBR | 2Tp>yy K {€BR | 27T g>max(v,r)} K

forall 3 € S4—1.

Consider the function F' : (8 KN pp. From the boundedness of f, we can easily check F is contin-
uous. By the fact that the compactness is preserved by continuous functions, {ps | 5 € S} is
compact. Define ¢, := min{pg|8 € S?~1}, then we have ¢, > 0 since pg > 0 forall 8 € S~1 .
Then, for all 8 € S¢-1

Pyo)[3i € [K], 2i(t) T8 > 9] 2 Py[X T8 > =ps > ¢,
O

Remark 5. The above lemma states that if the set of arm x(t) includes just a single continuous
variable that can cover S%=, then ~y-goodness will hold for all v < 1 regardless of the distributions
of the remaining arms.
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C.2 ~-GOODNESS VS B-REGULARITY

In Bayati et al.| (2020), they assume the prior distribution I' of the expected reward p of each arm
satisfies P, [n > 1 — €] = O(€?) for all € > 0 in non-contextual MAB setting. Let’s compare
this with y-goodness when m = d = 1. We claim that y-goodness can be considered weaker than
[-regularity from three perspectives.

The most significant difference is that in S-regularity, the probability that the expected reward p;
exceeds 1 — e is required for all arm ¢ € [K], along with the assumption that u;’s are drawn
independently from prior I'. In contrast, in y-goodness, it is sufficient to ensure that the prob-
ability that one of the K arms satisfies 2;(t)"3 > ~, without the need for the independence
assumption between arm vectors. Secondly, unlike [S-regularity, y-goodness does not require a
specific relationship like ©(1 — ) between the probability of the existence of near-optimal arms
P, ([3i € [K], 2;(t)" 8 > 7] and the threshold 7 ; instead, it focuses on the existence of a positive
lower bound ¢,. Lastly, the S-regularity assumes the probability of 1 > 1 — € for all € > 0, while
this work does not mandate y-goodness for v very close to 1; it is sufficient to hold y-goodness only

for some v > 1 — (35)*.

C.3 ~v-GOODNESS VS CONTEXT DIVERSITY

In recent years, there has been significant interest in the optimality of the Greedy algorithm in
single-objective bandit problems (Bastani et al.l [2021; |Kannan et al. [2018; Raghavan et al., 2018;
Hao et al) 2020). A common theme among these studies is the assumption that feature vectors
follow a distribution satisfying specific diversity conditions. For example, Bastani et al.[ (2021
assume the existence of a positive constant A such that for each vector u € R? and context vector
2 (t), Amin (Elz;(t)x;(t) "1{z;(t) "u > 0}) > A. The y-goodness condition fundamentally differs
from traditional context diversity assumptions. Below, we provide examples where the ~-goodness
condition holds, while traditional diversity conditions do not.

Example 1 (Containing fixed arms) Imagine a situation where one feature vector is a continuous
variable while the other arms are fixed. For example, let () be uniformly distributed over B?
while z5(t) = xa,...,2x(t) = xx are fixed at some points in S?~!. By Lemma P, (t) satisfies
~-goodness for all v € (0,1). However, it is easy to see that diversity is not satisfied because
Amin (E[Ig(t)xg(t)T]l{.’I,‘g(t)Tu > O}) = Amin(®229 1{zg u > 0}) < Apin(2224 ) = 0.

Example 2 (Low-randomness distribution) Consider a scenario where the feature vectors are drawn
from a finite set of discrete points. Despite the lack of diversity, if these points are strategically
chosen to cover S%~1 adequately, the goodness condition can still be satisfied. For example, sup-
pose there is a set of points P = {aj,as,...,ay} that contains /1 — y2-net of S¥~!. Assume
that z1(¢) be chosen uniformly from the d — 1 points and other arms x5(t), ..., zx(t) be cho-
sen from the remaining points. Obviously, P, (t) satisfies y-goodness with ¢, > % In contrast,
Amin (E[z1(8)z1(t) "1{z1(¢) "u > 0}) = 0 since there are only d — 1 candidates that can be z1(t).
Therefore, context diversity does not hold in this scenario.

Although y-goodness encompasses cases where the traditional context diversity assumption is not
covered, there is no inclusion relationship between the two conditions. Here is an example where
~-goodness does not hold, but context diversity does.

Example 3 (Proper support) Consider a case where 1 is given as the upper bound of the /5 norm of
feature vectors, but the actual support of feature vectors is smaller. For instance, if x;(t) follows a
uniform distribution over B¢ jo forall i € [K]and ¢ € [T7, then context diversity still holds (Bastani

et al[(2021)), but y-goodness does not hold for v > 1/2.

D ANALYSIS OF MOG WITH FIXED FEATURES

D.1 PROOF OF LINEAR GROWTH OF MINIMUM EIGENVALUE OF THE GRAM MATRIX

The proof of Lemma 2] is presented in Section [D.1.2] and its supporting lemmas are presented in

SectionD.1.11
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Figure 3: The larger circle represents the unit sphere in R? while the interior of smaller circle
indicates the region where 0,,(s) may exist. Then, the blue line illustrates the distance between 67,
and the -y-good arm for 6,,,(s).

D.1.1 TECHNICAL LEMMAS FOR LEMMA [2]

The following lemma states that, after sufficient exploration rounds, the distance between the y-good
arms for the OLS estimator of the objective parameters and the respective true objective parameters
can be bounded.

Lemma 5. Given Assumptions || assume the OLS estimator satisfies ||0m(s) — 05| < o, for

m € [M]and s > Ty + 1. If v € B is y-good for Orm (s), then the distance between x and 0, is
bounded by

107, — all2 < /2 + 20012 — 29y/1 — a2,

Proof. Let the origin be denoted by O, and define ém(s) = OA, Hgmgl\ = OB, 0 = OC, and

let a y-good arm x be denoted by OD. By Assumption 1, C' lies on the unit d-dimension sphere
centered at O(sphere O). By the assumption of the lemma, A lies on or inside the sphere centered
C with radius a(sphere C), and B is the intersection point of the extension of O A with sphere O.
Define the hyperplane P, orthogonal to O B, that passes through the point dividing OB in the ratio
~ : 1 — . Then, by the definition of «y-good arms, point D lies on or inside the unit sphere O, and
must be located on or beyond the hyperplane P.

Let G and H denote the foot of the perpendiculars from C' and D onto O B, respectively. Since D is
located on or beyond the hyperplance P, OH > - and (the distance between D and OB )= DH =

VOD?2 —0OH? < \/1 — 72. Letting (the distance between C' and OB )= CG = [ (< «), we have
GH = 0G—-0OH =+/OC? — CG? —OH < /1 —1? —~. The equality holds when OD = 1 and
OH = ~,1i.e., D is lying on the hyperplane P.

Now, consider the hyperplane P’ that passes through both D and H and is orthogonal to O B (Figure
3 illustrates the case when P = P’). Let I be the foot of the perpendicular from C to P’. Then,
OCGHI is a rectangle and we can bound DI < DH + IH = DH + CG < /1 —~2 + 1. The
equality holds for both inequality when D, H, and I lie on the same line, in that order, and D is
lying on the hyperplane P.
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Therefore, by the Pythagorean theorem,
167, — x||3 = CD? = DI? + CI* = DI* + GH?
SWI=2+ D)+ (V112 =)
1=+ P+ 2(V1 =)+ 1P+ —2(V1-B2)y
=2+2(v/1—2)l - 2(V1-2)y
<2+42(/1-7%)a-2(V1-a?)y.
The last inequality holds since I < a. O
Now, we will demonstrate that the y-good arms for multiple objectives spans R? by deriving a lower
bound on the minimum eigenvalue of the Gram matrix constructed from ~y-good arms.

Lemma 6. Given Assumptions | Iand I assume the OLS estimator satisfies 10, ( ) =05l < o
forallm € [M]and s > To + 1. If x,(1), ..., Tr (1) € B< are v-good for 91(31) HM(sM)for
some s1,...,Spy > 1o + 1, respectively, then the following holds

ol >
=

T
Amin Z Ly (m) (xr(m))
me[M]

Proof. For all m € [M], we can get ||z 24 2a4/1 =72 —29V/1—-0a? b
f. g r(m) — Ol 72— 2y y

Lemma

Then, for any unit vector u € B¢,

T 2
w7 wrmy (@) Ju= Y (waegm)

me[M] me[M]
= > (O + oy — 03))
me[M]
= Z {(u,6%,)? (U, Ty () — 9:,1)2 + 2 (u, 05,) (U, T (my — O )}
me[M]

Y 0r,(0,) " u+072\/2+2a\/1—72—27\/1—a2M
me[M]

zAMfQ\/2+2a\/lf 2 —2vV1—a?M.

Y

A2 A

We define o in Section |4 as having a value less than or equal to ¥(A,7) = \/ % — 555 7 —

(1 ) /1 — ~2. This leads the inequality \ — 2\/2 + 2(1\/1 — 72 —29/1 - a2 > . There-
fore, we have

Amin | D Tr(m) (Zoom) | | = (/\ - 2\/2 +2ay/1—~2 = 29y/1 — a2> M > ZM.

me[M]

W >

D.1.2 PROOF OF LEMMA[2

The previous lemma shows that the minimum eigenvalue of the Gram matrix increases at a rate of
O(A). It is well known that if the minimum eigenvalue of the Gram matrix increases linear with ¢, a

regret bound of O(v/T) can be derived.
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Proof. For s = tg,...,.to + M —1 (tg > Ty + 1), || (s) — 6%,]| < a for all m € [M]. Then, by
Assumptionand Proposition the selected arm x(s) are y-good arms for the corresponding target
objectives in round s = tg,...,to + M — 1. Since the target objectives in round s = tg,...,to +
M — 1 are all different M objectives, we have

to+M—1 . A\
)\min< Z x(s)x(s) ) > §M’

s=to

by Lemma [6] O

D.2 PROOF OF THE REGRET BOUND

Theoremis proven by deriving an [, bound on ém(t) — 0,. This is enabled by Lemma which
shows that the minimum eigenvalue of the Gram matrix grows linearly with ¢ with high proba-
bility, thereby allowing us to obtain the desired bound. The proof of Theorem [I]is presented in

Section[D.2.2]and its supporting lemmas are presented in Section[D.2.1]

D.2.1 TECHNICAL LEMMAS FOR THEOREM/]]

To apply Lemma 2] a sufficient number of initial exploration is required to ensure its preconditions
are satisfied. We discuss this requirement in the next section (Section [D.4). In the current section,
we assume this condition is met via Lemma[9] and proceed to prove Theorem

Lemma 7 (Minimum eigenvalue growth). Suppose Assumptions(l| 2} and [B|hold, and fix 6 > 0.
If we run Algorithm I\ with B = min | Z 2dT10g(%), % (% log (1 + %) + log (;))} then

with probability 1 — 2M 6, the following holds for the minimum eigenvalue of the Gram matrix

t—1
Amin <Z x(s)x(s)T> > B+ %(t —To— M),

s=1

forTo+M <t<T.

Proof. If we choose B as stated in the lemma, the OLS estimator satisfies ||0,,, (s) — 67, || < o for
all s > Ty + 1 and m € [M] with probability 1 — 2M §, by Lemma@ Thus, by applying Lemma
to every single round after exploration, we have, for t > Ty + M,

Amin (i x(s)x(s)T> > Amin (Z x(s)x(S)T> + Amin ( i a:(s)x(s)T>

s=1 s=1 s=To+1

> B4+ {t—l—To] A

A
M * 3

ZB+%U—%—M)

With Lemma (7] we are ready to derive the Iy bound of 6,,,(t) — 6%, for m € [M].

Lemma 8. Fix 6 > 0. Under the same conditions as those in Lemma [7} with probability at least
1 —3M¢, forallm € [M] andt > 2Ty + 2M, the OLS estimator 0,,,(t) of 6, satisfies

< 6o | dlog(dt/d)
27 A t—To—M.

