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ABSTRACT

Language model (LM) post-training relies on two stages of human supervision: task
demonstrations for supervised finetuning (SFT), followed by preference compar-
isons for reinforcement learning from human feedback (RLHF). As LMs become
more capable, the tasks they are given become harder to supervise. Will post-
training remain effective under unreliable supervision? To test this, we simulate
unreliable demonstrations and comparison feedback using small LMs and time-
constrained humans. We find that in the presence of unreliable supervision, SFT
still retains some effectiveness, but DPO (a common RLHF algorithm) fails to
improve the model beyond SFT. To address this, we propose iterative label re-
finement (ILR) as an alternative to RLHF. ILR improves the SFT data by using
comparison feedback to decide whether human demonstrations should be replaced
by model-generated alternatives, then retrains the model via SFT on the updated
data. SFT+ILR outperforms SFT+DPO on several tasks with unreliable supervision
(math, coding, and safe instruction-following). Our findings suggest that as LMs
are used for complex tasks where human supervision is unreliable, RLHF may no
longer be the best use of human comparison feedback; instead, it is better to direct
feedback towards improving the training data rather than continually training the
model.

1 INTRODUCTION

Language models (LMs) learn rich knowledge when pretrained on internet-scale corpora (Achiam
et al., 2023; Dubey et al., 2024). To elicit their full capabilities and align them to human values,
they are typically post-trained with two types of human supervision: task demonstrations for the
initial supervised finetuning (SFT) stage, followed by preference comparisons used in reinforcement
learning from human feedback (RLHF) (Ouyang et al., 2022; Bai et al., 2022) via algorithms like
proximal policy optimization (PPO) (Schulman et al., 2017) or direct preference optimization (DPO)
(Rafailov et al., 2024; Dubey et al., 2024).

As LMs continue to advance, they are trained to solve complex tasks that are difficult for humans to
supervise (Amodei et al., 2016; Leike & Sutskever, 2023; Wen et al., 2024). For example, humans
are often imperfect at coding, producing bugs that models like Github Copilot can learn (Asare et al.,
2023). Similarly, industrial-level ChatGPT training data rated as “flawless” has recently been found
to contain flaws (McAleese et al., 2024). As task complexity increases, human supervision may
become even less reliable. Thus, it is imperative to understand how both stages of current post-training
pipelines (SFT + RLHF) perform under unreliable supervision.

Studying this is difficult because tasks where human supervision is unreliable are by nature difficult
to obtain ground truth for. Ideally, we want tasks with known ground truth where we can also collect
human-like unreliable data. We employ two approaches to simulate this unreliable supervision. First,
we use smaller LMs that often make mistakes, in line with Burns et al. (2023) and Dubois et al.
(2024). Second, we recruit human workers to label data under time constraints. For either of these two
types, we can use it to simulate either unreliable demonstrations or unreliable comparisons (e.g. for
DPO). We thus simulate post-training by running SFT on unreliable demonstrations followed by
DPO on unreliable comparisons.

We first find that SFT with unreliable demonstrations performs adequately, in that the learned SFT
model is more reliable than the demonstrations themselves, a phenomenon termed weak-to-strong
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Figure 1: (a) In contrast to RLHF, which iteratively updates the SFT model, ILR directs comparison feedback
towards improving the SFT dataset. (b) With reliable supervision, DPO effectively improves the SFT model
and ILR is unnecessary. However, DPO becomes less effective with unreliable demonstrations and breaks down
completely when comparison feedback is also unreliable. In contrast, ILR consistently improves on the initial
SFT model with unreliable supervision, even in the most extreme case.

generalization (W2SG) that has been previously observed by Burns et al. (2023) in classification
tasks. However, since these models inevitably learn to imitate errors in their unreliable training data,
the resulting performance is still far from their full capability when trained on ground truth. Thus,
ideally, the subsequent DPO stage should improve these SFT models.

Unfortunately, we find DPO breaks down under unreliable supervision. With unreliable demonstra-
tions and comparisons, DPO offers little to no performance improvement on top of SFT (Figure 1b).
Our experiments suggest that this may be due to the tendency of DPO to overoptimize (Gao et al.,
2023; Azar et al., 2024). To prevent overoptimization, DPO implicitly penalizes KL divergence from
the SFT model, and we find that a large penalty is necessary when feedback is unreliable. However,
this large penalty prevents the large changes in the model that are necessary to correct the errors
learned from the unreliable demonstrations during SFT (Section 4.1).

To address this, we propose iterative label refinement (ILR). In contrast to RLHF, which iteratively
updates the SFT model, ILR updates the SFT dataset using the same type of comparison feedback.
Specifically, ILR uses this feedback to compare a demonstration in the SFT dataset with an alternative
one written by the SFT model; if the model-written demonstration is chosen, it replaces the original
demonstration in the SFT data. This improves the SFT data by replacing low-quality or incorrect
demonstrations with better model-written ones. Thus, when a new SFT model is trained on the updated
dataset, it should perform better than the original SFT model, facilitating further improvements to the
dataset via additional rounds of ILR (Figure 1a). Unlike DPO, we find that updating the SFT data via
ILR leads to significant improvements from one round to the next (Figure 1b).

SFT+ILR improves over SFT+DPO in several tasks, including math, coding, and safe instruction
following. To further confirm these results, we perform a human study where we recruit workers to
provide demonstrations and comparison feedback under time constraints for the Alpaca (Taori et al.,
2023) instruction-following task. In this setting with more realistic human errors, ILR continues to be
effective in improving the initial unreliable human demonstrations and outperforms DPO.

In summary, our findings suggest that preference-based training like RLHF may no longer be the
best use of comparison feedback as we train LMs to solve complex tasks where human supervision
is unreliable. Instead, it is better to direct human feedback towards fixing errors in the unreliable
training data rather than continually training the model.

2 RELATED WORK

Scalable oversight and weak-to-strong generalization. Scalable oversight aims to develop methods
to supervise AI systems on tasks that are difficult for humans (Amodei et al., 2016; Bowman et al.,
2022). The primary focus in scalable oversight has been on designing human-AI collaboration
mechanisms that enhance humans’ ability to evaluate AI outputs more accurately (Christiano et al.,
2018; Irving et al., 2018; Michael et al., 2023; Khan et al., 2024; Kenton et al., 2024) and with less
cognitive burden (Saunders et al., 2022; McAleese et al., 2024; Kirchner et al., 2024). In contrast,
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recent work on W2SG (Burns et al., 2023) explores a complementary direction that develops learning
algorithms to make models generalize correctly from weak supervision as if they were trained on
higher-quality supervision or even ground truth. The SFT stage in our LM-based simulation employs
a similar setting as the setup used for studying W2SG in Burns et al. (2023) but extended to text
generation tasks; Burns et al. (2023) only consider classification tasks.

