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ABSTRACT

Thanks to the principles of the scaling law, current neural networks have expe-
rienced remarkable performance improvements. While much of the existing re-
search has concentrated on upstream pretraining, the application of the scaling law
to downstream vision tasks remains underexplored. Understanding the scaling law
in downstream tasks can aid in the design of more effective models and training
strategies. Thus, in this work, we aim to investigate the application of the scaling
law to downstream vision tasks. Firstly, we explore the impact of three key factors
of scaling law: training data volume, model size, and input resolution. We empiri-
cally verify that increasing each of these factors can lead to performance enhance-
ments. Secondly, to address naive training’s optimization challenges and lack
of iterative refinement, we introduce DT-Training which leverages small teacher
transfer and dual-branch alignment to further exploit model potential. Thirdly,
building on DT-Training, we propose a closed-loop scaling strategy to incremen-
tally scale the model step-by-step. Finally, our scaled model exhibits strong ability
and outperforms existing counterparts across diverse test benchmarks. Extensive
experiments also reveal the robust transfer ability of our model. Moreover, we
validate the generalizability of the scaling law and our proposed DT-Training on
other downstream vision tasks, reinforcing the broader applicability of our ap-
proach. We hope that our findings can deepen the understanding of the scaling
law in downstream tasks and foster future developments on downstream tasks.

1 INTRODUCTION

The scaling law has demonstrated success and effectiveness across various domains, including
speech (Radford et al., 2023), language (Brown, 2020; Devlin, 2018; Hoffmann et al., 2022; Raffel
et al., 2020), vision (Kolesnikov et al., 2020; Zhai et al., 2022; Xie et al., 2023; Alabdulmohsin
et al., 2024), and multi-modal (Pham et al., 2023; Jia et al., 2021; Alabdulmohsin et al., 2022; Rad-
ford et al., 2021; Ramesh et al., 2022; Rombach et al., 2022; Cherti et al., 2023). Training large
models on extensive datasets over longer periods has consistently led to performance improvements
and enhanced transfer ability. However, most of these efforts have concentrated on upstream pre-
training stages. Although there have been a lot of works on scaling law training, these works mainly
focus on the upstream pretraining. The application of scaling law principles to downstream vision
tasks remains rarely explored. Understanding how scaling laws affect downstream vision tasks is
crucial as it can inform the design of more effective models and training strategies.

In this work, we aim to explore the scaling law in downstream vision tasks. Recent researches (Ka-
plan et al., 2020; Brown, 2020) on scaling law in pretraining have prove that there exists a rela-
tionship between model performance and model parameters and size of dataset, which indicates
that scaling up these factors can bring consistent performance improvement. Besides, larger input
resolution of image can further result in enhanced accuracy (Zhai et al., 2022; Xie et al., 2023; Al-
abdulmohsin et al., 2024). Therefore, it is natural to ask whether downstream vision tasks possesses
the same scaling signatures as the upstream tasks?

We take visual object tracking as case study to answer the above question. By systematically deflat-
ing model parameters, training data volume, and input image resolution, we investigate how these
factors impact model performance in downstream vision tasks. As illustrated in Figure 1, our find-
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ings reveal scaling patterns similar to those observed in upstream pretraining. Increasing model
parameters, training data, and input resolution consistently results in stable accuracy enhancements.

Despite the improved accuracy, existing naive training methods encounter several issues based on
our observation in Figure 1. Directly training a large model with extensive data may be difficult to
optimize and challenging to fully harness its capabilities. Additionally, it is an open-loop training
approach, failing to leverage knowledge gained from previous training. To address this, we intro-
duce a novel training approach, DT-Training. In our DT-Training, a smaller model acts as a teacher,
guiding the optimization of a larger model for smoother training. Additionally, DT-Training incor-
porates a dual-branch alignment technique, which applies random masks to input images and aligns
outputs from both masked and unmasked images. This increases training difficulty, fully harnessing
the model’s potential. Building upon our DT-Training, we propose a closed-loop scaling up strat-
egy. In this process, the small model from the previous iteration serves as a teacher, transferring
knowledge to the larger model, which then becomes the foundation for the next iteration. This setup
enables continuous iterative expansion, transforming the scaling process into an evolving cycle that
consistently enhances performance.

