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ABSTRACT

Early disease detection with snapshot data has been effectively addressed by the
Dynamical Network Biomarkers (DNBs) theory. After early disease detection, it
is crucial to consider early medical treatment to prevent it. This paper presents
a novel framework for identifying mRNA-protein regulatory systems from snap-
shot data and designing interventions. We first estimate the state covariance of
mRNA-protein expression using multi-episode snapshot samples. Then, we iden-
tify the underlying continuous-time dynamics by solving a Lyapunov-based re-
gression problem. We provide finite-sample guarantees on the estimation accuracy
of the system matrix and its dominant eigenvectors, which are essential for down-
stream treatment design. Building on these estimates, we formulate an optimal re-
stabilization strategy that minimizes input energy with desired spectral shifts. To
ensure practical feasibility, we further propose a diagonal re-stabilization scheme
that identifies key regulatory nodes using a first-order eigenvalue sensitivity anal-
ysis. Numerical examples on synthetic mRNA-protein network demonstrate that
our method accurately identifies regulatory node under high-dimensional, low-
sample conditions and significantly outperforms existing baselines.

1 INTRODUCTION

In biological systems, functions such as mRNA regulation and protein interactions occur through
complex networks (Briat & et al.,2016). Many diseases stem from abrupt deterioration in these net-
works, often modeled as bifurcation phenomena (Chen et al., 2012} |Sadria & Bury,|2024). Using the
snapshot data samples, the Dynamical Network Biomarker (DNB) method can predict the stage of
the system immediately before the bifurcation occurs, referred to here as the pre-disease stage (Liu
et al.l 2015). According to DNB theory, certain nodes exhibit amplified fluctuations as they ap-
proach a bifurcation point. These dominant directions reflect nodes with large fluctuations, and can
be estimated from snapshot data. The DNB theory also enables early disease detection based on
the increased fluctuations of specific biomarkers (Aihara et al., [2022). The ability to detect diseases
at the pre-disease stage is crucial for early medical intervention. Traditional Japanese medicine has
been used to suppress DNB node fluctuations and prevent disease progression (Koizumi et al.|[2020).
Experimental results in (Chen & et all |2022) demonstrate that manipulating multiple DNB nodes
can significantly alter malignant phenotypes in lung cancer. The success of heuristic approaches has
further inspired the development of theoretical frameworks for early medical intervention. Recent
studies have explored early treatment via high-dimensional low sample-size (HDLSS) snapshot data.
While (Yasukata et al.,[2023)) proposed a single-input method for undirected networks, extensions to
directed networks were developed in (Shen et al.,|doi:10.1109/TETCI.2024.3442824). These works
highlight the importance of the system matrix’s left eigenvector corresponding to eigenvalues with
maximal real parts for optimal input placement, information not directly accessible via principal
component analysis (PCA), necessitating system identification by snapshot data. Learning stochas-
tic dynamics from snapshot data has recently gained considerable attention in the machine learning
community (Song et al.|[2021; |[Neklyudov et al.}|2023}; [Tong et al., 2024). A dominant approach in-
volves first inferring time-series trajectories from the data, followed by system identification based
on the inferred trajectories (Tong et al., 2020). This trajectory inference has been particularly stud-
ied in the context of single-cell RNA sequencing (Saelens et al., 2019; |Shi et al., 2022; [Sha et al.,
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2024), where uncovering the underlying temporal progression of cellular states is essential. Optimal
transport methods have become central tools for such snapshot datasets with temporal resolution
(Bunne et al., |2024; Schiebinger et al., 2019), with the Schrodinger bridge (SB) formulation ex-
tending these methods to stochastic dynamics by modeling the most likely stochastic paths between
two distributions relative to a reference process (Léonard, 2014; [Shi et al., 2024} [Liu et al., [2022).
To improve computational tractability, regularization techniques have also been introduced to these
transport-based formulations (Chen et al. [2022; [Zhang et al [2025). Despite these advances, such
methods often suffer from high computational cost and rely on large sample sizes to obtain reliable
results, which are rarely satisfied in single-cell data analysis.

A core challenge in modelling gene regulatory systems is their inherently complex multiscale char-
acter: slow transcriptional changes interact with much faster protein-level dynamics, and meaningful
mechanistic descriptions and models must account for different scales (Fletcher & Osborne, [2022).
Classical mechanistic models based on differential equations have been used in systems biology for
capturing these interactions across domains from circadian—metabolic coupling and metabolic reg-
ulation to mechanistic models of immune and viral dynamics (Sadria & Layton|, [2021alb; [Ingalls,
2013)). While these models have enabled mechanistic insight across many biological settings, they
typically require dense time-series or carefully designed experiments for reliable parameter identifi-
cation, which are scarce in current high-throughput single-cell genomics. These limitations have mo-
tivated powerful trajectory-inference and representation-learning methods that reconstruct temporal
progressions from snapshots (for example, transport-based formulations and Schrédinger-bridge ap-
proaches). Such tools are useful for recovering likely cellular paths and population-level flows, but
their design goals differ from those needed for control: they prioritize path reconstruction (often
under specific loss/regularization choices) rather than explicit recovery of the low-level regulatory
parameters and multiscale structure required to reason about stability or to design energy-efficient
interventions. Complementary recent work demonstrates scalable deep and representation-learning
approaches that predict fate changes or extract parsimonious dynamical models from single-cell data
and a library-guided sparse discovery framework (Sadria et al. 2022} [Sadria & Swaroop) 2025));
these advances substantially improve fate prediction and model discovery, but by themselves do not
directly yield the identifiable, control-ready parameterizations we target here.

In contrast, in this paper, we leverage the structural properties of the mRNA—protein regulatory net-
work to achieve reliable and computationally efficient system identification. This identified system
enables the design of effective early treatment strategies. Our main contributions are summarized as
follows: (a) System identification from snapshot data: We develop a framework that uses struc-
tural constraints of the mRNA-—protein regulatory network to identify the system matrix from finite
snapshot data via Lyapunov-based regression. (b) Theoretical guarantees: We establish finite-
sample confidence bounds for both the system matrix estimation and the associated eigenvectors,
ensuring reliability even under High-Dimension Low-Sample-Size (HDLSS) conditions. (c) Early
intervention design: Building on the estimated system, we design both optimal and diagonal re-
stabilization strategies, providing a practical approach for early treatment at the pre-disease stage.
This is crucial as early (pre-disease) interventions are significantly more effective and less invasive
than treatments applied after full disease onset.

