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ABSTRACT

Early disease detection with snapshot data has been effectively addressed by the
Dynamical Network Biomarkers (DNBs) theory. After early disease detection, it
is crucial to consider early medical treatment to prevent it. This paper presents
a novel framework for identifying mRNA-protein regulatory systems from snap-
shot data and designing interventions. We first estimate the state covariance of
mRNA-protein expression using multi-episode snapshot samples. Then, we iden-
tify the underlying continuous-time dynamics by solving a Lyapunov-based re-
gression problem. We provide finite-sample guarantees on the estimation accuracy
of the system matrix and its dominant eigenvectors, which are essential for down-
stream treatment design. Building on these estimates, we formulate an optimal re-
stabilization strategy that minimizes input energy with desired spectral shifts. To
ensure practical feasibility, we further propose a diagonal re-stabilization scheme
that identifies key regulatory nodes using a first-order eigenvalue sensitivity anal-
ysis. Numerical examples on synthetic mRNA-protein network demonstrate that
our method accurately identifies regulatory node under high-dimensional, low-
sample conditions and significantly outperforms existing baselines.

1 INTRODUCTION

In biological systems, functions such as mRNA regulation and protein interactions occur through
complex networks (Briat & et al., 2016). Many diseases stem from abrupt deterioration in these net-
works, often modeled as bifurcation phenomena (Chen et al., 2012; Sadria & Bury, 2024). Using the
snapshot data samples, the Dynamical Network Biomarker (DNB) method can predict the stage of
the system immediately before the bifurcation occurs, referred to here as the pre-disease stage (Liu
et al., 2015). According to DNB theory, certain nodes exhibit amplified fluctuations as they ap-
proach a bifurcation point. These dominant directions reflect nodes with large fluctuations, and can
be estimated from snapshot data. The DNB theory also enables early disease detection based on
the increased fluctuations of specific biomarkers (Aihara et al., 2022). The ability to detect diseases
at the pre-disease stage is crucial for early medical intervention. Traditional Japanese medicine has
been used to suppress DNB node fluctuations and prevent disease progression (Koizumi et al., 2020).
Experimental results in (Chen & et al., 2022) demonstrate that manipulating multiple DNB nodes
can significantly alter malignant phenotypes in lung cancer. The success of heuristic approaches has
further inspired the development of theoretical frameworks for early medical intervention. Recent
studies have explored early treatment via high-dimensional low sample-size (HDLSS) snapshot data.
While (Yasukata et al., 2023) proposed a single-input method for undirected networks, extensions to
directed networks were developed in (Shen et al., doi:10.1109/TETCI.2024.3442824). These works
highlight the importance of the system matrix’s left eigenvector corresponding to eigenvalues with
maximal real parts for optimal input placement, information not directly accessible via principal
component analysis (PCA), necessitating system identification by snapshot data. Learning stochas-
tic dynamics from snapshot data has recently gained considerable attention in the machine learning
community (Song et al., 2021; Neklyudov et al., 2023; Tong et al., 2024). A dominant approach in-
volves first inferring time-series trajectories from the data, followed by system identification based
on the inferred trajectories (Tong et al., 2020). This trajectory inference has been particularly stud-
ied in the context of single-cell RNA sequencing (Saelens et al., 2019; Shi et al., 2022; Sha et al.,
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2024), where uncovering the underlying temporal progression of cellular states is essential. Optimal
transport methods have become central tools for such snapshot datasets with temporal resolution
(Bunne et al., 2024; Schiebinger et al., 2019), with the Schrödinger bridge (SB) formulation ex-
tending these methods to stochastic dynamics by modeling the most likely stochastic paths between
two distributions relative to a reference process (Léonard, 2014; Shi et al., 2024; Liu et al., 2022).
To improve computational tractability, regularization techniques have also been introduced to these
transport-based formulations (Chen et al., 2022; Zhang et al., 2025). Despite these advances, such
methods often suffer from high computational cost and rely on large sample sizes to obtain reliable
results, which are rarely satisfied in single-cell data analysis.

A core challenge in modelling gene regulatory systems is their inherently complex multiscale char-
acter: slow transcriptional changes interact with much faster protein-level dynamics, and meaningful
mechanistic descriptions and models must account for different scales (Fletcher & Osborne, 2022).
Classical mechanistic models based on differential equations have been used in systems biology for
capturing these interactions across domains from circadian–metabolic coupling and metabolic reg-
ulation to mechanistic models of immune and viral dynamics (Sadria & Layton, 2021a;b; Ingalls,
2013). While these models have enabled mechanistic insight across many biological settings, they
typically require dense time-series or carefully designed experiments for reliable parameter identifi-
cation, which are scarce in current high-throughput single-cell genomics. These limitations have mo-
tivated powerful trajectory-inference and representation-learning methods that reconstruct temporal
progressions from snapshots (for example, transport-based formulations and Schrödinger-bridge ap-
proaches). Such tools are useful for recovering likely cellular paths and population-level flows, but
their design goals differ from those needed for control: they prioritize path reconstruction (often
under specific loss/regularization choices) rather than explicit recovery of the low-level regulatory
parameters and multiscale structure required to reason about stability or to design energy-efficient
interventions. Complementary recent work demonstrates scalable deep and representation-learning
approaches that predict fate changes or extract parsimonious dynamical models from single-cell data
and a library-guided sparse discovery framework (Sadria et al., 2022; Sadria & Swaroop, 2025);
these advances substantially improve fate prediction and model discovery, but by themselves do not
directly yield the identifiable, control-ready parameterizations we target here.

In contrast, in this paper, we leverage the structural properties of the mRNA–protein regulatory net-
work to achieve reliable and computationally efficient system identification. This identified system
enables the design of effective early treatment strategies. Our main contributions are summarized as
follows: (a) System identification from snapshot data: We develop a framework that uses struc-
tural constraints of the mRNA–protein regulatory network to identify the system matrix from finite
snapshot data via Lyapunov-based regression. (b) Theoretical guarantees: We establish finite-
sample confidence bounds for both the system matrix estimation and the associated eigenvectors,
ensuring reliability even under High-Dimension Low-Sample-Size (HDLSS) conditions. (c) Early
intervention design: Building on the estimated system, we design both optimal and diagonal re-
stabilization strategies, providing a practical approach for early treatment at the pre-disease stage.
This is crucial as early (pre-disease) interventions are significantly more effective and less invasive
than treatments applied after full disease onset.