20
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Proof. From the closed form of the OLS estimators, for all m € [M],

A (Zlms)x(sf) le(sm(s),m(s)

Hém(t) g

2
1

Amin (Zi;ll x(s)x( )

IN

na(s m

2

For the denominator, we have Ay (Vi—1) > B+ % (t —To— M) fort > TO + M, with probability
atleast 1 — 204, by Lemma To bound the I norm of S;_1 1, := ZZ 1 2Z(8)Ma(s),m(s), we can
use Lemma [23] the martingale inequality of [Kannan et al. (2018) The lemma states that for fixed

m € [M], ||Si—1,mll2 < o+/2dtlog(dt/d) holds with probability at least 1 — §. Therefore, with
probability at least 1 — 3M ¢, for all m € [M] and t > 2T, + 2M,

O (t) — 0

m

o+/2dtlog(dt/d) < 60 | dlog(dt/s)
27 B+ ANt-To—-M)/3 = A \t-Ty—-M
The last inequality holds when ¢ > 2T + 2M. O

D.2.2 PROOF OF THEOREM([]]

Proof. Let E be the event that Hém (t)— 05| < 84/ % holds for all m € [M] and
t > 2T + 2M. Then, P(E) < 2 by Lemmal|§|with § = 7.

Let m(t) be the target objective for round ¢ and a*, be the optimal arm with respect to objective m.
Then, the suboptimality gap on round ¢ is bounded by

T s *
Aa(t) (t) < (:Z}a (,)) m(t) ( ) am(t) < 2”9 ( ) - am(t)”?'

Let A ax be the maximum suboptimality gap. For t > 27, + 2M,
E[Aa(t) (t)] < E[Aa(t)(t) | E] + ]P(E)Amax

) . 3M
< 2E[ [0ty () — Oy ll2 | E] + TAmax
dlog(dtT) y A

A t—TO—M

Then, the Pareto regret is bounded by
T
PR(T) = Y. E[Aym®)] + (2To +2M)Apax
t=2To+2M +1
T

120 | dlog(dtT") 3M

IN

t=2To+2M+1

12
< "«/205 log(dT) / —dt + {2T) + 5M} Ao
< T\/2dT log(dT) + 2{2T, + 5M }.

The last inequality holds because we have Ay, < 2 under Assumption E} O

D.3 PROOF OF THEOREM[2]

Proof. Define the event 2, ; for all m € [M] as
Qi := {w € Q| Objective m is a target objective for round ¢}.
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Then, P(,,, ;) = 1{t = m mod M} from the Round-Robin process.

Let E be the event that Hém(t) — 05| <% % holds forallm € [M]andt > 2T5+2M.
2

Then, P(E) < % by Lemmawith 0= % We know that on Q,, + N E, for t > 2T + 2m,

. 120 | dlog(dtT) 120 | 2dlog(dT)
I < 2||6,,(t) — 0 < < .
Hm — Ha(t),m = H () mH2— 2 t—To—M — X\ t—To— M

LetT, = maX(LWH—TM—M, 2To+2M). Then, on Q,,, :NE, we have iy, —fiq(t),m < €
for all ¢ > T,. Therefore, for all m € [M],

T
1 *
TE ; {1y, — ta(ty,m < €}

t=1
1 T
> T ZE[IL{M:I’L - Ma(t),m < 6} | Qm,t] P(Qmﬂt)
t=1
1 T
> ? Z ]E[]l{,u:n - ua(t),m < 6} | Qm,t] IED(Qm,z‘/)
t=T.+1
1 T
Z = Z E[]l{p’:n - :U'a(t),m < 6} | Qm,t N E] P(E)

t=Tec+1, M|t—m

WV,
N =
B
Pac
5

> () ()

D.4 THE PARAMETER B AND THE NUMBER OF INITIAL ROUNDS

In this section, we discuss the appropriate value of B, the threshold of the minimum eigenvalue of
the Gram matrix. For convenience, denote V; := 22:1 x(s)x(s)T and S; == >'_, 2(8)7a(s) (s)".
When the minimum eigenvalue of the empirical covariance matrix Vr,_; exceeds a certain thresh-

old, we can guarantee the /5 bound of the OLS estimator é(t) of 6, for t > T with high probability.
Le, R
Amin(Vry—1) > f(a) = forallt > Ty, |[|6(t) — 6., <a (1)

If we set B = f(a), then with high probability, ||, (t) — 67, || < « after initial rounds.

Kveton et al| (2020) suggest f(a) that satisfies Eq.(I) using a bound of ||St||y, ,-1. However,
a small mistake was made in their process: the bound they derived by modifying Theorem 1 of
Abbasi-Yadkori et al.[(2011) is actually a bound for || ZZ:TOH 2(8)Na(s)(8) " |lv,_, -1, where 79 =
min{t > 1 : V; > 0}, not ||S¢||y,_,-:. To address this problem, the simplest approach would be
to use the bound of ||S;||2 suggested by [Kannan et al.| (2018). Alternatively, we can use the bound
of ||S¢|ly,_, -1 proposed by |Li et al|(2017). The following lemma explains how the theoretical

value of the initial parameter B, given by O(min(v/dT, dlog T')), can be derived through these two
approaches.

Lemma 9. Given Assumption 1, for any a > 0 and 6 > 0, if we run Algorithm 2| with
Lo dT. 402 [/d 2T 1
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then with probability at least 1 — 2M, the OLS estimator satisfies |0 (t) — 0% |2 < o for all
m € [M]andt > Ty + 1.

Proof. First we will bound B using the fact

where S; , == 22:1 :c(s)7]a(s)7m(s)—r.

Since for fixed m € [M], ||Si—1,m|l2 < 04/2dt1n(td/d) holds for all ¢ < T with probability at
least 1 — § by Lemma and it is obvious that Apin(Vi—1) > Amin(Vr,—1) for t > Tp, we have

Hém(t) - G,ﬁlH < aforall m € [M]and t > Ty + 1 with probability at least 1 — M§ when the
2

value of B setto Z/2dT log(dT'/d).

Alternatively, we can use the fact

O (t) — 07, 15— 1.m]l2;

, = H(W—l)ilSt—l,mHQ < m

2 _ _ 1
9 = (St—l,m>TV;f—1 1‘/;—1 1St—l,m < m”stfl,mn%/hfl'

min

[NORTA

By Lemma for fixed m € [M], ||St_17m||%/t_
t < T with probability at least 1 — §, and hence, we have Hém (t) —or,

< 40%(£1og(1 + 2) + log(%)) holds for all

171 =

< a for all m € [M] and
f 2
t > Ty + 1 with probability at least 1 — M § by setting B to %(% log(1 + 27) + log(1)).

Therefore, if we set B = min {Z 2dT10g(dTT), 40%22 (%log (1 + %) + log ((15))}, we have
Hém(t) — 9|l <aforallm e [M]andt > Tp + 1 with probability at least 1 — 2M/4. O
2

D.4.1 PROOF OF COROLLARY[I]

Proof. Let S be the feature set selected during initial rounds and Ag := Amin (37 Yees zi(z;)")
Then, for any T} > L%J + M, if we keep playing with feature vectors in .S in a Round-Robin
manner for 7 rounds,

T1—1
>\min (Z I(S)I(S)T> > |:T1M 1:| X )\SM > )\S(Tl — M) > B.

s=1

Hence, we have T < L%j + M. O

E RANDOMIZED VERSION OF MOG ALGORITHM

E.1 MULTI-OBJECTIVE GREEDY ALGORITHM — RANDOMIZED VERSION

We propose a randomized version of MOG algorithm named the MOG—R algorithm, which selects
target objective randomly for each round (Line 3). The algorithm takes as input the probability mass
function (p1, ..., par) of selecting each objective, which can be uniformly set to ﬁ in the absence
of specific information. The other aspects remain identical to the original MOG algorithm.

The MOG-R algorithm can be interpreted as a greedy algorithm operating in a multi-objective set-
ting, where the prioritized objective changes in each round. The statistical guarantees of the MOG-R
algorithm demonstrate that applying a greedy algorithm to the prioritized objective can be an effi-
cient strategy when there exist good arms for multiple objectives. This suggests that in real-world
scenarios where the dominant objective changes across rounds, an algorithm can still achieve strong
performance in terms of regret, even when solely exploiting the dominant objective in each round.
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Algorithm 2 Multi-Objective Greedy algorithm — Randomized version (MOG—-R)

Require: Total rounds 7', Eigenvalue threshold B, Objective distribution (p1, ..., par)
1: Initialize Vy < 0 x I, and B, ..., Bar € RY
2: fort=1to T do
3:  Randomly select the target objective m € [M] from the distribution (p1, ..., par).
4 if Amin (Vi—1) < B then
5: Select action a(t) € arg max;c(x) @] Bm
6: else .
7 Update the OLS estimators 01 (t), . . ., 6 (t)
8 0 (t)

: Select action a(t) € arg max;c(x] @

9:  endif

10:  Observe y(t) = (Ya(),1(t)s- - - Ya(e),m (1))
11:  Update V; < Vi1 +x(t)z(t)

12: end for

E.2 PARETO REGRET BOUND OF MOG-R

The following theorem demonstrates that the MOG—R algorithm possesses near optimal regret with
respect to 7.

Theorem 3 (Pareto regret bound of MOG-R). Suppose Assumptions [I} 2} and [3 hold. If we run
Algorithm I with B = min [g 2dT log(dT?), 4; (41og (1 + 2L) +1og (T')) |, then the Pareto
regret of Algorithm[2]is bounded by

d
PR(T \/QdTlog (dT) + 4Ty + 6 M + ii\()*,

where p* = min,, ¢ (Pm) M.

Discussion of Theorem 3| The theorem establishes that MOG-R has O ( 5 ) Pareto regret bound,
which matches the bound for the original deterministic version of MOG. In other words, this implies
that even when the target objective in MOG is determined stochastically, a similar level of statistical
guarantee can be maintained.

Remark 6. The value of p* becomes smaller as the probability differences among the objectives
selected by the algorithm increase. Conversely, if a uniform distribution is used for selecting the
target objective, p* takes a value of 1.

Corollary 3 (Number of initial rounds). Suppose Assumptions 2] and [B| hold. If the feature
set S selected during the initial rounds in Algorithm [Z]spans R?, then Ty can be bounded by T, <

[2B/p"Mnin (37 Laies 7il@i) ) |

The proof of Theorem [3]is presented in Section and its supporting lemmas are presented in
Section[E.2Z.1] and the proof of corollary [3]is presented in Section[E.2.3]

E.2.1 TECHNICAL LEMMAS FOR THEOREM[3]

To prove Theorem [3] we first establish the lower bound of the minimum eigenvalue of Gram ma-
trix that increases linearly with respect to ¢, in a slightly different way from the case of MOG. In
the previous analysis for MOG, we construct a constant lower bound for the increment of minimum
eigenvalue during one round robin cycle. For the randomized version, we make a constant lower
bound for Awin (E[z(t)2(t) "|H;—1]) in each round, like existing greedy bandit approaches. How-
ever, it is important to note that the expectation of the lemma below arises not from the randomness
of the contexts, but rather from the randomness associated with the selection of the target objective
in each round.

Lemma 10 (Increment of the minimum elgenvalue of the Gram matrix). Suppose Assumptions [I|
I and Ihold If the OLS estimator satisfies |0y, (s) — 0%, || < o, forallm € [M] and s > Ty + 1,
then the arm selected by Algorithm[2]satisfies

Ap*

Amin (E[2(s)2(s) " [Hs-1]) > 3
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where p* = min, ¢ (Pm ) M.

Proof. Forall s > Ty + 1 and m € [M], let E,,,(s) be the event that the objective m is a target
objective in round s. Then,

Elz(s)a(s) " [Em(s), Hs-1]P[Em () Hs-1]

-

Elz(s)z(s) " |Hs_1]

=D puBla(9)2(s)T|En(s), Hoo1]
m=1 o
> mngl]r\b] (pm) Z E[z 5), Hs_1]E[z(8)|Em(s), He_1] .