2 PRELIMINARIES AND BACKGROUNDS

Dynamic system for gene regulation. Gene transcription is regulated by transcription factors that
bind to DNA, with transcription rates modulated by their concentrations. Translated proteins can
further regulate gene expression. Translation lacks feedback to mRNA, and both mRNAs and pro-
teins degrade stochastically. This gene-mRNA-protein feedback is modeled by (Chen et al., [1999;
Liu et al., 20165 [Passemiers et al., [2022; Sanders et al., [2020; Weidmann et al., [2021):

—A,ygzr + fo (Zp)

z2="Fo(z)+w, Fo(z)= Iy oz — Ap oZp

(D
where z = [z,,2,]" € R*" denotes mRNA and protein concentrations, and w is Gaussian noise
with covariance D. Transcription function fg(z,) is a nonlinear n-dimensional vector encoding
protein-mediated regulation. Diagonal matrices I'y g, A g, and A, ¢ represent translation and degra-
dation rates and are all non-degenerate. These quantities are parameterized by 8 € ©® C R™. Let

z¢ be the equilibrium point such that Fg (z) = 0, where z¢ = [z¢, ZS}T. A linearized approximation
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around z® can be written by (Chen et al.,|1999)

. —-A 0 Ty 8f9(z )
X=Agx+w, x=2z—2° Ag= F" Ap’ 7Fp79:7P 2)
o  —Hpe 0Zp |,
(a) (b)
Disease progression Health (9 =6n) |  Pre-disease (§ = 6p ~6c) | Disease (6 = 8p)
Health (6 = 6) i (6 =6p=6c) Disease (6 = 6y) . % ‘
Complex _Complex Complex ) v
—Protein’ L Proteink i Protein ;
A [ AN '
N N Calt a1 cet cart cell cent
mRNA mRNA’ mRNA H H : XX} : : H XX}

Celll | Cell Cell Number
: : N

Cell N | Cell N Non-temporal

Cell N Cell N Cell N

Cell N Cell N Cell N

Fluctuation T Fluctuation
N2 =

2°(6n) z°(0p) z(0y) 2°(0p) 2°(6w) 2%(6p)

Dsnap

>
Episode Number [] [ Different models in different episodes. |

Figure 1: Conceptual illustration of the disease progression and snapshot dataset: (a) Illustration of
the disease progression from the health stage to the disease stage through the pre-disease stage. (b)
Ilustration of the snapshot data-driven re-stabilization and the issue for system identification.

Disease progress and snapshot data. Figure [I] (a) shows chronic disease progression driven by
the parameter 6, where a tipping point O¢ separates the healthy stage ©y from the disease stage
Op. This transition corresponds to a bifurcation in the nonlinear system (Chen et al., [2012). Let
Op := Oy U 0Oy denote the closure of the healthy region. As @ evolves within © := ©y U Op,
the equilibrium z§ changes accordingly. In Oy, the equilibrium is stable and approximated by A
while in Op, it shifts to z&P, far from the healthy state (bottom of Figure [I| (a)). As shown in
Figure 1| (a), the system is stable in both ©y and Op, since the maximum eigenvalue Ay g of Ag
has a significantly negative real part. At the tipping point 8 € 0Oy, this eigenvalue becomes zero.
In the pre-disease stage @p ~ 6c, we have the real part Re {\g9} ~ 07, indicating low stability
and high sensitivity to perturbations. As illustrated in Figure [I(b), measurements of the system
state x (mRNA and protein levels) are collected over H episodes. Each episode k corresponds to a
biological sampling time ¢, where N individual cells are measured. These single-cell observations

: (k) I

form a snapshot of the internal state: Dgnap = {xm } ,
m=1

series but population-level samples reflecting heterogeﬁeity at t. The full dataset is denoted by

H
Dsnap = {Ds(r}fa)p}k_l-

x*¥) € R2". Such data are not time-

N

are i.i.d.
m=1

Assumption 1. Foreach k =1,..., H, the following holds: (1) The samples {ng)}

(k)

from a continuous distribution p: Xm' ~ ug. (2) 0 evolves smoothly across time t

This setting reflects realistic biological measurement conditions, where mRNA-protein regulatory
systems are quasi-stationary during sampling, and population-level expression distributions shift
gradually due to slow parameter changes. Note that the i.i.d. assumption applies only to the sample
index m, and no independence across time step k is assumed.

3 ADDRESSED PROBLEM AND CHALLENGING ISSUES

Pre-disease stage can be efficiently detected by snapshot data. Details of pre-disease detection are
summarized in Appendix[A] Once the pre-disease stage is detected, it is natural to consider medical
interventions aimed at preventing further progression and restoring the gene regulatory network to
the healthy stage. In addition to alleviating patient suffering, early intervention at the pre-disease
stage is generally more effective—and often less invasive—than treating fully developed diseases.
Recovery from the disease stage requires steering the system from a diseased equilibrium point z
with @ € Op back to a healthy equilibrium zg with & € Oy. This constitutes a nonlinear control

'“Smooth” means that @ is a smooth function of time ¢, indicating a smooth parameter evolution in time.
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problem due to the large deviation between these equilibria and the complex dynamics involved.
In contrast, recovery from the pre-disease stage is more tractable. Since the equilibrium point z
changes only slightly for & € Oy, the problem can be reasonably approximated as a linear con-
trol task. The objective in this case is not to shift the equilibrium but to enhance the system’s
robustness to external perturbations by increasing its local stability margin. To distinguish this type
of intervention from full recovery, we refer to it as re-stabilization. Re-stabilization aims to shift
the dominant eigenvalue Ay ¢ further into the left-half complex plane, thereby enhancing the sys-
tem’s resilience while it remains in the vicinity of the healthy regime. This can be achieved by
introducing a feedback loop that modifies the system matrix to Ag + BgKyg. Here, the matrix
Bo = [b1,g,...,b10] € R27*%! determines the input placement—i.e., the selection of genes for
intervention. We now formulate the re-stabilization problem with snapshot dataset Dgpap:

Problem 1 (Re-stabilization problem). At each episode k = 1, ..., H, the parameter in the tran-
scription function is defined by 0. Note that the true system matrix Ag,, k = 1, ..., H in the lin-
earized error dynamics equation [2'] is unknown. Given a snapshot dataset Dsnap, the objective is to
design a feedback intervention Bg, Kg,, that the dominant eigenvalue of the closed-loop system

Ad,0 = max Re (eig (Ao + BoKy)) satisfies Re(j\dfg) < Re(Ag,0), realizing re-stabilization.