2 PRELIMINARIES AND BACKGROUNDS

Dynamic system for gene regulation. Gene transcription is regulated by transcription factors that
bind to DNA, with transcription rates modulated by their concentrations. Translated proteins can
further regulate gene expression. Translation lacks feedback to mRNA, and both mRNAs and pro-
teins degrade stochastically. This gene-mRNA-protein feedback is modeled by (Chen et al., 1999;
Liu et al., 2016; Passemiers et al., 2022; Sanders et al., 2020; Weidmann et al., 2021):

ż = Fθ (z) +w, Fθ (z) =

[
−∆r,θzr + fθ(zp)
Γr,θzr −∆p,θzp

]
. (1)

where z := [zr, zp]
⊤ ∈ R2n denotes mRNA and protein concentrations, and w is Gaussian noise

with covariance D. Transcription function fθ(zp) is a nonlinear n-dimensional vector encoding
protein-mediated regulation. Diagonal matrices Γr,θ, ∆r,θ, and ∆p,θ represent translation and degra-
dation rates and are all non-degenerate. These quantities are parameterized by θ ∈ Θ ⊂ Rm. Let
ze be the equilibrium point such that Fθ (z) = 0, where ze = [zer , z

e
p]

⊤. A linearized approximation

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

around ze can be written by (Chen et al., 1999)

ẋ = Aθx+w, x = z− ze, Aθ =

[
−∆r,θ Γp,θ

Γr,θ −∆p,θ

]
, Γp,θ =

∂fθ(zp)

∂zp

∣∣∣∣
z=ze

. (2)

Without re-stabilization

Data-Driven Re-stabilization Bifurcation

With re-stabilization

Cell Number 

Episode Number 

Non-temporal

Different models in different episodes.

Health (𝜽 = 𝜽𝐇) Disease 𝜽 = 𝜽𝐃Pre-disease (𝜽 = 𝜽𝐏 ≈ 𝜽𝐂)

Disease progression

Reversible Irreversible

Fluctuation

𝐳𝐞(𝜽𝐇) 𝐳𝐞(𝜽𝐃)

Fluctuation

𝐳𝐞(𝜽𝐇) 𝐳𝐞(𝜽𝐃) 𝐳𝐞(𝜽𝐇) 𝐳𝐞(𝜽𝐃)

Fluctuation

mRNA

Protein

Complex

mRNA

Protein

Complex ComplexDNB

mRNA

Protein

(a) (b) 

Figure 1: Conceptual illustration of the disease progression and snapshot dataset: (a) Illustration of
the disease progression from the health stage to the disease stage through the pre-disease stage. (b)
Illustration of the snapshot data-driven re-stabilization and the issue for system identification.

Disease progress and snapshot data. Figure 1 (a) shows chronic disease progression driven by
the parameter θ, where a tipping point θC separates the healthy stage ΘH from the disease stage
ΘD. This transition corresponds to a bifurcation in the nonlinear system (Chen et al., 2012). Let
ΘH := ΘH ∪ ∂ΘH denote the closure of the healthy region. As θ evolves within Θ := ΘH ∪ ΘD,
the equilibrium zeθ changes accordingly. In ΘH, the equilibrium is stable and approximated by ze,H,
while in ΘD, it shifts to ze,D, far from the healthy state (bottom of Figure 1 (a)). As shown in
Figure 1 (a), the system is stable in both ΘH and ΘD, since the maximum eigenvalue λd,θ of Aθ

has a significantly negative real part. At the tipping point θ ∈ ∂ΘH, this eigenvalue becomes zero.
In the pre-disease stage θP ≈ θC, we have the real part Re {λd,θ} ≈ 0−, indicating low stability
and high sensitivity to perturbations. As illustrated in Figure 1(b), measurements of the system
state x (mRNA and protein levels) are collected over H episodes. Each episode k corresponds to a
biological sampling time tk, where N individual cells are measured. These single-cell observations

form a snapshot of the internal state: D(k)
snap :=

{
x
(k)
m

}N

m=1
, x

(k)
m ∈ R2n. Such data are not time-

series but population-level samples reflecting heterogeneity at tk. The full dataset is denoted by

Dsnap :=
{
D(k)

snap

}H

k=1
.

Assumption 1. For each k = 1, . . . ,H , the following holds: (1) The samples
{
x
(k)
m

}N

m=1
are i.i.d.

from a continuous distribution µk: x(k)
m ∼ µk. (2) θ evolves smoothly across time tk

1.

This setting reflects realistic biological measurement conditions, where mRNA-protein regulatory
systems are quasi-stationary during sampling, and population-level expression distributions shift
gradually due to slow parameter changes. Note that the i.i.d. assumption applies only to the sample
index m, and no independence across time step k is assumed.

3 ADDRESSED PROBLEM AND CHALLENGING ISSUES

Pre-disease stage can be efficiently detected by snapshot data. Details of pre-disease detection are
summarized in Appendix A. Once the pre-disease stage is detected, it is natural to consider medical
interventions aimed at preventing further progression and restoring the gene regulatory network to
the healthy stage. In addition to alleviating patient suffering, early intervention at the pre-disease
stage is generally more effective—and often less invasive—than treating fully developed diseases.
Recovery from the disease stage requires steering the system from a diseased equilibrium point zeθ
with θ ∈ ΘD back to a healthy equilibrium zeθ with θ ∈ ΘH. This constitutes a nonlinear control

1“Smooth” means that θ is a smooth function of time t, indicating a smooth parameter evolution in time.
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problem due to the large deviation between these equilibria and the complex dynamics involved.
In contrast, recovery from the pre-disease stage is more tractable. Since the equilibrium point zeθ
changes only slightly for θ ∈ ΘH, the problem can be reasonably approximated as a linear con-
trol task. The objective in this case is not to shift the equilibrium but to enhance the system’s
robustness to external perturbations by increasing its local stability margin. To distinguish this type
of intervention from full recovery, we refer to it as re-stabilization. Re-stabilization aims to shift
the dominant eigenvalue λd,θ further into the left-half complex plane, thereby enhancing the sys-
tem’s resilience while it remains in the vicinity of the healthy regime. This can be achieved by
introducing a feedback loop that modifies the system matrix to Aθ + BθKθ. Here, the matrix
Bθ = [b1,θ, . . . ,bl,θ] ∈ R2n×l determines the input placement—i.e., the selection of genes for
intervention. We now formulate the re-stabilization problem with snapshot dataset Dsnap:
Problem 1 (Re-stabilization problem). At each episode k = 1, ...,H , the parameter in the tran-
scription function is defined by θ. Note that the true system matrix Aθk

, k = 1, ...,H in the lin-
earized error dynamics equation 2 is unknown. Given a snapshot dataset Dsnap, the objective is to
design a feedback intervention BθH

KθH
that the dominant eigenvalue of the closed-loop system

λ̃d,θ := maxRe (eig (Aθ +BθKθ)) satisfies Re(λ̃d,θ) < Re(λd,θ), realizing re-stabilization.

By solving the re-stabilization problem, we increase the stability margin of the mRNA-protein reg-
ulatory system, making it less sensitive to random fluctuations. As a result, the state distribution
becomes more concentrated around the healthy equilibrium and less likely to drift toward the dis-
ease state under uncertain perturbations. In biological terms, this means that even when the system
is close to a critical transition, effective re-stabilization can suppress large fluctuations in regulatory
genes and reduce the probability of crossing into the disease stage. This highlights the practical mo-
tivation of our framework: identifying regulatory nodes not only enables early detection of disease,
but also provides actionable targets for early intervention.