Existing models often evaluate the performance on limited benchmarks that lack the diversity and
complexity required to assess robustness in real-world scenarios. Thus, we introduce GTrack Bench,
a comprehensive, challenging, and large-scale benchmark featuring 4,369 trajectories, approxi-
mately three times the size of existing benchmarks. With our DT-Training approach and closed-loop
scaling strategy, our scaled model shows exceptional capabilities, outperforming current counter-
parts on GTrack Bench. Our model achieves 64.8 mean AUC, exceeding state-of-the-art methods by
at least 1.4 mean AUC. Furthermore, it exhibits strong transferability, maintaining high performance
even after compression and proving robust to multimodal data, such as depth maps. By integrating
our model into the backbones of CompressTracker (Hong et al., 2024a) and OneTracker (Hong et al.,
2024b), we achieve consistent performance improvements. Additionally, we also apply our strat-
egy to other downstream vision tasks, such object detection, enhances the accuracy of Deformable
DETR (Zhu et al., 2020) by 1.5 AP, which demonstrating the generalization ability of our method.

Our contribution can be summarized as following: (1) We take visual object tracking as case study to
investigate scaling laws in downstream vision tasks, focusing on three key factors: model size, train-
ing data volume, and input resolution. Although increasing these factors can enhance performance,
the improvement is often constrained by optimization challenges when training larger models. (2)
We introduce a novel training approach DT-Training, which involves utilizing a smaller model to
guide the training of a larger model, and aligning outputs from clean and masked images. Our DT-
Training facilitates faster, smoother convergence and fully unlocks the model’s potential. (3) We
introduce a closed-loop scaling up strategy based on our DT-Training, transforming the scaling pro-
cess into continuous, iterative optimization. This step-by-step evolution enables model to improve
consistently across multiple iterations, fully harnessing its ability. (4) Our scaled model exhibits
outstanding performance across various benchmarks and demonstrates robust transfer ability. Our
model achieves 64.8 mean AUC on GTrack Bench, outperforming existing models by at least 1.4
mean AUC. Experiments on object detection demonstrates the generalization ability of our method.

2 SCALING LAW IN DOWNSTREAM VISION TASKS

In this section, we explore the impact of the three factors in downstream vision tasks: model size,
training data, and image resolution, using visual object tracking as a case study. Our findings in
the following can be applied to other tasks, such as object detection, too. We adopt OSTrack (Ye
et al., 2022), which features a ViT (Dosovitskiy, 2020) encoder for joint feature extraction and
temporal matching, and a lightweight decoder for box regression, for our experiments. This simple
architecture allows us to effectively assess the impact of three factors in downstream vision tasks.

2.1 PIONEER EXPERIMENTS

To investigate the scaling laws affecting model performance, we systematically explore the effects
of three key factors: model size, training data size, and input resolution, as shown in Figure 1. By
keeping all other variables constant and scaling only one factor at a time, we observe a consistent
pattern across all three dimensions: larger models, more extensive training data, and higher input
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(a) (b) (c)

Figure 1: Pioneer Experiments. We investigate the impact of scaling law in downstream vision
tasks: (a) model size, (b) training data, and (c) image resolution.
resolutions, each results in improved performance. These observations align with conclusions drawn
from previous studies on scaling laws in pre-training tasks, highlighting the critical role of balancing
model size, data quantity, and input resolution to optimize visual model performance.