By solving the re-stabilization problem, we increase the stability margin of the mRNA-protein reg-
ulatory system, making it less sensitive to random fluctuations. As a result, the state distribution
becomes more concentrated around the healthy equilibrium and less likely to drift toward the dis-
ease state under uncertain perturbations. In biological terms, this means that even when the system
is close to a critical transition, effective re-stabilization can suppress large fluctuations in regulatory
genes and reduce the probability of crossing into the disease stage. This highlights the practical mo-
tivation of our framework: identifying regulatory nodes not only enables early detection of disease,
but also provides actionable targets for early intervention.

Challenging issues. Solving Problem [I] faces several key challenges. First, the snapshot dataset
Dsnap collected at the pre-disease stage (k = H), D§f§2,, suffers from the high-dimensional, low-
sample-size (HDLSS) regime, as it typically contains expression measurements for n > 10* genes
across a few thousands single cells at most. That is, the number of molecular features far exceeds
the number of observable cells, creating severe challenges for statistical inference on the system
matrix Ag,, using only the available data at ¢z;. Second, the dataset Dsyp, consists of non-temporal
(snapshot) observations, which precludes the use of system identification techniques that rely on
time-series trajectories. Furthermore, although snapshot data from earlier episodes are available,
they originate from distinct underlying models due to variation in @ across time and therefore cannot
be directly pooled with data from the pre-disease stage. As a result, classical control techniques
such as pole placement, which require full knowledge of the system matrix, are not applicable.
These issues necessitate the development of a novel data-driven approach capable of designing re-
stabilizing feedback using only distributional information extracted from limited snapshot data.

4 PROPOSED METHOD: GENERATIVE RE-STABILIZATION

Estimate Identify the Re-stabilization
Snapshot data Covariance Matrix System Matrix design
Convergence: Thm. 4 (Appendix A) « Problem formulation (Sec. 4.1) + Optimal (Sec. 4.3)
« Convergence: Thm 1 (Sec. 4.2) « Diagonal (Sec. 4.3)
« Confidence: Thm. 2 (Sec. 4.2) + Confidence: Thm. 3 (Sec. 4.3)

Figure 2: A brief summary of the proposed method and content in this section.

A summary of the proposed method is illustrated by Figure We begin by estimating the co-
variance matrix of the state at the pre-disease stage using snapshot data. Based on the estimated
covariance, the system matrix is then identified by solving a regression problem derived from the
Lyapunov equation. We analyze the probabilistic convergence of the estimated system matrix and
provide a finite-sample confidence bound for its estimation error. Finally, leveraging the estimated
system matrix, we carry out re-stabilization design, including both the optimal re-stabilization and a
practically implementable approximate diagonal re-stabilization approach.
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4.1 REGRESSION FROM LYAPUNOV EQUATION

At the steady state, the covariance matrix of x, denoted by Cg € R27%2n satisfies the Lyapunov
equation as follows (Chen et al.,[2012; |Oku & Aiharal, [2018)):

ApCo+ CygA,y +D =0. (3)

We identify the system matrix using equation [3|rather than solving a standard time-series regression
problem. The motivation for introducing the Lyapunov equation-based formulation is that, in prac-
tice, we do not observe full time-series trajectories but only snapshot measurements across cells.
The Lyapunov equation directly links the covariance of the stationary distribution to the system ma-
trix, allowing system identification from non-temporal snapshot data. This formulation addresses
the key challenge of snapshot-based identification by transforming it into a regression problem on
covariance matrices, which can be consistently estimated from single-cell data. On the other hand,
in our case, the non-zero elements of Ag are known because A, g, Ap g, I'y ¢ are diagonal matrices.
Let @y, 6o, Z be defined as:

oy = vec(Ag), o6 =Cog @I+ (I® Cy)T, Z = 2vec(D), 4)

where I is the 2n X 2n identity matrix and T is a transformation matrix satisfying vec(X) =
Tvec(XT). From the Lyapunov equation equation we obtain the linear equation:

Codyg = —9. &)

Since both Cg and D are symmetric, the linear system equation |5\ has rank n(2n + 1) at most. If
we were to estimate all 4n? variables in .27, the system equation |5|would remain underdetermined.
However, we know that the diagonal matrices A, g, Ap g, L' contain at least 3n? — 3n zero

elements. This implies that there are 3n? — 3n index pairs (i,5) for which Ag(ij) = 0. Define

u(id) € R147” a5 a row vector such that ugj) =1fork =2n(i—1)+j,and ugj) = ( otherwise.

Then, u'™) o7y = 0 imposes the constraint Ag(ij) = 0. In our case, these 3n> — 3n row vectors
together form the constraint matrix U € R(3n®—3n)x4n? , leading to:

Udty = 0. (6)
By incorporating the constraint equation [6]into equation 3] the extended linear system becomes:
G -9
ng,extﬂe = 9e><t7 Cge,ext = |:IJ9:| ) @ext = |: 0 :| . (7)
The augmented coefficient matrix has rank at most n(2n + 1) + 3n? — 3n = 5n® — 2n, which

exceeds 4n? for n > 2. This augmentation allows the unique determination of the matrix Ag.

The optimization problem for system identification, using %, e transformed from the real covari-
ance matrix Cg, can be formulated as:

min J (&7, Co) i= %, e — Dext||3- (Po)

The solution of the optimization problem written by equation is unique as @/ satisfying
J (g, Cg) = 0 corresponds exactly to the true system matrix Ag.

4.2 APPROXIMATE REGRESSION PROBLEM

Although solving the optimization problem written by equation yields the true system matrix

Ay, it requires knowledge of the covariance matrix Cg, which is unknown in practice. Let 69 be
an estimate of the true covariance matrix Cg and formulate the following approximate problem:

HlQ;Il J <W760) = Hcg,extd - -@ext”% (7/59 (Dsnap))
Here, %wat is the matrix transformed from 69 by equation 4] Let &?; denote the optimal solution

to Problem [Py (Dgnap )b and let Ag’est denote the final estimate of the true system matrix Ag, trans-
formed from 7. Since the optimization problems defined by equation [Pg (Dsnap)|and equation
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differ due to the discrepancy between ‘é,ext and %, e, it is necessary to examine whether the es-
timated matrix K@ converges to the true system matrix Ag. In the rest part of this subsection, we
will introduce the method of estimating 69 by kernel conditional density estimator and then give
the convergence analysis for ,;3?9\ . By employing a kernel conditional density estimator to generate
additional samples, we alleviate the challenge posed by the HDLSS regime.