Language model post-training. Pretrained language models (PLMs) possess a rich understanding
of language but require post-training to align their behavior with human preferences. This gener-
ally involves supervised finetuning (SFT) (Wei et al., 2021) on human-written demonstrations and
reinforcement learning from human feedback (RLHF) (Ouyang et al., 2022; Bai et al., 2022). RLHF
is typically done by algorithms like PPO (Schulman et al., 2017), which uses an explicit reward
model, or DPO (Rafailov et al., 2024; Dubey et al., 2024) and its variants (Liu et al., 2023; Azar et al.,
2024), which uses an implicit reward model. Recent work has also investigated the impact of noisy
preference data on RLHF (Chowdhury et al., 2024; Fisch et al., 2024; Gao et al., 2024), while our
work addresses a more challenging case where both SFT data and preference data are unreliable.

Learning with imperfect supervision. Research in weakly-supervised learning has focused on
training models with noisy data (Reed et al., 2014; Rolnick et al., 2017; Song et al., 2022). Many
works study classification with random label flips, proposing methods like data filtering and robust
losses (Zhou, 2018; Frénay & Verleysen, 2013), while some also consider noise in structured
prediction tasks like parsing and word alignment (Ganchev, 2010). Our setting differs as we study
unreliable supervision from LMs or time-constrained humans for complex text-generation tasks. In
this setting, errors tend to be systematic—arising from reasoning failures or social biases—rather than
random, and so may not be well-addressed by traditional methods. Our cross-labeling framework
shares conceptual similarities with co-training (Blum & Mitchell, 1998; Zhou et al., 2005) and
co-teaching (Han et al., 2018) in semi-supervised learning, although these methods primarily focus
on classification settings and rely on model confidence scores.

3 PROBLEM DEFINITION: POST-TRAINING WITH UNRELIABLE SUPERVISION

Training LMs to be useful assistants involves two stages: pre-training and post-training. During
pre-training, the LM is trained to autoregressively predict a large corpus of text, typically taken from
the internet and books (Radford et al., 2019; Brown et al., 2020). Afterwards, the pretrained language
model (PLM) has acquired knowledge and skills from its pre-training data, but cannot yet be easily
used for realistic applications. To elicit the PLM’s capabilities for some class of tasks, post-training
techniques are used (Wei et al., 2021; Dubey et al., 2024; Ouyang et al., 2022; Bai et al., 2022). We
denote an LM as a conditional distribution p(y | x) over responses y given a prompt x.

Standard post-training pipeline. Post-training a PLM typically involves two stages. In the initial
SFT stage, a PLM is trained on human-written task demonstrations. That is, given an SFT dataset
DSFT = (XSFT,YSFT) of prompts XSFT and human-written responses YSFT, the PLM is trained to
minimize 1

|DSFT|
∑

(x,y)∈(XSFT,YSFT)
− log p(y | x). We call the result of this stage the SFT model,

which has typically learned the correct input/output format for the given task and has partially elicited
the PLM’s capabilities.

Subsequently, to further improve performance, the SFT model undergoes RLHF via algorithms like
PPO (Ouyang et al., 2022; Bai et al., 2022; Schulman et al., 2017), DPO (Rafailov et al., 2024; Dubey
et al., 2024), or related methods. In this stage, a new dataset is constructed using a set of prompts
x ∈ XRLHF and response pairs y, y′ sampled from the SFT model. Each prompt and pair of responses
are shown to a human annotator that picks the response they prefer, creating a dataset of triples
(x, y+, y−) ∈ DRLHF, where y+ is preferred to y−. This dataset is used for preference optimization
via methods like PPO, which trains a reward model from DRLHF for online RL, or DPO, which uses
an implicit reward model. In this work, we focus on DPO due to its computational efficiency and
stability. We call the output of the this stage the SFT+DPO model.

Simulating unreliable human supervision To study how current post-training pipelines perform
under unreliable supervision, we need tasks with known ground truth so that we can evaluate
performance, along with realistic forms of unreliable supervision. We employ two approaches to
simulate unreliable supervision: small language models (Section 4 and 5) and time-constrained
humans (Section 6). Most of our experiments focus on the small-LM case, in line with Burns et al.
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(2023) and Dubois et al. (2024), and we then verify the results on our instruction-following dataset
using time-constrained human annotators.

For both forms of supervision, we need to simulate both unreliable demonstrations and unreliable
comparisons. For humans, we do this simply by querying them. For small LMs, we follow the
procedure below (more details in Appendix B):

1. Unreliable task demonstrations: We finetune a small PLM p̃ on ground-truth demonstrations
and use it to generate responses for a held-out set of prompts as unreliable demonstrations.

2. Unreliable comparison feedback: We finetune a classification model q̃ to select the better
response when given two responses y1, y2 and a prompt x, where q̃(y1 ≻ y2 | x) denotes the
probability that y1 is preferred to y2. Note that q̃ is based on the same PLM as p̃ but with an
additional classification head. Each element of q̃’s training data consists of a prompt and two
responses: one response is from the ground-truth demonstrations used to train p̃ and the other
is a lower-quality output generated by intermediate checkpoints of p̃. q̃ is trained to choose the
ground truth using a standard binary classification loss.

SFT+DPO with unreliable supervision. We start by finetuning a larger PLM on an unreliable
SFT dataset D̃SFT = (X , Ỹ) to obtain an initial SFT model p̂ SFT, where Ỹ is a set of unreliable
demonstrations given by p̃ or time-constrained humans. We then perform K rounds of DPO training.
In each round k, we: sample completions y1, y2 from the current SFT+DPO model p̂ k−1

SFT+DPO for
each prompt x ∈ X (where p̂ 0

SFT+DPO ≡ p̂ SFT); collect unreliable comparisons using either q̃ or
time-constrained humans to construct an unreliable preference dataset D̃k

RLHF; and, use this to train
p̂ k−1

SFT+DPO via DPO, resulting in p̂ k
SFT+DPO. The final model after K rounds is denoted as p̂K

SFT+DPO or
simply p̂ SFT+DPO. Further implementation and hyperparameter details can be found in Appendix C.

3.1 TASKS AND MODELS

Datasets. We test SFT+DPO with unreliable feedback on three text generation tasks: mathematical
problem-solving using GSM8K (Cobbe et al., 2021), SQL code generation with BIRD (Li et al.,
2024), and safe instruction following with SaferPaca (Bianchi et al., 2023), which is a mix of the
Alpaca dataset (Taori et al., 2023) and refusal demonstrations to unsafe instructions. All datasets are
formatted as question-answer pairs following the same template.

