

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING EARLY TREATMENT STRATEGY FROM SNAPSHOTS FOR mRNA-PROTEIN REGULATORY NET- WORKS

Anonymous authors

Paper under double-blind review

ABSTRACT

Early disease detection with snapshot data has been effectively addressed by the Dynamical Network Biomarkers (DNBs) theory. After early disease detection, it is crucial to consider early medical treatment to prevent it. This paper presents a novel framework for identifying mRNA-protein regulatory systems from snapshot data and designing interventions. We first estimate the state covariance of mRNA-protein expression using multi-episode snapshot samples. Then, we identify the underlying continuous-time dynamics by solving a Lyapunov-based regression problem. We provide finite-sample guarantees on the estimation accuracy of the system matrix and its dominant eigenvectors, which are essential for downstream treatment design. Building on these estimates, we formulate an optimal re-stabilization strategy that minimizes input energy with desired spectral shifts. To ensure practical feasibility, we further propose a diagonal re-stabilization scheme that identifies key regulatory nodes using a first-order eigenvalue sensitivity analysis. Numerical examples on synthetic mRNA-protein network demonstrate that our method accurately identifies regulatory node under high-dimensional, low-sample conditions and significantly outperforms existing baselines.

1 INTRODUCTION

In biological systems, functions such as mRNA regulation and protein interactions occur through complex networks (Briat & et al., 2016). Many diseases stem from abrupt deterioration in these networks, often modeled as bifurcation phenomena (Chen et al., 2012; Sadria & Bury, 2024). Using the snapshot data samples, the *Dynamical Network Biomarker* (DNB) method can predict the stage of the system immediately before the bifurcation occurs, referred to here as the pre-disease stage (Liu et al., 2015). According to DNB theory, certain nodes exhibit amplified fluctuations as they approach a bifurcation point. These dominant directions reflect nodes with large fluctuations, and can be estimated from snapshot data. The DNB theory also enables early disease detection based on the increased fluctuations of specific biomarkers (Aihara et al., 2022). The ability to detect diseases at the pre-disease stage is crucial for early medical intervention. Traditional Japanese medicine has been used to suppress DNB node fluctuations and prevent disease progression (Koizumi et al., 2020). Experimental results in (Chen & et al., 2022) demonstrate that manipulating multiple DNB nodes can significantly alter malignant phenotypes in lung cancer. The success of heuristic approaches has further inspired the development of theoretical frameworks for early medical intervention. Recent studies have explored early treatment via high-dimensional low sample-size (HDLSS) snapshot data. While (Yasukata et al., 2023) proposed a single-input method for undirected networks, extensions to directed networks were developed in (Shen et al., doi:10.1109/TETCI.2024.3442824). These works highlight the importance of the system matrix's left eigenvector corresponding to eigenvalues with maximal real parts for optimal input placement, information not directly accessible via principal component analysis (PCA), necessitating system identification by snapshot data. Learning stochastic dynamics from snapshot data has recently gained considerable attention in the machine learning community (Song et al., 2021; Neklyudov et al., 2023; Tong et al., 2024). A dominant approach involves first inferring time-series trajectories from the data, followed by system identification based on the inferred trajectories (Tong et al., 2020). This trajectory inference has been particularly studied in the context of single-cell RNA sequencing (Saelens et al., 2019; Shi et al., 2022; Sha et al.,

054 2024), where uncovering the underlying temporal progression of cellular states is essential. Optimal
 055 transport methods have become central tools for such snapshot datasets with temporal resolution
 056 (Bunne et al., 2024; Schiebinger et al., 2019), with the Schrödinger bridge (SB) formulation ex-
 057 tending these methods to stochastic dynamics by modeling the most likely stochastic paths between
 058 two distributions relative to a reference process (Léonard, 2014; Shi et al., 2024; Liu et al., 2022).
 059 To improve computational tractability, regularization techniques have also been introduced to these
 060 transport-based formulations (Chen et al., 2022; Zhang et al., 2025). Despite these advances, such
 061 methods often suffer from high computational cost and rely on large sample sizes to obtain reliable
 062 results, which are rarely satisfied in single-cell data analysis.

063 A core challenge in modelling gene regulatory systems is their inherently complex multiscale char-
 064 acter: slow transcriptional changes interact with much faster protein-level dynamics, and meaningful
 065 mechanistic descriptions and models must account for different scales (Fletcher & Osborne, 2022).
 066 Classical mechanistic models based on differential equations have been used in systems biology for
 067 capturing these interactions across domains from circadian–metabolic coupling and metabolic reg-
 068 ulation to mechanistic models of immune and viral dynamics (Sadria & Layton, 2021a;b; Ingalls,
 069 2013). While these models have enabled mechanistic insight across many biological settings, they
 070 typically require dense time-series or carefully designed experiments for reliable parameter identifi-
 071 cation, which are scarce in current high-throughput single-cell genomics. These limitations have mo-
 072 tivated powerful trajectory-inference and representation-learning methods that reconstruct temporal
 073 progressions from snapshots (for example, transport-based formulations and Schrödinger-bridge ap-
 074 proaches). Such tools are useful for recovering likely cellular paths and population-level flows, but
 075 their design goals differ from those needed for control: they prioritize path reconstruction (often
 076 under specific loss/regularization choices) rather than explicit recovery of the low-level regulatory
 077 parameters and multiscale structure required to reason about stability or to design energy-efficient
 078 interventions. Complementary recent work demonstrates scalable deep and representation-learning
 079 approaches that predict fate changes or extract parsimonious dynamical models from single-cell data
 080 and a library-guided sparse discovery framework (Sadria et al., 2022; Sadria & Swaroop, 2025);
 081 these advances substantially improve fate prediction and model discovery, but by themselves do not
 082 directly yield the identifiable, control-ready parameterizations we target here.

083 In contrast, in this paper, we leverage the structural properties of the mRNA–protein regulatory net-
 084 work to achieve reliable and computationally efficient system identification. This identified system
 085 enables the design of effective early treatment strategies. Our main contributions are summarized as
 086 follows: (a) **System identification from snapshot data:** We develop a framework that uses struc-
 087 tural constraints of the mRNA–protein regulatory network to identify the system matrix from finite
 088 snapshot data via Lyapunov-based regression. (b) **Theoretical guarantees:** We establish finite-
 089 sample confidence bounds for both the system matrix estimation and the associated eigenvectors,
 090 ensuring reliability even under High-Dimension Low-Sample-Size (HDLSS) conditions. (c) **Early**
 091 **intervention design:** Building on the estimated system, we design both optimal and diagonal re-
 092 stabilization strategies, providing a practical approach for early treatment at the pre-disease stage.
 093 This is crucial as early (pre-disease) interventions are significantly more effective and less invasive
 094 than treatments applied after full disease onset.

095 2 PRELIMINARIES AND BACKGROUNDS

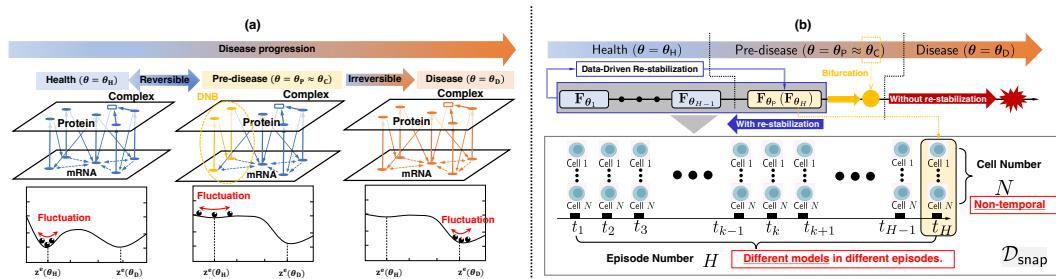
096 **Dynamic system for gene regulation.** Gene transcription is regulated by transcription factors that
 097 bind to DNA, with transcription rates modulated by their concentrations. Translated proteins can
 098 further regulate gene expression. Translation lacks feedback to mRNA, and both mRNAs and pro-
 099 teins degrade stochastically. This gene-mRNA-protein feedback is modeled by (Chen et al., 1999;
 100 Liu et al., 2016; Passemiers et al., 2022; Sanders et al., 2020; Weidmann et al., 2021):

$$101 \quad \dot{\mathbf{z}} = \mathbf{F}_{\theta}(\mathbf{z}) + \mathbf{w}, \quad \mathbf{F}_{\theta}(\mathbf{z}) = \begin{bmatrix} -\Delta_{r,\theta} \mathbf{z}_r + \mathbf{f}_{\theta}(\mathbf{z}_p) \\ \Gamma_{r,\theta} \mathbf{z}_r - \Delta_{p,\theta} \mathbf{z}_p \end{bmatrix}. \quad (1)$$

102 where $\mathbf{z} := [\mathbf{z}_r, \mathbf{z}_p]^\top \in \mathbb{R}^{2n}$ denotes mRNA and protein concentrations, and \mathbf{w} is Gaussian noise
 103 with covariance \mathbf{D} . Transcription function $\mathbf{f}_{\theta}(\mathbf{z}_p)$ is a nonlinear n -dimensional vector encoding
 104 protein-mediated regulation. Diagonal matrices $\Gamma_{r,\theta}$, $\Delta_{r,\theta}$, and $\Delta_{p,\theta}$ represent translation and degra-
 105 dation rates and are all non-degenerate. These quantities are parameterized by $\theta \in \Theta \subset \mathbb{R}^m$. Let
 106 \mathbf{z}^e be the equilibrium point such that $\mathbf{F}_{\theta}(\mathbf{z}) = 0$, where $\mathbf{z}^e = [\mathbf{z}_r^e, \mathbf{z}_p^e]^\top$. A linearized approximation

108 around \mathbf{z}^e can be written by (Chen et al., 1999)
109

$$110 \quad \dot{\mathbf{x}} = \mathbf{A}_\theta \mathbf{x} + \mathbf{w}, \quad \mathbf{x} = \mathbf{z} - \mathbf{z}^e, \quad \mathbf{A}_\theta = \begin{bmatrix} -\Delta_{r,\theta} & \Gamma_{p,\theta} \\ \Gamma_{r,\theta} & -\Delta_{p,\theta} \end{bmatrix}, \quad \Gamma_{p,\theta} = \frac{\partial \mathbf{f}_\theta(\mathbf{z}_p)}{\partial \mathbf{z}_p} \Big|_{\mathbf{z}=\mathbf{z}^e}. \quad (2)$$



124 Figure 1: Conceptual illustration of the disease progression and snapshot dataset: (a) Illustration of
125 the disease progression from the health stage to the disease stage through the pre-disease stage.
126 (b) Illustration of the snapshot data-driven re-stabilization and the issue for system identification.