Challenging issues. Solving Problem 1 faces several key challenges. First, the snapshot dataset
Dsnap collected at the pre-disease stage (k = H), D(H)

snap, suffers from the high-dimensional, low-
sample-size (HDLSS) regime, as it typically contains expression measurements for n > 104 genes
across a few thousands single cells at most. That is, the number of molecular features far exceeds
the number of observable cells, creating severe challenges for statistical inference on the system
matrix AθH

using only the available data at tH . Second, the dataset Dsnap consists of non-temporal
(snapshot) observations, which precludes the use of system identification techniques that rely on
time-series trajectories. Furthermore, although snapshot data from earlier episodes are available,
they originate from distinct underlying models due to variation in θ across time and therefore cannot
be directly pooled with data from the pre-disease stage. As a result, classical control techniques
such as pole placement, which require full knowledge of the system matrix, are not applicable.
These issues necessitate the development of a novel data-driven approach capable of designing re-
stabilizing feedback using only distributional information extracted from limited snapshot data.

4 PROPOSED METHOD: GENERATIVE RE-STABILIZATION

Estimate 
Covariance Matrix

Identify the 
System Matrix

Re-stabilization 
designSnapshot data

• Convergence: Thm. 4 (Appendix A) • Problem formulation (Sec. 4.1)
• Convergence: Thm 1 (Sec. 4.2)
• Confidence: Thm. 2 (Sec. 4.2)

• Optimal (Sec. 4.3)
• Diagonal (Sec. 4.3)
• Confidence: Thm. 3 (Sec. 4.3)

Figure 2: A brief summary of the proposed method and content in this section.

A summary of the proposed method is illustrated by Figure 2. We begin by estimating the co-
variance matrix of the state at the pre-disease stage using snapshot data. Based on the estimated
covariance, the system matrix is then identified by solving a regression problem derived from the
Lyapunov equation. We analyze the probabilistic convergence of the estimated system matrix and
provide a finite-sample confidence bound for its estimation error. Finally, leveraging the estimated
system matrix, we carry out re-stabilization design, including both the optimal re-stabilization and a
practically implementable approximate diagonal re-stabilization approach.
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4.1 REGRESSION FROM LYAPUNOV EQUATION

At the steady state, the covariance matrix of x, denoted by Cθ ∈ R2n×2n, satisfies the Lyapunov
equation as follows (Chen et al., 2012; Oku & Aihara, 2018):

AθCθ +CθA
⊤
θ +D = 0. (3)

We identify the system matrix using equation 3 rather than solving a standard time-series regression
problem. The motivation for introducing the Lyapunov equation-based formulation is that, in prac-
tice, we do not observe full time-series trajectories but only snapshot measurements across cells.
The Lyapunov equation directly links the covariance of the stationary distribution to the system ma-
trix, allowing system identification from non-temporal snapshot data. This formulation addresses
the key challenge of snapshot-based identification by transforming it into a regression problem on
covariance matrices, which can be consistently estimated from single-cell data. On the other hand,
in our case, the non-zero elements of Aθ are known because ∆r,θ, ∆p,θ, Γr,θ are diagonal matrices.
Let Aθ,Cθ,D be defined as:

Aθ = vec(Aθ), Cθ = Cθ ⊗ I+ (I⊗Cθ)T, D = 2vec(D), (4)

where I is the 2n × 2n identity matrix and T is a transformation matrix satisfying vec(X) =

Tvec(X⊤). From the Lyapunov equation equation 3, we obtain the linear equation:

CθAθ = −D . (5)

Since both Cθ and D are symmetric, the linear system equation 5 has rank n(2n + 1) at most. If
we were to estimate all 4n2 variables in Aθ, the system equation 5 would remain underdetermined.
However, we know that the diagonal matrices ∆r,θ, ∆p,θ, Γr,θ contain at least 3n2 − 3n zero
elements. This implies that there are 3n2 − 3n index pairs (i, j) for which Aθ(ij) = 0. Define
u(ij) ∈ R1×4n2

as a row vector such that u(ij)
k = 1 for k = 2n(i− 1) + j, and u

(ij)
k = 0 otherwise.

Then, u(ij)Aθ = 0 imposes the constraint Aθ(ij) = 0. In our case, these 3n2 − 3n row vectors
together form the constraint matrix U ∈ R(3n2−3n)×4n2

, leading to:

UAθ = 0. (6)

By incorporating the constraint equation 6 into equation 5, the extended linear system becomes:

C
θ,extAθ = Dext, C

θ,ext =

[
Cθ

U

]
, Dext =

[
−D
0

]
. (7)

The augmented coefficient matrix has rank at most n(2n + 1) + 3n2 − 3n = 5n2 − 2n, which
exceeds 4n2 for n > 2. This augmentation allows the unique determination of the matrix Aθ.

The optimization problem for system identification, using C
θ,ext transformed from the real covari-

ance matrix Cθ, can be formulated as:

min
A

J (A ,Cθ) := ∥C
θ,extA − Dext∥22. (Pθ)

The solution of the optimization problem written by equation Pθ is unique as Aθ satisfying
J (Aθ,Cθ) = 0 corresponds exactly to the true system matrix Aθ.

4.2 APPROXIMATE REGRESSION PROBLEM

Although solving the optimization problem written by equation Pθ yields the true system matrix
Aθ, it requires knowledge of the covariance matrix Cθ, which is unknown in practice. Let Ĉθ be
an estimate of the true covariance matrix Cθ and formulate the following approximate problem:

min
A

J
(
A , Ĉθ

)
:= ∥Ĉ

θ,extA − Dext∥22. (P̂θ (Dsnap))

Here, Ĉ
θ,ext is the matrix transformed from Ĉθ by equation 4. Let Âθ denote the optimal solution

to Problem P̂θ (Dsnap), and let Âθ,est denote the final estimate of the true system matrix Aθ, trans-
formed from Âθ. Since the optimization problems defined by equation P̂θ (Dsnap) and equation Pθ

5
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differ due to the discrepancy between Ĉ
θ,ext and C

θ,ext, it is necessary to examine whether the es-
timated matrix Âθ converges to the true system matrix Aθ. In the rest part of this subsection, we
will introduce the method of estimating Ĉθ by kernel conditional density estimator and then give
the convergence analysis for Âθ. By employing a kernel conditional density estimator to generate
additional samples, we alleviate the challenge posed by the HDLSS regime.

Kernel conditional density estimation. Nadaraya–Watson (NW) conditional density estima-
tor (Gooijer & Zerom, 2003; Hall et al., 1999) is used to approximate the conditional density
(CDE) pcX(x | t). The first step is to estimate the joint probability density p(x, t) from the
snapshot dataset Dsnap using kernel density estimation (KDE). Let p̂ (x, t) denote the KDE com-

puted from Dsnap, defined as p̂ (x, t) = 1
NH·h

∑
k,m KX

(
x−x(k)

m

h

)
KT

(
t−tk
h

)
, where KX(·) and

KT (·) are kernel functions for X and t, respectively, and h is a smoothing parameter known as
the bandwidth. Here, bandwidth h satisfying the standard consistency conditions (as in (Gooi-
jer & Zerom, 2003)): h → 0 and NHhn → ∞ as N,H → ∞. Various kernel func-
tions can be used in practice, including uniform, triangular, biweight, triweight, Epanechnikov
(parabolic), normal, among others. The NW conditional density estimator can then be computed
as p̂cX(x | t) =

{∑
k,m KX

(
x−x(k)

m

h

)
KT

(
t−tk
h

)}
/
{∑

k,m KT

(
t−tk
h

)}
. It is important to note

that each x
(k)
m is associated with the corresponding time point tk. Thus, there are effectively N

samples of x corresponding to each tk, even though tk itself appears only once per episode. Note
that the true conditional density pcX(x | tk) is Gaussian N (0n,Cθ) with zero mean and finite co-
variance. Zero-mean Gaussian setting is reasonable, since the system equation 2 is linearized at the
equilibrium point and the measurements are collected at steady state, where the system is driven by
white Gaussian noise.