Models. We use three open-source PLMs of varying sizes in our experiments: Gemma 2B (Team
et al., 2024), Mistral 7B (Jiang et al., 2023), and Meta Llama 3 70B (Dubey et al., 2024). Our
LM-simulated experiments include four settings that use a smaller model to supervise a larger model.
In our simulation with time-constrained humans, we only experiment with the largest 70B model.

Evaluation metrics. Each dataset requires a specific approach to evaluate model outputs and deter-
mine performance. For GSM8K, we parse the numerical answer following “####” at the end of each
response and compute exact match accuracy by comparing it with the ground truth. For BIRD, we
measure execution accuracy by running the generated code on corresponding test databases, following
Li et al. (2024). For SaferPaca, we follow Li et al. (2023) and use GPT-4o (OpenAI, 2024) to compute
win rate against reference answers.

Further details on datasets, evaluation metrics, model architectures, training and inference configura-
tions are provided in Appendix A, B, and C.

4 DPO IS INEFFECTIVE WITH UNRELIABLE SUPERVISION

In this section, we present results of SFT+DPO under LM-simulated unreliable supervision. We
find that SFT still retains some effectiveness, but DPO fails to improve the SFT model. We further
show that the failure of DPO appears to be caused by its tendency to overoptimize given unreliable
comparison feedback, which motivates our alternative approach introduced in the next section.

SFT shows limited robustness to unreliable demonstrations. We first investigate the effectiveness
of SFT under LM-simulated unreliable supervision. When finetuned on D̃SFT with unreliable demon-
strations given by p̃, the larger model p̂ SFT consistently outperforms p̃ across all tasks, demonstrating
SFT’s robustness to imperfect demonstrations (Figure 2).
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Figure 2: Models finetuned on unreliable demonstrations generated by a smaller supervisor model show higher
accuracy than the supervisor, demonstrating SFT’s robustness to unreliable supervision. However, SFT models’
full capability is only partially recovered with unreliable demonstrations. A → B denotes using demonstrations
generated by the model with size A to finetune the model with size B.
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Figure 3: DPO struggles to avoid overoptimization of noisy preferences while also updating the initial suboptimal
SFT model sufficiently to improve performance.

However, models finetuned on unreliable demonstrations inevitably learn to imitate errors in them.
When apply SFT to the same PLM using ground-truth demonstrations, which we denote pSFT, we find
that it significantly outperforms p̂ SFT (Figure 2). This shows that SFT on unreliable demonstrations
only partially recovers a model’s full capability, leaving a large performance gap between pSFT and
p̂ SFT. Thus, ideally, the subsequent DPO stage should further improve upon p̂ SFT.

DPO does not improve over SFT with unreliable comparisons. Contrary to DPO’s past success
(Rafailov et al., 2024; Dubey et al., 2024), we find that it consistently fails to improve performance
over SFT when both demonstrations and comparison feedback are unreliable (Figure 4). That is,
when we further finetune p̂ SFT via multiple rounds of DPO on comparison feedback given by q̃, the
resultant model p̂ SFT+DPO shows little to no performance gain (or performance even declines).

To investigate the degree to which this is due to the unreliable comparison feedback versus the
unreliable SFT data, we run DPO in two other settings on the GSM8K task. In the first, we train
starting with p̂ SFT but use an oracle evaluator for preference comparisons that always selects the
better answer by comparing model outputs to ground truth. In the second, we again use the oracle
evaluator, but start from an SFT model trained on a filtered subset of D̃SFT that only contains correct
demonstrations. As shown in Figure 1b, DPO with the oracle evaluator does manage to improve over
the starting SFT model in both cases. These results reveal that DPO’s effectiveness heavily relies on
high-quality supervision.
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Figure 4: ILR consistently provides more improvements for the SFT model than DPO in four settings with
LM-simulated unreliable demonstrations and comparison feedback. Round 0 represents accuracy of p̂ SFT.

4.1 DPO WITH UNRELIABLE FEEDBACK EXHIBITS OVEROPTIMIZATION

We hypothesize that DPO’s failure under unreliable supervision stems from the problem of overopti-
mization that preference-based learning methods often suffer from (Gao et al., 2023). Optimizing an
explicit reward function (with PPO) or an implicit one (with DPO) based on preference feedback can
initially lead to an increase in performance but eventually causes a decline as the reward function
diverges from the true objective. To combat this, both PPO and DPO regularize based on the KL
divergence between the initial and updated policies.

We find that the optimal amount of regularization for DPO, which is controlled by the hyperparameter
β, depends strongly on the reliability of comparison feedback. This dependency creates a critical
trade-off: stronger regularization is needed to prevent overoptimization with unreliable feedback,
but this constrains DPO’s ability to improve upon the suboptimal SFT model. To demonstrate this,
we measure DPO’s relative improvement over SFT under varying feedback quality levels and KL
regularization strengths (Figure 3). More results are presented in Figure 8.

With unreliable comparison feedback, DPO is especially prone to overoptimization and needs
very strong regularization. In Figure 3a, we consider three levels of feedback quality: unreliable
feedback from q̃, mixed feedback (50% q̃, 50% oracle), and pure oracle feedback. With oracle
feedback, smaller β values consistently yield better performance. However, as feedback quality
decreases, smaller β values lead to worse performance while only a suitably large β enables positive
improvements. This suggests that preference optimization under unreliable feedback needs heavy
regularization to prevent overoptimization.

Strong regularization limits useful model updates during DPO training. Figure 3b demonstrates
that larger divergence correlates with higher accuracy increases in the case of oracle feedback (colored
circles in upper left). This indicates that setting small β to allow substantial model updates is crucial
for improving upon the initial suboptimal SFT model. However, with unreliable feedback, this is not
possible: as we observed above, using insufficient regularization with unreliable comparisons leads to
overoptimization.

These two observations suggest a tension between preventing overoptimization from unreliable com-
parison feedback and making large enough model updates. Since SFT on unreliable demonstrations
produces a model p̂ SFT that is suboptimal, we need large updates to p̂ SFT to recover performance
close to pSFT. However, with unreliable comparison feedback, we need significant regularization (i.e.,
large β) for DPO, which prevents the large updates that are needed. Given these issues, we seek an
alternative algorithm that better leverages comparison feedback to improve over the SFT model.