127
128 **Disease progress and snapshot data.** Figure 1 (a) shows chronic disease progression driven by
129 the parameter θ , where a tipping point θ_C separates the healthy stage Θ_H from the disease stage
130 Θ_D . This transition corresponds to a bifurcation in the nonlinear system (Chen et al., 2012). Let
131 $\bar{\Theta}_H := \Theta_H \cup \partial\Theta_H$ denote the closure of the healthy region. As θ evolves within $\Theta := \bar{\Theta}_H \cup \Theta_D$,
132 the equilibrium \mathbf{z}_θ^e changes accordingly. In $\bar{\Theta}_H$, the equilibrium is stable and approximated by $\mathbf{z}^{e,H}$,
133 while in Θ_D , it shifts to $\mathbf{z}^{e,D}$, far from the healthy state (bottom of Figure 1 (a)). As shown in
134 Figure 1 (a), the system is stable in both Θ_H and Θ_D , since the maximum eigenvalue $\lambda_{d,\theta}$ of \mathbf{A}_θ
135 has a significantly negative real part. At the tipping point $\theta \in \partial\Theta_H$, this eigenvalue becomes zero.
136 In the pre-disease stage $\theta_P \approx \theta_C$, we have the real part $\text{Re}\{\lambda_{d,\theta}\} \approx 0^-$, indicating low stability
137 and high sensitivity to perturbations. As illustrated in Figure 1(b), measurements of the system
138 state \mathbf{x} (mRNA and protein levels) are collected over H episodes. Each episode k corresponds to a
139 biological sampling time t_k , where N individual cells are measured. These single-cell observations
140 form a snapshot of the internal state: $\mathcal{D}_{\text{snap}}^{(k)} := \left\{ \mathbf{x}_m^{(k)} \right\}_{m=1}^N, \quad \mathbf{x}_m^{(k)} \in \mathbb{R}^{2n}$. Such data are not time-
141 series but population-level samples reflecting heterogeneity at t_k . The full dataset is denoted by
142 $\mathcal{D}_{\text{snap}} := \left\{ \mathcal{D}_{\text{snap}}^{(k)} \right\}_{k=1}^H$.

144 **Assumption 1.** For each $k = 1, \dots, H$, the following holds: (1) The samples $\left\{ \mathbf{x}_m^{(k)} \right\}_{m=1}^N$ are i.i.d.
145 from a continuous distribution μ_k : $\mathbf{x}_m^{(k)} \sim \mu_k$. (2) θ evolves smoothly across time t_k ¹.

147 This setting reflects realistic biological measurement conditions, where mRNA-protein regulatory
148 systems are quasi-stationary during sampling, and population-level expression distributions shift
149 gradually due to slow parameter changes. Note that the i.i.d. assumption applies only to the sample
150 index m , and no independence across time step k is assumed.

3 ADDRESSED PROBLEM AND CHALLENGING ISSUES

154 Pre-disease stage can be efficiently detected by snapshot data. Details of pre-disease detection are
155 summarized in Appendix A. Once the pre-disease stage is detected, it is natural to consider medical
156 interventions aimed at preventing further progression and restoring the gene regulatory network to
157 the healthy stage. In addition to alleviating patient suffering, early intervention at the pre-disease
158 stage is generally more effective—and often less invasive—than treating fully developed diseases.
159 Recovery from the disease stage requires steering the system from a diseased equilibrium point \mathbf{z}_θ^e
160 with $\theta \in \Theta_D$ back to a healthy equilibrium \mathbf{z}_θ^e with $\theta \in \Theta_H$. This constitutes a nonlinear control

1¹“Smooth” means that θ is a smooth function of time t , indicating a smooth parameter evolution in time.

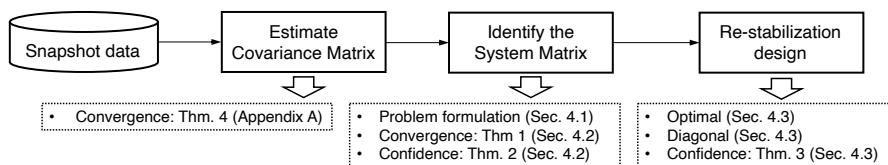
162 problem due to the large deviation between these equilibria and the complex dynamics involved.
 163 In contrast, recovery from the pre-disease stage is more tractable. Since the equilibrium point \mathbf{z}_0^e
 164 changes only slightly for $\theta \in \bar{\Theta}_H$, the problem can be reasonably approximated as a linear con-
 165 trol task. The objective in this case is not to shift the equilibrium but to enhance the system’s
 166 robustness to external perturbations by increasing its local stability margin. To distinguish this type
 167 of intervention from full recovery, we refer to it as *re-stabilization*. Re-stabilization aims to shift
 168 the dominant eigenvalue $\lambda_{d,\theta}$ further into the left-half complex plane, thereby enhancing the sys-
 169 tem’s resilience while it remains in the vicinity of the healthy regime. This can be achieved by
 170 introducing a feedback loop that modifies the system matrix to $\mathbf{A}_\theta + \mathbf{B}_\theta \mathbf{K}_\theta$. Here, the matrix
 171 $\mathbf{B}_\theta = [\mathbf{b}_{1,\theta}, \dots, \mathbf{b}_{l,\theta}] \in \mathbb{R}^{2n \times l}$ determines the input placement—i.e., the selection of genes for
 172 intervention. We now formulate the re-stabilization problem with snapshot dataset $\mathcal{D}_{\text{snap}}$:

173 **Problem 1** (Re-stabilization problem). *At each episode $k = 1, \dots, H$, the parameter in the tran-
 174 scription function is defined by θ . Note that the true system matrix \mathbf{A}_{θ_k} , $k = 1, \dots, H$ in the lin-
 175 earized error dynamics equation 2 is unknown. Given a snapshot dataset $\mathcal{D}_{\text{snap}}$, the objective is to
 176 design a feedback intervention $\mathbf{B}_{\theta_H} \mathbf{K}_{\theta_H}$ that the dominant eigenvalue of the closed-loop system
 177 $\tilde{\lambda}_{d,\theta} := \max \text{Re}(\text{eig}(\mathbf{A}_\theta + \mathbf{B}_\theta \mathbf{K}_\theta))$ satisfies $\text{Re}(\tilde{\lambda}_{d,\theta}) < \text{Re}(\lambda_{d,\theta})$, realizing re-stabilization.*

178 By solving the re-stabilization problem, we increase the stability margin of the mRNA-protein reg-
 179 ulatory system, making it less sensitive to random fluctuations. As a result, the state distribution
 180 becomes more concentrated around the healthy equilibrium and less likely to drift toward the dis-
 181 ease state under uncertain perturbations. In biological terms, this means that even when the system
 182 is close to a critical transition, effective re-stabilization can suppress large fluctuations in regulatory
 183 genes and reduce the probability of crossing into the disease stage. This highlights the practical mo-
 184 tivation of our framework: identifying regulatory nodes not only enables early detection of disease,
 185 but also provides actionable targets for early intervention.

186 **Challenging issues.** Solving Problem 1 faces several key challenges. First, the snapshot dataset
 187 $\mathcal{D}_{\text{snap}}$ collected at the pre-disease stage ($k = H$), $\mathcal{D}_{\text{snap}}^{(H)}$, suffers from the high-dimensional, low-
 188 sample-size (HDLSS) regime, as it typically contains expression measurements for $n > 10^4$ genes
 189 across a few thousands single cells at most. That is, the number of molecular features far exceeds
 190 the number of observable cells, creating severe challenges for statistical inference on the system
 191 matrix \mathbf{A}_{θ_H} using only the available data at t_H . Second, the dataset $\mathcal{D}_{\text{snap}}$ consists of non-temporal
 192 (snapshot) observations, which precludes the use of system identification techniques that rely on
 193 time-series trajectories. Furthermore, although snapshot data from earlier episodes are available,
 194 they originate from distinct underlying models due to variation in θ across time and therefore cannot
 195 be directly pooled with data from the pre-disease stage. As a result, classical control techniques
 196 such as pole placement, which require full knowledge of the system matrix, are not applicable.
 197 These issues necessitate the development of a novel data-driven approach capable of designing re-
 198 stabilizing feedback using only distributional information extracted from limited snapshot data.

4 PROPOSED METHOD: GENERATIVE RE-STABILIZATION



208 Figure 2: A brief summary of the proposed method and content in this section.

210 A summary of the proposed method is illustrated by Figure 2. We begin by estimating the co-
 211 variance matrix of the state at the pre-disease stage using snapshot data. Based on the estimated
 212 covariance, the system matrix is then identified by solving a regression problem derived from the
 213 Lyapunov equation. We analyze the probabilistic convergence of the estimated system matrix and
 214 provide a finite-sample confidence bound for its estimation error. Finally, leveraging the estimated
 215 system matrix, we carry out re-stabilization design, including both the optimal re-stabilization and a
 practically implementable approximate diagonal re-stabilization approach.

216 4.1 REGRESSION FROM LYAPUNOV EQUATION
217

218 At the steady state, the covariance matrix of \mathbf{x} , denoted by $\mathbf{C}_\theta \in \mathbb{R}^{2n \times 2n}$, satisfies the Lyapunov
219 equation as follows (Chen et al., 2012; Oku & Aihara, 2018):

$$220 \quad \mathbf{A}_\theta \mathbf{C}_\theta + \mathbf{C}_\theta \mathbf{A}_\theta^\top + \mathbf{D} = 0. \quad (3)$$

222 We identify the system matrix using equation 3 rather than solving a standard time-series regression
223 problem. The motivation for introducing the Lyapunov equation-based formulation is that, in practice,
224 we do not observe full time-series trajectories but only snapshot measurements across cells.
225 The Lyapunov equation directly links the covariance of the stationary distribution to the system
226 matrix, allowing system identification from non-temporal snapshot data. This formulation addresses
227 the key challenge of snapshot-based identification by transforming it into a regression problem on
228 covariance matrices, which can be consistently estimated from single-cell data. On the other hand,
229 in our case, the non-zero elements of \mathbf{A}_θ are known because $\Delta_{r,\theta}$, $\Delta_{p,\theta}$, $\Gamma_{r,\theta}$ are diagonal matrices.
230 Let \mathcal{A}_θ , \mathcal{C}_θ , \mathcal{D} be defined as:

$$231 \quad \mathcal{A}_\theta = \text{vec}(\mathbf{A}_\theta), \quad \mathcal{C}_\theta = \mathbf{C}_\theta \otimes \mathbf{I} + (\mathbf{I} \otimes \mathbf{C}_\theta) \mathbf{T}, \quad \mathcal{D} = 2\text{vec}(\mathbf{D}), \quad (4)$$

233 where \mathbf{I} is the $2n \times 2n$ identity matrix and \mathbf{T} is a transformation matrix satisfying $\text{vec}(\mathbf{X}) =$
234 $\mathbf{T}\text{vec}(\mathbf{X}^\top)$. From the Lyapunov equation equation 3, we obtain the linear equation:

$$235 \quad \mathcal{C}_\theta \mathcal{A}_\theta = -\mathcal{D}. \quad (5)$$

237 Since both \mathbf{C}_θ and \mathbf{D} are symmetric, the linear system equation 5 has rank $n(2n + 1)$ at most. If
238 we were to estimate all $4n^2$ variables in \mathcal{A}_θ , the system equation 5 would remain underdetermined.
239 However, we know that the diagonal matrices $\Delta_{r,\theta}$, $\Delta_{p,\theta}$, $\Gamma_{r,\theta}$ contain at least $3n^2 - 3n$ zero
240 elements. This implies that there are $3n^2 - 3n$ index pairs (i, j) for which $\mathbf{A}_\theta(ij) = 0$. Define
241 $\mathbf{u}^{(ij)} \in \mathbb{R}^{1 \times 4n^2}$ as a row vector such that $\mathbf{u}_k^{(ij)} = 1$ for $k = 2n(i-1) + j$, and $\mathbf{u}_k^{(ij)} = 0$ otherwise.
242 Then, $\mathbf{u}^{(ij)} \mathcal{A}_\theta = 0$ imposes the constraint $\mathbf{A}_\theta(ij) = 0$. In our case, these $3n^2 - 3n$ row vectors
243 together form the constraint matrix $\mathbf{U} \in \mathbb{R}^{(3n^2 - 3n) \times 4n^2}$, leading to:

$$244 \quad \mathbf{U} \mathcal{A}_\theta = \mathbf{0}. \quad (6)$$

246 By incorporating the constraint equation 6 into equation 5, the extended linear system becomes:

$$248 \quad \mathcal{C}_{\theta,\text{ext}} \mathcal{A}_\theta = \mathcal{D}_{\text{ext}}, \quad \mathcal{C}_{\theta,\text{ext}} = \begin{bmatrix} \mathcal{C}_\theta \\ \mathbf{U} \end{bmatrix}, \quad \mathcal{D}_{\text{ext}} = \begin{bmatrix} -\mathcal{D} \\ \mathbf{0} \end{bmatrix}. \quad (7)$$

250 The augmented coefficient matrix has rank at most $n(2n + 1) + 3n^2 - 3n = 5n^2 - 2n$, which
251 exceeds $4n^2$ for $n > 2$. This augmentation allows the unique determination of the matrix \mathbf{A}_θ .