Covariance matrix estimation. Let p̂cX(x | tk) be the NW CDE constructed from the snapshot
dataset Dsnap. Let {x̂(k)

m }Mm=1 be a set of i.i.d. samples generated from p̂cX(x | tk). Define the

sample covariance matrix associated p̂cX(x | tk) by Ĉθ := 1
N

∑N
m=1 x̂

(k)
m

(
x̂(k)
m

)⊤
.

Then, we have the following theorem regarding the convergence of Âθ to Aθ.

Theorem 1. As N,H → ∞, we have Âθ
w.p.1−−−→ Aθ.

The proof of Theorem 1 is summarized in Appendix C. Furthermore, we investigate the confidence
level of the estimation Âθ when the sample size of the snapshot dataset Dsnap is finite. To facilitate
the analysis, we introduce the following mild assumption, which ensures the boundedness of the
sample moments and is commonly adopted in finite-sample analyses.
Assumption 2. There exists a constant Lβ > 0 such that, with probability at least 1−β, the sample
x drawn from p̂cX(x | tk) satisfies ∥x∥∞ ≤ Lβ .

Assumption 2 is not restrictive in practice, as it is typically satisfied when the support of the es-
timated density p̂cX is bounded or sufficiently concentrated around its mode. It provides a high-
probability guarantee for the boundedness of the generated samples, which facilitates the establish-
ment of finite-sample confidence bounds in subsequent analysis.

The objective function J (A ,Cθ) is strongly convex with respect to A since its Hessian satisfies
∇2J = 2M⊤M with M = C⊤

θ ⊗ I + I ⊗ Cθ. Since Cθ ≻ 0, M is invertible, and thus µ :=

2λmin

(
M⊤M

)
> 0 gives the strong convexity modulus. Then, we give the following theorem

regarding the confidence level of the estimation Âθ when the sample size is finite.

Theorem 2. If N ≥ 2ϵ−2L4
β log

(
2n2/δ

)
, w.p. 1− β − δ, we have

∥Âθ−Aθ∥2

F

4∥Aθ∥2
F

≤ ϵ
µ .

The proof of Theorem 2 is summarized in Appendix D. Theorem 2 guarantees that the estimation
error

∥∥∥Âθ −Aθ

∥∥∥
F

is bounded with high probability as a function of the desired accuracy ϵ and the

number of samples N , provided that Assumption 2 holds. The bound contains the constant 4 ∥Aθ∥2F,
which depends on the true system matrix and is not directly accessible in practice. However, this

6
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does not affect the generality or applicability of the result, since: (i) the constant 4 ∥Aθ∥2F is inde-
pendent of the sample data and only scales the bound linearly, (ii) the rate of convergence is still
determined by the sample size N and the desired confidence level δ, and (iii) in many practical sce-
narios, conservative upper bounds on ∥Aθ∥F can be specified based on prior structural knowledge.
We also note that the resulting sample complexity bound is conservative. This is primarily due to
the worst-case nature of Assumption 2 and the use of union bounds in the probabilistic analysis.
Nonetheless, the result provides a first-step theoretical understanding of the finite-sample behavior
of our estimator and offers a guideline for selecting a sufficiently large snapshot dataset Dsnap to
achieve a desired estimation accuracy.

4.3 RE-STABILIZATION

Optimal re-stabilization design considers the following problem:

min
Bθ, Kθ

Jθ(x(0)) :=

∫ ∞

0

x⊤(t)K⊤
θ Kθx(t)dt, ∀x(0)

s.t. Re(λd,θ)− Re(λ̃d,θ) = λs > 0, Bθ ∈ B, Kθ ∈ K(Bθ, λs).

(8)

Here, B denotes the feasible set for the input assignment matrix Bθ, and K(Bθ, λs) denotes the
admissible feedback gain matrices that ensure the desired re-stabilization margin λs is achieved.
That is, the dominant eigenvalue of the original system, λd,θ, is shifted by λs in real part under
the closed-loop dynamics. The input assignment Bθ and feedback gain Kθ obtained by solving
equation 8 minimize the total input energy while enforcing the desired stabilization requirement
for any initial state x(0). By Theorem 1 of (Yasukata et al., 2023), optimal solution is computed
as B⋆

θ = argmaxB∈B ∥w⊤
d,θB∥, K⋆

θ = −λsB
⋆⊤
θ vd,θw

⊤
d,θ. Here, vd,θ and wd,θ are the right

and left eigenvectors corresponding to the dominant eigenvalue λd,θ of the open-loop system. This
formulation provides a computationally efficient solution while directly linking the input design
to the spectral structure of the system. In particular, the dominant eigenvalue λd,θ governs the
direction in which stabilization is most critical, and the optimal assignment aligns control along the
corresponding eigenvectors to ensure energy-efficient re-stabilization.

In practice, it is not possible to control the interactions of many proteins and mRNAs simultane-
ously. Thus, both assignment and feedback gain should be designed to be sparse. The selection is
constrained such that bi,θ ∈ En for all i = 1, . . . , l, where each bi,θ must be distinct if i ̸= j. The set
En := {e1, . . . , en} corresponds to interventions applied to mRNAs, while En := {en+1, . . . , e2n}
corresponds to protein-level interventions. Here, ei denotes the i-th standard basis vector in R2n.
In each intervention strategy, we assume either mRNA or protein-level intervention is selected,
but not both simultaneously. The feasible set of input placements is denoted by Bl. The gain
matrix Kθ = [k1,θ, . . . ,kl,θ]

⊤ determines how each selected gene is perturbed. We constrain
ki(θ) = κibi,θ so that the feedback acts only along the direction of the selected intervention site.
The corresponding feasible set is denoted by Kl. Under these constraints, the feedback only al-
ters the diagonal elements of the system matrix Aθ. This reflects a realistic intervention model in
gene regulation: for instance, RNA interference and gene overexpression typically modulate only
the self-dynamics (self-loops) of individual genes (Meister et al., 2013), corresponding to diagonal
entries. Diagonal re-stabilization is defined as follows.

Definition 1. Given an intervention budget l < n, diagonal re-stabilization refers to the design
of Bθ ∈ Bl and Kθ ∈ Kl such that the dominant eigenvalue of the closed-loop system λ̃d,θ :=

maxRe (eig (Aθ +BθKθ)) satisfies Re(λ̃d,θ) < Re(λd,θ).