Kernel conditional density estimation. Nadaraya—Watson (NW) conditional density estima-
tor (Gooijer & Zerom, [2003; Hall et al., [{1999) is used to approximate the conditional density
(CDE) pk(x | t). The first step is to estimate the joint probability density p(x,t) from the
snapshot dataset Dspn,p using kernel density estimation (KDE). Let p (x,t) denote the KDE com-

(B ~
puted from Dqp,p, defined as p(x,t) = ﬁ Y orem Kx (%> Krp (t tk) , where Kx(-) and

h R
K (-) are kernel functions for X and ¢, respectively, and h is a smoothing parameter known as
the bandwidth. Here, bandwidth h satisfying the standard consistency conditions (as in (Gooi-
jer & Zerom, 2003)): h — 0 and NHA™ — oo as N,H — oo. Various kernel func-
tions can be used in practice, including uniform, triangular, biweight, triweight, Epanechnikov
(parabolic), normal, among others. The NW conditional density estimator can then be computed

as P (x | t) =<3, K ) i (55) ¢ /4 m K (552) ¢ . It is important to note
X kom DX\ R T\ "% kem BT U777 ) p

that each xg:) is associated with the corresponding time point ¢;. Thus, there are effectively N

samples of x corresponding to each tj, even though ¢, itself appears only once per episode. Note
that the true conditional density p§ (x | t) is Gaussian N (0™, Cg) with zero mean and finite co-
variance. Zero-mean Gaussian setting is reasonable, since the system equation [2is linearized at the
equilibrium point and the measurements are collected at steady state, where the system is driven by
white Gaussian noise.

Covariance matrix estimation. Let D% (x | ¢x) be the NW CDE constructed from the snapshot
dataset Dsp,p. Let {ﬁ&,’? M_ be a set of i.i.d. samples generated from p% (x | t1). Define the

~ T
sample covariance matrix associated P (x | ) by Co 1= = Zﬁi:l §Ss) (25,’?) .

Then, we have the following theorem regarding the convergence of ;&9 to Ag.

Theorem 1. As N, H — oo, we have ;&9 w'—p'l> Ag.

The proof of Theorem [His summarized in Appendix [C] Furthermore, we investigate the confidence

level of the estimation A when the sample size of the snapshot dataset Dsy,p, is finite. To facilitate
the analysis, we introduce the following mild assumption, which ensures the boundedness of the
sample moments and is commonly adopted in finite-sample analyses.

Assumption 2. There exists a constant Lg > 0 such that, with probability at least 1 — [3, the sample
x drawn from pk (x | ty,) satisfies ||x|loo < Lg.

Assumption [2] is not restrictive in practice, as it is typically satisfied when the support of the es-
timated density p% is bounded or sufficiently concentrated around its mode. It provides a high-
probability guarantee for the boundedness of the generated samples, which facilitates the establish-
ment of finite-sample confidence bounds in subsequent analysis.

The objective function J (<7, Cg) is strongly convex with respect to <7 since its Hessian satisfies
V2] = 2M "M with M = Cg @ I + I ® Cg. Since Cy = 0, M is invertible, and thus p :=
2Amin (MTM) > ( gives the strong convexity modulus. Then, we give the following theorem

regarding the confidence level of the estimation Kg when the sample size is finite.

_ Ao—Aql? ¢
Theorem 2. [f N > 2¢ QL% log (2n2/68) , wp. 1 — B — 6, we have w <+

The proof of Theorem [2]is summarized in Appendix [D} Theorem [2] guarantees that the estimation
error HAQ — A H is bounded with high probability as a function of the desired accuracy e and the
F

number of samples N, provided that Assumptionholds. The bound contains the constant 4 || Ag Hi,
which depends on the true system matrix and is not directly accessible in practice. However, this
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does not affect the generality or applicability of the result, since: (i) the constant 4 ||Ag ||§ is inde-
pendent of the sample data and only scales the bound linearly, (ii) the rate of convergence is still
determined by the sample size N and the desired confidence level §, and (iii) in many practical sce-
narios, conservative upper bounds on || Ag || can be specified based on prior structural knowledge.
We also note that the resulting sample complexity bound is conservative. This is primarily due to
the worst-case nature of Assumption [2] and the use of union bounds in the probabilistic analysis.
Nonetheless, the result provides a first-step theoretical understanding of the finite-sample behavior
of our estimator and offers a guideline for selecting a sufficiently large snapshot dataset Dgp,p to
achieve a desired estimation accuracy.

4.3 RE-STABILIZATION

Optimal re-stabilization design considers the following problem:

Smin Jo(x(0)) := /0 OOxT(t)K;,rKgx(t)dt, vx(0)

st. Re(Adg) — Re(Aag) = As > 0, By € B, Ko € K(Bg, \s).

®)

Here, B denotes the feasible set for the input assignment matrix Bg, and /C(Bg, As) denotes the
admissible feedback gain matrices that ensure the desired re-stabilization margin A is achieved.
That is, the dominant eigenvalue of the original system, Ay g, is shifted by As in real part under
the closed-loop dynamics. The input assignment By and feedback gain Kg obtained by solving
equation [§] minimize the total input energy while enforcing the desired stabilization requirement
for any initial state x(0). By Theorem 1 of (Yasukata et al., 2023), optimal solution is computed
as By = argmaxgep ||WL9B||7 Ky = —)\ngTvdﬂng. Here, v4 9 and wq ¢ are the right
and left eigenvectors corresponding to the dominant eigenvalue Ay ¢ of the open-loop system. This
formulation provides a computationally efficient solution while directly linking the input design
to the spectral structure of the system. In particular, the dominant eigenvalue Ay ¢ governs the
direction in which stabilization is most critical, and the optimal assignment aligns control along the
corresponding eigenvectors to ensure energy-efficient re-stabilization.

In practice, it is not possible to control the interactions of many proteins and mRNAs simultane-
ously. Thus, both assignment and feedback gain should be designed to be sparse. The selection is
constrained such thatb; g € &, foralli = 1,...,[, where each b; ¢ must be distinctif ¢ # j. The set
&, :={ei,...,e,} corresponds to interventions applied to mRNAs, while &, := {e,11,...,€2,}
corresponds to protein-level interventions. Here, e; denotes the i-th standard basis vector in R".
In each intervention strategy, we assume either mRNA or protein-level intervention is selected,
but not both simultaneously. The feasible set of input placements is denoted by B;. The gain
matrix K¢ = [kig,... ,kl)g]T determines how each selected gene is perturbed. We constrain
k;(0) = k;b; g so that the feedback acts only along the direction of the selected intervention site.
The corresponding feasible set is denoted by ;. Under these constraints, the feedback only al-
ters the diagonal elements of the system matrix Ag. This reflects a realistic intervention model in
gene regulation: for instance, RNA interference and gene overexpression typically modulate only
the self-dynamics (self-loops) of individual genes (Meister et al.l 2013)), corresponding to diagonal
entries. Diagonal re-stabilization is defined as follows.