253 The optimization problem for system identification, using $\mathcal{C}_{\theta,\text{ext}}$ transformed from the real covariance
254 matrix \mathbf{C}_θ , can be formulated as:

$$255 \quad \min_{\mathcal{A}} J(\mathcal{A}, \mathbf{C}_\theta) := \|\mathcal{C}_{\theta,\text{ext}} \mathcal{A} - \mathcal{D}_{\text{ext}}\|_2^2. \quad (\mathcal{P}_\theta)$$

257 The solution of the optimization problem written by equation \mathcal{P}_θ is unique as \mathcal{A}_θ satisfying
258 $J(\mathcal{A}_\theta, \mathbf{C}_\theta) = 0$ corresponds exactly to the true system matrix \mathbf{A}_θ .

259 4.2 APPROXIMATE REGRESSION PROBLEM
260

262 Although solving the optimization problem written by equation \mathcal{P}_θ yields the true system matrix
263 \mathbf{A}_θ , it requires knowledge of the covariance matrix \mathbf{C}_θ , which is unknown in practice. Let $\widehat{\mathbf{C}}_\theta$ be
264 an estimate of the true covariance matrix \mathbf{C}_θ and formulate the following approximate problem:

$$265 \quad \min_{\mathcal{A}} J(\mathcal{A}, \widehat{\mathbf{C}}_\theta) := \|\widehat{\mathcal{C}}_{\theta,\text{ext}} \mathcal{A} - \mathcal{D}_{\text{ext}}\|_2^2. \quad (\widehat{\mathcal{P}}_\theta(\mathcal{D}_{\text{snap}}))$$

267 Here, $\widehat{\mathcal{C}}_{\theta,\text{ext}}$ is the matrix transformed from $\widehat{\mathbf{C}}_\theta$ by equation 4. Let $\widehat{\mathcal{A}}_\theta$ denote the optimal solution
268 to Problem $\widehat{\mathcal{P}}_\theta(\mathcal{D}_{\text{snap}})$, and let $\widehat{\mathbf{A}}_{\theta,\text{est}}$ denote the final estimate of the true system matrix \mathbf{A}_θ , trans-
269 formed from $\widehat{\mathcal{A}}_\theta$. Since the optimization problems defined by equation $\widehat{\mathcal{P}}_\theta(\mathcal{D}_{\text{snap}})$ and equation \mathcal{P}_θ

270 differ due to the discrepancy between $\hat{\mathcal{C}}_{\theta, \text{ext}}$ and $\mathcal{C}_{\theta, \text{ext}}$, it is necessary to examine whether the es-
 271 timated matrix $\hat{\mathbf{A}}_{\theta}$ converges to the true system matrix \mathbf{A}_{θ} . In the rest part of this subsection, we
 272 will introduce the method of estimating $\hat{\mathbf{C}}_{\theta}$ by kernel conditional density estimator and then give
 273 the convergence analysis for $\hat{\mathcal{A}}_{\theta}$. By employing a kernel conditional density estimator to generate
 274 additional samples, we alleviate the challenge posed by the HDLSS regime.
 275

276 **Kernel conditional density estimation.** Nadaraya–Watson (NW) conditional density estima-
 277 tor (Gooijer & Zerom, 2003; Hall et al., 1999) is used to approximate the conditional density
 278 (CDE) $p_{\mathbf{X}}^c(\mathbf{x} \mid t)$. The first step is to estimate the joint probability density $p(\mathbf{x}, t)$ from the
 279 snapshot dataset $\mathcal{D}_{\text{snap}}$ using kernel density estimation (KDE). Let $\hat{p}(\mathbf{x}, t)$ denote the KDE com-
 280 puted from $\mathcal{D}_{\text{snap}}$, defined as $\hat{p}(\mathbf{x}, t) = \frac{1}{NH \cdot h} \sum_{k,m} K_{\mathbf{X}}\left(\frac{\mathbf{x} - \mathbf{x}_m^{(k)}}{h}\right) K_T\left(\frac{t - t_k}{h}\right)$, where $K_{\mathbf{X}}(\cdot)$ and
 281 $K_T(\cdot)$ are kernel functions for \mathbf{X} and t , respectively, and h is a smoothing parameter known as
 282 the bandwidth. Here, bandwidth h satisfying the standard consistency conditions (as in (Gooi-
 283 jer & Zerom, 2003)): $h \rightarrow 0$ and $NHh^n \rightarrow \infty$ as $N, H \rightarrow \infty$. Various kernel func-
 284 tions can be used in practice, including uniform, triangular, biweight, triweight, Epanechnikov
 285 (parabolic), normal, among others. The NW conditional density estimator can then be computed
 286 as $\hat{p}_{\mathbf{X}}^c(\mathbf{x} \mid t) = \left\{ \sum_{k,m} K_{\mathbf{X}}\left(\frac{\mathbf{x} - \mathbf{x}_m^{(k)}}{h}\right) K_T\left(\frac{t - t_k}{h}\right) \right\} / \left\{ \sum_{k,m} K_T\left(\frac{t - t_k}{h}\right) \right\}$. It is important to note
 287 that each $\mathbf{x}_m^{(k)}$ is associated with the corresponding time point t_k . Thus, there are effectively N
 288 samples of \mathbf{x} corresponding to each t_k , even though t_k itself appears only once per episode. Note
 289 that the true conditional density $p_{\mathbf{X}}^c(\mathbf{x} \mid t_k)$ is Gaussian $\mathcal{N}(\mathbf{0}^n, \mathbf{C}_{\theta})$ with zero mean and finite co-
 290 variance. Zero-mean Gaussian setting is reasonable, since the system equation 2 is linearized at the
 291 equilibrium point and the measurements are collected at steady state, where the system is driven by
 292 white Gaussian noise.
 293

294 **Covariance matrix estimation.** Let $\hat{p}_{\mathbf{X}}^c(\mathbf{x} \mid t_k)$ be the NW CDE constructed from the snapshot
 295 dataset $\mathcal{D}_{\text{snap}}$. Let $\{\hat{\mathbf{x}}_m^{(k)}\}_{m=1}^M$ be a set of i.i.d. samples generated from $\hat{p}_{\mathbf{X}}^c(\mathbf{x} \mid t_k)$. Define the
 296 sample covariance matrix associated $\hat{p}_{\mathbf{X}}^c(\mathbf{x} \mid t_k)$ by $\hat{\mathbf{C}}_{\theta} := \frac{1}{N} \sum_{m=1}^N \hat{\mathbf{x}}_m^{(k)} \left(\hat{\mathbf{x}}_m^{(k)} \right)^{\top}$.
 297

298 Then, we have the following theorem regarding the convergence of $\hat{\mathbf{A}}_{\theta}$ to \mathbf{A}_{θ} .
 299

300 **Theorem 1.** As $N, H \rightarrow \infty$, we have $\hat{\mathbf{A}}_{\theta} \xrightarrow{w.p.1} \mathbf{A}_{\theta}$.

301 The proof of Theorem 1 is summarized in Appendix C. Furthermore, we investigate the confidence
 302 level of the estimation $\hat{\mathbf{A}}_{\theta}$ when the sample size of the snapshot dataset $\mathcal{D}_{\text{snap}}$ is finite. To facilitate
 303 the analysis, we introduce the following mild assumption, which ensures the boundedness of the
 304 sample moments and is commonly adopted in finite-sample analyses.
 305

306 **Assumption 2.** There exists a constant $L_{\beta} > 0$ such that, with probability at least $1 - \beta$, the sample
 307 \mathbf{x} drawn from $\hat{p}_{\mathbf{X}}^c(\mathbf{x} \mid t_k)$ satisfies $\|\mathbf{x}\|_{\infty} \leq L_{\beta}$.

308 Assumption 2 is not restrictive in practice, as it is typically satisfied when the support of the es-
 309 timated density $\hat{p}_{\mathbf{X}}^c$ is bounded or sufficiently concentrated around its mode. It provides a high-
 310 probability guarantee for the boundedness of the generated samples, which facilitates the establish-
 311 ment of finite-sample confidence bounds in subsequent analysis.
 312

313 The objective function $J(\mathcal{A}, \mathbf{C}_{\theta})$ is strongly convex with respect to \mathcal{A} since its Hessian satisfies
 314 $\nabla^2 J = 2\mathbf{M}^{\top} \mathbf{M}$ with $\mathbf{M} = \mathbf{C}_{\theta}^{\top} \otimes \mathbf{I} + \mathbf{I} \otimes \mathbf{C}_{\theta}$. Since $\mathbf{C}_{\theta} \succ 0$, \mathbf{M} is invertible, and thus $\mu :=$
 315 $2\lambda_{\min}(\mathbf{M}^{\top} \mathbf{M}) > 0$ gives the strong convexity modulus. Then, we give the following theorem
 316 regarding the confidence level of the estimation $\hat{\mathbf{A}}_{\theta}$ when the sample size is finite.
 317

318 **Theorem 2.** If $N \geq 2\epsilon^{-2}L_{\beta}^4 \log(2n^2/\delta)$, w.p. $1 - \beta - \delta$, we have $\frac{\|\hat{\mathbf{A}}_{\theta} - \mathbf{A}_{\theta}\|_{\text{F}}^2}{4\|\mathbf{A}_{\theta}\|_{\text{F}}^2} \leq \frac{\epsilon}{\mu}$.
 319

320 The proof of Theorem 2 is summarized in Appendix D. Theorem 2 guarantees that the estimation
 321 error $\|\hat{\mathbf{A}}_{\theta} - \mathbf{A}_{\theta}\|_{\text{F}}$ is bounded with high probability as a function of the desired accuracy ϵ and the
 322 number of samples N , provided that Assumption 2 holds. The bound contains the constant $4\|\mathbf{A}_{\theta}\|_{\text{F}}^2$,
 323 which depends on the true system matrix and is not directly accessible in practice. However, this

324 does not affect the generality or applicability of the result, since: (i) the constant $4 \|\mathbf{A}_\theta\|_F^2$ is inde-
 325 pendent of the sample data and only scales the bound linearly, (ii) the rate of convergence is still
 326 determined by the sample size N and the desired confidence level δ , and (iii) in many practical sce-
 327 narios, conservative upper bounds on $\|\mathbf{A}_\theta\|_F$ can be specified based on prior structural knowledge.
 328 We also note that the resulting sample complexity bound is conservative. This is primarily due to
 329 the worst-case nature of Assumption 2 and the use of union bounds in the probabilistic analysis.
 330 Nonetheless, the result provides a first-step theoretical understanding of the finite-sample behavior
 331 of our estimator and offers a guideline for selecting a sufficiently large snapshot dataset $\mathcal{D}_{\text{snap}}$ to
 332 achieve a desired estimation accuracy.