For a given input placement Bθ ∈ Bl, let IBθ
be an input-index set defined as: IBθ

:= {i ∈
{1, . . . , 2n} : ∃j ∈ {1, . . . , l},bj,θ = ei}. Let Ivec,Bθ

be a vector formed by extracting the elements
from IBθ

: Ivec,Bθ
= [s1, . . . , sl]

⊤, where si ∈ IBθ
, i = 1, . . . , l, and assume, without loss of

generality, that s1 < s2 < . . . < sl. Diagonal re-stabilization for large-scale network systems
has been addressed in (Shen et al., doi:10.1109/TETCI.2024.3442824). We summarize (Shen et al.,
doi:10.1109/TETCI.2024.3442824, Theorems 3 and 4) for our setting as the following lemma.

Lemma 1. The system matrix becomes Aθ+BθKθ after incorporating Bθ ∈ Bl and Kθ ∈ Kl. The
first-order approximation with respect to the Frobenius norm ∥BθKθ∥2 of the dominant eigenvalue
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λ̃d,θ of the matrix Aθ + BθKθ is given by λ̃
(1)
d,θ = λd,θ +

∑l
i=1 κiwd,θ(si)vd,θ(si)

w⊤
d,θvd,θ

. If the input

placement Bθ includes a key gene, then diagonal re-stabilization can be achieved.

From Lemma 1, we see that diagonal re-stabilization serves as a tractable approximation of the
optimal re-stabilization design. In particular, selecting input locations that maximize the absolute
value of the product wd,θ(si)vd,θ(si) enhances control effectiveness, since these terms directly
influence the leading-order eigenvalue shift.

Theorem 3. Assume that the maximum eigenvalue λd of Aθ is with eigengap δλ =
mini=2,...,n |λd − λi| > 0. If N ≥ 2ϵ−2L4

β log
(
2n2/δ

)
, with probability 1 − β − δ, we have

∥ŵd −wd∥2 ≤ L
µ δλ

ϵ.

Proof of Theorem 3 is summarized in Appendix E. Theorem 3 establishes a finite-sample probabilis-
tic bound on the error between the estimated dominant left eigenvector ŵd and the true dominant
eigenvector wd of the system matrix Aθ. The bound holds with high probability 1 − β − δ, pro-
vided that the sample size N is sufficiently large. Notably, the error bound scales inversely with
both the strong convexity modulus µ and the eigengap δλ, highlighting that the estimation becomes
more reliable when the spectrum of Aθ exhibits clear separation between the dominant eigenvalue
and the others. This result plays a critical role in ensuring the accuracy of approximate diagonal re-
stabilization design. As shown in Lemma 1, the first-order approximation of the stabilized dominant
eigenvalue λ̃(1)

d,θ depends on the product wd,θ(si)vd,θ(si) at selected indices si. Therefore, accurate
estimation of wd,θ directly affects the effectiveness of the control input selection strategy. The finite-
sample guarantee in Theorem 3 ensures that the estimated eigenvector ŵd remains sufficiently close
to the true one, thus preserving the control relevance of the index selection even under sampling
uncertainty. In practical terms, this means that even when the snapshot data set is limited in size, the
approximate diagonal re-stabilization strategy can still reliably identify high-impact nodes—e.g.,
key genes or transcription factor, by leveraging the structure encoded in ŵd. Although the theo-
retical bound may be conservative due to its dependence on worst-case assumptions, it provides a
principled basis for quantifying confidence in structure-aware control from finite data.

5 VALIDATIONS

Simulation model. To validate our framework for system identification and early treatment design,
we conduct numerical experiments on synthetic mRNA-protein regulatory networks that mimic dis-
ease progression through bifurcation. We focus on a global bifurcation scenario, where a mas-
ter regulator protein controls the transcription rates of all genes, leading to a system-wide tipping
point. This setup aligns with biological systems exhibiting coordinated dysregulation, such as in
cancer or developmental disorders, where master regulators drive cell fate transitions via bistable
switches. For noise, we employ additive Gaussian perturbations to reflect extrinsic biological vari-
ability, consistent with the assumptions in our theoretical analysis (e.g., covariance estimation in
Section 2.3). The model simulates a system of 5 genes (G0, . . . , G4) and their corresponding 5
proteins (P0, . . . , P4). The network topology is designed around a single master regulator, protein
P4, which positively regulates the expression of all genes in the network, including its own. This
global positive feedback structure allows the system to switch between low and high expression
states, characteristic of bistability. The dynamics of the network are modeled as a system of stochas-
tic differential equations (SDEs) to capture the intrinsic noise inherent in biological processes. We
specifically use an additive Gaussian noise model, where the stochastic fluctuations are indepen-
dent of the molecular concentrations. The transition between system states is induced by varying a
key bifurcation parameter, Kmaster, which controls the activation threshold of the master regulator.
This setup allows us to generate high-dimensional, single-cell snapshot data at various points along
the system’s trajectory as it approaches the tipping point. For a comprehensive description of the
network equations, noise setting, and a full list of parameter values, please check Appendix F.

Results. According to Lemma 1, the value of wd,θ(i)vd,θ(i) plays a critical role in the diagonal
re-stabilization design. The most effective node is the one corresponding to the maximum absolute
value of this product. Moreover, the sign of wd,θ(si)vd,θ(si) is also essential. If the sign is positive,
a negative ki is required to shift the real part of the dominant eigenvalue further from zero. Con-
versely, if the sign is negative, a positive ki is needed. Owing to these considerations, our analysis

8
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Figure 3: Plots of the evolution of eigenvalues across episodes and the estimation results: (a) Max-
imum eigenvalues of Aθ and dominant eigenvalues of Cθ at different time points; (b) 95% con-
fidence region of the estimated wd,θ19

(i)vd,θ19
(i) with N = 5; (c) 95% confidence region of the

estimated wd,θ19(i)vd,θ19(i) with N = 15. (d) Statistical analysis of estimation accuracy for the
regulatory node with results of 2,000 trials.

focuses on the estimation accuracy of wd,θ(si)vd,θ(si) in the subsequent discussion. In partic-
ular, we evaluate the percentage of trials in which the method correctly identifies the regulatory
node with the largest absolute value of wd,θ(si)vd,θ(si), along with the correct sign. This metric
directly reflects the method’s ability to support effective diagonal re-stabilization, as discussed in
Lemma 1. We perform a Monte Carlo simulation to investigate the statistical performance of the
proposed method. In each simulation, the network’s structure and parameters have been fixed. The
cases with sample number as N = 3, 5, 7, 8, 9, 10, 12, 15 were considered. We have totally
H = 19 episodes for snapshot data observations. On the other hand, for each sample number N ,
2000 sample sets were generated. We implement the method in (Shen et al., 2024) (SOTA) and the
proposed method (Proposed) to obtain the system matrix estimations. As the episode proceeds from
k = 1 to k = 19, the maximum eigenvalue of the system matrix gradually approaches zero, and
the covariance matrix increases rapidly, as shown in Figure 3 (a). Figures 3 (b) and (c) show the
95% confidence bounds of the estimated wd,θ19