Definition 1. Given an intervention budget | < n, diagonal re-stabilization refers to the design
of Bg € B, and K¢ € K, such that the dominant eigenvalue of the closed-loop system Ay g :=
max Re (eig (Ag + BgKy)) satisfies Re(Ag9) < Re(Aq,9).

For a given input placement By € B, let Ig, be an input-index set defined as: Ig, := {i €
{1,...,2n}: 35 € {1,...,1},bj ¢ = e;}. Let L. B, be a vector formed by extracting the elements
from Ig,: Liec By, = [51,-- .,sl]T, where s; € Ig,, ¢ = 1,...,[, and assume, without loss of
generality, that s; < so < ... < s;. Diagonal re-stabilization for large-scale network systems
has been addressed in (Shen et al.,|/do1:10.1109/TETCI.2024.3442824)). We summarize (Shen et al.,
doi:10.1109/TETCI.2024.3442824] Theorems 3 and 4) for our setting as the following lemma.

Lemma 1. The system matrix becomes A g+BgKg after incorporating Bg € B and Kg € K;. The
first-order approximation with respect to the Frobenius norm |BgKg||2 of the dominant eigenvalue
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3 3 l W, Si)V S; .
Ao of the matrix Ag + BoKg is given by )‘g()a = Ao + 2izy KiWa.0(si)Va.0(si) If the input

d
Wy gVd,o
placement Bg includes a key gene, then diagonal re-stabilization can be achieved.

From Lemma [I| we see that diagonal re-stabilization serves as a tractable approximation of the
optimal re-stabilization design. In particular, selecting input locations that maximize the absolute
value of the product wq ¢(s;)vd,0(s;) enhances control effectiveness, since these terms directly
influence the leading-order eigenvalue shift.

Theorem 3. Assume that the maximum eigenvalue Ny of Ag is with eigengap 0y =
milj—o _n A — A > 0. IfF N > QE’QL% log (2n2/§) , with probability 1 — 8 — §, we have

[Wa —wall, < e

Proof of Theorem 3]is summarized in Appendix [E] Theorem 3|establishes a finite-sample probabilis-
tic bound on the error between the estimated dominant left eigenvector Wy and the true dominant
eigenvector wy of the system matrix Ag. The bound holds with high probability 1 — 5 — §, pro-
vided that the sample size N is sufficiently large. Notably, the error bound scales inversely with
both the strong convexity modulus p and the eigengap ), highlighting that the estimation becomes
more reliable when the spectrum of Ag exhibits clear separation between the dominant eigenvalue
and the others. This result plays a critical role in ensuring the accuracy of approximate diagonal re-
stabilization design. As shown in Lemmal[T] the first-order approximation of the stabilized dominant
eigenvalue )‘((i% depends on the product wq ¢(s;)v4,6(s;) at selected indices s;. Therefore, accurate
estimation of wyq g directly affects the effectiveness of the control input selection strategy. The finite-
sample guarantee in Theorem 3|ensures that the estimated eigenvector Wy remains sufficiently close
to the true one, thus preserving the control relevance of the index selection even under sampling
uncertainty. In practical terms, this means that even when the snapshot data set is limited in size, the
approximate diagonal re-stabilization strategy can still reliably identify high-impact nodes—e.g.,
key genes or transcription factor, by leveraging the structure encoded in wy. Although the theo-
retical bound may be conservative due to its dependence on worst-case assumptions, it provides a
principled basis for quantifying confidence in structure-aware control from finite data.

5 VALIDATIONS

Simulation model. To validate our framework for system identification and early treatment design,
we conduct numerical experiments on synthetic mRNA-protein regulatory networks that mimic dis-
ease progression through bifurcation. We focus on a global bifurcation scenario, where a mas-
ter regulator protein controls the transcription rates of all genes, leading to a system-wide tipping
point. This setup aligns with biological systems exhibiting coordinated dysregulation, such as in
cancer or developmental disorders, where master regulators drive cell fate transitions via bistable
switches. For noise, we employ additive Gaussian perturbations to reflect extrinsic biological vari-
ability, consistent with the assumptions in our theoretical analysis (e.g., covariance estimation in
Section 2.3). The model simulates a system of 5 genes (Gy,...,G4) and their corresponding 5
proteins (Fy, ..., Py). The network topology is designed around a single master regulator, protein
P,, which positively regulates the expression of all genes in the network, including its own. This
global positive feedback structure allows the system to switch between low and high expression
states, characteristic of bistability. The dynamics of the network are modeled as a system of stochas-
tic differential equations (SDEs) to capture the intrinsic noise inherent in biological processes. We
specifically use an additive Gaussian noise model, where the stochastic fluctuations are indepen-
dent of the molecular concentrations. The transition between system states is induced by varying a
key bifurcation parameter, Kaser, Which controls the activation threshold of the master regulator.
This setup allows us to generate high-dimensional, single-cell snapshot data at various points along
the system’s trajectory as it approaches the tipping point. For a comprehensive description of the
network equations, noise setting, and a full list of parameter values, please check Appendix [F}

Results. According to Lemma the value of wq ¢(i)vq (i) plays a critical role in the diagonal
re-stabilization design. The most effective node is the one corresponding to the maximum absolute
value of this product. Moreover, the sign of wq ¢(s;)v4,0(s;) is also essential. If the sign is positive,
a negative k; is required to shift the real part of the dominant eigenvalue further from zero. Con-
versely, if the sign is negative, a positive k; is needed. Owing to these considerations, our analysis
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Figure 3: Plots of the evolution of eigenvalues across episodes and the estimation results: (a) Max-
imum eigenvalues of Ag and dominant eigenvalues of Cg at different time points; (b) 95% con-
fidence region of the estimated wq g,,(4)v4,6,, (i) With N = 5; (c) 95% confidence region of the
estimated wq g,,(7)V4 6,,(¢) with N = 15. (d) Statistical analysis of estimation accuracy for the
regulatory node with results of 2,000 trials.