333 4.3 RE-STABILIZATION

336 Optimal re-stabilization design considers the following problem:

$$\begin{aligned} 337 \min_{\mathbf{B}_\theta, \mathbf{K}_\theta} \quad & J_\theta(\mathbf{x}(0)) := \int_0^\infty \mathbf{x}^\top(t) \mathbf{K}_\theta^\top \mathbf{K}_\theta \mathbf{x}(t) dt, \quad \forall \mathbf{x}(0) \\ 339 \text{s.t.} \quad & \text{Re}(\lambda_{d,\theta}) - \text{Re}(\tilde{\lambda}_{d,\theta}) = \lambda_s > 0, \quad \mathbf{B}_\theta \in \mathcal{B}, \quad \mathbf{K}_\theta \in \mathcal{K}(\mathbf{B}_\theta, \lambda_s). \end{aligned} \quad (8)$$

341 Here, \mathcal{B} denotes the feasible set for the input assignment matrix \mathbf{B}_θ , and $\mathcal{K}(\mathbf{B}_\theta, \lambda_s)$ denotes the
 342 admissible feedback gain matrices that ensure the desired re-stabilization margin λ_s is achieved.
 343 That is, the dominant eigenvalue of the original system, $\lambda_{d,\theta}$, is shifted by λ_s in real part under
 344 the closed-loop dynamics. The input assignment \mathbf{B}_θ and feedback gain \mathbf{K}_θ obtained by solving
 345 equation 8 minimize the total input energy while enforcing the desired stabilization requirement
 346 for any initial state $\mathbf{x}(0)$. By Theorem 1 of (Yasukata et al., 2023), optimal solution is computed
 347 as $\mathbf{B}_\theta^* = \arg \max_{\mathbf{B} \in \mathcal{B}} \|\mathbf{w}_{d,\theta}^\top \mathbf{B}\|$, $\mathbf{K}_\theta^* = -\lambda_s \mathbf{B}_\theta^{*\top} \mathbf{v}_{d,\theta} \mathbf{w}_{d,\theta}^\top$. Here, $\mathbf{v}_{d,\theta}$ and $\mathbf{w}_{d,\theta}$ are the right
 348 and left eigenvectors corresponding to the dominant eigenvalue $\lambda_{d,\theta}$ of the open-loop system. This
 349 formulation provides a computationally efficient solution while directly linking the input design
 350 to the spectral structure of the system. In particular, the dominant eigenvalue $\lambda_{d,\theta}$ governs the
 351 direction in which stabilization is most critical, and the optimal assignment aligns control along the
 352 corresponding eigenvectors to ensure energy-efficient re-stabilization.

353 In practice, it is not possible to control the interactions of many proteins and mRNAs simultane-
 354 ously. Thus, both assignment and feedback gain should be designed to be sparse. The selection is
 355 constrained such that $\mathbf{b}_{i,\theta} \in \mathcal{E}_n$ for all $i = 1, \dots, l$, where each $\mathbf{b}_{i,\theta}$ must be distinct if $i \neq j$. The set
 356 $\mathcal{E}_n := \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ corresponds to interventions applied to mRNAs, while $\mathcal{E}_n := \{\mathbf{e}_{n+1}, \dots, \mathbf{e}_{2n}\}$
 357 corresponds to protein-level interventions. Here, \mathbf{e}_i denotes the i -th standard basis vector in \mathbb{R}^{2n} .
 358 In each intervention strategy, we assume either mRNA or protein-level intervention is selected,
 359 but not both simultaneously. The feasible set of input placements is denoted by \mathcal{B}_l . The gain
 360 matrix $\mathbf{K}_\theta = [\mathbf{k}_{1,\theta}, \dots, \mathbf{k}_{l,\theta}]^\top$ determines how each selected gene is perturbed. We constrain
 361 $\mathbf{k}_i(\theta) = \kappa_i \mathbf{b}_{i,\theta}$ so that the feedback acts only along the direction of the selected intervention site.
 362 The corresponding feasible set is denoted by \mathcal{K}_l . Under these constraints, the feedback only al-
 363 ters the diagonal elements of the system matrix \mathbf{A}_θ . This reflects a realistic intervention model in
 364 gene regulation: for instance, RNA interference and gene overexpression typically modulate only
 365 the self-dynamics (self-loops) of individual genes (Meister et al., 2013), corresponding to diagonal
 366 entries. Diagonal re-stabilization is defined as follows.

367 **Definition 1.** Given an intervention budget $l < n$, diagonal re-stabilization refers to the design
 368 of $\mathbf{B}_\theta \in \mathcal{B}_l$ and $\mathbf{K}_\theta \in \mathcal{K}_l$ such that the dominant eigenvalue of the closed-loop system $\tilde{\lambda}_{d,\theta} :=$
 369 $\max \text{Re}(\text{eig}(\mathbf{A}_\theta + \mathbf{B}_\theta \mathbf{K}_\theta))$ satisfies $\text{Re}(\tilde{\lambda}_{d,\theta}) < \text{Re}(\lambda_{d,\theta})$.

370 For a given input placement $\mathbf{B}_\theta \in \mathcal{B}_l$, let $I_{\mathbf{B}_\theta}$ be an input-index set defined as: $I_{\mathbf{B}_\theta} := \{i \in$
 371 $\{1, \dots, 2n\} : \exists j \in \{1, \dots, l\}, \mathbf{b}_{j,\theta} = \mathbf{e}_i\}$. Let $I_{\text{vec}, \mathbf{B}_\theta}$ be a vector formed by extracting the elements
 372 from $I_{\mathbf{B}_\theta}$: $I_{\text{vec}, \mathbf{B}_\theta} = [s_1, \dots, s_l]^\top$, where $s_i \in I_{\mathbf{B}_\theta}$, $i = 1, \dots, l$, and assume, without loss of
 373 generality, that $s_1 < s_2 < \dots < s_l$. Diagonal re-stabilization for large-scale network systems
 374 has been addressed in (Shen et al., doi:10.1109/TETCI.2024.3442824). We summarize (Shen et al.,
 375 doi:10.1109/TETCI.2024.3442824, Theorems 3 and 4) for our setting as the following lemma.

377 **Lemma 1.** The system matrix becomes $\mathbf{A}_\theta + \mathbf{B}_\theta \mathbf{K}_\theta$ after incorporating $\mathbf{B}_\theta \in \mathcal{B}_l$ and $\mathbf{K}_\theta \in \mathcal{K}_l$. The
 378 first-order approximation with respect to the Frobenius norm $\|\mathbf{B}_\theta \mathbf{K}_\theta\|_2$ of the dominant eigenvalue

378 $\tilde{\lambda}_{d,\theta}$ of the matrix $\mathbf{A}_\theta + \mathbf{B}_\theta \mathbf{K}_\theta$ is given by $\tilde{\lambda}_{d,\theta}^{(1)} = \lambda_{d,\theta} + \frac{\sum_{i=1}^l \kappa_i \mathbf{w}_{d,\theta}(s_i) \mathbf{v}_{d,\theta}(s_i)}{\mathbf{w}_{d,\theta}^\top \mathbf{v}_{d,\theta}}$. If the input
 379 placement \mathbf{B}_θ includes a key gene, then diagonal re-stabilization can be achieved.
 380

381 From Lemma 1, we see that diagonal re-stabilization serves as a tractable approximation of the
 382 optimal re-stabilization design. In particular, selecting input locations that maximize the absolute
 383 value of the product $\mathbf{w}_{d,\theta}(s_i) \mathbf{v}_{d,\theta}(s_i)$ enhances control effectiveness, since these terms directly
 384 influence the leading-order eigenvalue shift.
 385

386 **Theorem 3.** Assume that the maximum eigenvalue λ_d of \mathbf{A}_θ is with eigengap $\delta_\lambda =$
 387 $\min_{i=2,\dots,n} |\lambda_d - \lambda_i| > 0$. If $N \geq 2\epsilon^{-2}L_\beta^4 \log(2n^2/\delta)$, with probability $1 - \beta - \delta$, we have
 388 $\|\widehat{\mathbf{w}}_d - \mathbf{w}_d\|_2 \leq \frac{L}{\mu \delta_\lambda} \epsilon$.
 389

390 Proof of Theorem 3 is summarized in Appendix E. Theorem 3 establishes a finite-sample probabilistic
 391 bound on the error between the estimated dominant left eigenvector $\widehat{\mathbf{w}}_d$ and the true dominant
 392 eigenvector \mathbf{w}_d of the system matrix \mathbf{A}_θ . The bound holds with high probability $1 - \beta - \delta$, pro-
 393 vided that the sample size N is sufficiently large. Notably, the error bound scales inversely with
 394 both the strong convexity modulus μ and the eigengap δ_λ , highlighting that the estimation becomes
 395 more reliable when the spectrum of \mathbf{A}_θ exhibits clear separation between the dominant eigenvalue
 396 and the others. This result plays a critical role in ensuring the accuracy of approximate diagonal re-
 397 stabilization design. As shown in Lemma 1, the first-order approximation of the stabilized dominant
 398 eigenvalue $\tilde{\lambda}_{d,\theta}^{(1)}$ depends on the product $\mathbf{w}_{d,\theta}(s_i) \mathbf{v}_{d,\theta}(s_i)$ at selected indices s_i . Therefore, accurate
 399 estimation of $\mathbf{w}_{d,\theta}$ directly affects the effectiveness of the control input selection strategy. The finite-
 400 sample guarantee in Theorem 3 ensures that the estimated eigenvector $\widehat{\mathbf{w}}_d$ remains sufficiently close
 401 to the true one, thus preserving the control relevance of the index selection even under sampling
 402 uncertainty. In practical terms, this means that even when the snapshot data set is limited in size, the
 403 approximate diagonal re-stabilization strategy can still reliably identify high-impact nodes—e.g.,
 404 key genes or transcription factor, by leveraging the structure encoded in $\widehat{\mathbf{w}}_d$. Although the theo-
 405 retical bound may be conservative due to its dependence on worst-case assumptions, it provides a
 406 principled basis for quantifying confidence in structure-aware control from finite data.
 407