5 ITERATIVE LABEL REFINEMENT

To overcome the limitations of preference optimization discussed in Section 4.1, our method needs
to be robust to unreliable comparisons while still allowing large updates from the SFT model. To
achieve this, we propose iterative label refinement (ILR). In contrast to RLHF methods, which
iteratively update the SFT model, ILR focuses on improving the unreliable demonstrations in the
initial SFT dataset. It uses comparison feedback to decide whether the initial SFT data should be
replaced by model-generated alternatives, and then retrains the model from scratch via SFT on the
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new data (Figure 1a). As we will show, ILR avoids the regularization dilemma discussed in Section
4.1 that impedes DPO with unreliable feedback. In ILR, retraining the model from scratch at each
iteration allows for large changes to the SFT model but avoids overoptimization. We introduce the
detailed methodology of ILR in Section 5.1, and demonstrate that it outperforms DPO both in the
LM-simulated setting (Section 5.2) and with time-constrained humans (Section 6).

5.1 METHODOLOGY

ILR consists of several iterations; during each iteration, the SFT dataset is improved by replacing
some of the demonstrations. The first step of each iteration is to gather proposed demonstrations
that may replace unreliable demonstrations in the current SFT data. These proposals are generated
using models trained via SFT on the current dataset. We showed in Section 4 that SFT models often
outperform their unreliable training data. Thus, by replacing some of the existing dataset with the
improved output of the SFT model, the overall quality and accuracy of the dataset should increase.

However, our findings in Section 4 only show that SFT models outperform their training data on
held-out prompts; if an SFT model is tested on a train prompt, it is likely to output responses that
contain mistakes imitated or memorized from the training data. Thus, if we use a model trained on the
entire current SFT dataset to generate proposals, those proposed responses are unlikely to improve
over the current responses in the dataset. To ensure that the proposed replacements are generated on
held-out prompts, we implement ILR by training two SFT models on different halves of the SFT
data; then, these models cross-label the half they were not trained on. This makes it more likely the
model-generated responses are different and better than the existing responses, enabling improvement
of the dataset.

Once proposal responses are generated, we selectively update the SFT dataset with them by leveraging
comparison feedback. We ask the annotator (i.e., the small LM q̃ or time-constrained humans) to
compare an existing response in D̃SFT with a model-generated proposal for the same prompt. If the
proposal is preferred by the annotator, it replaces the original response. After these comparisons are
complete, a new SFT model is trained on the updated dataset. As long as the annotator chooses better
responses more than half the time, the overall accuracy of the SFT data will increase, enabling the
new SFT model to outperform the initial one.

Formally, each iteration of ILR consists of the following steps:

1. Data splitting: We start with a dataset of task demonstrations Dk = (X , Ỹk), where k is the
current iteration and D0 ≡ D̃SFT. The dataset Dk is evenly split into two disjoint subsets,
D1

k = (X 1,Y1
k) and D2

k = (X 2,Y2
k).

2. Model training: Two models, p̂ 1
SFT and p̂ 2

SFT, are finetuned on D1
k and D2

k respectively.

3. Cross-labeling: Each model generates label proposals for the subset it wasn’t trained on, i.e., we
sample Z2

k ∼ p̂ 1
SFT(· | X 2) and Z1

k ∼ p̂ 2
SFT(· | X 1).

4. Proposal evaluation: The unreliable supervisor provides comparison feedback on the new
proposal zi and original label ỹi for a prompt xi to decide which of them is preferred, deciding
whether ỹi should be replaced by zi.

5. Label updating: Based on the comparisons in step 4, we form an updated dataset Dk+1 =

(X , Ỹk+1), where each element of Ỹk+1 is either the accepted new proposal or the retained
original label. We control the label refinement speed by setting a hyperparameter α ∈ (0, 1],
allowing at most α|X | labels to be updated in each iteration. When more than α|X | proposals
are accepted in step 4, we choose the ones with higher evaluation confidence, determined by
either q̃’s log probability or human annotators’ self-reported confidence. In all experiments we
set α = 0.15. Further analysis of α is presented in Appendix E.3.

At the end of each iteration, we finetune a new model starting from the base PLM of p̂ SFT using the
entire refined dataset DK , resulting in the SFT+ILR model p̂ k

SFT+ILR. This process is repeated for K
iterations and the final model is p̂K

SFT+ILR.

In the LM-simulated setting, we only consider proposals that are sufficiently different from the
original labels during step 4. We determine a proposal is different enough if it has a different final
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Figure 5: SFT label accuracy increases across rounds during ILR. With high-quality feedback, ILR can lead to
labels that approach or even surpass the accuracy of the model trained on ground truth (pSFT).

answer (GSM8K), different execution result (BIRD), or large embedding distance (SaferPaca). We
present the pseudo-code (Algorithm 1) and more implementation details of ILR in Appendix C.

5.2 LM-SIMULATED EXPERIMENT RESULTS

SFT+ILR leverages unreliable supervision better than SFT+DPO. We compare SFT+ILR and
SFT+DPO across four settings with LM-simulated unreliable demonstrations and comparison feed-
back (further validation using time-constrained human data is presented in Section 6). As shown in
Figure 4, SFT+ILR consistently outperforms SFT+DPO in all scenarios under unreliable supervision.
In GSM8K, ILR shows more significant improvements as model size increases from 7B to 70B,
suggesting that it benefits from model scaling and may remain effective for future models that are
even more capable.

Comparison feedback is effective for improving demonstration quality. ILR relies on refining
SFT data using comparison feedback, which is often easier to obtain than high-quality demonstrations,
especially for complex tasks that humans struggle with. Figure 5a shows that unreliable comparison
feedback guides this refinement process effectively: the accuracy of the SFT data steadily increases
with more rounds of ILR. As suggested, this is likely because evaluation of AI output is typically
easier than the demonstration of an ideal output (Leike et al., 2018), allowing even imperfect feedback
to contribute to meaningful improvements in the SFT data. With reliable feedback (Figure 5b), the
SFT demonstrations can be improved even further, approaching or even surpassing the accuracy of
the model p̂ SFT trained on ground truth. This highlights ILR’s potential when combined with other
scalable oversight techniques that enhance humans’ evaluation capability.

ILR enables larger model updates and more efficient use of comparison feedback. As illustrated
in Figure 3b, models trained with ILR exhibit significantly higher KL divergence from the initial SFT
model compared to those trained with DPO even after a single round. Moreover, when comparison
feedback is reliable while SFT data is not, ILR shows much higher efficiency than DPO, using the
same amount of feedback to enable larger improvement over the initial SFT model. These can be
attributed to ILR’s direct modification of the unreliable SFT data, which fundamentally alters models’
training dynamics during SFT. By doing so, ILR allows each subsequent model to learn from new
data independently and from scratch, without inheriting the errors of previous models, unlike the
continual preference-based training seen in DPO.