focuses on the estimation accuracy of wq g(s;)va,e(s;) in the subsequent discussion. In partic-
ular, we evaluate the percentage of trials in which the method correctly identifies the regulatory
node with the largest absolute value of wq ¢(s;)v4,0(s;), along with the correct sign. This metric
directly reflects the method’s ability to support effective diagonal re-stabilization, as discussed in
Lemma [I] We perform a Monte Carlo simulation to investigate the statistical performance of the
proposed method. In each simulation, the network’s structure and parameters have been fixed. The
cases with sample number as N = 3, 5, 7, 8, 9, 10, 12, 15 were considered. We have totally
H = 19 episodes for snapshot data observations. On the other hand, for each sample number N,
2000 sample sets were generated. We implement the method in (Shen et al., [2024) (SOTA) and the
proposed method (Proposed) to obtain the system matrix estimations. As the episode proceeds from
k = 1to k = 19, the maximum eigenvalue of the system matrix gradually approaches zero, and
the covariance matrix increases rapidly, as shown in Figure [3| (a). Figures |3| (b) and (c) show the
95% confidence bounds of the estimated wq g,,(¢)V4 g,,(¢) Obtained by the SOTA method and the
proposed method with N = 5 < 2n = 10 and N = 15 > 2n = 10, respectively. The proposed
method provides confidence bounds that are close to the true value, while the SOTA method fails to
yield accurate estimations. The results of 2,000 Monte Carlo trials on the regulatory node estima-
tions are summarized in Figure 3] (d). As the number of samples increases, both algorithms exhibit
improved accuracy of identifying the regulatory node along with the correct sign of . Notably, the
proposed method demonstrates significant improvements in regulatory node estimation accuracy
compared to the state-of-the-art (SOTA) approach. In particular, when the number of samples is
considerably smaller than the system state dimension 2n = 10, the proposed method still achieves
high estimation accuracy. The above performance gain arises from the method’s ability to leverage
information across multiple episodes, thereby enriching the data available for covariance matrix es-
timation. Consequently, this enhancement leads to a more accurate estimation of the system matrix
and its associated eigenvectors. In this simulation, we focus on the identification of regulatory genes
and do not present intervention results. This is because, once the key regulatory nodes are accurately
identified, the corresponding intervention strategies—such as re-stabilization via feedback—can be
effectively designed based on existing control-theoretic formulations. Therefore, the success of the
overall intervention critically depends on the accuracy of the regulatory gene identification, which
is the main focus of this work.

6 CONCLUSIONS

We proposed a system identification framework for mRNA-protein regulatory networks from snap-
shot data, tailored to design effective intervention strategies. By exploiting the Lyapunov equa-
tion with structural constraints, our method achieves reliable estimation of the system matrix under
high-dimensional low-sample-size conditions, with theoretical guarantees on finite-sample accuracy.
Building on these results, we developed both optimal and approximate diagonal re-stabilization de-
signs, offering actionable insights for early treatment at the pre-disease stage. Future work will
extend this framework to nonlinear dynamics and validate intervention strategies on real single-cell
datasets, with the potential to impact broader applications in biology and beyond.
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Appendix

A EARLY DETECTION OF PRE-DISEASE STAGE

Let Cg € R2"*2" denote the covariance matrix of x when the system is parameterized by 6. As
presented in (Oku & Aiharal 2018, Section 3.2), as the parameter 6 approaches the tipping point 8¢,
the covariance matrix Cg converges to a rank-one matrix if Ay g is real, written by

lim (_2)\d,0)00 = 511Vd,9vc—jr,9a ©)

/\d19_>0_

where the positive real number D1 is the first diagonal element of D = V;lD(Vg)_l. Here, Vg
is a matrix consisting all right eigenvectors of Cg. On the other hand, the covariance matrix Cg
converges to a rank-two matrix if Ay ¢ is complex. Specifically, the dominant eigenvalue of Cg’s
limit is infinity.

A group of diagonal elements of Cy also increases to infinity, indicating that there exists a group of
nodes whose standard deviations become unbounded. In parallel, the covariance between two nodes
in this group also grows substantially as @ approaches the tipping point O¢c. We take the case when
Ad,e as an example to illustrate it. The eigenvector &9 = [ﬁl o.r> EI g’p]T of Cy corresponding to
the dominant eigenvalue converges to the right MAC eigenvector of Ag, namely,

lim &40 = vq,0. (10)

)\d,9HO*
By equation 9] if v4 ¢ (i) # 0 and v4,9(j) # 0, we have
lim |Ca(i, j)| = oo, (11)
)\d,9_>0_
which is the theoretical explanation for the system’s large fluctuations in the pre-disease stage. The
standard deviation corresponds to the diagonal element Cg(7,7) ~ vg,e(i). Consequently, the stan-
dard deviation of the node, where v4 ¢ (i) # 0, shows a significant increase at the pre-disease stage.

The covariance between two nodes (vqg(i) # 0, vqe(j) # 0) also increases significantly in the
pre-disease stage.

The above two properties provide a theoretical explanation for the system’s large fluctuations in the
pre-disease stage, when 0 ~ O¢. By examining system fluctuations from snapshot data, it becomes
possible to detect the pre-disease stage, which is completely model-free. We refer to (Chen et al.,
2012;|Aihara et al., |2022)) for more details about indicator selection and computation for pre-disease
detection by snapshot data.

B RANDOM VARIABLE IN AN AUGMENTED SPACE.

Consider a random variable £ := (X, T') with support = C R"*!, where ¢ := (x, t)E]is arealization
of £&. Let F denote the o-algebra of subsets of =. Equipped with a probability measure p defined
on the Borel space (=, F), this forms a probability space (£, F,p). Let Z¢ C = be a subset of
E. Given a continuous probability density function p(£) with support Z, the probability that the
random variable £ lies within = is expressed as Pr{¢ € =} := fEs p(§) d€. Suppose that the
probability density function p() is a joint density denoted by p(x, t). Both x and ¢ are continuous
random variables with marginal probability densitie given by px (x) := [p. p(x,t)dt, pp(t) :==
Jan P (x,t) dx. Consider that pp(t) > Oand p (x,t) > 0 hold for any x € X and any (x,t) € R"**,
A conditional probability density is defined by p§ (x|T = t) := p (x,t) /pr(t). We omit “T =" in
the conditional probability density in the remainder of the paper. Additionally, we also define the
conditional probability of having X € X; C R™ when T' = ¢ by Pr{X € Xt} := sz Pk (x|t)dx.