, The final line is validated by Lemma 27}

By Assumption (3] there always exists y-good arm for ém(s) for all m € [M]. Hence, on
the event E,,(s), the selected arm z(s) is y-good for 0,,(s) by Proposition Therefore,
Elz(s)|Em(s), He_1] is also y-good for f,,(s) by Proposition and so we can apply Lemma
to derive the minimum eigen value of above matrix by

Amm(E[x(s)x(s)TIHs-l])zmng% Pm) mm<ZE 8)| B (s Hs_l]]E[x(s)|Em(s),HS_I}T>

S ming, ¢ ar (Pm) AM
paiy 3 .

O

The following lemma shows that the minimum eigenvalue of the Gram matrix increases at a rate
o).

Lemma 11 (Minimum eigenvalue growth of Gram matrix). Suppose Assumptions [I} 2| and [3|hold.
Assume the OLS estimator satisfies ||0.,(s) — 0% || < a forallm € [M] and s > Ty + 1. Then
fort > Ty, the following holds for the minimum elgenvalue of the Gram matrix of arms selected by
Algorithm 1

—Xg* (t—Tp)

< de 30

P [Amm (Zx(s)x(s)T> < Ag* (t—Tp)

s=1

where C' = \ — 2\/2 + 2a\/1 — 2 =291 — a2 and p* = min,, ea (Pm) M.

Proof. By the subadditivity of minimum eigenvalue and Lemma([I0] for ¢t > Tj + 1,

Amm< > E[w<s>x<s>T|Hs_1]> > 0 AuinlBlals)o () Hoa]) > 226 - )

s=Tp+1 s=To+1

In other words, P[Apin (3. 11 E[7(s)z(s ) Hs—1]) > (t —Tp)] = 1 holds for t > Ty + 1.
By applying Lemmd25|to compute the lower bound of the mlmmum eigenvalue of the Gram matrix
after exploration, we have

P [Amm< > x(s)x(s)T> < %(t—ﬂ))

s=Tp+1

60'5

0.50.5

—Ap* (t—Tp)
30

<d(-E ) To) < ge

Therefore, by subadditivity of minimum eigenvalue, for ¢t > T

—xp* (t Tp)

< de
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The following lemma establishes the [5-bound for the estimated objective parameters, a critical
requirement for solving greedy bandit problems.

Lemma 12. Suppose Assumptions and hold. Assume the OLS estimator satisfies || 0 (s) —
¢ < aforallm € [M] and s > Ty + 1 for some o > 0. Then for any 6 > 0, m € [M] and

—Ap* (t—Tp)

t > Ty, with probability at least 1 — M§ — de™ 50, the OLS estimator 0y, (t) of 0%, satisfies

dlog(dt/d)
)\p* t— T()

Hém(t+ 1) — 65,

where p* = min,, ¢ (Pm) M.

Proof. From the closed form of the OLS estimators, for all m € [M],

Hém(t+1)70:§l

9 = (Zx(s)x(s)T> Zx 770,(5) m

Z ) a(s).m

2
1

Amin (Zi:l z(s)z(s) )

<

2

For the denominator, we have A\pi, (Vi) > B + ’\Tp*(t — Tp) for t > Ty, with probability at least
—Ap* (t—Tp)

1—de 30 , by Lemma To bound the I norm of Sy ,, := 22:1 2(8)Nq(s),m(8), We can use
Lemma the martingale inequality of [Kannan et al.[(2018). The lemma states for fixed m € [M],
[I1Se.mll2 < o+/2dtlog(dt/d) holds with probability at least 1 — 6. Therefore, with probability at

—Ap* (¢

least 1 — Méfde+m,f0rallm € [M]and t > 2Ty,

o+/2dtlog(dt/9) <12U dlog(dt/d)

27 B+ Ap*(t—Tp)/6 — Ip* t—Tp

Hém(t+ 1) -6,

The last inequality holds when ¢ > 27j. O

E.2.2 PROOF OF THEOREM[3]

o2

we have [|0,,(t) — 07, || < o forall m € [M] and t > Ty + 1 with probability at least 1 — 22, Let
E be the event that ||0,,, (t +1) — 07| < ii" dlog(diT) l(z’f(%’jT) holds for all ¢ > 27, and m € [M]. Then,

P(E) < 2M + M 4 de™ 255 by Lemma
Let Ay,ax be the maximum suboptimality gap and m(t) be the target objective in round ¢. For
t > 2Ty,

Proof. By LemmaH if Bissetby B = min [% 2dT log(dT?), 42 (41og (14 2L) +log (T))},

E[Ag41)(t +1)] S E[Ag41)(t + 1) | E] + P(E)Amax

5 . 3M —Ap* (t=1Tp)
< QE[ Hgm(t+1)(t + ]‘) - 0m(t+1)”2 | E] + <T +de O ) Amax

240 |dlog(dtT) 3m —Ap*(t-Tp)
< = +d Am"Lx
=\ o g e

26



Under review as a conference paper at ICLR 2026

Then, the Pareto regret is bounded by

T—1
PR(T) = Y E[Auqern)(t + 1] + 270 Amax
t=2Ty
" 240 [dlog(dtT)  3M a Ap® (= T)
Cap*(t—Tg
S Z W + {(T)T =+ Z de 30 + 2T0}Amax
t_2T0 t=2Tp
240 ) —Ap* (t—Tp)
< SV 2dloe(dD) / —dt+ <2T0+3M+ > dem w0 >Amax
t=2T,
480 30d
< 2dT log(dT) + Amax
Ap* Ap*
30d
< —\/QdTl dT) + 2 .
- At o8(dT) + < Ap*)
The last inequality holds because we have Ay, < 2 under Assumption O

E.2.3 PROOF OF COROLLARY 3]

Proof. Let S be the feature set selected during initial rounds and Ag := Amin (77 2o, c5 Zi(2i) ).

Then, Amin (3, 2(s)2(s)T) > p*Ast/2 with probability at least 1 — de~*s7"/10 by Lemma
Then, for any Ty > | 28

o |, if we keep playing with the initial values for T rounds,

To
T p*/\,s 2B
o (St ) = 3212 )
Hence, we have Ty < L “x- | with probability at least 1 — de= " /30, O

E.3 OBIJECTIVE FAIRNESS OF MOG—-R

We confirmed that the MOG-R algorithm satisfies the objective fairness. The following theorem
shows the lower bound on the objective fairness index.

Theorem 4 (Objective fairness of MOG-R). Suppose Assumptions [I| [| and [3|hold. Then, the
objective fairness index of Algorithm 1 satisfies for all m € [M],

T-—T, 3M 1 . 40024
> _ = p*e2
OFI. 7 m%n{](pm) ( T ) (1 7 —d=5)> ) :

115202d log(dT

where T, = max(| N IrR)

|+ Ty, 2T0) in the same setting as Theorem@

Discussion of Theorem [d] The theorem demonstrates that Algorithm [2]satisfies objective fairness,
since for any given € > 0, lim7_, o, OFI. 7 = min,,eas](pm). We show that with high probability,
our algorithm selects near-optimal arms for each objective m at a ratio of p,, as time grows, and it
selects only e-optimal arms of an objective after a certain rounds 7.

Proof. Define the event ), ; for all m € [M] as
Qi := {w € Q| Objective m is a target objective for round ¢}.

Then, P(£2,,, ;) = pm forallm € [M]and ¢t < T.

= Ap*

Let E be the event that ||, (t + 1) — 05, || < 122 /498U holds for all ¢ > 2T and m € [M].

Ap* (t—Tp)

Then, P(E) < 3 4 de— 30 by Lemma@and Lemma
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We know that for ¢t > 275, on Qy, 141 N E,

240 | dlog(dtT) < 240 [2dlog(dT)
Ap* t—Ty ~— Ap* t—Ty

Hon = Ba(er1),m < 200 (t +1) = 07 [|2 <

115202d log(dT)
X2(p*)*e?

Let T, = max(|
forallt > T..

Then, for all m € [M],

| + Ty, 2Tp). Then, on Q,, ;11 N E, we have ju, — fig(i41),m < €

T T
1 * 1 *
ZE | D 1t — Hatym < 6}] > 7 D B, — ta(em < €} | D g] P r)
t=1 t=1
D T-1
> Tm E[1{un, = tta(t+1),m < €} | Qm,e+1 N E] P(E)
t=Te
D T—1
> am
>IN )
t=T,
—1
” M e
2 3 (1 )
t=T.
Pm 3M 1 | 40024
> Py (12 28 g
> b -1 (1- 37 - i)

Therefore, the objective fairness index can be bounded by

T-—T. 3M 1 10024
> . oo T \opre2
orter 2 o) () (15 - ™)

F LINEAR SCALARIZED VERSION OF MOG ALGORITHM

F.1 MULTI-OBJECTIVE GREEDY ALGORITHM — WEIGHTED RANDOMIZED VERSION

We propose another multi-objective near-greedy algorithm, named MOG-WR. While both MOG and
MOG-R focus solely on selecting optimal arms in specific objective directions, MOG-WR extends this
by also considering optimal arms in weighted objective directions. The algorithm takes as input a
distribution D from which the weight vectors are sampled. In each round, the algorithm selects the
arm that maximizes the weighted estimated reward based on the weight vector w drawn from D
(Line 5, 8). The rest of the algorithm structure remains identical to the original MOG.

The MOG-R algorithm can be regarded as a special case of the MOG-WR algorithm, where the distri-

bution D is set to
(M)

Pm fw=en ',
Py~p(w) :=
wnp(10) {O otherwise.

The MOG-WR algorithm, like previously proposed scalarized multi-objective bandit algorithms, se-
lects the optimal arms corresponding to the reward functions generated in each round (Drugan &
Nowe, [2013}; [Yahyaa & Manderick, 2015} |Zhang| [2024)). We confirm that even with the application
of weighted scalarization, the greedy algorithm performs effectively, through both theoretical and
empirical validation, where good arms exist for multiple objectives. Additionally, we prove that the
MOG-WR algorithm satisfies generalized objective fairness.

F.2 REGULARITY INDICES

Before we start analysis, we first define two regularity indices of a distribution for weight vectors.
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Algorithm 3 Multi-Objective Greedy algorithm — Weighted Randomized version (MOG—WR)

Require: Total rounds 7', Eigenvalue threshold B, Weight distribution D
1: Initialize Vo < 0 x I, and B1,. .., By € RY
2: fort =1to T do
3:  Sample a weight vector w = (w1, ..., wys) from the distribution D.
if Amin(‘/;f—l) < B then
Select action a(t) € arg max;e(k] ( > me[M] Wi ;! Brm)
else ) )
Update the OLS estimators 61 (t), ..., 0pr(t)
Select action a(t) € arg max;c (k] (Zme[M] wmx;rém(t))
9: endif
10:  Observe the reward vector y(t) = (ya(tm(t), . ,ya(t)7M(t))
11:  Update V; < Vi1 +z(t)z(t) "
12: end for

A A

Definition 10 (Regularity indices of a distribution). Let D be a distribution on M-dimensional
simplex, AM = {(w1,...,wy) € Rd|2me[M] w; = 1, wy,...wp > 0}. For given € > 0, We
define the two regularity indices of distribution D, V. p and I p as

Vep := min P, wp b, — 05 || <e€
D me[M] p m%;ﬂ

Lp:= inf Puop (|| D wnb,— 3 wnby| <e
me[M] me[M]

Intuitively, the regularity indices described above explain how evenly the weight distribution gen-
erates weighted objectives. Specifically, V. p measures whether the weighted objectives are well-
sampled near the parameter space of each objective, while I, p captures how uniformly all possible
weighted objectives are sampled. By definition, it is straightforward to confirm that V. p > I. p
always holds.

The following lemma demonstrates that for any continuous distribution D with positive density
function, the regularity indices are always positive.

Lemma 13. If D has a continuous density function f which is positive on AM | then both regularity
indices V. p and I p are positive.