Supervision for refinement is necessary. Since the SFT models can generate proposal responses
that are more accurate than their training data, it appears that one can simply replace the initial SFT
data with new proposals without using any comparison feedback. To understand the importance of
comparison feedback in ILR’s refinement process, we compare it to a naive approach that directly
replaces an α fraction of the original labels with new proposals in each round. As shown in Figure 9
(Appendix E.2), this naive method leads to performance degradation, showing that supervision in the
refinement process, even if unreliable, is necessary. It could be that training on model outputs without
any curation leads to model collapse, a phenomenon observed when training generative models with
synthetic data (Shumailov et al., 2023; Ren et al., 2024; Gerstgrasser et al., 2024).
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Figure 6: (a) Distribution of word count of human written demonstrations compared to GPT4-generated answers
collected by (Peng et al., 2023). (b) In both rounds of ILR, participants are at least moderately confident in
choosing newly proposed labels over original human demonstrations 20% of the time, but they tend to update
less in later rounds. Participants are overall more confident when choosing human demonstrations, indicating
that the improvements brought by W2SG may not always be as apparent. (c) ILR enables more improvements
on top of the initial SFT model, while DPO plateaus similar to what is observed in LM-simulated settings.

Question

Below is an instruction
that describes a task...
Instruction: Explain the
concept of random for-
est.

Human Demonstration

A random forest is a
forest, usually in nature,
that is not accounted for
with maps or other docu-
mentation.

Chosen AI output

A random forest is a ma-
chine learning method
for predication or clas-
sification using multiple
decision trees...

Figure 7: Example of lable refinement in ILR: When instructed to explain "random forest," an inaccurate human
demonstration misinterpreted it as a natural forest. Human workers then chose to replace this with a more
accurate model-generated explanation, improving the SFT dataset quality.

6 TIME-CONSTRAINED HUMAN STUDY

To validate our findings from LM-simulated settings, we conduct a human study where we recruit
workers through CloudResearch Connect1 to provide both task demonstrations and comparison
feedback for an instruction-following task. Although the task is not beyond human capability, we
impose time constraints to create annotator noise and obtain unreliable data; this simulates the
challenges that may arise as humans supervise AI on complex tasks that are difficult for humans
themselves.

Task and data collection. For simplicity, we focus on the Alpaca instruction-following dataset
(Taori et al., 2023; Peng et al., 2023) without unsafe instructions. Evaluation is done using the
complete test set of AlpacaEval (Li et al., 2023) and GPT-4o as a judge, similar to evaluation in our
SaferPaca setting. We collect human demonstrations for 1,000 randomly sampled instructions, with
workers instructed to spend 1-2 minutes to write each response. Each worker is assigned 15 questions,
plus 3 attention checks used to filter out low-quality responses. As shown in Figure 6a, human
demonstrations are generally shorter than GPT-4-generated responses, suggesting suboptimal quality
due to time constraints. For the comparison feedback used in DPO and ILR, we instruct workers to
spend 30 seconds to 1 minute per question, with 50 questions assigned per worker and 3 additional
questions for quality checks. We collect 1,000 comparisons for each algorithm in each round and
conduct two rounds of both DPO (β = 0.1) and ILR (α = 0.1). We also use the comparison data
collected for DPO with β = 0.1 to run DPO with several other β values. More details of our human
study setup are provided in Appendix D.

ILR outperforms DPO with time-constrained human supervision. With time-constrained unreli-
able human supervision, ILR demonstrates fast and consistent improvement compared to DPO (Figure
6c). While DPO with strong regularization (large β) improves slowly, DPO with less regularization

1https://connect.cloudresearch.com
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(small β) improves quickly in the beginning but then plateaus in performance. We hypothesize that
DPO may be overoptimizing with insufficient regularization, similarly to our LM-simulated experi-
ments. Notably, the results of ILR and DPO with the collected time-constrained human data are most
similar to LM-simulated scenarios with unreliable demonstrations but reliable comparison feedback,
as seen in Figure 3. This suggests that comparing Alpaca outputs remains relatively straightforward
for humans even under time pressure. Future work could explore more complex tasks or even shorter
time constraints to better simulate more unreliable human feedback.

ILR effectively improves SFT data because models finetuned on unreliable demonstrations
can surpass human supervisors. We find humans are at least moderately confident in choosing
model-generated outputs over original human demonstrations for more than 20% of the questions in
both rounds of ILR (Figure 6b). This further confirms the W2SG phenomenon, where models trained
on unreliable supervision can surpass their supervisor. For example, Figure 7 demonstrates that a
participant chose to replace human-written misinterpretation of "random forest" with a more correct
and detailed model-generated explanation.

However, improvements brought by W2SG may not always be significant, since participants are
often more confident when choosing human demonstrations while less confident when choosing
model outputs, as shown in Figure 6b. Also, we observed a decrease in human selection of model
outputs in the second round of ILR. This suggests either a limitation in human evaluation capability
or W2SG being impossible for certain questions. To address this, future work could explore better
refinement mechanisms that combine human demonstrations with AI outputs, potentially allowing
for more nuanced refinement in cases where both human and AI responses are partially correct in
complementary ways.

7 DISCUSSION

In this work, we study the effectiveness of a typical SFT+DPO pipeline for language model post-
training under unreliable supervision, as simulated by small LMs and time-limited humans. We show
that, unlike with reliable feedback, SFT+DPO fails to improve upon SFT. Our analysis suggests that
DPO struggles to avoid overoptimization with unreliable comparison feedback and requires heavy
regularization, preventing it from correcting significant errors in the SFT model. To address this,
we propose ILR to redirect comparison feedback towards improving unreliable demonstrations in
the SFT dataset. ILR enables larger model updates without the overoptimization risks in preference
optimization and consistently outperforms DPO under unreliable supervision.

Limitations. Our focus on RLHF via DPO may not fully capture the nuances of RLHF pipelines that
use reward modeling and PPO. Future research should verify whether our findings generalize to these
more complex RLHF setups. Also, our human study using time-constrained data collection may not
perfectly simulate human errors that arise from more realistic capability constraints. Exploring more
challenging tasks such as competition math or coding could potentially provide a closer analogy to
supervising AI on tasks that humans truly struggle with.

Future work. Our findings open several exciting directions for future research. For example, one
could explore hybrid approaches that combine ILR with RLHF. Applying PPO or DPO after sev-
eral rounds of ILR could potentially yield more improvements, since the problem of imitating
errors in unreliable demonstrations is relieved after improving the SFT data with ILR. Additionally,
investigating more sophisticated label refinement strategies, such as synthesizing human demonstra-
tions with model-generated proposals or implementing ensemble techniques through more than two
cross-labeling splits, could potentially further enhance the effectiveness of ILR.