2.2 SHORTCUTS OF NAIVE TRAINING

As shown in preceding pioneer experiments and Figure 1, we observe that while expanding certain
factors like model size or training data can rapidly enhance model performance up to a specific
threshold, beyond the certain point, further expansion results in less noticeable improvements. For
example, a model using ViT-H as its backbone only achieves a 0.3% increase in mean AUC com-
pared to the ViT-L model. Similarly, the performance gains from expanding training data gradually
slow down. We attribute these limitations to conventional training approaches. (1) Convergence
difficulty. Firstly, training a large model directly on extensive datasets can be challenging to opti-
mize due to the increased complexity and computational demands, often leading to issues like slow
convergence or getting stuck in local minima. (2) Underexplored Capabilities. Traditional training
often fails to fully exploit larger models’ capabilities. While these models can capture stronger pat-
terns, conventional training uses fixed training protocols and architectures may hinder their potential,
resulting in suboptimal performance. (3) Isolate optimization. Besides, traditional methods follow
a linear, open-loop process where each scaling step—whether increasing model size, data volume,
or resolution—is treated in isolation. Models are trained independently, failing to utilize the insights
and capabilities developed in previous training efforts. The absence of iterative knowledge-sharing
process significantly limits the potential for more efficient optimization. This underscores the need
for a new training approach to more effectively exploit model performance and a more integrated,
close-loop approach to fully unlock the advantages of scaling laws.

3 CLOSE-LOOP SCALING UP STRATEGY

To address the aforementioned challenges, we introduce a novel training approach called DT-
Training, and a closed-loop scaling up strategy. DT-Training integrates dual-branch alignment and
small teacher transfer, to fully harness the potential of large models and improve performance. More-
over, DT-Training enables our closed-loop scaling up strategy. In this process, the small model from
the previous iteration serves as a teacher to transfer knowledge to the larger model, which then be-
comes the starting point for the next iteration. This setup facilitates continuous iterative expansion,
transforming the scaling process into an evolving cycle that consistently enhances performance.

3.1 DT-TRAINING

While naive training can improve model performance by scaling up key factors in scaling laws, it
faces significant limitations. Traditional training methods struggle to optimize large models effec-
tively and fail to fully exploit their potential. To overcome these shortcuts, we introduce DT-Training
as shown in Figure 2.

Directly training large models with excessive parameters often leads to challenges in pattern explo-
ration and optimization difficulty. To solve the optimization difficulty problem, we introduce the
small teacher transfer approach, where we employ a small pretrained model as a teacher to guide the
optimization of the larger model, facilitating smoother learning and faster convergence for the larger
model. Specifically, in our small teacher transfer, the original images X are simultaneously fed into
the training model f and teacher model f̂ . To facilitate the optimization of the student model from
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Figure 2: Overview of our DT-Training and closed-loop scaling up strategy. Our DT-Training
includes small teacher transfer and dual-branch alignment. We provide an illustrative example of our
closed-loop scaling up strategy to show a gradual increase in training data, model size, and image
resolution. The order of expanding the three key factors is flexible and can be adjusted as needed.

different levels, we minimize the distances of both the prediction output and intermediate features.
Given the output Y and intermediate features F obtained by the student model (Y, F ) = f(X) and
teacher model (Ŷ , F̂ ) = f̂(X), the objective function is formulated as:

Ltransfer(f ; f̂) = Ltask(Y, Ŷ ) + L2(F, F̂ ), (1)

where L2(F, F̂ ) denotes the L2 distance between the features F and F̂ . Ltask(Y, Ŷ ) is utilized to
calculate the difference between the outputs, which is task-specific. Note that we only update the
parameters of the student model, and the teacher model is frozen. With Eq. (1), our method encour-
ages comprehensive knowledge transfer between teacher and student models, facilitating smoother
and more stable optimization for the student model.