5 VALIDATIONS

409 **Simulation model.** To validate our framework for system identification and early treatment design,
 410 we conduct numerical experiments on synthetic mRNA-protein regulatory networks that mimic dis-
 411 ease progression through bifurcation. We focus on a global bifurcation scenario, where a mas-
 412 ter regulator protein controls the transcription rates of all genes, leading to a system-wide tipping
 413 point. This setup aligns with biological systems exhibiting coordinated dysregulation, such as in
 414 cancer or developmental disorders, where master regulators drive cell fate transitions via bistable
 415 switches. For noise, we employ additive Gaussian perturbations to reflect extrinsic biological vari-
 416 ability, consistent with the assumptions in our theoretical analysis (e.g., covariance estimation in
 417 Section 2.3). The model simulates a system of 5 genes (G_0, \dots, G_4) and their corresponding 5
 418 proteins (P_0, \dots, P_4). The network topology is designed around a single master regulator, protein
 419 P_4 , which positively regulates the expression of all genes in the network, including its own. This
 420 global positive feedback structure allows the system to switch between low and high expression
 421 states, characteristic of bistability. The dynamics of the network are modeled as a system of stochas-
 422 tic differential equations (SDEs) to capture the intrinsic noise inherent in biological processes. We
 423 specifically use an additive Gaussian noise model, where the stochastic fluctuations are indepen-
 424 dent of the molecular concentrations. The transition between system states is induced by varying a
 425 key bifurcation parameter, K_{master} , which controls the activation threshold of the master regulator.
 426 This setup allows us to generate high-dimensional, single-cell snapshot data at various points along
 427 the system’s trajectory as it approaches the tipping point. For a comprehensive description of the
 428 network equations, noise setting, and a full list of parameter values, please check Appendix F.
 429

430 **Results.** According to Lemma 1, the value of $\mathbf{w}_{d,\theta}(i) \mathbf{v}_{d,\theta}(i)$ plays a critical role in the diagonal
 431 re-stabilization design. The most effective node is the one corresponding to the maximum absolute
 432 value of this product. Moreover, the sign of $\mathbf{w}_{d,\theta}(s_i) \mathbf{v}_{d,\theta}(s_i)$ is also essential. If the sign is positive,
 433 a negative k_i is required to shift the real part of the dominant eigenvalue further from zero. Con-
 434 versely, if the sign is negative, a positive k_i is needed. Owing to these considerations, our analysis

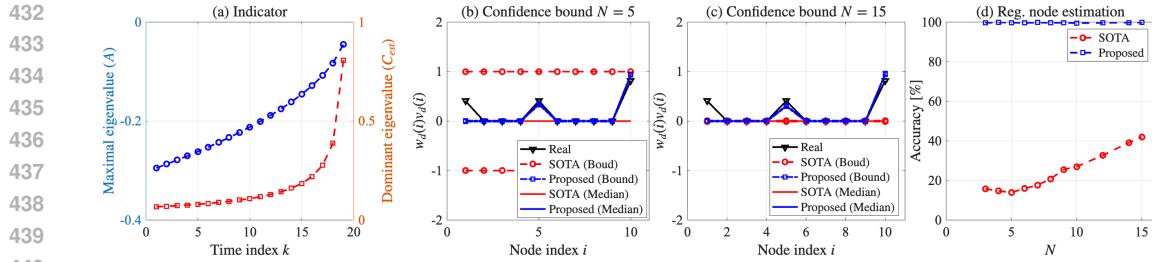


Figure 3: Plots of the evolution of eigenvalues across episodes and the estimation results: (a) Maximum eigenvalues of \mathbf{A}_θ and dominant eigenvalues of \mathbf{C}_θ at different time points; (b) 95% confidence region of the estimated $\mathbf{w}_{d,\theta_{19}}(i)\mathbf{v}_{d,\theta_{19}}(i)$ with $N = 5$; (c) 95% confidence region of the estimated $\mathbf{w}_{d,\theta_{19}}(i)\mathbf{v}_{d,\theta_{19}}(i)$ with $N = 15$. (d) Statistical analysis of estimation accuracy for the regulatory node with results of 2,000 trials.

focuses on the estimation accuracy of $\mathbf{w}_{d,\theta}(s_i)\mathbf{v}_{d,\theta}(s_i)$ in the subsequent discussion. In particular, we evaluate the percentage of trials in which the method correctly identifies the regulatory node with the largest absolute value of $\mathbf{w}_{d,\theta}(s_i)\mathbf{v}_{d,\theta}(s_i)$, along with the correct sign. This metric directly reflects the method's ability to support effective diagonal re-stabilization, as discussed in Lemma 1. We perform a Monte Carlo simulation to investigate the statistical performance of the proposed method. In each simulation, the network's structure and parameters have been fixed. The cases with sample number as $N = 3, 5, 7, 8, 9, 10, 12, 15$ were considered. We have totally $H = 19$ episodes for snapshot data observations. On the other hand, for each sample number N , 2000 sample sets were generated. We implement the method in (Shen et al., 2024) (SOTA) and the proposed method (Proposed) to obtain the system matrix estimations. As the episode proceeds from $k = 1$ to $k = 19$, the maximum eigenvalue of the system matrix gradually approaches zero, and the covariance matrix increases rapidly, as shown in Figure 3 (a). Figures 3 (b) and (c) show the 95% confidence bounds of the estimated $\mathbf{w}_{d,\theta_{19}}(i)\mathbf{v}_{d,\theta_{19}}(i)$ obtained by the SOTA method and the proposed method with $N = 5 < 2n = 10$ and $N = 15 > 2n = 10$, respectively. The proposed method provides confidence bounds that are close to the true value, while the SOTA method fails to yield accurate estimations. The results of 2,000 Monte Carlo trials on the regulatory node estimations are summarized in Figure 3 (d). As the number of samples increases, both algorithms exhibit improved accuracy of identifying the regulatory node along with the correct sign of . Notably, the proposed method demonstrates significant improvements in regulatory node estimation accuracy compared to the state-of-the-art (SOTA) approach. In particular, when the number of samples is considerably smaller than the system state dimension $2n = 10$, the proposed method still achieves high estimation accuracy. The above performance gain arises from the method's ability to leverage information across multiple episodes, thereby enriching the data available for covariance matrix estimation. Consequently, this enhancement leads to a more accurate estimation of the system matrix and its associated eigenvectors. In this simulation, we focus on the identification of regulatory genes and do not present intervention results. This is because, once the key regulatory nodes are accurately identified, the corresponding intervention strategies—such as re-stabilization via feedback—can be effectively designed based on existing control-theoretic formulations. Therefore, the success of the overall intervention critically depends on the accuracy of the regulatory gene identification, which is the main focus of this work.

6 CONCLUSIONS

We proposed a system identification framework for mRNA-protein regulatory networks from snapshot data, tailored to design effective intervention strategies. By exploiting the Lyapunov equation with structural constraints, our method achieves reliable estimation of the system matrix under high-dimensional low-sample-size conditions, with theoretical guarantees on finite-sample accuracy. Building on these results, we developed both optimal and approximate diagonal re-stabilization designs, offering actionable insights for early treatment at the pre-disease stage. Future work will extend this framework to nonlinear dynamics and validate intervention strategies on real single-cell datasets, with the potential to impact broader applications in biology and beyond.

486 REFERENCES
487

488 K. Aihara, R. Liu, and et al. Dynamical network biomarkers: Theory and applications. *Gene*, 808:
489 145997, 2022.

490 C. Briat and et al. Antithetic integral feedback ensures robust perfect adaptation in noisy biomolec-
491 ular networks. *Cell Systems*, 2(1):15–26, 2016.

492 Charlotte Bunne, Geoffrey Schiebinger, Andreas Krause, Aviv Regev, and Marco Cuturi. Optimal
493 transport for single-cell and spatial omics. *Nature Reviews Methods Primers*, 4(1):58, 2024.

494 495 Marek Capinski and Ekkehard Kopp. *Measure, Integral, and Probability*. Springer-Verlag, London,
496 2004.

497 498 L. Chen, R. Liu, Z. Liu, M. Li, and K. Aihara. Detecting early-warning signals for sudden deterio-
499 ration of complex diseases by dynamical network biomarkers. *Scientific Reports*, 2:342, 2012.

500 501 S. Chen and et al. Determination of tipping point in course of PM_{2.5} organic extracts-induced
502 malignant transformation by dynamic network biomarkers. *Journal of Hazardous Materials*, 426:
503 128089, 2022.

504 T. Chen, H. L. He, and G. M. Church. Modeling gene expression with differential equations. In
505 *Proceedings of the Pacific Symposium on Biocomputing*, pp. 29–40. World Scientific, 1999.

506 507 Yongxin Chen, Tryphon T. Georgiou, and Michele Pavon. The most likely evolution of diffusing and
508 vanishing particles: Schrödinger bridges with unbalanced marginals. *SIAM Journal on Control
509 and Optimization*, 60(4):2016–2039, 2022.

510 Alexander G Fletcher and James M Osborne. Seven challenges in the multiscale modeling of mul-
511 ticellular tissues. *WIREs mechanisms of disease*, 14(1):e1527, 2022.

512 513 J. G. D. Gooijer and D. Zerom. On conditional density estimation. *Statistica Neerlandica*, 57:
514 159–176, 2003.

515 Peter Hall, Rodney C. L. Wolff, and Qiwei Yao. Methods for estimating a conditional distribution
516 function. *Journal of the American Statistical Association*, 94(445):109–116, 1999.

517 518 Wassily Hoeffding. Probability inequalities for sums of bounded random variables. *Journal of the
519 American Statistical Association*, 58(301):13–30, 1963.

520 Brian P Ingalls. *Mathematical modeling in systems biology: an introduction*. MIT press, 2013.

521 522 K. Koizumi et al. Suppression of dynamical network biomarker signals at the predisease state
523 (mibyou) before metabolic syndrome in mice by a traditional japanese medicine (kampo formula)
524 bofutsushosan. *Evidence-Based Complementary and Alternative Medicine*, 2020:9129134, 2020.

525 526 Christian Léonard. A survey of the schrödinger problem and some of its connections with optimal
527 transport. *Discrete and Continuous Dynamical Systems - Series A*, 34(4):1533–1574, 2014.

528 Guan-Horng Liu, Tianrong Chen, Oswin So, and Evangelos Theodorou. Deep generalized
529 schrödinger bridge. In *Advances in Neural Information Processing Systems (NeurIPS)*, vol-
530 ume 35, pp. 9374–9388, 2022.

531 532 L. Liu, T. Zhao, M. Ma, and Y. Wang. A new gene regulatory network model based on bp algorithm
533 for interrogating differentially expressed genes of sea urchin. *SpringerPlus*, 5(1):1911, 2016. doi:
534 10.1186/s40064-016-3526-1.

535 536 R. Liu, P. Chen, K. Aihara, and L. Chen. Identifying early-warning signals of critical transitions
537 with strong noise by dynamical network markers. *Scientific Reports*, 5:17501, 2015.

538 539 A. Meister, Y.H Li, B. Choi, and W.H. Wong. Learning a nonlinear dynamical system model of gene
540 regulation: a perturbed steady-state approach. *The Annals of Applied Statistics*, 7(3):1311–1333,
2013.

540 Kirill Neklyudov, Rob Brekelmans, Daniel Severo, and Alireza Makhzani. Action matching: Learning
 541 stochastic dynamics from samples. In *Proceedings of the 40th International Conference on Machine Learning (ICML)*, pp. 25858–25889. PMLR, 2023.

542

543 M. Oku and K. Aihara. On the covariance matrix of the stationary distribution of a noisy dynamical
 544 system. *Nonlinear Theory and Its Applications, IEICE*, 9(2):166–184, 2018.

545

546 Adriaan Passemiers, Yves Moreau, and Daniele Raimondi. Fast and accurate inference of gene
 547 regulatory networks through robust precision matrix estimation. *Bioinformatics*, 38(10):2802–
 548 2809, 2022. doi: 10.1093/bioinformatics/btac178.