Broader impact. Our findings suggest a potential paradigm shift in how we approach human oversight
of AI systems under unreliable supervision. We show that the canonical RLHF post-training pipeline
may no longer be the best use of human comparison feedback. Instead, we need methods like ILR
that leverage model outputs to improve and learn from unreliable human supervision.
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A TASKS AND EVALUATION

A.1 DATASETS

GSM8K (Cobbe et al., 2021): This dataset contains math word problems widely used to evaluate
language models’ mathematical problem solving capabilities. In total, there are 8.5K question-answer
pairs for training and 3K for testing.

BIRD (Li et al., 2024): In this task, models are required to generate an SQL query that answer a
question of interest, given context of database descriptions. We filter out questions with token lengths
greater than 1024 and obtained 8.5K examples for training and 1.4K for testing.

SaferPaca (Bianchi et al., 2023): This dataset is a mixture of instruction following questions from
(Taori et al., 2023) and demonstrations of refusals to unsafe instructions. It requires a model to serve
as an assistant that follows human users’ instructions while generating responsible responses and
rejecting harmful prompts. For efficiency, we use a subset that contains 9500 general instructions
with responses labeled by GPT-4 (collected by Peng et al. (2023)) and 500 safety-related instructions
with the original labels in (Bianchi et al., 2023). The test set we use contains 300 questions and
reference answers taken from AlpacaEval (Li et al., 2023), alongside 278 safety questions and simple
rejections ("Sorry, I cannot help with that.") of the I-MaliciousInstructions and I-CoNA
datasets used in (Bianchi et al., 2023).

We format all datasets into question-answer pairs following the same template:

Prompt template for all datasets

USER:\n{question}\n\nASSISTANT:{answer}\n

A.2 EVALUATION

Sampling. For all tasks and models, we sample one response for each prompt using vLLM (Kwon
et al., 2023) with beam search enabled and beam size set to 4.

Metrics. For GSM8K, we simply parse the final numerical answer and compute exact match accuracy.
For BIRD, we download all databases and execute the generated code on them to compute execution
accuracy, following (Li et al., 2024). We ensure all models’ generated code is executed on the same
machine for fair comparison. For SaferPaca, we adopt the CoT prompt (shown below) from (Li et al.,
2023) and use GPT-4o (OpenAI, 2024) to compute model answers’ win rates against the reference
answers. Specifically, we compute GPT-4o’s mean probability of generating a token that chooses the
model’s answer over the reference answer.

Prompt template for GPT-4o evaluation

Select the output A or B that best matches the given instruction.
Choose your preferred output, which can be subjective. Your answer
should first contain a concise explanation and then it should end
with ONLY the token: ‘A‘ or ‘B‘ (no dot, no backticks, no new line,
no quotes, no ’it depends’, no ’both’ ...), because we will use
‘output[-1]‘ to extract the best output.

Here’s an example:

# Example:
## Instruction:
Give a description of the following job: "ophthalmologist"

## Output A:
An ophthalmologist is a medical doctor who specializes in the
diagnosis and treatment of eye diseases and conditions.

## Output B:
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An ophthalmologist is a medical doctor who pokes and prods at your
eyes while asking you to read letters from a chart.

## Concise explanation followed by ‘A‘ or ‘B‘

### Concise explanation
A provides a comprehensive and accurate description of the job of an
ophthalmologist. In contrast, B is more of a joke.

### Which is best, ‘A‘ or ‘B‘?
A

# Task:
Now is the real task.

## Instruction:
{instruction}

## Output ‘A‘:
{A}

## Output ‘B‘:
{B}

## Concise explanation followed by ‘A‘ or ‘B‘

### Concise explanation

B LM-BASED SIMULATION DETAILS

For GSM8K, we experiment both with using the 2B model to supervise the 7B model, and using
the 7B model to supervise the 70B model. For SaferPaca and BIRD, we consider 2B supervising
7B and 2B supervising 70B, respectively, to balance limited compute while maintaining sufficient
performance gaps between models.

In each task, we split the training set into two halves. We use the first half as ground truth to train p̃ and
q̃, and then use p̃ to generate labels for the second half or use q̃ to generate comparison feedback for
answers to questions in the second half. This is similar to the setup in (Burns et al., 2023), despite that
we are operating on text generation tasks with both task demonstrations and comparison feedback.

To collect training data for q̃, we evenly save 10 intermediate checkpoints when training p̃ and use
them to sample answers for questions in their training set. Then, we pair these low-quality answers
with ground truth answers, and train q̃ to select the ground truth with a standard binary classification
loss. In SaferPaca, we balance refusals and acceptances (i.e., following the instruction) in the training
data to avoid class bias in q̃. This is done by first training two p̃ on safe and unsafe instructions in
SaferPaca respectively and sampling answers from them for each instruction. In this way, we obtain
both acceptance and refusal responses for each instruction, and then pair them up with the ground
truth as q̃’s balanced training data.

We use the following template to compose two answers and the question into a prompt for q̃:

Prompt template for q̃

QUESTION:
{{question}}

ANSWER (A):
{{answer_a}}

ANSWER (B):

16
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Table 1: Training Hyperparameter for Each Dataset

Dataset Epoch Batch Size Max Answer Token
GSM8K 2 32 256
BIRD 2 32 256
SaferPaca 4 32 512

Algorithm 1: Iterative Label Refinement (ILR)

Input :Initial SFT dataset D0 = (X , Ỹ0)
Comparison feedback annotator q̃
Maximum iterations K
Refinement rate α

Output :Refined dataset DK

Final model p̂K
SFT+ILR

1 for k = 0 to K − 1 do
2 Split Dk into two disjoint subsets:
3 D1

k = (X 1, Ỹ1
k) and D2

k = (X 2, Ỹ2
k), where X 1 ∪ X 2 = X

4 Train models p̂ 1
SFT on D1

k and p̂ 2
SFT on D2

k

5 foreach xi ∈ X 1 do
6 Sample one proposal zi ∼ p̂ 2

SFT(· |xi)

7 foreach xi ∈ X 2 do
8 Sample one proposal zi ∼ p̂ 1

SFT(· |xi)

9 foreach xi ∈ X do
10 Collect comparison feedback for (zi, ỹk,i) using q̃
11 Proposal zi is accepted if the feedback is zi ≻ ỹk,i

12 Let A be the set of indices where zi is accepted
13 Limit |A| ≤ α|X | by selecting proposals with highest confidence
14 Update labels:

15 ỹk+1,i =

{
zi if i ∈ A,

ỹk,i otherwise
16 Form the updated dataset Dk+1 = (X , Ỹk+1)
17 Train model p̂ k+1

SFT+ILR via SFT on Dk+1

18 return DK , p̂SFT+ILR[K]

{{answer_b}}

You gave the answer (A) to the question. Do you accept to
change it to answer (B) proposed by another model?