Proof sketch. Tt is enough to show I, p > 0. Fix € > 0 and define g : AM — R? such that
g() = Pyp (HZmE[M] Wby, = 3 e u?m@j‘nH < e). Then, we can show that g is a posi-
tive continuous function. Since AM is compact, we have inf,,c anm g(w) = min,cam g(w) > 0.

F.3 PARETO REGRET BOUND OF MOG—WR

The following corollary shows that it is possible to achieve a o (v/T) regret bound Algorithm [3} if
the weight distribution D satisfies V,, o p > 0.

Corollary 4 (Pareto regret bound of MOG-WR). Suppose Assumptions [I| ] and [3| hold. If we
run Algorithm 3| with B = min [%"\/QdT log(dT?), 1g§2 (41og (1+ 2L) + log (T))] then the
Pareto regret of Algorithm|3|is bounded by

48 60d
PR(T) < TZ‘/MT log(dT) + 4Ty + 6M + -,
v v

where v* =V, ;5 pM.

We can establish the regret bound for MOG-WR using the same arguments employed for the regret
bound of MOG—R, with the aid of the following two lemmas. The first lemma pertains to the linear
growth of the minimum eigenvalue of the Gram matrix.
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Lemma 14 (Increment of the minimum elgenvalue of the Gram matrix). Suppose Assumptions

I 2| and |3 Ihold If the OLS estimator satisfies ||0,,(s) — 0%|| < a, forallm € [M] and s > Ty + 1,
then the arm selected by Algorithm 3| satisfies

where v* =V, 5 pM.

Proof. For s > Ty + 1 and m € [M], let E. (s) be the event that the weighted objec-
tive >, c(ar Wby, in round s satisfies HZmG[M] wm b, — 0%, } < «/2. Then, on E/ (s), if

0, (s) — 6%, || < /2 holds, then the following holds.

Z wm m *9* S Z wm Z wme* + Z wmo* ;kn

me[M] me[M] me[M] me[M]

me[M] me[M]

Thus, by Assumption [3| there exists y-good arm for the weighted objective Zme[ M WO (t) in
round ¢.

Since the arm selected by Algorithm 3] satisfies

Elx(s)z(s) " [Ho1] Z Ela(s)z(s) | B}, (5), He-1P[EL, (s)[Hs1]
M
= Vajo,m Z Elz(s)z(s) |, (s), Ho1]

= Vas2,0 Z Elz(s)| Bl (5), Ho—1]E[z(s)|ELy (s), Ho1] T,

m=1

,and E[x(s)|E), (s), Hs—1] is y-good for the weighted objective >
have

me(m) Wmbm(s) inround s, we

)‘min(E[x(S)x(S)T|Hs 1]) > Va/2D Amin (Z ]E |E/ (s), Hsl}E[x(SﬂEgz(s)vHsl]T)

m=1
V.
> 04/2,D>\M’
- 3
by Lemma [f] O

Then, we can drive I, bound of 6, (t) — 6, with above lemma. The next lemma shows how to bound
the Pareto regret with the bound on ||0,,(t) — 07, | 2.

Lemma 15. Given Assumption[l] for all round t, the Pareto suboptimality gap of Algorithm [3|can
be bounded by Ay (t) < 2

2 me[M] Wi O (1) — > mem] Wmb, ) where w is the generated

weight vector in round t. Furthermore, if there exists an upper bound U that satisfies |0, (t) —

Oy, |l2 < U forall m € [M], we have A, (t) < 2U.

Proof. Fixroundt € [T]. Letw € A™ be the generated weight vector in round ¢, and a, be the true
optimal arm for the weighted objective Zme[ M] w;0y,. Then, by Corollary [2 a7 is in the Pareto
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Front, and so we have

Ay (t) < min] (:UI*OZQ — x;—(t)ﬁzﬁb) < Z (wmx; 0r, — wmx;r(t)O;‘n)

me[M me(M]
T * T *
=aq, | Do wmbi | —waw | D wmbn,
me[M] me[M]
<2 Z Wi O (1) — Z wmb ||
me[M] me[M] 9
with Assumption
The latter part of the lemma can be directly derived using the triangle inequality. O

F.4 OBIJECTIVE FAIRNESS OF MOG-WR

Corollary 5 (Generalized objective fairness of MOG—WR). Suppose Assumptions and [3|hold.
Then, the objective fairness index of Algorithmsatisﬁes Sorallm € [M],

40024
T-—1T., M 1\ xo*e2
GOFIQT > Ia/Q,D < T ) 1-— 37 —d () R

T dr
where T, = maX(L%J + To, 2Tp) and v* = Vo pM in the same setting as Theo-
remH]

We can prove Corollary [5| using the same approach as in MOG-R, based on Lemma [T4] and the
definition of the index I p.

G STOCHASTIC CONTEXTS SETUP

We verified that our proposed algorithms are statistically efficient even in stochastic context settings.
In this section, we demonstrate the Pareto regret bound and objective fairness of MOG algorithm in
a stochastic context setting. Notably, MOG-R and MOG-WR can also be analyzed theoretically using
the same approach.

G.1 PROBLEM SETTING

In multi-objective linear contextual bandit under stochastic contexts setup, the set of feature vectors
x(t) = {zi(t) € R%i € [K]} is drawn from some unknown distribution P, (¢) in each round
t =1,...,T. Each arm’s feature x;(t) € x(¢) for ¢ € [K] need not be independent of each other
and can possibly be correlated. In this case, we denote x,;)(t) as z(t). Other settings are identical
to the fixed arms case in Section[2.2

Pareto regret metric Pareto regret can be defined in the same way as in the fixed-arm case (Tekin
& Turgay| 2018} [Turgay et al., 2018 |Lu et al.l 2019} [Cheng et al.l 2024). The key difference is
that in the fixed-arm setting, each arm’s expected reward remains constant over time, and hence the
Pareto front does not change. In contrast, in the contextual setup, the expected reward of each arm
varies across rounds, and consequently the Pareto front also evolves. Therefore, the definition of
Pareto regret is taken with respect to the Pareto front at each round.

Definition 11 (Pareto front). Let 11;(t) € RM be the expected reward vector of arm i € [K] in round
t. Then, arm i is Pareto optimal if and only if p;(t) is not dominated by j1;/(t) for all i' € [K]. The
Pareto front is the set of all Pareto optimal arms in round t.

Definition 12 (Pareto regret). We denote Pareto suboptimality gap A, (t) for arm i € [K] as the
infimum of the scalar € > 0 such that 11;(t) becomes Pareto optimal arm after adding € to all entries
of its expected reward. Formally,

Ai(t) = inf {e | (ui(t) + €) A o (1), V' € [K}.
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Then, the cumulative Pareto regret is defined as PR(T) := Zthl E[A ) (t)], where E[Ay4)(t)]
represents the expected Pareto suboptimality gap of the arm pulled at round t.

Objective fairness Objective fairness can also be defined in the same way as in the fixed-arm case.
For each round, the fairness index is defined with respect to the optimal arm for each objective, which
may vary over time.

Definition 13 (Objective fairness). For each round t € [T, let p; ,,(t) be the expected reward of
arm i for objective m, a,(t) be the arm that has the highest expected reward for objective m, and
P (t) = praz m(t). Forall € > 0, we define the objective fairness index OFI. 1 of an algorithm

Then, we say that an algorithm satisfies ob]ectlve fairness if for a given €, there exists a positive
lower bound L. such that limp_, ., OFL, 7 > L..

OFI¢ 7 := min (
me[M]

G.2 PARETO REGRET BOUND OF MOG WITH STOCHASTIC CONTEXTS

To analyze MOG under stochastic setup, the following assumption is essential to guarantee that the

feature vectors in round ¢ are not influenced by previous rounds s = 1,...,¢f — 1.
Assumption 5 (Independently distributed contexts). The context sets x(1),...,x(T), drawn from
unknown distribution P, (1), ..., P, (T) respectively, are independently distributed across time.

All of the greedy linear contextual bandit with stochastic contexts assumes the independence of
context sets. It is important to note that feature vectors within the same round are allowed to be
dependent, even under Assumption 5]

As in the regret bounds of MOG, MOG-R, and MOG-WR in fixed arm setting, the key to deriving
the regret bound of MOG in the stochastic contextual setup is to establish the linear growth of the
minimum eigenvalue of the Gram matrix.

Lemma 16 (Increment of the minimum elgenvalue of the Gram matrix). Suppose Assumptions [I}
I I and Ihold Ifthe OLS estimator satisfies |0, (s)— 02, || < o, forallm € [M]and s > Ty+1,

then the selected arms for a single cycle s = tg, to+ 1, ... , to + M — 1 (tg > Tpy) by Algorithm
[ satisfies
to+M—1
g, M
Amin E THea]) > —2—,
( Z;O [2(s)2(s) " [Hs1]) 2 —3

where q., is defined in Deﬁnition[?]

Proof. For s > Ty + 1, let m(s) be the target objective for iteration s and R(s) be the event that
there exist y-good arm for Hm(s (s). Then,

)
[ (s)a(s) " [Hsm]

Elz(s)x(s) " [R(s), Ho—1] P(R(s)[Hs-1)
>’(h [z(s)2(s) " |R(s), Hs—1]
= 4, E[z(5)|R(s), Hs-1]E[z(s)|R(s), Hy-1] -
Thus, we have 3" M Elw(s)x(s) T|Hoo1] = gy S0 Y TV Ela(s)| R(s), Hoo1|E[z(s)| R(s), Hs—1] T

Since E[z(s)|R(s), Hs—1] is y-good for F)m(é)( s) by Propositionand so we can apply Lemma@
by

to+M—1 to+M—1
Amin( Y El(s)a(s) "[Ho1]) 2 ¢y Amin( Y Elw(9)|R(s), Hs—1]E[z(s)| R(s), Ho-1] )
- S gy AM -
= T
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Then, the regret bound can then be derived by the same logic as in the proof of Theorems [T]and [3]
The following corollary demonstrates that the MOG algorithm also possesses a O(1/T')-regret bound
in the case of stochastic contexts.

Corollary 6 (Pareto Regret Bound of MOG with Stochastic Contexts). Suppose As-
sumptions B and  [3] hold. If we run Algorithm with B =

min [%\/QdTlog(dTQ), %(glog(l—i—%)—{—log(T))} where o = ,/%—3%1 o

(1 - %) \/1 — ~2, the Pareto regret of Algorithmis bounded by

PR(T) < % /2dTTog(dT) + 2 <2T0 F5M + 30d> ’
)\q’Y /\q'y

where q., in Definition[9)

The corollary demonstrates that the cumulative Pareto regret bound of MOG is 6(@) Addition-
ally, in a stochastic setup, T can also be bounded at a scale of O(B) with high probability.

G.3 OBIJECTIVE FAIRNESS OF MOG WITH STOCHASTIC CONTEXTS

The objective fairness index can be bounded by combining the arguments from Theorems [2]and ]
with Lemma[I16] The following corollary implies that Algorithm [I]satisfies objective fairness.

Corollary 7 (Objective Fairness of MOG with Stochastic Contexts). Suppose Assumptions [1| [2]
and @hold. Then, the objective fairness index of Algorithmsatisﬁes forallm € [M],

T-T, - M 3M 1 a0s%d
> (= 7 - ) Aaye2
OFler = ( MT ) <1 T d(dT) >

115202d log(dT)

where T, = max(| e

|+ To+ M, 2Ty + 2M) in the same setting as TheoremEl

Notably, for any given € > 0, limy_,oc OFlc 7 = 77.

H RELAXATION OF THE BOUNDEDNESS ASSUMPTION

In this section, we explain how to release the boundedness assumption, Assumptionm In conclusion,
we can obtain results of the same scale as Theoremsand for any arbitrary bound ||z;||2 < Zmax
and [ < 0 < L for all m € [M]. For clarity, we will separately discuss how to release the
l> norm bounds on the feature vector and the objective parameters in Appendix and
respectively. However, It is important to note that there is no issue in applying the same argument
even when the bound on the feature vectors and the bound on the objective parameters are released
simultaneously. We present how to release the boundedness assumption in fixed features setting, but

the same reasoning can be applied to the case of stochastic contexts.