549

550 Mehrshad Sadria and Thomas M Bury. Fatenet: an integration of dynamical systems and deep
 551 learning for cell fate prediction. *Bioinformatics*, 40(9):btae525, 2024.

552

553 Mehrshad Sadria and Anita T Layton. Interactions among mtorc, ampk and sirt: a computational
 554 model for cell energy balance and metabolism. *Cell Communication and Signaling*, 19(1):57,
 2021a.

555

556 Mehrshad Sadria and Anita T Layton. Modeling within-host sars-cov-2 infection dynamics and
 557 potential treatments. *Viruses*, 13(6):1141, 2021b.

558

559 Mehrshad Sadria and Vasu Swaroop. Discovering governing equations of biological systems through
 560 representation learning and sparse model discovery. *NAR Genomics and Bioinformatics*, 7(2):
 561 lqaf048, 2025.

562

563 Mehrshad Sadria, Anita Layton, Sidharta Goyal, and Gary D Bader. Fatecode: Cell fate regulator
 564 prediction using classification autoencoder perturbation. *BioRxiv*, pp. 2022–12, 2022.

565

566 Wouter Saelens, Robrecht Cannoodt, Helena Todorov, and Yvan Saeys. A comparison of single-cell
 567 trajectory inference methods. *Nature Biotechnology*, 37(5):547–554, 2019.

568

569 David W. Sanders, Nancy Kedersha, Daniel S.W. Lee, Amy R. Strom, Victoria Drake, Joshua A.
 570 Riback, Dan Bracha, Jorine M. Eeftens, Allana Iwanicki, Alicia Wang, Ming-Tzo Wei, Gena
 571 Whitney, Shawn M. Lyons, Paul Anderson, William M. Jacobs, Pavel Ivanov, and Clifford P.
 572 Brangwynne. Competing protein-rna interaction networks control multiphase intracellular orga-
 573 nization. *Cell*, 181(2):306–324.e28, 2020.

574

575 Geoffrey Schiebinger, Jian Shu, Marcin Tabaka, Brian Cleary, Vidya Subramanian, Aryeh Solomon,
 576 Joshua Gould, Siyan Liu, Stacie Lin, Peter Berube, et al. Optimal-transport analysis of single-cell
 577 gene expression identifies developmental trajectories in reprogramming. *Cell*, 176(4):928–943,
 2019.

578

579 Yutong Sha, Yuchi Qiu, Peijie Zhou, and Qing Nie. Reconstructing growth and dynamic trajectories
 580 from single-cell transcriptomics data. *Nature Machine Intelligence*, 6(1):25–39, 2024.

581

582 Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczynski. *Lectures on stochastic program-
 583 ming: modeling and theory*. SIAM, 2014.

584

585 X. Shen, N. Shimada, H. Sasahara, and J. Imura. Ultra-early medical treatment-oriented system
 586 identification using high-dimension low-sample-size data. *IFAC Journal of Systems and Control*,
 27(100245), 2024.

587

588 X. Shen, H. Sasahara, J. Imura, M. Oku, and K. Aihara. Re-stabilizing large-scale network systems
 589 using high-dimension low-sample-size data analysis. *IEEE Transactions on Emerging Topics in
 590 Computational Intelligence*, doi:10.1109/TETCI.2024.3442824.

591

592 Jifan Shi, Kazuyuki Aihara, Tiejun Li, and Luonan Chen. Energy landscape decomposition for cell
 593 differentiation with proliferation effect. *National Science Review*, 9(8):nwac116, 2022.

594

595 Yuyang Shi, Valentin De Bortoli, Andrew Campbell, and Arnaud Doucet. Diffusion schrödinger
 596 bridge matching. In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 36,
 2024.

594 Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 595 Poole. Score-based generative modeling through stochastic differential equations. In *International
 596 Conference on Learning Representations (ICLR)*, 2021.

597
 598 Alexander Tong, Jessie Huang, Guy Wolf, David Van Dijk, and Smita Krishnaswamy. Trajectorynet:
 599 A dynamic optimal transport network for modeling cellular dynamics. In *Proceedings of the 37th
 600 International Conference on Machine Learning (ICML)*, pp. 9526–9536. PMLR, 2020.

601 Alexander Tong, Nikolay Malkin, Kilian Fatras, Lazar Atanackovic, Yanlei Zhang, Guillaume
 602 Huguet, Guy Wolf, and Yoshua Bengio. Simulation-free schrödinger bridges via score and flow
 603 matching. In *Proceedings of the 27th International Conference on Artificial Intelligence and
 604 Statistics (AISTATS)*, pp. 1279–1287. PMLR, 2024.

605 C. A. Weidmann, A. M. Mustoe, P. B. Jariwala, J. M. Calabrese, and K. M. Weeks. Analysis of
 606 rna-protein networks with rnp-map defines functional hubs on rna. *Nature Biotechnology*, 39(3):
 607 347–356, March 2021. doi: 10.1038/s41587-020-0709-7.

608 H. Yasukata, X. Shen, H. Sasahara, J. Imura, M. Oku, and K. Aihara. Design of input assignment
 609 and feedback gain for re-stabilizing undirected networks with high-dimension low-sample-size
 610 data. *International Journal of Robust and Nonlinear Control*, 33(12):6734–6753, 2023.

611 Y. Yu, T. Wang, and R. J. Samworth. A useful variant of the davis–kahan theorem for statisticians.
 612 *Biometrika*, 102(2):315–323, 2015.

613 Zhenyi Zhang, Tiejun Li, and Peijie Zhou. Learning stochastic dynamics from snapshots through
 614 regularized unbalanced optimal transport. In *Proceedings of the International Conference on
 615 Learning Representations (ICLR)*, 2025.

616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647

648
649 **Appendix**650
651 **A EARLY DETECTION OF PRE-DISEASE STAGE**652
653 Let $\mathbf{C}_\theta \in \mathbb{R}^{2n \times 2n}$ denote the covariance matrix of \mathbf{x} when the system is parameterized by θ . As
654 presented in (Oku & Aihara, 2018, Section 3.2), as the parameter θ approaches the tipping point θ_C ,
655 the covariance matrix \mathbf{C}_θ converges to a rank-one matrix if $\lambda_{d,\theta}$ is real, written by

656
657
$$\lim_{\lambda_{d,\theta} \rightarrow 0^-} (-2\lambda_{d,\theta}) \mathbf{C}_\theta = \tilde{D}_{11} \mathbf{v}_{d,\theta} \mathbf{v}_{d,\theta}^\top, \quad (9)$$

658
659 where the positive real number \tilde{D}_{11} is the first diagonal element of $\tilde{\mathbf{D}} = \mathbf{V}_\theta^{-1} \mathbf{D} (\mathbf{V}_\theta^\top)^{-1}$. Here, \mathbf{V}_θ^\top
660 is a matrix consisting all right eigenvectors of \mathbf{C}_θ . On the other hand, the covariance matrix \mathbf{C}_θ
661 converges to a rank-two matrix if $\lambda_{d,\theta}$ is complex. Specifically, the dominant eigenvalue of \mathbf{C}_θ 's
662 limit is infinity.663 A group of diagonal elements of \mathbf{C}_θ also increases to infinity, indicating that there exists a group of
664 nodes whose standard deviations become unbounded. In parallel, the covariance between two nodes
665 in this group also grows substantially as θ approaches the tipping point θ_C . We take the case when
666 $\lambda_{d,\theta}$ as an example to illustrate it. The eigenvector $\xi_{d,\theta} = [\xi_{d,\theta,r}^\top, \xi_{d,\theta,p}^\top]^\top$ of \mathbf{C}_θ corresponding to
667 the dominant eigenvalue converges to the right MAC eigenvector of \mathbf{A}_θ , namely,

668
669
$$\lim_{\lambda_{d,\theta} \rightarrow 0^-} \xi_{d,\theta} = \mathbf{v}_{d,\theta}. \quad (10)$$

670 By equation 9, if $\mathbf{v}_{d,\theta}(i) \neq 0$ and $\mathbf{v}_{d,\theta}(j) \neq 0$, we have

672
673
$$\lim_{\lambda_{d,\theta} \rightarrow 0^-} |\mathbf{C}_\theta(i, j)| = \infty, \quad (11)$$

674 which is the theoretical explanation for the system's large fluctuations in the pre-disease stage. The
675 standard deviation corresponds to the diagonal element $\mathbf{C}_\theta(i, i) \approx \mathbf{v}_{d,\theta}^2(i)$. Consequently, the stan-
676 dard deviation of the node, where $\mathbf{v}_{d,\theta}(i) \neq 0$, shows a significant increase at the pre-disease stage.
677 The covariance between two nodes ($\mathbf{v}_{d,\theta}(i) \neq 0, \mathbf{v}_{d,\theta}(j) \neq 0$) also increases significantly in the
678 pre-disease stage.679 The above two properties provide a theoretical explanation for the system's large fluctuations in the
680 pre-disease stage, when $\theta \approx \theta_C$. By examining system fluctuations from snapshot data, it becomes
681 possible to detect the pre-disease stage, which is completely model-free. We refer to (Chen et al.,
682 2012; Aihara et al., 2022) for more details about indicator selection and computation for pre-disease
683 detection by snapshot data.685 **B RANDOM VARIABLE IN AN AUGMENTED SPACE.**687 Consider a random variable $\xi := (\mathbf{X}, T)$ with support $\Xi \subset \mathbb{R}^{n+1}$, where $\xi := (\mathbf{x}, t)^2$ is a realization
688 of ξ . Let \mathcal{F} denote the σ -algebra of subsets of Ξ . Equipped with a probability measure ρ defined
689 on the Borel space (Ξ, \mathcal{F}) , this forms a probability space (Ξ, \mathcal{F}, ρ) . Let $\Xi_s \subseteq \Xi$ be a subset of
690 Ξ . Given a continuous probability density function $p(\xi)$ with support Ξ , the probability that the
691 random variable ξ lies within Ξ_s is expressed as $\Pr\{\xi \in \Xi_s\} := \int_{\Xi_s} p(\xi) d\xi$. Suppose that the
692 probability density function $p(\xi)$ is a joint density denoted by $p(\mathbf{x}, t)$. Both \mathbf{x} and t are continuous
693 random variables with marginal probability densities³ given by $p_{\mathbf{X}}(\mathbf{x}) := \int_{\mathbb{R}^n} p(\mathbf{x}, t) dt$, $p_T(t) :=$
694 $\int_{\mathbb{R}^n} p(\mathbf{x}, t) d\mathbf{x}$. Consider that $p_T(t) > 0$ and $p(\mathbf{x}, t) > 0$ hold for any $\mathbf{x} \in \mathbf{X}$ and any $(\mathbf{x}, t) \in \mathbb{R}^{n+1}$.
695 A conditional probability density is defined by $p_{\mathbf{X}}^c(\mathbf{x}|T=t) := p(\mathbf{x}, t) / p_T(t)$. We omit " $T =$ " in
696 the conditional probability density in the remainder of the paper. Additionally, we also define the
697 conditional probability of having $\mathbf{X} \in \mathcal{X}_s \subseteq \mathbb{R}^n$ when $T = t$ by $\Pr\{\mathbf{X} \in \mathcal{X}_s | t\} := \int_{\mathcal{X}_s} p_{\mathbf{X}}^c(\mathbf{x}|t) d\mathbf{x}$.698
699 ² $\xi_k := (\mathbf{x}_m^{(k)}, t_k)$ can represent a data point from the snapshot dataset.700
701 ³Although the time point or sample time index may appear as a discrete integer, it is treated in a general
sense as a continuous variable. Moreover, a continuous probability density is used to approximate discrete
probability over a continuous domain (Capinski & Kopp, 2004).