(i)vd,θ19
(i) obtained by the SOTA method and the

proposed method with N = 5 < 2n = 10 and N = 15 > 2n = 10, respectively. The proposed
method provides confidence bounds that are close to the true value, while the SOTA method fails to
yield accurate estimations. The results of 2,000 Monte Carlo trials on the regulatory node estima-
tions are summarized in Figure 3 (d). As the number of samples increases, both algorithms exhibit
improved accuracy of identifying the regulatory node along with the correct sign of . Notably, the
proposed method demonstrates significant improvements in regulatory node estimation accuracy
compared to the state-of-the-art (SOTA) approach. In particular, when the number of samples is
considerably smaller than the system state dimension 2n = 10, the proposed method still achieves
high estimation accuracy. The above performance gain arises from the method’s ability to leverage
information across multiple episodes, thereby enriching the data available for covariance matrix es-
timation. Consequently, this enhancement leads to a more accurate estimation of the system matrix
and its associated eigenvectors. In this simulation, we focus on the identification of regulatory genes
and do not present intervention results. This is because, once the key regulatory nodes are accurately
identified, the corresponding intervention strategies—such as re-stabilization via feedback—can be
effectively designed based on existing control-theoretic formulations. Therefore, the success of the
overall intervention critically depends on the accuracy of the regulatory gene identification, which
is the main focus of this work.

6 CONCLUSIONS

We proposed a system identification framework for mRNA-protein regulatory networks from snap-
shot data, tailored to design effective intervention strategies. By exploiting the Lyapunov equa-
tion with structural constraints, our method achieves reliable estimation of the system matrix under
high-dimensional low-sample-size conditions, with theoretical guarantees on finite-sample accuracy.
Building on these results, we developed both optimal and approximate diagonal re-stabilization de-
signs, offering actionable insights for early treatment at the pre-disease stage. Future work will
extend this framework to nonlinear dynamics and validate intervention strategies on real single-cell
datasets, with the potential to impact broader applications in biology and beyond.
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Appendix

A EARLY DETECTION OF PRE-DISEASE STAGE

Let Cθ ∈ R2n×2n denote the covariance matrix of x when the system is parameterized by θ. As
presented in (Oku & Aihara, 2018, Section 3.2), as the parameter θ approaches the tipping point θC,
the covariance matrix Cθ converges to a rank-one matrix if λd,θ is real, written by

lim
λd,θ→0−

(−2λd,θ)Cθ = D̃11vd,θv
⊤
d,θ, (9)

where the positive real number D̃11 is the first diagonal element of D̃ = V−1
θ D(VH

θ )
−1. Here, VH

θ
is a matrix consisting all right eigenvectors of Cθ. On the other hand, the covariance matrix Cθ

converges to a rank-two matrix if λd,θ is complex. Specifically, the dominant eigenvalue of Cθ’s
limit is infinity.

A group of diagonal elements of Cθ also increases to infinity, indicating that there exists a group of
nodes whose standard deviations become unbounded. In parallel, the covariance between two nodes
in this group also grows substantially as θ approaches the tipping point θC. We take the case when
λd,θ as an example to illustrate it. The eigenvector ξd,θ = [ξ⊤d,θ,r, ξ

⊤
d,θ,p]⊤ of Cθ corresponding to

the dominant eigenvalue converges to the right MAC eigenvector of Aθ, namely,

lim
λd,θ→0−

ξd,θ = vd,θ. (10)

By equation 9, if vd,θ(i) ̸= 0 and vd,θ(j) ̸= 0, we have

lim
λd,θ→0−

|Cθ(i, j)| = ∞, (11)

which is the theoretical explanation for the system’s large fluctuations in the pre-disease stage. The
standard deviation corresponds to the diagonal element Cθ(i, i) ≈ v2

d,θ(i). Consequently, the stan-
dard deviation of the node, where vd,θ(i) ̸= 0, shows a significant increase at the pre-disease stage.
The covariance between two nodes (vd,θ(i) ̸= 0, vd,θ(j) ̸= 0) also increases significantly in the
pre-disease stage.

The above two properties provide a theoretical explanation for the system’s large fluctuations in the
pre-disease stage, when θ ≈ θC. By examining system fluctuations from snapshot data, it becomes
possible to detect the pre-disease stage, which is completely model-free. We refer to (Chen et al.,
2012; Aihara et al., 2022) for more details about indicator selection and computation for pre-disease
detection by snapshot data.

B RANDOM VARIABLE IN AN AUGMENTED SPACE.

Consider a random variable ξ := (X, T ) with support Ξ ⊂ Rn+1, where ξ := (x, t)2 is a realization
of ξ. Let F denote the σ-algebra of subsets of Ξ. Equipped with a probability measure ρ defined
on the Borel space (Ξ,F), this forms a probability space (Ξ,F , ρ). Let Ξs ⊆ Ξ be a subset of
Ξ. Given a continuous probability density function p(ξ) with support Ξ, the probability that the
random variable ξ lies within Ξs is expressed as Pr{ξ ∈ Ξs} :=

∫
Ξs
p(ξ) dξ. Suppose that the

probability density function p(ξ) is a joint density denoted by p(x, t). Both x and t are continuous
random variables with marginal probability densities3 given by pX(x) :=

∫
R+ p (x, t) dt, pT (t) :=∫

Rn p (x, t) dx. Consider that pT (t) > 0 and p (x, t) > 0 hold for any x ∈ X and any (x, t) ∈ Rn+1.
A conditional probability density is defined by pcX(x|T = t) := p (x, t) /pT (t). We omit “T =” in
the conditional probability density in the remainder of the paper. Additionally, we also define the
conditional probability of having X ∈ Xs ⊆ Rn when T = t by Pr {X ∈ Xs|t} :=

∫
Xs

pcX(x|t)dx.

2ξk :=
(
x
(k)
m , tk

)
can represent a data point from the snapshot dataset.

3Although the time point or sample time index may appear as a discrete integer, it is treated in a general
sense as a continuous variable. Moreover, a continuous probability density is used to approximate discrete
probability over a continuous domain (Capinski & Kopp, 2004).
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C PROOF OF THEOREM 1

As a preparation, we first introduce the convergence of

Theorem 4. Then, as N,H → ∞, we have Ĉθ
p−→ Cθ.

Proof. The proof consists of two steps.

Step 1: Convergence of p̂cX(x | tk) to pcX(x | tk), and convergence of corresponding covariance.

By the results in (Gooijer & Zerom, 2003; Hall et al., 1999), under the stated bandwidth conditions
h → 0 and NHhn → ∞, the NW conditional density estimator satisfies

sup
x∈Rn

|p̂cX(x | tk)− pcX(x | tk)|
p−→ 0 as N,H → ∞.

Since the true density pcX is Gaussian N (0n,Cθ) with finite second moments, and the uniform con-
vergence holds, we can invoke standard results on the convergence of integrals of bounded functions
with respect to densities (e.g., Theorem 2.1 in (Gooijer & Zerom, 2003)).

Let g(x) = xx⊤, which is polynomially bounded. Then, as N,H → ∞,∫
g(x)p̂cX(x | tk)dx

p−→
∫

g(x)pcX(x | tk)dx = Cθ. (12)

Thus, the covariance matrix of p̂cX converges in probability to Cθ.