26 = (xﬁ,’f) , tk) can represent a data point from the snapshot dataset.

3 Although the time point or sample time index may appear as a discrete integer, it is treated in a general
sense as a continuous variable. Moreover, a continuous probability density is used to approximate discrete
probability over a continuous domain (Capinski & Kopp, [2004).
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C PROOF OF THEOREM

As a preparation, we first introduce the convergence of

Theorem 4. Then, as N, H — oo, we have 69 LN Cop.

Proof. The proof consists of two steps.

Step 1: Convergence of p% (x | ) to p& (x | tx), and convergence of corresponding covariance.
By the results in (Gooijer & Zerom), 2003} |Hall et al.,|1999), under the stated bandwidth conditions
h — 0and NHA"™ — oo, the NW conditional density estimator satisfies

sup [Pk (x| tr) — pk (x| tg)] 20 as N,H — oo
xeR™

Since the true density p% is Gaussian N (0™, Cg) with finite second moments, and the uniform con-
vergence holds, we can invoke standard results on the convergence of integrals of bounded functions
with respect to densities (e.g., Theorem 2.1 in (Gooijer & Zerom, [2003))).

Let g(x) = xx |, which is polynomially bounded. Then, as N, H — oo,

[ o6omtx [ max & [ gGopix | )dx = Cor (12
Thus, the covariance matrix of p converges in probability to Cg.

Step 2: Convergence of empirical covariance Cy to the covariance of p% .

Now consider {X( )}M 1 as i.i.d. samples from p§ (x | ;). By the Weak Law of Large Numbers,

for any €; > 0 and d; > 0, there exists M such that for all M > M, we have

Pr{HCAlg - /xxTﬁX(x | tx)dx

<61}>1—(51. (13)
F

Combination of the two steps: ¢-§ argument.

Finally, we combine the two steps carefully. Let € > 0 and § > 0 be arbitrary.

* From Step 1, there exists (N, Hy) such that for all N > Ny, H > H,

{H/xx Pk (x| tr)dx — Cg
F

* From Step 2, for these fixed (N, H) and for sufficiently large M > M, we have

< e/2} >1-6/2.

Pr{Hag — /xxTﬁCX(x | tr)dx

€ —9/2.
F< /2}21 /2

Now applying the union bound, for N > Ny, H > Hy, M > M, we obtain:
PI’{HGQ — CGH < 6} >1-6.
F
Since € and ¢ are arbitrary, we conclude that:

Co 2 Cy as M,N,H— .
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By Theorem 4] for any given Ay, it holds that
J (m 69) 2y J(o/,Cq), asN,H — oo. (14)

That is, for any fixed .27, the objective function evaluated with the estimated covariance converges in
probability to its true counterpart. By invoking (Shapiro et al.,[2014} Proposition 5.1), this pointwise
convergence on a compact set implies that

J (mée) — J (o, Ce) (15)

holds uniformly on any compact subset of R37+7° | where R3"+” denotes the parameter space of
all vectors containing the nonzero elements of A. Then, by (Shapiro et al[2014] Proposition 5.2),

the convergence of the objective functions guarantees that the minimizer of equation [Pg (Dspap)
converges in probability to the minimizer of equation[Pg|as N, H — oco. Since equation [Pg|admits
a unique optimal solution A, it follows that

Ag L Ay (16)

as N, H — oo, which completes the proof.

D PROOF OF THEOREM

As preparation of the proof, we first give the following results regarding the confidence bound on
the covariance matrix estimation.

Theorem 5. Suppose Assumption@holdsfor some Lg and B € (0,1). Let o € (0,1) and € > 0 be
given.

Then, for any § € (0, 1), if the number of generated samples M satisfies:

2L% log (2%)

2 I

M >
€
then with probability at least 1 — 8 — 0, we have:

fou- e, =«
F

Proof. Lete > 0and ¢ € (0,1) be given.

We split the error H(Ajg —Co H into two terms:
F

o~ ol < 0 -], o~

X, X2
Step 1: Control of X5.
From Theorem 4] Step 1, we know that as N, H — oo:
||IE5[XXT] — CgHF 5.
Therefore, there exists (Ny, Hy) such that for N > Ny, H > Hj, we have:

Pr{X,<e/2} >1-6/2.

Step 2: Control of X using Hoeffding inequality.

T

Under Assumption [2} for each entry (i, j) of the matrix xx ', we have:

|z ()] < L% with probability at least 1 — 3.
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Conditioning on the event where this bound holds, we apply Hoeffding inequality (Hoeffding] |1963)
to each entry of the matrix. For each (i, j):

M (1) . (4) i,j
me1 Xm X — E2 2M e
Pr{‘z e P ze’} < 2exp <—4Lj ) (17)
B
where o L
Ex = BplxWxV)]. (18)
Now set:
£
= 2n

Then applying union bound over n? matrix entries:

2M 2
Pr{X; <e/2} >1—2n%exp (—4> .
dn? L3

To ensure this probability is at least 1 — §/2, it suffices to choose M such that:

Me?
2’112 exp <_2TL2L%> S 6/2.

Solving this inequality yields the stated bound:

2
213 log (2%)
> A7/

€2

Final step: Union bound.

Finally, applying union bound over the two steps, we obtain:

Pr{Hég—CgHF Se} >1—p-0.
O

Proof. Step 1: Sample covariance approximation. By Theorem [5] for sufficiently large M, we
have with probability at least 1 — 8 — 4,

for- e, <«
F

Step 2: Perturbation of optimal solution Ag. Define the perturbed objective
J(A,C) := HAC +CAT ¢ DHi .
Since Ay satisfies the Lyapunov equation for Cg, we have
Q(Ag,Co) = AgCp + CpA, + D =0.
Thus, the first-order change of J(Ag, 69) around Cg is:
Q(Ag,Cg) = AgAC + ACA,,
|Q(A6.Co)|| . <2 Aa]rlIAC] .

So the increase in objective function is bounded by:

~ 2
J(A0,Co) = |A0AC +ACAS | <4AqlFACIE.
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Letting
L = 4]|AolI%,

we obtain:
‘J(Ag, Cg) — J(Ag, Cg)| < Lé.