702 **C PROOF OF THEOREM 1**
 703

704 As a preparation, we first introduce the convergence of
 705

706 **Theorem 4.** *Then, as $N, H \rightarrow \infty$, we have $\widehat{\mathbf{C}}_{\theta} \xrightarrow{p} \mathbf{C}_{\theta}$.*
 707

708 *Proof.* The proof consists of two steps.
 709

710 **Step 1: Convergence of $\widehat{p}_{\mathbf{X}}^c(\mathbf{x} | t_k)$ to $p_{\mathbf{X}}^c(\mathbf{x} | t_k)$, and convergence of corresponding covariance.**
 711

712 By the results in (Gooijer & Zerom, 2003; Hall et al., 1999), under the stated bandwidth conditions
 713 $h \rightarrow 0$ and $N H h^n \rightarrow \infty$, the NW conditional density estimator satisfies
 714

$$\sup_{\mathbf{x} \in \mathbb{R}^n} |\widehat{p}_{\mathbf{X}}^c(\mathbf{x} | t_k) - p_{\mathbf{X}}^c(\mathbf{x} | t_k)| \xrightarrow{p} 0 \quad \text{as } N, H \rightarrow \infty.$$

715 Since the true density $p_{\mathbf{X}}^c$ is Gaussian $\mathcal{N}(\mathbf{0}^n, \mathbf{C}_{\theta})$ with finite second moments, and the uniform convergence holds, we can invoke standard results on the convergence of integrals of bounded functions with respect to densities (e.g., Theorem 2.1 in (Gooijer & Zerom, 2003)).

716 Let $g(\mathbf{x}) = \mathbf{x}\mathbf{x}^\top$, which is polynomially bounded. Then, as $N, H \rightarrow \infty$,
 717

$$\int g(\mathbf{x}) \widehat{p}_{\mathbf{X}}^c(\mathbf{x} | t_k) d\mathbf{x} \xrightarrow{p} \int g(\mathbf{x}) p_{\mathbf{X}}^c(\mathbf{x} | t_k) d\mathbf{x} = \mathbf{C}_{\theta}. \quad (12)$$

718 Thus, the covariance matrix of $\widehat{p}_{\mathbf{X}}^c$ converges in probability to \mathbf{C}_{θ} .
 719

720 **Step 2: Convergence of empirical covariance $\widehat{\mathbf{C}}_{\theta}$ to the covariance of $\widehat{p}_{\mathbf{X}}^c$.**
 721

722 Now consider $\{\widehat{\mathbf{x}}_m^{(k)}\}_{m=1}^M$ as i.i.d. samples from $\widehat{p}_{\mathbf{X}}^c(\mathbf{x} | t_k)$. By the Weak Law of Large Numbers,
 723 for any $\epsilon_1 > 0$ and $\delta_1 > 0$, there exists M_0 such that for all $M \geq M_0$, we have
 724

$$\Pr \left\{ \left\| \widehat{\mathbf{C}}_{\theta} - \int \mathbf{x}\mathbf{x}^\top \widehat{p}_{\mathbf{X}}^c(\mathbf{x} | t_k) d\mathbf{x} \right\|_{\mathbb{F}} < \epsilon_1 \right\} \geq 1 - \delta_1. \quad (13)$$

725 **Combination of the two steps: ϵ - δ argument.**
 726

727 Finally, we combine the two steps carefully. Let $\epsilon > 0$ and $\delta > 0$ be arbitrary.
 728

729 • From Step 1, there exists (N_0, H_0) such that for all $N \geq N_0, H \geq H_0$,

$$\Pr \left\{ \left\| \int \mathbf{x}\mathbf{x}^\top \widehat{p}_{\mathbf{X}}^c(\mathbf{x} | t_k) d\mathbf{x} - \mathbf{C}_{\theta} \right\|_{\mathbb{F}} < \epsilon/2 \right\} \geq 1 - \delta/2.$$

730 • From Step 2, for these fixed (N, H) and for sufficiently large $M \geq M_0$, we have
 731

$$\Pr \left\{ \left\| \widehat{\mathbf{C}}_{\theta} - \int \mathbf{x}\mathbf{x}^\top \widehat{p}_{\mathbf{X}}^c(\mathbf{x} | t_k) d\mathbf{x} \right\|_{\mathbb{F}} < \epsilon/2 \right\} \geq 1 - \delta/2.$$

732 Now applying the union bound, for $N \geq N_0, H \geq H_0, M \geq M_0$, we obtain:
 733

$$\Pr \left\{ \left\| \widehat{\mathbf{C}}_{\theta} - \mathbf{C}_{\theta} \right\|_{\mathbb{F}} < \epsilon \right\} \geq 1 - \delta.$$

734 Since ϵ and δ are arbitrary, we conclude that:
 735

$$\widehat{\mathbf{C}}_{\theta} \xrightarrow{p} \mathbf{C}_{\theta} \quad \text{as } M, N, H \rightarrow \infty.$$

736 \square

756 By Theorem 4, for any given \mathbf{A}_θ , it holds that
 757

$$758 J(\mathcal{A}, \widehat{\mathbf{C}}_\theta) \xrightarrow{p} J(\mathcal{A}, \mathbf{C}_\theta), \quad \text{as } N, H \rightarrow \infty. \quad (14)$$

760 That is, for any fixed \mathcal{A} , the objective function evaluated with the estimated covariance converges in
 761 probability to its true counterpart. By invoking (Shapiro et al., 2014, Proposition 5.1), this pointwise
 762 convergence on a compact set implies that

$$763 J(\mathcal{A}, \widehat{\mathbf{C}}_\theta) \rightarrow J(\mathcal{A}, \mathbf{C}_\theta) \quad (15)$$

764 holds uniformly on any compact subset of \mathbb{R}^{3n+n^2} , where \mathbb{R}^{3n+n^2} denotes the parameter space of
 765 all vectors containing the nonzero elements of \mathbf{A} . Then, by (Shapiro et al., 2014, Proposition 5.2),
 766 the convergence of the objective functions guarantees that the minimizer of equation $\widehat{\mathcal{P}}_\theta(\mathcal{D}_{\text{snap}})$
 767 converges in probability to the minimizer of equation \mathcal{P}_θ as $N, H \rightarrow \infty$. Since equation \mathcal{P}_θ admits
 768 a unique optimal solution \mathbf{A}_θ , it follows that

$$769 \widehat{\mathbf{A}}_\theta \xrightarrow{p} \mathbf{A}_\theta \quad (16)$$

770 as $N, H \rightarrow \infty$, which completes the proof.

771 D PROOF OF THEOREM 2

772 As preparation of the proof, we first give the following results regarding the confidence bound on
 773 the covariance matrix estimation.

774 **Theorem 5.** *Suppose Assumption 2 holds for some L_β and $\beta \in (0, 1)$. Let $\alpha \in (0, 1)$ and $\epsilon > 0$ be
 775 given.*

776 *Then, for any $\delta \in (0, 1)$, if the number of generated samples M satisfies:*

$$777 M \geq \frac{2L_\beta^4 \log\left(\frac{2n^2}{\delta}\right)}{\epsilon^2},$$

778 *then with probability at least $1 - \beta - \delta$, we have:*

$$779 \|\widehat{\mathbf{C}}_\theta - \mathbf{C}_\theta\|_F \leq \epsilon.$$

780 *Proof.* Let $\epsilon > 0$ and $\delta \in (0, 1)$ be given.

781 We split the error $\|\widehat{\mathbf{C}}_\theta - \mathbf{C}_\theta\|_F$ into two terms:

$$782 \|\widehat{\mathbf{C}}_\theta - \mathbf{C}_\theta\|_F \leq \underbrace{\|\widehat{\mathbf{C}}_\theta - \mathbb{E}_{\widehat{\rho}}[\mathbf{x}\mathbf{x}^\top]\|_F}_{X_1} + \underbrace{\|\mathbb{E}_{\widehat{\rho}}[\mathbf{x}\mathbf{x}^\top] - \mathbf{C}_\theta\|_F}_{X_2}.$$

783 Step 1: Control of X_2 .

784 From Theorem 4 Step 1, we know that as $N, H \rightarrow \infty$:

$$785 \|\mathbb{E}_{\widehat{\rho}}[\mathbf{x}\mathbf{x}^\top] - \mathbf{C}_\theta\|_F \xrightarrow{p} 0.$$

786 Therefore, there exists (N_0, H_0) such that for $N \geq N_0, H \geq H_0$, we have:

$$787 \Pr\{X_2 \leq \epsilon/2\} \geq 1 - \delta/2.$$

788 Step 2: Control of X_1 using Hoeffding inequality.

789 Under Assumption 2, for each entry (i, j) of the matrix $\mathbf{x}\mathbf{x}^\top$, we have:

$$790 |x^{(i)}x^{(j)}| \leq L_\beta^2 \quad \text{with probability at least } 1 - \beta.$$

Conditioning on the event where this bound holds, we apply Hoeffding inequality (Hoeffding, 1963) to each entry of the matrix. For each (i, j) :

$$\Pr \left\{ \left| \frac{\sum_{m=1}^M \mathbf{x}_m^{(i)} \mathbf{x}_m^{(j)} - \mathbb{E}_{\widehat{P}}^{i,j}}{M} \right| \geq \epsilon' \right\} \leq 2 \exp \left(-\frac{2M\epsilon'^2}{4L_\beta^4} \right), \quad (17)$$

where

$$\mathbb{E}_{\widehat{P}}^{i,j} := \mathbb{E}_{\widehat{P}}[\mathbf{x}^{(i)} \mathbf{x}^{(j)}]. \quad (18)$$

Now set:

$$\epsilon' := \frac{\epsilon}{2n}.$$

Then applying union bound over n^2 matrix entries:

$$\Pr \{ X_1 \leq \epsilon/2 \} \geq 1 - 2n^2 \exp \left(-\frac{2M\epsilon^2}{4n^2 L_\beta^4} \right).$$

To ensure this probability is at least $1 - \delta/2$, it suffices to choose M such that:

$$2n^2 \exp \left(-\frac{M\epsilon^2}{2n^2 L_\beta^4} \right) \leq \delta/2.$$

Solving this inequality yields the stated bound:

$$M \geq \frac{2L_\beta^4 \log \left(\frac{2n^2}{\delta} \right)}{\epsilon^2}.$$

Final step: Union bound.