To further exploit the ability of the model, we introduce the dual-branch alignment technique, where
we apply random masks to input images and align the masked and unmasked image processes.
By doing so, we improve the robustness of the model, thus unlocking the model’s full potential.
Specifically, to introduce additional complexity and promote generalization, we apply random masks
to the origin image X , generating masked image X

′
. This creates two parallel branches: a clean

branch for the original image and a masked branch for the masked image, both of which share the
same network weights. We then obtain the outputs and intermediate features of both the clean image
X and masked image X

′
by the shared student network f , formulated as:

(Y, F ) = f(X), (Y
′
, F

′
) = f(X

′
), (2)

where Y
′
, F

′
are the predictions and intermediate features from the masked branch, respectively. To

optimize the model, we first utilize use groundtruth supervision for the clean branch defined as:

Lclean(f) = Ltask(Y,G), (3)
where Lclean denotes the task-specific loss for the clean branch and G is the groundtruth label.
Moreover, similar to Eq. 1, we align the clean and masked student branches by minimizing the
distance between both the outputs and intermediate features. The loss for dual-branch alignment
Lalign is then given by:

Lalign(f) = Ltask(Y, Y
′
) + L2(F, F

′
). (4)

While we use Ltask to compute the differences between the branches’ outputs, more complex meth-
ods could also be applied. This loss function is designed to ensure both final predictions and in-
termediate features from the two branches are aligned, enhancing model’s ability to generalize and
leverage its full potential.

Finally, we combine the dual-branch alignment and small teacher transfer to jointly optimise the
model. The overall loss function is formulated as:

Ltotal(f ; f̂) = Lclean(f) + λtransferLtransfer(f ; f̂) + λalignLalign(f), (5)

where λalign and λtransfer serve as the regularization parameters to balance these components.
Overall, the knowledge transfer from the teacher to the student model allows the student to leverage
the teacher’s pretrained understanding of the task, enabling faster convergence and more efficient
learning. Additionally, the masked branch operates with incomplete visual information due to oc-
clusions caused by the random masks. This missing local information makes the task more demand-
ing for the masked branch compared to the clean branch. Aligning the two branches enhances the
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Table 1: GTrack Bench statics. GTrack Bench consists of 12 challenging benchmarks and roughly
4 times the trajectory number provided by current popular benchmarks.

LaSOT LaSOText TrackingNet TNL2K UAV123 Avist LaGOT LaTOT HOOT VideoCube MOSE OVIS Sum

Trajectories 280 150 511 600 123 120 850 165 130 50 531 859 4369
Videos 280 150 511 600 123 120 280 165 130 50 200 200 3379
Mean Frames 2512 2395 441 697 1247 666 2512 684 730 14267 70 78 -

robustness of the student model to incomplete and noisy data, resulting in stronger representational
capabilities. Through the combination of dual-branch alignment and teacher model transfer, we ad-
dress the optimization difficulty of naive training approaches and further exploit model’s capability.

3.2 CLOSED-LOOP SCALING UP

To solve the isolate optimization problem, we further propose the closed-loop scaling up strategy
built on the DT-Training by introducing a feedback mechanism to enable continuous, iterative op-
timization throughout the scaling process. As shown in Figure 2, our closed-loop strategy progres-
sively expands any key factor of scaling laws: model size, data size, and input resolution, which we
explore in Section 2.

Given its iterative nature, each training phase can be viewed as a stage with different data volume γ,
model parameters θ, and input resolution µ. These factors scale up as the iteration process increases.
Based on the key idea of using a smaller teacher model to guide larger student one in DT-Training,
we use the trained student model fi−1 as the teacher model for stage i. The larger scale student
model is denoted as fi. We use the same training objective functions within the DT-Training frame-
work for each iteration, which includes dual-branch alignment and small teacher transfer. The goal
of each iteration is to incrementally scale the student model and enhance its performance by lever-
aging the knowledge embedded in the teacher model.