Note that the prompt states an order of “your answer” and “answer proposed by another model” due
to historical reasons. In practice, we randomize the two answers’ order to avoide position bias.

C IMPLEMENTATION DETAILS OF SFT, DPO, AND ILR

In all our experiments, we apply Low-Rank Adaptation (LoRA) (Hu et al., 2021) for efficient model
training. We set r = 64 and α = 128 for all models.

SFT. For each task, we use a consistent setting of epoch, batch size, and max answer token for all
models (Table 1). We use set learning rate to 5e−4 for Gemma 2B and 1e−4 for Mistral 7B and Meta
Llama 70B across all tasks. We use Adam (Kingma, 2014) optimizer for Gemma 2B and Mistral 7B
and AdaFactor (Shazeer & Stern, 2018) for Meta Llama 70B. We enable gradient checkpointing and
use gradient accumulation with a mini batch size of 1 for all models.
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ILR. We present the pseudo-code of ILR in Algorithm 1. Each round of ILR uses the same training
configuration as the initial SFT, since the only difference is that the dataset is refined. When training
the half-data models used for generating new proposals, we also adopt the same SFT training
configuration for simplicity.

In our LM-simulated experiments, we only collect comparison feedback for proposals and initial
demonstrations that are sufficiently different. In GSM8K and BIRd, this is determined by having
different final numerical answer or execution result. For SaferPaca, we use OpenAI Embeddings
API to compute the embeddings for the two responses, and then take dot product to compute
their embedding distance. We only collect comparison feedback for pairs with the top 50% largest
embedding distance.

DPO. We use the DPOTrainer in HuggingFace Transformers (Wolf et al., 2020) to perform DPO
training. In all tasks, we use the suggested rmsprop optimizer with learning rate set to 1e−6, and we
train for the same number of epochs as SFT. For all LM-simulated tasks, we sample 6 completion for
each prompt, create 3 pairs with them, and then gather comparison feedback using q̃. We subsample
the top 15% confident feedback (measured by |q̃(y1 ≻ y2 | x)− 0.5|) when constructing D̃RLHF,
since we find this performs much better than using all feedback generated by the unreliable q̃ in DPO.
Specifically, in GSM8K (2B → 7B), model accuracy after one round of DPO is 0.32±0.0043 when
using all feedback and 0.36±0.0032 when using the 15% most confident feedback.

D HUMAN STUDY DETAILS

We use CloudResearch Connect2 to recruit online workers to write human demonstrations for 1000
Alpaca (Taori et al., 2023) instructions and provide comparison feedback that are used in two rounds
of ILR and DPO.

D.1 COLLECTING HUMAN DEMONSTRATIONS

In our survey for collecting human demonstrations, we assign each worker 15 questions with 3
additional screening questions formatted in the same way for filtering out low-quality responses.
Specifically, the screening questions and filtering critiria are:

1. Instruction: How many letter R’s does the word ‘STRAWBERRY’ have?
Expected answer: Anything containing 3 or three.

2. Instruction: Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of
babysitting. How much did she earn?
Expected answer: Anything containing 10 or ten.

3. Instruction: I want to know what dish I can cook with these ingredients: eggs, tomatoes,
salt, oil. Also, please give me a list of steps to cook it.
Expected answer: Anything containing the mentioned ingredients and at least 2 steps for
cooking them.

The task instruction we provided at the beginning of the survey is:

Task instruction for writing response demonstrations

Thank you for participating in our study! We would like your help in training an AI assistant that can
follow users’ instructions in a helpful, honest, and harmless way.

In this survey, you will be presented with 15 questions posed by human users to an AI chatbot. For each
question, please take more than 1 minute and less than 2 minutes to write a response that you think is as
helpful, honest, and harmless as possible. Please aim for high-quality detailed responses within the
given time.

Additionally, there will be 3 randomly placed quality check questions. These questions are super easy
and you will definitely get them right if you are attentive. We will manually check your answers to

2https://connect.cloudresearch.com
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these questions, and if you don’t pass, your response may not be qualified. However, you will still
receive a base payment of $0.75. In such a case, please manually return the assignment to ensure we
can pay you the base amount. Please let us know if you find our judgement incorrect.

To get full compensation, please complete all questions. Otherwise, you will only receive a base
payment of $0.75.

At the end, we welcome your feedback on improving the survey for future participants!

NOTE: Please refrain from searching for answers during the survey. No use of external sources (e.g.,
Google or ChatGPT) is allowed.

D.2 COLLECTING HUMAN COMPARISON FEEDBACK

In each round of ILR and DPO, we collect human comparison feedback for all 1000 questions.
For DPO, model completions are generated by models trained with β = 0.1. In our survey for
collecting human comparison feedback, we assign each worker 50 questions with 3 additional
screening questions formatted in the same way for filtering out low-quality responses. Specifically,
the screening questions and filtering critiria are:

1. Instruction: Where is water that has its salt removed before it can be used as drinking water
most likely to have come from?
Response A: Water that has its salt removed before it can be used as drinking water is most
likely to have come from a sea.
Response B: Water that has its salt removed before it can be used as drinking water is most
likely to have come from a lake.
Expected answer: A with any confidence level.

2. Instruction: Help me solve this math problem. Input: How can I compute the area of a
circle with radius 5?
Response A: The area of it is 25π.
Response B: Note that the area of a circle with radius r is π * r2. Therefore, the area of a
circle with radius 5 is π * 5 * 5 = 25π.
Expected answer: B with any confidence level.

3. Instruction: Immediately before and after running a 50 metre race, your pulse and breathing
rates are taken. What changes would you expect to find?
Response A: After running a 50-metre race, an increase in pulse and breathing rate is the
changes one would expect to find immediately before and after.
Response B: After running a 50 metre race, you would expect to find an increase in pulse
but no change in breathing rate when your pulse and breathing rates are taken immediately
before and after the race.
Expected answer: A with any confidence level.

The task instruction we provided at the beginning of the survey is:

Task instruction for providing comparison feedback

Thank you so much for participating in our study! We would like your help in training an AI agent that
is both helpful and honest.

First, you will be shown three screening questions, and if you get them correct, you will be
able to participate in the rest of our survey. If you do not qualify, you will be eligible to re-
ceive a base payment of $0.75, and you will be automatically redirected to a Google Form. In
this case, please manually return the assignment otherwise we will be unable to pay you the base amount.