Finally, applying union bound over the two steps, we obtain:

$$\Pr \left\{ \left\| \widehat{\mathbf{C}}_\theta - \mathbf{C}_\theta \right\|_F \leq \epsilon \right\} \geq 1 - \beta - \delta.$$

□

Proof. Step 1: Sample covariance approximation. By Theorem 5, for sufficiently large M , we have with probability at least $1 - \beta - \delta$,

$$\left\| \widehat{\mathbf{C}}_\theta - \mathbf{C}_\theta \right\|_F \leq \epsilon.$$

Step 2: Perturbation of optimal solution $\widehat{\mathbf{A}}_\theta$. Define the perturbed objective

$$J(\mathbf{A}, \mathbf{C}) := \left\| \mathbf{A}\mathbf{C} + \mathbf{C}\mathbf{A}^\top + \mathbf{D} \right\|_F^2.$$

Since \mathbf{A}_θ satisfies the Lyapunov equation for \mathbf{C}_θ , we have

$$\mathbf{Q}(\mathbf{A}_\theta, \mathbf{C}_\theta) = \mathbf{A}_\theta \mathbf{C}_\theta + \mathbf{C}_\theta \mathbf{A}_\theta^\top + \mathbf{D} = \mathbf{0}.$$

Thus, the first-order change of $J(\mathbf{A}_\theta, \widehat{\mathbf{C}}_\theta)$ around \mathbf{C}_θ is:

$$\begin{aligned} \mathbf{Q}(\mathbf{A}_\theta, \widehat{\mathbf{C}}_\theta) &= \mathbf{A}_\theta \Delta \mathbf{C} + \Delta \mathbf{C} \mathbf{A}_\theta^\top, \\ \left\| \mathbf{Q}(\mathbf{A}_\theta, \widehat{\mathbf{C}}_\theta) \right\|_F &\leq 2 \|\mathbf{A}_\theta\|_F \|\Delta \mathbf{C}\|_F. \end{aligned}$$

So the increase in objective function is bounded by:

$$J(\mathbf{A}_\theta, \widehat{\mathbf{C}}_\theta) = \left\| \mathbf{A}_\theta \Delta \mathbf{C} + \Delta \mathbf{C} \mathbf{A}_\theta^\top \right\|_F^2 \leq 4 \|\mathbf{A}_\theta\|_F^2 \|\Delta \mathbf{C}\|_F^2.$$

864 Letting

865
$$L := 4\|\mathbf{A}_\theta\|_F^2,$$

866 we obtain:

867
$$|J(\mathbf{A}_\theta, \widehat{\mathbf{C}}_\theta) - J(\mathbf{A}_\theta, \mathbf{C}_\theta)| \leq L\epsilon^2.$$

868 Now, from standard perturbation results for strongly convex objectives, the minimizer satisfies

869
$$870 \|\widehat{\mathbf{A}}_\theta - \mathbf{A}_\theta\|_F \leq \frac{1}{\mu} \|\nabla_{\mathbf{A}} J(\mathbf{A}_\theta, \widehat{\mathbf{C}}_\theta)\|_F.$$

871 We further bound:

872
$$\nabla_{\mathbf{A}} J(\mathbf{A}_\theta, \widehat{\mathbf{C}}_\theta) = 2 \left(\mathbf{A}_\theta \widehat{\mathbf{C}}_\theta \widehat{\mathbf{C}}_\theta^\top + \widehat{\mathbf{C}}_\theta \mathbf{A}_\theta^\top \widehat{\mathbf{C}}_\theta + \mathbf{D} \widehat{\mathbf{C}}_\theta \right),$$

873 which grows linearly with ϵ , yielding:

874
$$\|\widehat{\mathbf{A}}_\theta - \mathbf{A}_\theta\|_F \leq \frac{L}{\mu} \epsilon.$$

875 \square 876

E PROOF OF THEOREM 3

877 Let λ_d be the dominant eigenvalue of \mathbf{A}_θ with eigengap

878
$$\delta_\lambda = \min_{i \neq d} |\lambda_d - \lambda_i| > 0.$$

879 Applying the Davis–Kahan theorem for left eigenvectors, we have (Yu et al., 2015)

880
$$\sin \angle(\widehat{\mathbf{w}}_d, \mathbf{w}_d) \leq \frac{\|\widehat{\mathbf{A}}_\theta - \mathbf{A}_\theta\|_2}{\delta_\lambda}.$$

881 Since

882
$$\|\cdot\|_2 \leq \|\cdot\|_F,$$

883 we can further bound

884
$$\|\widehat{\mathbf{w}}_d - \mathbf{w}_d\|_2 \leq 2 \sin \angle(\widehat{\mathbf{w}}_d, \mathbf{w}_d) \leq \frac{2\|\widehat{\mathbf{A}}_\theta - \mathbf{A}_\theta\|_F}{\delta_\lambda} \leq \frac{2L}{\mu \delta_\lambda} \epsilon.$$

885 Hence the perturbation of the left dominant eigenvector is explicitly controlled in norm.

907

F SIMULATION MODEL DETAILS

908 Here, we provide a complete description of the gene-protein regulatory network model used to
909 generate the synthetic data for our experiments.912

F.1 NETWORK STRUCTURE AND TOPOLOGY

913 The network consists of $N = 10$ state variables: the concentrations of 5 mRNAs (m_0, \dots, m_4) and
914 5 proteins (p_0, \dots, p_4). The network employs a “master regulator” topology, as depicted in Figure 1.
915 In this structure, a single protein, P_4 , acts as a global transcriptional activator for several genes. The
916 concentration of P_4 serves as a proxy for the overall state of the system, and its self-regulation
917 creates a positive feedback loop that gives rise to bistability and bifurcation phenomena.

918 F.2 SYSTEM DYNAMICS AND GOVERNING EQUATIONS
919920 The temporal evolution of mRNA (m_i) and protein (p_i) concentrations for each gene $i \in 0, \dots, 4$ is
921 described by the following system of stochastic differential equations (SDEs):
922

923
$$\frac{dm_i}{dt} = \underbrace{\alpha_{\text{basal},i}}_{\text{Basal Rate}} + \underbrace{\alpha_{\text{activated}} \frac{p_4^{n_{\text{master}}}}{K_{\text{master}}^{n_{\text{master}}} + p_4^{n_{\text{master}}}}}_{\text{Activated Transcription}} - \underbrace{\gamma_{m,i} m_i}_{\text{Degradation}} + \xi_{m,i}(t)$$

924
925
926

927
$$\frac{dp_i}{dt} = \underbrace{\beta_i m_i}_{\text{Translation}} - \underbrace{\gamma_{p,i} p_i}_{\text{Degradation}} + \xi_{p,i}(t)$$

928
929
930
931

932 Where:
933934

- 935 The activated transcription term is a standard Hill function representing the cooperative
936 binding of the master regulator P_4 to the promoter regions of the genes.
- 937 K_{master} is the Michaelis-Menten constant, representing the concentration of P_4 required for
938 half-maximal activation. This parameter is systematically varied to induce the bifurcation.
- 939 n_{master} is the Hill coefficient, representing the cooperativity of binding.
- 940 $\xi_{m,i}(t)$ and $\xi_{p,i}(t)$ are stochastic terms representing noise.

941
942943 F.3 NOISE MODEL
944945 The stochastic terms $\xi(t)$ represent additive Gaussian white noise, which models random fluctuations
946 in the biochemical reactions. The SDEs are of the form $dX_t = f(X_t)dt + \sigma dW_t$, where $f(X_t)$
947 is the deterministic drift part of the equations above, dW_t is a Wiener process, and σ is the noise
948 strength.949 For the numerical simulations, we use the Euler-Maruyama method with a time step Δt . The noise
950 term for each state variable at each time step is implemented as:
951

952
$$\text{Noise} = \sigma \sqrt{\Delta t} \cdot \mathcal{N}(0, 1)$$

953
954

955 where $\mathcal{N}(0, 1)$ is a random variable drawn from a standard normal distribution. The noise strength
956 σ was set to a constant value of 0.1 for all simulations.
957958 Snapshots are generated near the tipping point on the high branch. For each selected parameter
959 value, we simulate 100 independent realizations (representing 100 cells) using Euler-Maruyama in-
960 tegration. The state of each realization at the equilibrium point is taken as a single-cell measurement,
961 yielding a snapshot of $N = 100$ cells. This yields high-dimensional low-sample-size (HDLSS) data,
962 which is repeated for a set of parameter values selected mainly near the bifurcation point to gen-
963 erate multiple snapshot datasets, with gradual shifts in distributions to test covariance estimation and
964 re-stabilization. Ground-truth Jacobians are saved for comparison with the estimated A_θ .
965966 F.4 PARAMETER SETTINGS
967968 The specific parameter values used for the “Global Bifurcation” model are detailed in the table
969 below. These values were chosen to ensure the system exhibits a clear bistable region and a saddle-
970 node bifurcation as K_{master} is varied. The bifurcation parameter K_{master} is varied across the range
971 $[0.1, 10.0]$, with denser sampling applied in the critical regions near $[0.233, 8.286]$ to better capture
variance peaks from critical slowing down.

972	Parameter	Value(s)	Description
973	α_{basal}	[0.03, 0.04, 0.06, 0.05, 0.05]	Basal transcription rate for each gene.
974	$\alpha_{\text{activated}}$	6.0	Maximum activated transcription rate.
975	K_{master}	Varied (e.g., logspace(-1, 1))	Bifurcation parameter: activation constant for P_4 .
976	n_{master}	4	Hill coefficient for P_4 activation.
977	β	[1.6, 1.9, 2.2, 2.0, 2.4]	Translation rate for each mRNA.
978	γ_m	1.0 (for all i)	mRNA degradation rate.
979	γ_p	[1.0, 0.9, 0.8, 1.1, 1.0]	Protein degradation rate.
980	σ (noise strength)	0.1	Strength of the additive Gaussian noise.
981			

Table 1: Parameter settings for the global bifurcation model.

985 G LIMITATIONS

987 While our framework provides a principled way to identify mRNA-protein regulatory dynamics
 988 from snapshot data and design re-stabilization strategies, several limitations remain. First, although
 989 the kernel conditional density estimator mitigates the high-dimension low-sample-size (HDLSS)
 990 challenge, it introduces additional computational cost and may still be sensitive to bandwidth se-
 991 lection. Second, the current work does not include experimental validation of the re-stabilization
 992 design. While accurate identification of regulatory nodes strongly suggests effective interventions,
 993 future studies will be needed to validate these strategies in wet-lab or clinical settings.

995 H BROADER IMPACT

997 This work contributes to the emerging intersection of machine learning, biology, and medicine by
 998 providing a data-driven framework for identifying regulatory dynamics and designing early inter-
 999 ventions in disease progression. From a biological perspective, the ability to detect pre-disease
 1000 stages and suggest re-stabilization strategies has the potential to inform ultra-early treatment, shift-
 1001 ing medical practice from reactive treatment to preventive intervention. This aligns with ongoing
 1002 efforts in precision medicine, where computational tools guide targeted therapies at the molecular
 1003 level. From a machine learning perspective, our study highlights how structural priors and dynam-
 1004 ical systems theory can enhance learning in the high-dimension low-sample-size (HDLSS) regime,
 1005 which frequently arises in single-cell analysis and other scientific domains. These insights may in-
 1006 spire future work on combining domain knowledge with statistical learning for better data efficiency
 1007 and interpretability. At the same time, caution is required when interpreting computationally identi-
 1008 fied regulatory nodes as clinical intervention targets. Translational applications will require rigorous
 1009 experimental validation and ethical considerations to ensure safety and effectiveness.

1010 I EXPERIMENTS COMPUTE RESOURCES

1012 All experiments were conducted on a MacBook equipped with an Apple M4 chip and 32GB of
 1013 unified memory.

1016 J REPRODUCIBILITY STATEMENT

1018 The source code has been included in the supplementary material for review purposes, and we will
 1019 release it as open source if the paper is accepted, to ensure transparency and reproducibility.