At the start of the ith iteration, the model from the previous iteration, fi−1, though smaller or
less accurate, contains valuable knowledge that has been optimized on the tasks encountered in
earlier iteration. This model serves as the teacher in the DT-Training process, facilitating faster
convergence and smoother optimization for the current iteration. In each iteration, one or more of
the three scaling factors is increased, allowing the model to progressively evolve and improve. The
optimization function for the ith iteration can be formulated as:

Ltotal(fi; fi−1|θi, γi, µi), (6)

where θi, γi, and µi denote parameter amounts, data volume, and input resolution in stage i, re-
spectively. After the ith stage completes, the model fi becomes the new teacher for the subsequent
i+1th stage, continuing the cycle of iterative scaling and improvement. In each new iteration stage,
we scale the model by either increasing its capacity, expanding the dataset size, or enhancing the
input resolution. This ensures that the student model is progressively larger and more capable while
leveraging the knowledge acquired in previous iterations. By iteratively expanding these key factors
and continuously transferring knowledge between models, our closed-loop scaling strategy guaran-
tees that each iteration benefits from prior learning. This approach ultimately leads to more robust
and efficient scaling across model size, data, and resolution, enhancing overall performance.

Our DT-Training enables the feasibility of a closed-loop scaling strategy, offering key advantages
over traditional methods. First, the iterative teacher-student relationship allows each new student
model to inherit the accumulated knowledge of previous iterations, leading to faster convergence and
better generalization. Second, while conventional training often faces diminishing returns as models
are scaled, our strategy transforms scaling into an iterative refinement process, ensuring consistent
improvement. Additionally, the closed-loop scaling strategy offers excellent scalability, making it
suitable for progressively larger models and more complex datasets as the training advances.

4 EXPERIMENTS

4.1 IMPLEMENT DETAILS

Our DT-Training approach and closed-loop scaling up strategy are general and can be applied to any
kind of downstream vision models. Because we take visual object tracking as a case study, we select
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Table 2: Effectiveness of DT-Training. We compare the performance between our DT-Training and
the conventional training approach under the same conditions. For ’Baseline-B-256-N’, ’Baseline’
indicates model name, ’B’ refers to ViT-B, ’256’ specifies the input resolution, and ’N’ represents
training data. N refers to normally used four tracking datasets, and M represents more training data.

Model LaSOT LaSOText TNL2K Mean
AUC PNorm P AUC PNorm P AUC PNorm P AUC

Baseline-B-256-N 68.4 77.8 74.2 47.0 57.0 52.9 56.4 71.7 58.4 57.3

Training Data Scale Up

Baseline-B-256-M 68.6 78.3 74.2 47.3 55.9 51.8 60.5 76.9 65.0 58.8
Ours-B-256-M 69.5 79.2 75.3 47.9 57.5 53.5 61.2 77.2 65.0 59.5

Model Size Scale Up

Baseline-L-256-N 70.0 79.2 76.3 46.6 56.9 53.0 59.6 71.9 58.9 58.7
Ours-L-256-N 71.0 80.9 77.2 46.0 55.9 52.2 60.1 72.6 59.5 59.2

Input Resolution Scale Up

Baseline-B-384-N 70.0 79.4 76.1 51.4 62.2 58.1 58.5 70.7 57.0 60.0
Ours-B-384-N 70.6 80.3 76.8 51.9 62.6 58.6 59.4 72.0 58.1 60.6

OSTrack (Ye et al., 2022) as baseline due to its simplicity and effectiveness. The training datasets
include LaSOT (Fan et al., 2019), TrackingNet (Muller et al., 2018), GOT-10K (Huang et al., 2019),
and COCO (Lin et al., 2014), aligning with OSTrack (Ye et al., 2022) and MixFormerV2 (Cui et al.,
2024). However, these datasets alone do not provide sufficient data to fully train a highly capable
tracking model, so we convert datasets from related tasks, such as multi-object tracking, video object
segmentation, and open-world object tracking and segmentation, into a single object tracking format.
Each video in these additional datasets may contain multiple trajectories, as opposed to only one
labeled object’s trajectory in visual object tracking. By incorporating a significant number of training
trajectories, we effectively expand our training data to four times its original size, surpassing what
was available in the initial four datasets. See Appendix A.3 for more details about training data.