For the main task, you will be shown fifty request-response groups: each request is posed by a user
to an AI chatbot, and you will see two potential responses that the AI chatbot has generated. Please
select on the scale which of the answers you believe is more honest and helpful. For instance, if
you believe one of the choices is more helpful, select the bubble corresponding to one of the two

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0 1 2 3 4
Round

7.5%

5.0%

2.5%

0.0%

2.5%

5.0%

7.5%

10.0%

Re
la

tiv
e 

Ac
cu

ra
cy

 In
cr

ea
se

 (%
)

Effect of KL Regularization (GSM8K 2B  7B)

Oracle feedback
50% oracle + 50% unreliable feedback
Unreliable feedback

0.01

0.03

0.1

0.3

1

3

10

 (C
oe

ffi
cie

nt
 o

f K
L 

Re
gu

la
riz

at
io

n)

(a) DPO effectively improves SFT models with or-
acle feedback, especially with weak regularization.
However, with unreliable feedback, improvements are
limited to a narrow range of regularization strengths
because weak regularization causes overoptimization.
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Figure 8: DPO struggles to avoid overoptimization of noisy preferences while also updating the initial suboptimal
SFT model sufficiently to improve performance.

extremes on the scale, but if you believe the two choices are similar to each other, select a bubble
in the center of the scale. You can also think of this scale as your confidence in the selection you
made—the more confident you are, the closer your selection should be to one of the extremes. Option-
ally, you can explain why you chose the response that you did in the scratch space provided on each page.

You should spend around 30 seconds and no more than 1 minute for each question. The total time
limit of this survey is 50 minutes. Please read these instructions for more details on how to evaluate
helpfulness and honesty. You may open the instructions in a separte tab for reference whenever you
want. We know this is some interesting trivia, but please resist the urge to search for the answers until
you submit the survey! No use of external sources, including Google or ChatGPT, is permitted.

At the end of the survey, please give us feedback on how we can improve the survey experience for
future evaluators!

NOTE: Please do not take this survey more than once! You will not be compensated for more than one
attempt.

Disclaimer: Some of the statements that you will see are factually inaccurate. Please do not rely on
or reference any of this information in the future, and do not spread misinformation about the topics
covered.

D.3 DPO AND ILR HYPEPERAMETERS

In both DPO and ILR, we only use comparison data with at least moderate confidence. We tested the
first round of DPO using the top 10%, 20%, 30%, 40% and 80% most confident comparisons and
found 30% yields the best performance, hence this is applied throughout the two rounds. We also
tested β ∈ {0.01, 0.1, 0.5, 0.1} for the first round and found β = 0.1 performs the best. For ILR, we
tested α ∈ {0.1, 0.2, 0.3} for the first round and applied the best-performing α = 0.1 across the two
rounds.

E ADDITIONAL EXPERIMENTS

E.1 KL REGULARIZATION IN DPO

In Figure 8, we present the complete experiment results when using different levels of KL regulariza-
tion and feedback quality for DPO.
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Figure 9: Naively replacing initial SFT labels with new model’s proposals lead to performance degradation
across all tasks, suggesting the importance of refinement oversight.
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Figure 10: Left: Overall, ILR is not particularly sensitive to choice of α, although larger α may lead to less stable
performance, while small α does not allow enough improvement. Right: When α is large enough, SFT data
label accuracy converge to a similar level. When α is overly small, label accuracy is not efficiently improved.

E.2 FAILURE OF NAIVE ILR: SUPERVISON FOR REFINEMENT IS NECESSARY

To understand the importance of comparison feedback within ILR’s refinement process, we compare
it to a naive approach that directly replaces an α fraction of the original labels with new proposals
without any feedback. As shown in Figure 9, this naive method leads to performance degradation
in all tasks, showing that supervision in the refinement process, even if unreliable, is necessary. It
could be that training on model outputs without any curation leads to model collapse, a phenomenon
observed when training generative models with synthetic data (Shumailov et al., 2023; Ren et al.,
2024; Gerstgrasser et al., 2024).

E.3 EFFECT OF CONTROLLING REFINEMENT SPEED IN ILR

The refinement speed in ILR, controlled by α, plays a crucial role in maintining stability. Figure 10
illustrates the impact of different α values on model performance in GSM8K. We find α = 0.05 too
small for effective improvement of label accuracy, while large α’s make the refinement process less
stable. According to this result, we set α = 0.15 for all other experiments in LM-based simulation
and find that this choice leads to relatively stable performance across all tasks, showing that α is not
particularly sensitive to change in data distribution. Future work can explore adaptive refinement
speed to remove the potential need for manual hyperparameter tuning.

E.4 IMPROVING DPO WITH ILR MODULES

Several modules in ILR can also be applied to DPO. In sDPO, we use two models trained on disjoint
data subsets to generate samples for the preference dataset, similar to how we generate proposals with
the cross-labeling framework in ILR. In wsDPO, we construct the preference dataset by comparing
model-generated responses with original unreliable labels, similar to the mechanism of using feedback
to decide label refinement in ILR. We test these two variants of DPO in the GSM8K (2B → 7B)
setting. As shown in Table 2, these methods provide minimal improvements upon DPO. We conjecture
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Table 2: Accuracies of DPO variants with ILR modules across 4 rounds. The highest value in each column is
highlighted in bold.

Method Round 1 Round 2 Round 3 Round 4

DPO 0.3591 0.3520 0.3462 0.3412
sDPO 0.3624 0.3561 0.3457 0.3343
wsDPO 0.3626 0.3624 0.3538 0.3482
ILR 0.3647 0.3738 0.3851 0.3788

Table 3: Accuracies of DPO variants with improved loss functions across 4 rounds. The highest value in each
column is highlighted in bold.

Method Round 1 Round 2 Round 3 Round 4

DPO 0.3591 0.3520 0.3462 0.3412
IPO 0.3604 0.3571 0.3503 0.3460
cDPO 0.3589 0.3536 0.3563 0.3530
rDPO 0.3568 0.3487 0.3386 0.3391
ILR 0.3647 0.3738 0.3851 0.3788

that they still struggles due to similar reasons to standard DPO: Errors learned during the initial
SFT stage being hard to correct through preference optimization, and limitations caused by the
overoptimization issues discussed in Section 4.1.

E.5 ROBUST DPO LOSSES

Recent work has proposed several DPO losses that address preference noise. In Table 3, we compare
IPO (Azar et al., 2024), cDPO (Mitchell, 2023), and rDPO (Chowdhury et al., 2024) to standard DPO
and ILR. While these methods may help with random preference noise, they are less effective for
handling unreliable supervision in our setting. This could be because both task demonstrations used
in SFT and comparison feedback are unreliable in our setting. Moreover, noise in demonstrations
or comparison feedback are systematic (Section 2) instead of random, unlike the random label flip
assumed in some theoretical results (Mitchell, 2023; Chowdhury et al., 2024). Such systematic errors
are particularly challenging because they may not be easily modeled using standard robust learning
techniques.
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