H.1 RELEASING BOUND ON FEATURE VECTORS

We demonstrate how the minimum eigenvalue of the Gram matrix can increase linearly when the
lo norm of the feature vectors is bounded by an arbitrary upper bound .. Since the y-goodness
assumption is related to the scale of the feature, we modify the y-goodness assumption correspond-

ingly.
Assumption 6 (Boundedness). Foralli € [K]andm € [M], ||;|l2 < Tmax and ||0%,||2 = 1.
Assumption 7 (vy-Goodness). We assume {x1,...,xx} satisfies ~y-goodness with ~ >

Tmax (/21 + A2 — 2.
The following lemma is the key to the release process.

Lemma 17. Given Assumptions E] assume the OLS estimator satisfies |0, (s) — 0%] < a, for

mée [M]ands > To+ 1. Ifz € Bgmx satisfies :ET% > 7, then the distance between % and
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Figure 4: The interior of the circle with radius "”% represents the region where % may exist in R%,

while that of the smallest circle indicates the region where 9m(s) may exist. Then, the blue line
illustrates the case when = is farthest from the 67,.

0y, is bounded by

X
O

<1 (Bmaxye ygq, [(Tmaxye g9 /T a2,
2 Y 0

Proof. Consider the case when £ is the farthest from ;. As we easily can see from Figure El,
v

< (a+ (%j‘)21)2+(1m>2

:1+(I%;‘”‘)2 + 20, /(xr;a")2 —1-2V1-a2

Corollary 8. Suppose Assumptions 2| [6] and [7] hold. Assume the OLS estimator satisfies
[0 (s) = 05,]] < o, forallm € [M] and s > Ty + 1. If (1), - . ., Tpar) € BE are y-good for

ZTmax

2
0r — —
m 72

O

0, (s1),.-- O (snr) for some sq, ..., sy > To + 1, respectively, then the following holds
)\min Z Lr(m) (ajr(m))—r > ()‘72 - 2xmax\/’y2 + ‘TIQnaX + 2a \% xl%nax - 72 - 272 \% 1- a2> M.
me[M]
Proof. By Lemma ’ 0r — % < \/1 + (e )2 4 20, [(Fmex)2 — 1 — 21 — o holds
2

for all m € [M]. Then,

.
T Tr(m Ly (m
i [ @ (@) | =7 | S0 % <;>>

me[M] me[M]
>0 Amax [ Y 05,0027 | —2Mm (””m> ’ g — Lrtm) H
me[M] v v

> A’Y2 - 2xmax\/’72 =+ I?nax + 2« \% ‘Tt2nax - 72 - 272 \% 1—a?
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O

The above corollary means that even when Assumptions [I] and [3] are replaced by Assumptions [f]
and [/ respectively, we can still obtain a regret bound that differs by at most a constant factor.
Furthermore, using the same argument as before, we can also verify the objective fairness with
replaced assumptions.

H.2 RELEASING BOUND ON OBJECTIVE PARAMETERS

In this section, we present how to handle objective parameters with varying lo norm sizes. The
~v-goodness assumption is related to the scale of the objectives either, the y-goodness assumption is
modified again correspondingly.

Assumption 8 (Boundedness). Foralli € [K| and m € [M],

zills < Land 1 < 03,2 < L.

Assumption 9 (v-Goodness). We assume {x1, ...,z } satisfies y-goodness with y > 1 — %.

The following lemma is the key to the release process.

Lemma 18. Given Assumptions @ assume the OLS estimator satisfies |0 (s) — 0%]] < a, for
m € [M]and s > Ty + 1. If & € BY is y-good for 0,,(s), then the distance between x and ”‘iimm is

m

bounded by
0 2 2
H*m—x <\/2+a\/1— 2—27\/1—04—2.
1655112 2 ! l

Proof. Consider the case when z is the farthest from H(iim”Q. As we easily can see from Figure ,

Figure 5: The larger circle represents the unit sphere in R¢ while the interior of the smallest circle
indicates the region where 6,,,(s) may exist. Then, the blue line illustrates the case when x is farthest

0
from the —52=2—.
65,112

we can obtain the following result from Lemmaﬁ]by replacing a by 7.

e L= (Vb))

ol
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Corollary 9. Suppose Assumptions [8| and [9 hold. Assume the OLS estimator satisfies
[0 (s) — 05|l < «, forallm € [M]and s > Ty + 1. If o1y, - ... %) € B are v-good

for 0, (1), .- ,QM(SM)for some s1,...,sy > 1o + 1, respectively, then the following holds
T A /
)\min Z Ir(m) (Ir(m)) Z ﬁ \/2 + — V 1-— - 27 1-
me[M]

The corollary can be derived from Lemma and A\pin (ﬁ 27]\5:1 ( ﬁ ) ( H:EH\Iz) ) > L>\2

Therefore, we can still obtain a regret bound that differs by at most a constant factor and the objective
fairness criterion when Assumptions[Ijand [3|are replaced by Assumptions[8and 0] respectively.

I RELAXATION OF ASSUMPTION

Until now, we have conducted the analysis under the assumption that the feature vectors span R
Although this assumption is not explicitly stated, it is implied by Lemma [6] In this section, we
present a sufficient condition under which our proposed algorithms perform well when the feature
vectors do not span R? and explain how this leads to regret bounds and objective fairness.

Intuition. It is evident that any bandit algorithm cannot obtain information about the true objective
parameters in the direction of S;- while interacting with feature vectors 1, . . ., 2. In other words,
during the process of estimating the objective parameters, no estimator can converge to the true
parameters in the direction of space S;. Interestingly, from the perspective of regret and optimality,
this poses no significant issue. This can be expressed mathematically as for any pair of arms 4, j €
[K] and m € [M],

@l O — ] 05, = ] (ns(0,)) =« (ms(0;,))-

The above equation explains why regret and optimality are determined solely by the projection
vector of the objective parameters onto .S

Algorithm 4 Multi-Objective Greedy algorithm (MOG)
Require: Total rounds 7', Threshold B
Initialize Vi <— 0 X Iy, and By, ..., By € R
fort =1to 7 do
Select the target objective m < ¢t mod M {If m = 0, then m < M}

if min g g1, pes, (Zg;i (3, x(s)>2) < B then

Select action a(t) € arg max;c(x) %] Bm

else )
Update the OLS estimator 6,,(t), arbitrary solution of (32} a(s)z(s)T) 6 =
Zi 1 ﬂf( )ya(s),m< )v form € [M}
Select action a(t) € arg max;c (x| 2] 0, (1)

end if

Observe y(t) = (ya(t),l(t)v ey yu(t),M(t))

Update V; « Vi1 +z(t)x(t)

end for

Algorithmg]provides a general formulation of the MOG algorithm for use when the feature vectors do
not span R®. In this case, it is impossible to satisfy Apin (Vz—1) > B (> 0), which is the initial explo-
ration criterion stated in Algorithm[I] Therefore, the initial exploration criterion should be modified.

Instead of Ayin(Vi—1) > B, we can use min|g|—1, ges, (22;11 (8, JC(S)>2> > B. Additionally,
under this condition, a unique least squares solution no longer exists. Therefore, for each round ¢,
we use an arbitrary solution 0, () of the equation (312} z(s)z(s)T) 8 = S-"Z] 2(5)Ya(s).m(s)-
Notably, at least one solution exists after initial phase since (1), ..., z(t—1) span S,. By extending
Algorithm[T]in this way, we can conduct the same analysis as before.

36



Under review as a conference paper at ICLR 2026

The following are the revised versions of Assumptions [T} 2] and [3]when the feature vectors do not
span R
Assumption 10 (Boundedness). For all i € [K] and m € [M],

zill2 < 1and ||7s(65,)]2 = 1.

Once again, the above assumption is intended for a clear analysis. The analyses conducted in this
section can be also extended to arbitrary bounds ||z;||2 < Zmax and I < 7wg(6%,) < L for all
m € [M] by the same process in Appendix

Assumption 11. We assume 65, ..., 03, span Sg.

In the following analysis, we define A\ := min g =1, ges, (ﬁzﬁf:l (B, 9;‘,1)2) Then, given As-
sumption A1 is always positive and clearly, \; = min| g1, ges, (ﬁzgﬂ (B, 71'5(0;1))2).

Next, we reconsider how to define y-goodness. If the feature vectors do not span R?, it becomes
important to determine whether y-good arms exist near the direction of wg(6;,) rather than ¢}, . The
following definition clarifies this concept.

Definition 14 (y-goodness). For fixed vy € (0, 1], we say that the set of feature vectors {x1, ..., Tk}
satisfies y-goodness condition when there exists o > 0 that satisfies

forall B € B, (ms(07)) U...UBy(7s(03s)), there exists i € [K], x;r”?Q > . (2)

AL

Assumption 12 (y-goodness). We assume {x1, ..., vk} satisfies y-regular with v > 1 — 7%.

Once again, in the following analysis, « denote the value that satisfies the goodness condition defined
in Definition [T4] in conjunction with ~ as specified in Assumption [I2] Again, if « is greater than

Y(A1,7y) = ’\gi — ;‘% v — (1 — /1\—2) v/1 — 7?2, then we replace the value of a with ¥(A1, 7).

The only question is how to construct an /o bound on 7g (ém(s)) —Ts (Gj‘n) without utilizing the
minimum eigenvalue of the Gram matrix, which is zero when S, C R?. The key idea is that we

can use minyg=1, ges, (22;11 (8, x(s)>2) to fulfill the role previously played by the minimum
eigenvalue. We present 2 Lemmas, Lemma and Lemma [20] to explain the idea. First, The
following demonstrates the linear growth of minjg =1, ges, (22;11 (B, x(s)>2>

Lemma 19. Suppose Assumptions and hold. Assume a least square solution ém(s)
satisfies ||ms (0m(s)) — w5 (05,)|| < o, forallm € [M] and s > Ty + 1. If (1), - - ., Tr(ar) € BY

are ~y-good for (él(sl)), T (éM(sM)),for some S1,...,8y > Ty + 1, respectively, then
min E <B, xr(m)>2 > ﬁM
18ll=1, BES, -3
me[M]

Proof. Since the greedy selection of 0,,(s) is equal to that of g (ém(s)), for the same reason as
Lemma we can get ||z, () — 75 (05,) |2 < \/2 (1 +ay/1—72 - /11— a2>.

Then, for any unit vector 3 € S,

M

m=1

B i{@’ FS(():’L(S))>2 " <B’ Frim) =78 (9:”(3))>2 +2 <’8’ 775(93‘”<s))> <5’ Tr(m) = TS (9%<s>)>}

> M) 2\/2 (1+a\/1 “2 /1 —oﬂ)M.
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The next lemma shows how to derive I bound on ws(ém(s)) — mg(6z,) with
mingj=1, ges, (22;11 (B, I(3)>2)~
Lemma 20. For all m € [M] and s € [I], any least square solution 0,,(t) of
(52 2(5)2()T) 0 = Xy 2(5)ya(e) m(5) sarisfies

13252 #(5)Mags).m ()]l .
minggi—1, ses, (S02) (8, 2(5)°)

frtiato) )] =

Proof. From the definition of ,, (t), we have

(D_z(s)a(s)T) (Bm(t) = 65) = D w(8)a(s)m(s)-

_ t—1
77(1 (s),m = ‘ (Zx(s):}j(s)—r> (ﬂ-S (ém(S)) — TS (97:1))
t—1
1811=1, es < T(gx(s)m(S)Tw) st(em(s)) _”5(9’*”)“
The last inequality holds by Lemma[28] O

With above two lemmas, we can obtain the same regret bound and objective fairness as in Theorem

[[and 2

It is important to note that the same discussion applies to MOG-R and MOG-WR, indicating that our
proposed near-greedy algorithms can perform well even when the feature vectors do not span R?,
when there exist good arms for multiple objectives.