Step 2: Convergence of empirical covariance Ĉθ to the covariance of p̂cX.

Now consider {x̂(k)
m }Mm=1 as i.i.d. samples from p̂cX(x | tk). By the Weak Law of Large Numbers,

for any ϵ1 > 0 and δ1 > 0, there exists M0 such that for all M ≥ M0, we have

Pr

{∥∥∥∥Ĉθ −
∫

xx⊤p̂cX(x | tk)dx
∥∥∥∥
F

< ϵ1

}
≥ 1− δ1. (13)

Combination of the two steps: ϵ-δ argument.

Finally, we combine the two steps carefully. Let ϵ > 0 and δ > 0 be arbitrary.

• From Step 1, there exists (N0, H0) such that for all N ≥ N0, H ≥ H0,

Pr

{∥∥∥∥∫ xx⊤p̂cX(x | tk)dx−Cθ

∥∥∥∥
F

< ϵ/2

}
≥ 1− δ/2.

• From Step 2, for these fixed (N,H) and for sufficiently large M ≥ M0, we have

Pr

{∥∥∥∥Ĉθ −
∫

xx⊤p̂cX(x | tk)dx
∥∥∥∥
F

< ϵ/2

}
≥ 1− δ/2.

Now applying the union bound, for N ≥ N0, H ≥ H0,M ≥ M0, we obtain:

Pr
{∥∥∥Ĉθ −Cθ

∥∥∥
F
< ϵ
}
≥ 1− δ.

Since ϵ and δ are arbitrary, we conclude that:

Ĉθ
p−→ Cθ as M,N,H → ∞.

14
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By Theorem 4, for any given Aθ, it holds that

J
(
A , Ĉθ

)
p−→ J (A ,Cθ) , as N,H → ∞. (14)

That is, for any fixed A , the objective function evaluated with the estimated covariance converges in
probability to its true counterpart. By invoking (Shapiro et al., 2014, Proposition 5.1), this pointwise
convergence on a compact set implies that

J
(
A , Ĉθ

)
→ J (A ,Cθ) (15)

holds uniformly on any compact subset of R3n+n2

, where R3n+n2

denotes the parameter space of
all vectors containing the nonzero elements of A. Then, by (Shapiro et al., 2014, Proposition 5.2),
the convergence of the objective functions guarantees that the minimizer of equation P̂θ (Dsnap)
converges in probability to the minimizer of equation Pθ as N,H → ∞. Since equation Pθ admits
a unique optimal solution Aθ, it follows that

Âθ
p−→ Aθ (16)

as N,H → ∞, which completes the proof.

D PROOF OF THEOREM 2

As preparation of the proof, we first give the following results regarding the confidence bound on
the covariance matrix estimation.

Theorem 5. Suppose Assumption 2 holds for some Lβ and β ∈ (0, 1). Let α ∈ (0, 1) and ϵ > 0 be
given.

Then, for any δ ∈ (0, 1), if the number of generated samples M satisfies:

M ≥
2L4

β log
(

2n2

δ

)
ϵ2

,

then with probability at least 1− β − δ, we have:∥∥∥Ĉθ −Cθ

∥∥∥
F
≤ ϵ.

Proof. Let ϵ > 0 and δ ∈ (0, 1) be given.

We split the error
∥∥∥Ĉθ −Cθ

∥∥∥
F

into two terms:∥∥∥Ĉθ −Cθ

∥∥∥
F
≤
∥∥∥Ĉθ − Ep̂[xx

⊤]
∥∥∥
F︸ ︷︷ ︸

X1

+
∥∥Ep̂[xx

⊤]−Cθ

∥∥
F︸ ︷︷ ︸

X2

.

Step 1: Control of X2.

From Theorem 4 Step 1, we know that as N,H → ∞:∥∥Ep̂[xx
⊤]−Cθ

∥∥
F

p−→ 0.

Therefore, there exists (N0, H0) such that for N ≥ N0, H ≥ H0, we have:

Pr {X2 ≤ ϵ/2} ≥ 1− δ/2.

Step 2: Control of X1 using Hoeffding inequality.

Under Assumption 2, for each entry (i, j) of the matrix xx⊤, we have:

|x(i)x(j)| ≤ L2
β with probability at least 1− β.

15
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Conditioning on the event where this bound holds, we apply Hoeffding inequality (Hoeffding, 1963)
to each entry of the matrix. For each (i, j):

Pr

{∣∣∣∣∣
∑M

m=1 x
(i)
m x

(j)
m − Ei,j

p̂

M

∣∣∣∣∣ ≥ ϵ′

}
≤ 2 exp

(
−2Mϵ′2

4L4
β

)
, (17)

where
Ei,j
p̂ := Ep̂[x

(i)x(j)]. (18)

Now set:
ϵ′ :=

ϵ

2n
.

Then applying union bound over n2 matrix entries:

Pr {X1 ≤ ϵ/2} ≥ 1− 2n2 exp

(
− 2Mϵ2

4n2L4
β

)
.

To ensure this probability is at least 1− δ/2, it suffices to choose M such that:

2n2 exp

(
− Mϵ2

2n2L4
β

)
≤ δ/2.

Solving this inequality yields the stated bound:

M ≥
2L4

β log
(

2n2

δ

)
ϵ2

.

Final step: Union bound.

Finally, applying union bound over the two steps, we obtain:

Pr
{∥∥∥Ĉθ −Cθ

∥∥∥
F
≤ ϵ
}
≥ 1− β − δ.

Proof. Step 1: Sample covariance approximation. By Theorem 5, for sufficiently large M , we
have with probability at least 1− β − δ,∥∥∥Ĉθ −Cθ

∥∥∥
F
≤ ϵ.

Step 2: Perturbation of optimal solution Âθ. Define the perturbed objective

J (A,C) :=
∥∥∥AC+CA⊤ +D

∥∥∥2
F
.

Since Aθ satisfies the Lyapunov equation for Cθ, we have

Q(Aθ,Cθ) = AθCθ +CθA
⊤
θ +D = 0.

Thus, the first-order change of J(Aθ, Ĉθ) around Cθ is:

Q(Aθ, Ĉθ) = Aθ∆C+∆CA⊤
θ ,∥∥∥Q(Aθ, Ĉθ)

∥∥∥
F
≤ 2∥Aθ∥F ∥∆C∥F .

So the increase in objective function is bounded by:

J(Aθ, Ĉθ) =
∥∥∥Aθ∆C+∆CA⊤

θ

∥∥∥2
F
≤ 4∥Aθ∥2F ∥∆C∥2F .
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Letting
L := 4∥Aθ∥2F ,

we obtain:
|J(Aθ, Ĉθ)− J(Aθ,Cθ)| ≤ Lϵ2.

Now, from standard perturbation results for strongly convex objectives, the minimizer satisfies∥∥∥Âθ −Aθ

∥∥∥
F
≤ 1

µ

∥∥∥∇AJ(Aθ, Ĉθ)
∥∥∥
F
.