Now, from standard perturbation results for strongly convex objectives, the minimizer satisfies

o ], = [Favian ),

We further bound:
VaJ(Ag, 69) =2 (Agégég + agAgég + Dag) ,
which grows linearly with e, yielding:

~ L
oo - el < e
F™op

E PROOF OF THEOREM 3]

Let A4 be the dominant eigenvalue of Ag with eigengap

Oy = rggl[?p\d — )\,‘| > 0.
Applying the Davis—Kahan theorem for left eigenvectors, we have (Yu et al., 2015))

|20 -
sin Z (Wg, wy) < ——2.
oA

Since
-1z <1l lles
we can further bound
. o 2||Ag — A oL
|9 — wal, < 25in £ (Fg, w) < A8 Aol 2L
5)\ /1,5)\

Hence the perturbation of the left dominant eigenvector is explicitly controlled in norm.

F SIMULATION MODEL DETAILS

Here, we provide a complete description of the gene-protein regulatory network model used to
generate the synthetic data for our experiments.

F.1 NETWORK STRUCTURE AND TOPOLOGY

The network consists of N = 10 state variables: the concentrations of 5 mRNAs (my, ..., m4) and
5 proteins (po, . . . , p4). The network employs a “master regulator” topology, as depicted in Figure[I]
In this structure, a single protein, Py, acts as a global transcriptional activator for several genes. The
concentration of P, serves as a proxy for the overall state of the system, and its self-regulation
creates a positive feedback loop that gives rise to bistability and bifurcation phenomena.
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F.2 SYSTEM DYNAMICS AND GOVERNING EQUATIONS

The temporal evolution of mRNA (m;) and protein (p;) concentrations for each gene 7 € 0,...,4 s
described by the following system of stochastic differential equations (SDEs):

dmi pnmas(cr

_ 4

a Olbasal,i T Olactivated T Tmaer Pomer m, i +§m,i(t)
S~—— master T P4 ~——
Basal Rate Degradation

Activated Transcription

dp;
= pim; — iPi i(t
dt 6 m ’YP’ p +£P’ ( )

Translation  Degradation
Where:

* The activated transcription term is a standard Hill function representing the cooperative
binding of the master regulator P, to the promoter regions of the genes.

o Kaster 1S the Michaelis-Menten constant, representing the concentration of P, required for
half-maximal activation. This parameter is systematically varied to induce the bifurcation.

* nmaster 1S the Hill coefficient, representing the cooperativity of binding.

* &m,i(t) and &, ;(¢) are stochastic terms representing noise.

F.3 NOISE MODEL

The stochastic terms £(t) represent additive Gaussian white noise, which models random fluctua-
tions in the biochemical reactions. The SDEs are of the form dX; = f(X;)dt+odW;, where f(X})
is the deterministic drift part of the equations above, dWW; is a Wiener process, and ¢ is the noise
strength.

For the numerical simulations, we use the Euler-Maruyama method with a time step At. The noise
term for each state variable at each time step is implemented as:

Noise = oV/At - N'(0,1)

where N(0,1) is a random variable drawn from a standard normal distribution. The noise strength
o was set to a constant value of 0.1 for all simulations.

Snapshots are generated near the tipping point on the high branch. For each selected parameter
value, we simulate 100 independent realizations (representing 100 cells) using Euler-Maruyama in-
tegration. The state of each realization at the equilibrium point is taken as a single-cell measurement,
yielding a snapshot of N = 100 cells. This yields high-dimensional low-sample-size (HDLSS) data,
which is repeated for a set of parameter values selected mainly near the bifurcation point to gener-
ate multiple snapshot datasets, with gradual shifts in distributions to test covariance estimation and
re-stabilization. Ground-truth Jacobians are saved for comparison with the estimated Ay.

F.4 PARAMETER SETTINGS

The specific parameter values used for the “Global Bifurcation” model are detailed in the table
below. These values were chosen to ensure the system exhibits a clear bistable region and a saddle-
node bifurcation as Kyser 1S varied. The bifurcation parameter K, is varied across the range
[0.1,10.0], with denser sampling applied in the critical regions near [0.233, 8.286] to better capture
variance peaks from critical slowing down.
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Parameter Value(s) Description

Qlpasal [0.03, 0.04, 0.06, 0.05, 0.05] Basal transcription rate for each gene.

Qactivated 6.0 Maximum activated transcription rate.

K aster Varied (e.g., logspace(-1, 1))  Bifurcation parameter: activation constant for Pj.

Tmaster 4 Hill coefficient for P, activation.
[1.6,1.9,2.2,2.0,2.4] Translation rate for each mRNA.

Ym 1.0 (for all 7) mRNA degradation rate.

Vp [1.0,0.9,0.8, 1.1, 1.0] Protein degradation rate.

o (noise strength) 0.1 Strength of the additive Gaussian noise.

Table 1: Parameter settings for the global bifurcation model.

G LIMITATIONS

While our framework provides a principled way to identify mRNA-protein regulatory dynamics
from snapshot data and design re-stabilization strategies, several limitations remain. First, although
the kernel conditional density estimator mitigates the high-dimension low-sample-size (HDLSS)
challenge, it introduces additional computational cost and may still be sensitive to bandwidth se-
lection. Second, the current work does not include experimental validation of the re-stabilization
design. While accurate identification of regulatory nodes strongly suggests effective interventions,
future studies will be needed to validate these strategies in wet-lab or clinical settings.

H BROADER IMPACT

This work contributes to the emerging intersection of machine learning, biology, and medicine by
providing a data-driven framework for identifying regulatory dynamics and designing early inter-
ventions in disease progression. From a biological perspective, the ability to detect pre-disease
stages and suggest re-stabilization strategies has the potential to inform ultra-early treatment, shift-
ing medical practice from reactive treatment to preventive intervention. This aligns with ongoing
efforts in precision medicine, where computational tools guide targeted therapies at the molecular
level. From a machine learning perspective, our study highlights how structural priors and dynam-
ical systems theory can enhance learning in the high-dimension low-sample-size (HDLSS) regime,
which frequently arises in single-cell analysis and other scientific domains. These insights may in-
spire future work on combining domain knowledge with statistical learning for better data efficiency
and interpretability. At the same time, caution is required when interpreting computationally identi-
fied regulatory nodes as clinical intervention targets. Translational applications will require rigorous
experimental validation and ethical considerations to ensure safety and effectiveness.

I EXPERIMENTS COMPUTE RESOURCES

All experiments were conducted on a MacBook equipped with an Apple M4 chip and 32GB of
unified memory.

J REPRODUCIBILITY STATEMENT

The source code has been included in the supplementary material for review purposes, and we will
release it as open source if the paper is accepted, to ensure transparency and reproducibility.
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