J LOWER BOUND

Theorem 5. Suppose Assumptions [Z] and E]hold, and d > 2 and K > d?. For any algorithm
choosing action a(t) at round t, there exists a worst-case problem instance such that the Pareto
regret of the algorithm is lower bounded as

sup  PR(T) = Q(VdT).

07,...,0%,)

Discussion of Theorem The above theorem shows that the regret bound for our algorithm in
Theoremis optimal in terms of d and T'. This bound matches the lower bound of |Chu et al.| (201 1 a))
in the single-objective setting. However, in their work, the d term in the lower bound is obtained
by partitioning the time horizon and carefully designing the features within each partition. As a
result, their analysis requires the condition 7' > d2, and their approach is not applicable in our fixed
feature setting. Instead, we obtain the d term by partitioning the set of K arms, which leads to the
requirement that K > d? in our analysis.

For our convenience, we define the following augmented parameter set, which will be used through-
out the remainder of this section.

Definition 15. The augmented parameter set © is a set of combinations of objective parameters, i.e.,
0 = {(Gg), 951), . ,9%})), (952), 952), cee 95\?), cee (9@, 9§d), .. (d))} where each H(J)
R4 for all j € [d] and for all m € [M]. The set of the first objective parameters in each of instances
in © is defined as ©1 = {0%1), 952), .. ,ng)}.
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Note that O represents d separate multi-objective problem instances, while © represents d separate
single-objective (objective 1) problem instances.

Proof sketch. We prove the theorem by constructing the augmented parameter set © and defining the
feature set so that the feature vectors are aligned with the direction of objective parameters and has
maximum length, thereby ensuring that Assumption [3]is satisfied. Then, we bound the Bayes Pareto
regret g« untrorm(e) [PR(T')] for any action sequence a(t),t € [T']. For this, we convert our
problem to single objective problem, and then use Lemma 26} The proof of Theorem 3]is presented
in Section[I-2] and its supporting lemmas are presented in Section [J.1]

J.1 TECHNICAL LEMMAS FOR THEOREM [3]

We first construct the set of problem instances that can be converted to a single objective problem.

Lemma 21. Suppose Assumptions and hold. Foralld > 2 and K > d?, there exist an
augmented parameter set © and a set of feature vectors such that for any action sequence a(t) € K]
fort € [T, there exists another action sequence o (t) € [d] for t € [T that satisfies

T
> Au
t=1

T

> Egpr ~UNIFORM(O)) Z(maxxj@f - x;(t)gf) )

Eg« ~UNIFORM(O) o
1
t=1

Proof. Itis enough to show when M = d and K = d?, because if M > d (Assumption guarantees

M > d)or K > d?, we can make the same argument by setting 9,(,{) = Gc(lj ) for all d <m < M and
jeldorz; =x4ford <i< K. Wefirst divide the cases by when d = 2 and d > 3.

Casel.d=M =2and K =4

— 02 (K K +€)
(k,k+¢€)

0 (k + €, k)

oSV (K + € k)

1

Figure 6: Problem space O construction when d = 2.

Fix0 < e < landlet 0 = (k+e k), 08 = (k, k+e), 9@2” =K+, k), 02 = (K K +¢),
where € < ¢ < 1 and 2k? + 2ke + €2 = 2(k’)? + 2(k")e + €2 = 1. Define the feature vectors z; =
9%1), T = 9%2), x3 = 951), and z4 = 9;2). Then all feature vectors and objective parameters have
I norm 1, satisfying Assumption Also, each (951), Gél)) and (9?), 0&2)) satisfies Assumption ,
and since 1,2, x3,x, are y-good arms for 951), 0%2), 95”,952) for any v < 1, the feature set
satisfies Assumption[3] Now, we show that the good arms for objective 1 (21 and x3) are always the

better choice than other arms (x3 and x4) in both problem instances from the perspective of Pareto
optimality.
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If (67,63) = (65",65"),

E[A] =1— (0", 6(") (=0)

E[As] =1 - (07,0(") (= &)

E[As] =0=1— (6" 6"

E[A] =1 (0, 01Y) > & =1- (0, 0{").

Otherwise, if (67, 603) = (617, 657)),

E[A] =1— (8, 00) (=€)
E[A;] =1— (0%, 6%) (= 0)
E[As] =1—(05".0) > ¢ =1 (0", 0"
E[A =0=1- (6,6

Therefore, if we define o/ (t) =

{1 ifa(t) =1or3 the statement of lemma is satisfied.

2 ifa(t)=2o0r4’
Case2.d =M > 3and K = d>

Fix 0 < € < 1 and define © and feature vectors x;, i € [d?] as

:131:9%1) =(k+ek,... . k),
o =0 = (k ki + ek, k),

2q =0 = (k,... kk+e),
Tapr =08 = (K + 2,k — e,k ... k),
Tapo =082 = (K K + 26,k — e,k ..., k),

2og =07 = (K — e,k ,... k', k' + 2e)
woapr = O = (K + 26,k K — e,k ... k),
Toara = 05 = (K, K + 26,k K —e... k),

2 =0 = (K, K,... . K — e,k + 2e),
where dk? + 2ke + €2 = d(k;’)2 +2(k")e 4 5e? = 1.

It is obvious that ¥’ < k and ||z;| = 1 for all i € [d?]. Similar to the simple case when d = 2, for
j € [d], each (09 ), e 9[(; )) satisfies Assumption , and the feature set satisfies Assumption

To prove the lemma, similar to the simple d = 2 case, we will show that ng ) is always better than

0% (m # 1) for all j € [d]. For any feature vector z;, we denote by A(z;) the sub-optimality
gap of the feature vector, i.e. A(x;) := A,;. Then, it is enough to show that for any m, j € [d] and

0" € 0, Eg-[A((m_1ya1;)] = Eo- [A0D)] = maxyicrq (677) 67 — (6) 67 holds.

Let 6* be the objective parameters for (j,)-th instance, i.e. 6* = (99*), Qéj*), cee Qflj*)) € 0O.If
ju = j, then Bg- [A(09)] =0 =1 — (61) "9,
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O — e W K +2e) O WK =, ¥+ 20)
L]

. 0§3><k_,,.-fé, k+e)

02 (k, k + €, k)

. 2
00 (K + 2, K, — €) O (K K + 26, K —e)

L]
BN (ke k)
. 9&2)(143' — 6,k +2¢,K)
0D (K + 2¢, K — €, k')

Figure 7: Problem space © construction when d = 3. The blue line represents the direction of
(1,1, 1), and the sphere has the radius of 1.

Suppose j. # j. For all m’ € [d], since
09,69y = dk? + 2ke = 1 — &2,

(0,05:)) < (k+ ) (K) + k(K +2€) + k(K — €) + (d — 3)kk’
= dkk' + ke + K'e

it holds that Eg- [A(6))] = ¢ = 1 — (61) 0.
For m # 1 and m’ # 1, we have

<9(J) 0(]* > <1-— 362,

1 »Ym/

<9(J) g(y* ) < m

(05,609:)) < 2(K ) (K +2€) + (K — €)* + (d — 3)(K')’

and hence Eg[A(z(1n—1)d+;)] = Eo- [A(G%))] >3 > 2 =1- (ng))Tﬁi‘. Therefore, if we
define o’ (t) = a(t) mod m (if a(t)/m € N, then o’ () = m), then the lemma holds. O

Lemma 22. Suppose Assumptions and hold. Forall0 < e<1,d>2 K > d? and any
action sequence a(t) for t € [T, there exists a augmented parameter set © and a set of features
satisfying Equation , where for all j € [d], the expected reward of arm j for objective 1 is equal
to 1 in j-th problem instance and is 1 — €2 in other instances j' € [d] — {j}.

Proof. The parameter set © and the feature set {z; = 9( ) = 01 See sy Xg2 = 9 (— Tgey1 =
. = xi)} constructed in the proof of Lemma [21] . satlsfy the propertles requlred in the latter part

of this lemma. For each j € [d], the feature vector of arm j is given by 91 , so in the j-th instance,
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the expected reward for objective 1 is <9§j ), 09 )> = 1. For any other instance j' € [d] \ j, we have
09,69y =1 ¢ 0

The above lemma reduces the problem of bounding multi-objective regret to that of deriving a lower
bound for the single-objective case. In particular, for each of d instances, one arm among the d arms
has a single-objective expected reward larger than the others by €2, which makes it possible to apply
Lemma

J.2  PROOF OF THEOREM 3|

Proof. By Lemma [22| it is enough to bound the single objective regret
EQINUNIFORM(@”[Zz;l(maxie[d] 1’;91‘ ’(t 9*)], where for each 9§]) € ©1, the ex-
pected reward of the arm j is equal tol, whlle the other arms j' € [d] — {j} have the expected

reward 1 — 2. If we set ¢ = then the expected reward of arm j is for
VT P S rEwes

j'(# j)-th instances. Scaling by 3 + % \/g > 1, we have that the expected reward of arm j € [d]

is % + i,/ % for j-th instance, while it is % for other instances. Applying Lemma , we have

T
Eg; ~unirorM(e;) Z Erée[xdxx lor T,(t)ei‘)] = Q(VdT).
t=1

Therefore, by Lemma[22]

T
ZE a(t)) Z AW

t=1
T
> Eg; ~unirorM(©;) [Z max z; 0} ;(t)ef)]

Py 1€[d)
— (/7).

sup
(0?[( ’” 1\/1)

> Eg+ ~UNIFORM(O)

K EXPERIMENT

In this section, we present the experimental settings and results for our proposed algorithm. In sum-
mary, our algorithm achieves excellent empirical performance and exhibits stability across different
parameter settings. Detailed descriptions of the experimental setup can be found in Section

We evaluated the performance of each algorithm in both cases of fixed arms and stochastic arms.
When playing with stochastic arms, only contextual algorithms are compared. We evaluate the em-
pirical performance of multi-objective bandit algorithms from three perspectives: cumulative Pareto
regret, Pareto front approximation, and objective fairness. The results are presented in Section|[K.2]

Additionally, we conducted experiments to examine how the performance of our proposed algo-
rithms varies with different parameter settings. Specifically, we altered the parameter B and the
initial objective parameters (1, . .., S of the MOG algorithm and measured the cumulative Pareto
regret and the objective fairness index. The results are presented in Section [K.3]

To indirectly evaluate whether our algorithm performs well in real-world scenarios, we conducted
a bandit experiment based on offline real-world data. A detailed explanation and the corresponding
results are provided in Section

K.1 SETTINGS

We validate the empirical performance of MOG, MOG-R, and MOG-WR in a linear bandit setting,
comparing them with other multi-objective algorithms. Specifically, we experiment with a linear
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bandit where y,,(t) = N (276%,,0.12) for all i € [K] and m € [M]. For each problem instance,
M objective parameters are sampled uniformly at random from the positive part of S?~!. Then, K
feature vectors (K > 2M) are generated by drawing samples from B?. In the fixed arms setting, the
first M feature vectors are sampled from a multivariate normal distribution with the true objective
parameter as the mean and a covariance matrix of 0.1/;. These vectors are then scaled to ensure
their magnitudes lie within the range (3/4,1). The remaining K — M feature vectors are sampled
uniformly at random from B¢, with M of these scaled to have magnitudes greater than 3/4 and
the rest scaled to have magnitudes less than 3/4. Limiting the magnitudes of the feature vectors
ensures that excessively large Pareto fronts, which could lead to meaningless results, are avoided.
For the varying arms setting, contexts are drawn uniformly from B¢. The results are averaged over
10 independent problem instances for each (d, K, M) combination, with each problem instance
being repeated 10 times to compute the final statistics (repeated 5 times for problem instances with
(d, K, M) = (20,400, 20)).