We further bound:

∇AJ(Aθ, Ĉθ) = 2
(
AθĈθĈθ + ĈθA

⊤
θ Ĉθ +DĈθ

)
,

which grows linearly with ϵ, yielding: ∥∥∥Âθ −Aθ

∥∥∥
F
≤ L

µ
ϵ.

E PROOF OF THEOREM 3

Let λd be the dominant eigenvalue of Aθ with eigengap

δλ = min
i̸=d

|λd − λi| > 0.

Applying the Davis–Kahan theorem for left eigenvectors, we have (Yu et al., 2015)

sin∠ (ŵd,wd) ≤

∥∥∥Âθ −Aθ

∥∥∥
2

δλ
.

Since
∥ · ∥2 ≤ ∥ · ∥F ,

we can further bound

∥ŵd −wd∥2 ≤ 2 sin∠ (ŵd,wd) ≤
2∥Âθ −Aθ∥F

δλ
≤ 2L

µ δλ
ϵ.

Hence the perturbation of the left dominant eigenvector is explicitly controlled in norm.

F SIMULATION MODEL DETAILS

Here, we provide a complete description of the gene-protein regulatory network model used to
generate the synthetic data for our experiments.

F.1 NETWORK STRUCTURE AND TOPOLOGY

The network consists of N = 10 state variables: the concentrations of 5 mRNAs (m0, . . . ,m4) and
5 proteins (p0, . . . , p4). The network employs a “master regulator” topology, as depicted in Figure 1.
In this structure, a single protein, P4, acts as a global transcriptional activator for several genes. The
concentration of P4 serves as a proxy for the overall state of the system, and its self-regulation
creates a positive feedback loop that gives rise to bistability and bifurcation phenomena.

17
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F.2 SYSTEM DYNAMICS AND GOVERNING EQUATIONS

The temporal evolution of mRNA (mi) and protein (pi) concentrations for each gene i ∈ 0, . . . , 4 is
described by the following system of stochastic differential equations (SDEs):

dmi

dt
= αbasal,i︸ ︷︷ ︸

Basal Rate

+αactivated
pnmaster
4

Knmaster
master + pnmaster

4︸ ︷︷ ︸
Activated Transcription

− γm,imi︸ ︷︷ ︸
Degradation

+ξm,i(t)

dpi
dt

= βimi︸ ︷︷ ︸
Translation

− γp,ipi︸ ︷︷ ︸
Degradation

+ξp,i(t)

Where:

• The activated transcription term is a standard Hill function representing the cooperative
binding of the master regulator P4 to the promoter regions of the genes.

• Kmaster is the Michaelis-Menten constant, representing the concentration of P4 required for
half-maximal activation. This parameter is systematically varied to induce the bifurcation.

• nmaster is the Hill coefficient, representing the cooperativity of binding.

• ξm,i(t) and ξp,i(t) are stochastic terms representing noise.

F.3 NOISE MODEL

The stochastic terms ξ(t) represent additive Gaussian white noise, which models random fluctua-
tions in the biochemical reactions. The SDEs are of the form dXt = f(Xt)dt+σdWt, where f(Xt)
is the deterministic drift part of the equations above, dWt is a Wiener process, and σ is the noise
strength.

For the numerical simulations, we use the Euler-Maruyama method with a time step ∆t. The noise
term for each state variable at each time step is implemented as:

Noise = σ
√
∆t · N (0, 1)

where N (0, 1) is a random variable drawn from a standard normal distribution. The noise strength
σ was set to a constant value of 0.1 for all simulations.

Snapshots are generated near the tipping point on the high branch. For each selected parameter
value, we simulate 100 independent realizations (representing 100 cells) using Euler-Maruyama in-
tegration. The state of each realization at the equilibrium point is taken as a single-cell measurement,
yielding a snapshot of N = 100 cells. This yields high-dimensional low-sample-size (HDLSS) data,
which is repeated for a set of parameter values selected mainly near the bifurcation point to gener-
ate multiple snapshot datasets, with gradual shifts in distributions to test covariance estimation and
re-stabilization. Ground-truth Jacobians are saved for comparison with the estimated Aθ.

F.4 PARAMETER SETTINGS

The specific parameter values used for the “Global Bifurcation” model are detailed in the table
below. These values were chosen to ensure the system exhibits a clear bistable region and a saddle-
node bifurcation as Kmaster is varied. The bifurcation parameter Kmaster is varied across the range
[0.1, 10.0], with denser sampling applied in the critical regions near [0.233, 8.286] to better capture
variance peaks from critical slowing down.
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Parameter Value(s) Description

αbasal [0.03, 0.04, 0.06, 0.05, 0.05] Basal transcription rate for each gene.
αactivated 6.0 Maximum activated transcription rate.
Kmaster Varied (e.g., logspace(-1, 1)) Bifurcation parameter: activation constant for P4.
nmaster 4 Hill coefficient for P4 activation.
β [1.6, 1.9, 2.2, 2.0, 2.4] Translation rate for each mRNA.
γm 1.0 (for all i) mRNA degradation rate.
γp [1.0, 0.9, 0.8, 1.1, 1.0] Protein degradation rate.
σ (noise strength) 0.1 Strength of the additive Gaussian noise.

Table 1: Parameter settings for the global bifurcation model.

G LIMITATIONS

While our framework provides a principled way to identify mRNA-protein regulatory dynamics
from snapshot data and design re-stabilization strategies, several limitations remain. First, although
the kernel conditional density estimator mitigates the high-dimension low-sample-size (HDLSS)
challenge, it introduces additional computational cost and may still be sensitive to bandwidth se-
lection. Second, the current work does not include experimental validation of the re-stabilization
design. While accurate identification of regulatory nodes strongly suggests effective interventions,
future studies will be needed to validate these strategies in wet-lab or clinical settings.

H BROADER IMPACT

This work contributes to the emerging intersection of machine learning, biology, and medicine by
providing a data-driven framework for identifying regulatory dynamics and designing early inter-
ventions in disease progression. From a biological perspective, the ability to detect pre-disease
stages and suggest re-stabilization strategies has the potential to inform ultra-early treatment, shift-
ing medical practice from reactive treatment to preventive intervention. This aligns with ongoing
efforts in precision medicine, where computational tools guide targeted therapies at the molecular
level. From a machine learning perspective, our study highlights how structural priors and dynam-
ical systems theory can enhance learning in the high-dimension low-sample-size (HDLSS) regime,
which frequently arises in single-cell analysis and other scientific domains. These insights may in-
spire future work on combining domain knowledge with statistical learning for better data efficiency
and interpretability. At the same time, caution is required when interpreting computationally identi-
fied regulatory nodes as clinical intervention targets. Translational applications will require rigorous
experimental validation and ethical considerations to ensure safety and effectiveness.

I EXPERIMENTS COMPUTE RESOURCES

All experiments were conducted on a MacBook equipped with an Apple M4 chip and 32GB of
unified memory.

J REPRODUCIBILITY STATEMENT

The source code has been included in the supplementary material for review purposes, and we will
release it as open source if the paper is accepted, to ensure transparency and reproducibility.
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