We conduct experiments on our proposed near-greedy algorithms and the three baselines,
ParetoUCB (Drugan & Nowel |2013), MOGLM-UCB (Lu et al., |2019), and PFIwR (Kim et al.,
2023)) with tuned parameters for confidence width (The algorithms proposed by |Cheng et al.|(2024)
are excluded from the experiments as they are specifically designed for problems with hierarchi-
cal objective structures.) The experiments are run on Xeon(R) Gold 6226R CPU @ 2.90GHz (16
cores). When tuning existing algorithms, we selected the parameter settings that yielded the best
regret performance within the range specified in their respective papers. For PEIwR, we set § = 0.1

and € = 0.18. For MOGLM-UCB, the confidence width is defined as 7; = clog gisgig

Zy =13+ 330 w(s)z(s)T, with the tuned parameter ¢ = 0.1. Additionally, we use B = 0.01
for our proposed algorithms, MOG, MOG-R, and MOG-WR. In terms of random variables in the
MOG-R algorithm, we use uniform distribution (ﬁ, cee ﬁ) for choosing the target objective. For
the MOG—WR algorithm, we use Dirichlet(1, ..., 1) for generating the weight vectors.

, where

K.2 MULTI-OBJECTIVE BANDIT ALGORITHM COMPARISON

K.2.1 CUMULATIVE PARETO REGRET

ParetoUCB ~ —&— MOGLM-UCB  —¥— PFIWR  —#— MOG (ours) —#— MOG-R (ours) —*— MOG-WR (ours)

d=5, K=50, M=5 d=5, K=100, M=5 d=5, K=50, M=10 d=5, K=100, M=10
8 8 8 8
6 6 6 6
&4 &4 &4 ¥4
o o o
2 2 2 2 g %
100 200 300 400 500 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
Rounds (t) Rounds (t) Rounds (t) Rounds (t)
d=10, K=100, M=10 d=10, K=200, M=10 d=15, K=300, M=15 d=20, K=400, M=20
20 20 20 20
15 15 15 15
Z 10 Z 10 & 10 & 10
o o o a
5 5 5 5
100 200 300 400 500 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500

Figure 8: Cumulative Pareto regret of multi-objective bandit algorithms with fixed arms across
various (d, K, M) combinations. The shaded areas represent + half the standard deviation for each
algorithm.

The following summarizes the empirical results illustrated in Figure [§] and Figure [0} which plot
the cumulative regret of algorithms for the fixed context case and stochastic context case, respec-
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—&— MOGLM-UCB —#— MOG (ours) —— MOG-R (ours)  —%— MOG-WR (ours)

d=5, K=50, M=5 d=5, K=100, M=5 d=5, K=50, M=10 d=5, K=100, M=10
3 3
£2 £2
' 4
o a
1 1
50 100 150 200 250 300 50 100 150 200 250 300 50 100 150 200 250 300 50 100 150 200 250 300
Rounds (t) Rounds (t) Rounds (t Rounds (t)
d=10, K=100, M=10 d=10, K=200, M=10 d=15, K=300, M=15 d=20, K=400, M=20
4 4 6 6
=3 =3 =4 =4
I g "4 "4
a, a, a o
2 2
1 1
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Figure 9: Cumulative Pareto regret of multi-objective bandit algorithms with stochastic contexts
across various (d, K, M) combinations. The shaded areas represent + half the standard deviation
for each algorithm.

tively. As observed in these figures, our simple near-greedy algorithms, MOG, MOG-R, and MOG-WR,
demonstrate superior empirical performance compared to existing algorithms. In both fixed and
stochastic experimental setups, our proposed algorithms exhibit almost no regret after the explo-
ration phase, whereas other algorithms maintain a sublinear regret trend due to additional explo-
ration terms even after the initial rounds. Specifically, Paret oUCB and PF IwR rely on conservative
equations within the algorithm, resulting in relatively weak empirical performance. MOGLM-UCB,
by using a tunable confidence width, achieved better empirical performance than the previous two
algorithms but still lagged behind our proposed near-greedy algorithms. These results support our
claim that in multi-objective settings, where multiple objectives generate many good arms, a brief
exploration during the initial rounds is sufficient, after which exploitation alone can effectively ad-
dress the problem.

Among proposed algorithms, in the fixed feature setup, MOG consistently achieved the best perfor-
mance in most combinations of (d, K, M). This is likely due to its deterministic selection of diverse
arms, allowing it to efficiently and reliably complete the initial rounds. Among the randomized al-
gorithms, MOG-WR was better in experiments with relatively small d, whereas MOG—R outperformed
in larger experimental setups.

In the stochastic context setup, our near-greedy algorithms demonstrated exceptionally strong per-
formance. This aligns with findings from single-objective studies, which have shown similar re-
sults, and extends naturally to the multi-objective setting. However, a surprising observation is that
MOG-WR performed remarkably well, achieving near-zero regret in most scenarios. Notably, in the
fixed-arm case, arms were selected to ensure that each objective direction contained some good
arms. In contrast, in the stochastic setup, arms were drawn independently in each round from a unit
ball uniform distribution without such constraints. Under this setup, our experiments revealed that
MOG and MOG-R no longer had a performance advantage over MOG-WR. Additionally, MOG showed
very little difference between its deterministic and randomized versions in stochastic settings.

This remarkable performance of MOG-WR is likely due to its greedy selection of arms in intermediate
directions of the objectives. In multi-objective bandits, let us define the objective region as the region
formed by the weighted sums of all true objective vectors. Under this definition, any optimal arm
corresponding to a direction within the objective region belongs to the Pareto front. If some prior
knowledge about each objective is available, the probability that the intermediate directions of the
initial objective parameters fall within the objective region is higher than that of the initial objective
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directions themselves. Specifically, in this experiment, the true objective parameters were all drawn
from ]Ri, and we used the standard basis vectors of R? (along with additional vectors if necessary)
as the initial objective parameters. In this case, the probability that intermediate directions between
these standard basis vectors belong to the objective region is trivially higher than that of each e;
direction. This observation provides a key explanation for why MOG-WR experiences almost no
regret during the initial phase. Moreover, in real-world scenarios, prior knowledge about the true
objective parameters is often available, which can further enhance the performance of MOG-WR.

K.2.2 PARETO FRONT APPROXIMATION

As mentioned earlier, our proposed algorithms do not compute the empirical Pareto front at every
round but can approximate the Pareto front when necessary. In this section, we empirically demon-
strate how effectively MOG, MOG-R, and MOG-WR can approximate the Pareto front. Since our
algorlthms are near-greedy and do not include additional exploration terms after the initial rounds,
we use Hm( ) as described in Lemma to estimate the empirical Pareto front. We compare the esti-
mated empirical Pareto front from our algorithms with those used by existing algorithms to evaluate
how accurately they identify the true Pareto front. As a comparison metric, we use accuracy, defined
as the proportion of arms correctly identified as belonging to the true Pareto front.

Figure [T0] demonstrates that our algorithms effectively identify the Pareto front. Notably, when
d,M < 10, MOG and MOG-R quickly identified the Pareto front, achieving an accuracy exceeding
0.98 within the first 100 rounds on average. The deterministic version MOG achieves the fastest, most
accurate, and most stable Pareto front approximation across all experimental settings. Specifically,
even in experiments with high dimensionality, a large number of arms, and multiple objectives,
MOG estimates the Pareto front with accuracy exceeding 0.95 within the first 100 rounds. Next,
MOG-R performed well in most cases, except for larger parameter experiments where d, M > 15
and K > 300. Similarly, MOGLM-UCB consistently showed strong performance across all settings.

In contrast, MOG-WR, while outperforming Paret oUCB and PFIwR after 300 rounds, exhibited
inferior Pareto front approximation performance compared to MOG and MOG—-R. This is an expected
result, as efficient Pareto front approximation requires 6, (t) to converge quickly to 6, for each
objective m. Consequently, algorithms like MOG and MOG-R, which select more diverse arms, are
better suited for this task than MOG-WR. Nevertheless, by the end of 500 rounds, MOG-WR also
achieved higher Pareto front approximation accuracy compared to other existing algorithms.

K.2.3 OBIJECTIVE FAIRNESS

As shown in Figures[IT]and[I2] we experimentally verified that our proposed algorithms, MOG and
MOG-R, satisfy objective fairness. In the fixed feature setup, the objective fairness index (OFIg o5,7)
of both MOG and MOG-R was observed to converge approximately to % regardless of the number
of arms K, which is consistent with Theorems [2]and[d] This indicates that MOG and its randomized
version consistently select the optimal arms for all objectives, ensuring that no objective is ignored.

In contrast, for the MOG-WR algorithm, even considering that it is based on generalized objective
fairness, the OFIy o5,500 decreased significantly as the dimension d increased. This phenomenon
arises because the difficulty of obtaining weighted vectors in directions close to specific objectives
increases with higher dimensions. Specifically, we set D to dirichlet(1, ..., 1), resulting in weight
vectors being sampled uniformly from A™. When the distribution was adjusted to favor sampling
near the vertices of AM (e.g., dirichlet(0.5, ..., 0.5)), the objective fairness index can be improved.

In the contextual setup, the OFly g5 500 values were generally much higher than those observed
in the fixed setup. This can be attributed to the experimental setting, where arms were uniformly
generated in B¢, causing near-optimal arms for each objective to overlap more frequently. In other
words, a single arm often became the near-optimal arm for multiple objectives, resulting in a higher
OFlIg 05,500. Interestingly, contrary to our intuition, MOG-WR exhibited higher OFIy g5 500 values
than MOG and MOG-R in this setup. This phenomenon occurs because selecting optimal arms in
weighted objective directions becomes more advantageous than selecting optimal arms for each
individual objective.

45



Under review as a conference paper at ICLR 2026

¢ ParetoUCB 1 MoGLM-ucB Y PFIwR ¥ MOG (ours) ¥ MOG-R (ours) ¥ MOG-WR (ours)

d=5, K=50, M=5 d=5, K=100, M=5
1.0 I ®Fx z ®Ex + ®m¥EX 1.0 z E¥x = ®¥EX = ®W¥=x
= ¥ > >
0.9 I v v v 0.9 .
Z08 208
© ©
i ! ¢
207 207
0.6 0.6
0.5 0.5
Estimation Estimation Estimation Estimation Estimation Estimation
after 100 rounds after 300 rounds after 500 rounds after 100 rounds after 300 rounds after 500 rounds
10 d=5, K=50, M=10 10 d=5, K=100, M=10
) - R ¢ x ¥x x =¥x ’ x =¥%x = ®*¥%x = =%
0.9 0.9
LR 4 Y Y
308 308
© ©
AN ¥ ¥ ‘
Soz I 1 Soz I
0.6 0.6
0.5 0.5
Estimation Estimation Estimation Estimation Estimation Estimation
after 100 rounds after 300 rounds after 500 rounds after 100 rounds after 300 rounds after 500 rounds
d=10, K=100, M=10 d=10, K=200, M=10
o0 =¥ =xy =¥y 1.0 = =% - ®¥x - wEx
x x = s ¥ £ £
09 L 2 h 4 h 4 09
go8 308
© ©
E 5 I
So7 I go7
< <
0.6 0.6
0.5 0.5
Estimation Estimation Estimation Estimation Estimation Estimation
after 100 rounds after 300 rounds after 500 rounds after 100 rounds after 300 rounds after 500 rounds
d=15, K=300, M=15 d=20, K=400, M=20
1.0 . = .vi s ®¥=x 1.0 . = . =F s *¥x
* ¥ - ¥ »> * Ty s ¥ *
0.9 0.9
308 2038
5 [} 5
3 0.7 S 0.7
< Y < Y
0.6 0.6 -|'
0.5 0.5
Estimation Estimation Estimation Estimation Estimation Estimation
after 100 rounds after 300 rounds after 500 rounds after 100 rounds after 300 rounds after 500 rounds

Figure 10: Pareto front estimation accuracy of multi-objective bandit algorithms across various
(d, K, M) combinations. For each algorithm, the error bars represent 4 the standard deviation.
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Figure 11: Objective fairness index (¢ = 0.05) of multi-objective bandit algorithms with fixed arms
across various (d, K, M) combinations. The shaded areas represent + half the standard deviation

for each algorithm.
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Figure 12: Objective fairness index (e = 0.05) of multi-objective bandit algorithms with stochastic
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deviation for each algorithm.
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K.3 EFFECT OF PARAMETER SETTINGS ON ALGORITHM PERFORMANCE

K.3.1 EFFECT OF B

We conduct experiments to demonstrate that our algorithm is not particularly sensitive to the choice
of B, and that free exploration still occurs effectively even when B is set to a relatively small value.
The experimental setup is identical to that of the previous experiments, and the results are averaged
over 10 repetitions for each of 10 independent problem instances per (d, K, M) combination.
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Figure 13: Cumulative Pareto regret of the MOG, MOG-R, and MOG-WR with fixed features across
various B values.

As shown in Figure[T3|and Figure[T3] free exploration emerges robustly for even very small values
of B in both fixed feature and stochastic context settings. This is because multiple objectives nat-
urally induce sufficient diversity among the selected arms, thereby reducing the need for dedicated
initial rounds. Furthermore, objective fairness is consistently satisfied across all cases (Figure [T4]

Figure[16).

K.3.2 EFFECT OF INITIAL OBJECTIVE PARAMETERS

We examined the influence of the parameter B and the configurations of 31, ..., 8y on the perfor-
mance of the MOG algorithm. Specifically, we considered three distinct combinations with varying
degrees of diversity, as summarized in Table[T} For each parameter setting, we assessed the cumula-
tive Pareto regret of MOG. The experiments were conducted under a stochastic context across various
(d, K, M) combinations. We evaluated the performance of the algorithm under three cases, B = 1,
0.1, and 0.01, and examined how the degree of diversity in the initial objective parameters affects
learning.

Figure [I7] illustrates the differences in cumulative Pareto regret for each parameter setting when
(d, K,M) = (5,50,5) and (10,100, 10). Our MOG algorithm demonstrated stable performance
across all initial objective parameter combinations proposed in the stochastic context setup. Observ-
ing the inflection points in the graphs, we found that using highly diverse initial objective parameter
combinations allowed the algorithm to complete the initial exploration phase the fastest. However,
regret was lower when using less diverse combinations. As explained in Appendix this result
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Figure 14: Objective fairness index of the MOG and MOG-R algorithms with fixed features across

various B values.
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Figure 15: Cumulative Pareto regret of the MOG, MOG-R and MOG-WR algorithms with stochastic
contexts across various B3 values.

is related to the probability that the initial objective parameters lie within the region formed by the
weighted sum of Pareto optimal arms. In cases where there is some prior knowledge of the objective
parameters, initial objective parameters in intermediate directions are less likely to generate regret.
This outcome is also possible in our experimental setup because the objective parameters were sam-
pled from the positive part of B?. Therefore, in the absence of any prior knowledge, lower diversity
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Figure 16: Objective fairness index of the MOG and MOG-R algorithms with stochastic contexts
across various B values.

Table 1: Combinations of initial objective parameters used in the experiments

M  Diversity f1,...,0m

high €', .. el

5  moderate % e§5) + 6&5)) , % (eé‘r’) + 6(35)) e % (eéf’) + 6(15))
low % egs) + eés) + egf)) , % (eés) + egs) + ef)) ey % (eé5) + e<15> + eé‘“)
high 6510), e eﬁ)o)
10 moderate % egm) + eém) + eéw)) , % (6(219) + eém) + eim)) e % (e(lto) + e§1°) + eém))
6 10 7 10 10 5 10
low ﬁ Zm:1e$n )) ) % (Zm:26£n )) a---»% (eﬁo '+ Zm:legﬂ )) )

in the initial objective parameters may not be advantageous. In such cases, it is recommended to use
diverse 1, . .., B to facilitate rapid initial exploration.

Consistent with the results in the previous section, the algorithm demonstrates strong regret per-
formance across all values of B (B = 1, 0.1, 0.01), with smaller B values completing the initial
exploration phase more rapidly. The best performance was achieved with B = 0.01, indicating that
a brief initial exploration was sufficient. This finding is consistent not only in the stochastic context
setup but also in the fixed feature setup, as shown in Figure 8]

K.4 EXPERIMENT BASED ON REAL-WORLD WINE DATA (UCI MACHINE LEARNING
REPOSITORY)

K.4.1 SETTINGS

We conducted experiments using the wine dataset from the UCI Machine Learning Repository to
evaluate the performance of our algorithm in a bandit setting. The dataset contains 13 numerical
attributes for each wine (Table Q); among these, we used alcohol, quality, and red as reward objec-
tives, while the remaining 10 attributes were used as features. Figure [I§]illustrates how the offline
data was adapted for the bandit experimental setup. For each reward objective, we first performed
linear regression on the normalized features. Then, in each round, rewards were generated by adding
noise to the predicted value based on the regression model. The noise was sampled from A(0, 1) to
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Figure 17: Cumulative Pareto regret of the MOG algorithm across various parameter combinations

mimic the variability observed in the original dataset. Experiments were conducted under two set-
tings, K = 50 and K = 100, with 100 episodes of 500 rounds each being generated for evaluation.

Table 2: 3-objective bandit problem construction using off-line wine dataset.

Features fixed acidity volatile acidity citricacid residual sugar chlorides
free sulfur dioxide total sulfur dioxide  density pH sulphates
Reward alcohol quality red
Features Reward Features
RiRyR3 X In each round,
ngard Context Vectors
Linear
Models Randomly select K feature vectors Reward Generation
Ry = Xp =z f+e
Ry ~ X[, Selectz | Ty =" By + €
R3 ~ X33 : r3=1x"f3+e3
. €1,e0,63 ~ N (0,1)
Normalization Linear Regression Bandit Interaction

Figure 18: Description of how to use real-world off-line data for 3-objective bandit experiment.

In this real-world-inspired experiment, we measured the cumulative reward to compare the per-
formance of our algorithms with that of the existing contextual multi-objective bandit algorithm,
MOGLM-UCB. The parameter for MOGLM-UCB was set to ¢ = 1 or 0.1 as in|Lu et al.| (2019), and
the experimental configuration for MOG is provided in Table[3]
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Table 3: Parameter settings of MOG and its variants.

Algorithm Settings

MOG B =1and0.1

MOG-R (ours) B =1 and Uniform distribution for target objective selection

MOG-WR (ours) B = 1 and Dirichlet(«) distribution for weight vector generation
where o = (1,1,1),(2,1,1), (1,2, 1), (1,1,1.5),(1,1,2)

K.4.2 RESULTS

Table[d]and Table[5|report the average cumulative rewards obtained by each algorithm under the two
settings, K = 50 and K = 100, respectively. The MOG-WR algorithm demonstrates Pareto-optimal
performance with respect to the cumulative rewards over the three objectives. Notably, MOG-WR
uses weights sampled from a Dirichlet distribution, and the choice of its parameters affects which
objective the algorithm tends to prioritize among the three objectives.

Table 4: Performance results of each algorithm on three objectives when K = 50. Algorithms
marked with § achieved Pareto optimal reward performance. Boldfaced values indicate the highest
reward achieved for each individual objective. The results are averaged over 100 generated episodes.

Algorithm Alcohol  Quality Red

MOGLM-UCB (¢ = 1) 251.79  93.52  414.66
MOGLM-UCB (¢ = 0.1) 314.24  127.58  359.81
MOG (B = 1) 499.25  187.29  249.38
MOG (B =0.1) 505.23 195.46  237.53
MOG-R (B =1) 493.70  188.29  251.33
MOG-WR (B = 1,a = (1,1,1))f 558.66  237.63  386.89
MOG-WR (B =1, = (2,1,1))f  709.53 297.25  223.71
MOG-WR (B = 1, = (1,2,1))f 624.95 310.85 259.50
MOG-WR (B =1, = (1,1,1.5))F  441.11  161.83  566.18
MOG-WR (B = 1, = (1,1,2))f 346.12  102.46 675.28

Table 5: Performance results of each algorithm on three objectives when K = 100. Algorithms
marked with § achieved Pareto optimal reward performance. Boldfaced values indicate the highest
reward achieved for each individual objective. The results are averaged over 100 generated episodes.

Algorithm Alcohol  Quality Red

MOGLM-UCB (¢ = 1) 290.26  109.80  474.66
MOGLM-UCB (¢ = 0.1) 348.17  142.29  418.70
MOG (B = 1) 535.11  203.75  287.56
MOG (B = 0.1) 541.99  209.11  277.22
MOG-R (B = 1) 541.72  203.49  285.69
MOG-WR (B = 1,a = (1,1,1))f 610.48  251.21  433.40
MOG-WR (B =1, = (2,1,1))7  765.97 317.67 266.33
MOG-WR (B = 1,a = (1,2,1))f 663.21 336.77 305.54
MOG-WR (B = 1,a = (1,1,1.5))F  480.48 17830  612.76
MOG-WR (B = 1,a = (1,1,2))f 393.74  112.88 727.21

Figure [I9] and Figure [20] show plots of cumulative rewards over time for each objective, as well as
the final cumulative rewards for two of the objectives achieved by each algorithm. In particular,
when the Dirichlet distribution was set to Dirichlet(1, 1,1.5) (olive point), the MOG—WR algorithm
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Figure 19: Cumulative reward for 3-objectives, alcohol, quality, and red, when K = 50.
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Figure 20: Cumulative reward for 3-objectives, alcohol, quality, and red, when K = 100.

was observed to dominate the MOGLM—-UCB algorithm (orange and brown points) across all three
objectives.
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L AUXILIARY LEMMAS

Lemma 23 (Lemma A.1. of Kannan et al.| (2018)). Let 11, ..., be independent o?-subgaussian
random variables. Let x1,. .., x; be vectors in R with each xs chosen arbitrarily as a function of
(1,m), -, (Xs—1,mer—1) subject to ||2s|| < Tmax. Then with probability at least 1 — 6,

Z nsx(s)
s=1

< 0/ 2T maxdt log(dt/d).

Note that, the above lemma holds even when 7y, ..., 7; be conditionally o2-subgaussian random
variables, because it was driven by using o-2-subgaussian martingale.

Lemma 24 (Lemma 8 of Li et al| (2017)). Given ||z;|| < 1 for all i € [K], suppose there is an
integer m such that Amin(Vin) > 1, then for any § > 0, with probability at least 1 — 6, for all
t>m+1,

d 2t (T max)? 1
||St||%/f1 < 402(5 log(1 + %) + log(g)).
Lemma 25 (Theorem 3.1 of Tropp, (2011)). Let H1 C Ho - - - be a filtration and consider a finite

sequence { X} of positive semi-definite matrices with dimension d adapted to this filtration. Sup-
pose that Amax(Xy) < R almost surely. Define the seriesY =Y, X and W =Y, E[X|[Hi_1].
Then for all i > 0, v € [0, 1) we have

e~
; — ) Y  \W/R
PAmin(Y) < (1 =7)p and Apin(W) = ] < d((l — 7)1_7) .
Lemma 26 (Theorem 5.1 of |Auer et al.| (2002)). For any T > K > 2, consider the multi-armed
bandit problem such that the probability slot machine pays 1 is set to % + %\/ % for one uniformly

chosen arm and % for the rest of K — 1 arms. Then, there exists v such that for any (multi-armed)
bandit algorithm choosing action a; at time t, the expected regret is lower bounded by

E (pzT — i’l“t7at> = Q(\/ﬁ)

Lemma 27. For any random variable vector X ~ D, E[XX "] = E[X|E[X]T

Proof of Lemma Forany u € S* ! "EXXTJu = Eu' XX u] = E[(u, X)*] >
(E[(u, X)])* = v "E[X]E[X] " u.
Lemma 28. Let v be a vector in S C R% and A be a d x d matrix. Then ||Av|y >

(minges u' Au) ||v]|2.

Proof of Lemma |28

| 42 H L

il 7 llvll2

> min || Aully > minu ' Au.
2 u€sS u€sS
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