We train the model with AdamW optimizer (Loshchilov & Hutter, 2017), with a weight decay of
10−4 and an initial learning rate of 4 × 10−4. The total training epochs is 300 with 60K image
pairs per epoch and the learning rate is reduced by a factor of 10 after 240 epochs. We employ
a batch size of 256. The search and template images are resized to resolutions of 256 × 256 and
128 × 128 resolutions, respectively. We set λalign as 0.1. λtransfer are set as 0.5 for the first 270
epochs and reduc to 0.0 for the last 30 epochs. The mask ratio is gradually increased from 0.05 to
0.4. We initialize the model with the pretrained parameters from MAE. To maximize the benefit of
extensive training data, we employ a balanced sampling strategy to ensure that larger datasets do not
overshadow smaller ones.

4.2 GTRACK BENCH

Existing tracking models (Cui et al., 2022; 2024; Ye et al., 2022; Bai et al., 2023) tend to assess per-
formance on a limited number of benchmarks (about 3-4, covering approximately 1000 trajectories),
including TrackingNet (Muller et al., 2018), GOT-10K (Huang et al., 2019), and LaSOT (Fan et al.,
2019). However, these datasets offer insufficient diversity, and the videos lack the complexity re-
quired to assess model robustness in real-world scenarios. Thus, we introduce a comprehensive and
challenging benchmark, called General Track Bench (GTrack Bench), designed to comprehensively
evaluate the ability of tracking models in diverse scenes. GTrack Bench consists of 3379 videos
from 12 datasets, with a total of 4369 trajectories, roughly 3 times the number provided by cur-
rent popular benchmarks (around 1000 trajectories). The statistics of these 12 datasets and GTrack
Bench are summarized in Table 1. The collection includes 10 tracking datasets, along with one
video object segmentation (VOS) dataset and one video instance segmentation (VIS) dataset. The
10 tracking datasets not only include some of commonly used datasets, such as TrackingNet, La-
SOT, LaSOText, and UAV123 (Mueller et al., 2016), as well as more challenging, recently proposed
datasets tailored to complex scenarios, e.g. TNL2K (Wang et al., 2021c), and Avist (Noman et al.,
2022). In addition to standard tracking datasets, we incorporate benchmarks MOSE (Ding et al.,
2023) and OVIS (Qi et al., 2022) from VOS and VIS tasks and convert them into tracking format.
These datasets capture complex scenes where target objects frequently experience occlusions, pre-
senting a higher degree of difficulty. We calculate the mean results of each benchmark to serve as the
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Table 3: Effectiveness of closed-loop scaling up strategy. We compare the performance of our
closed-loop scaling up strategy with naive training on GTrack Bench.

Model LaSOT LaSOText TrackingNet TNL2K UAV123 Avist LaGOT LaTOT HOOT VideoCube MOSE OVIS Mean

Baseline-B-256-N 68.4 47.0 83.5 56.4 67.8 57.0 61.9 28.9 56.4 45.5 51.4 55.3 59.4
Ours-B-256-M 69.5 47.9 83.6 61.2 69.2 57.6 63.1 30.6 56.5 47.4 55.5 60.1 62.0
Baseline-L-256-N 70.0 46.6 84.4 59.6 67.9 58.3 62.4 30.2 61.1 47.4 52.4 57.5 60.9
Ours-L-256-M 71.6 48.2 84.2 65.0 69.1 60.1 65.2 30.5 62.0 48.5 55.6 61.2 63.6
Baseline-L-384-N 70.8 47.0 85.0 60.5 70.3 59.6 63.4 31.0 61.8 48.6 57.5 63.3 63.4
Ours-L-384-M 73.1 53.0 84.7 66.3 69.7 60.5 67.3 32.0 62.0 53.1 55.7 61.5 64.8

Table 4: Comparison with state-of-the-art models on GTrack Bench. Our models signifi-
cantly outperform state-of-the-art counterparts, highlighting the effectiveness of our DT-Training
and closed-loop scaling up strategy.

Model LaSOT LaSOText TrackingNet TNL2K UAV123 Avist LaGOT LaTOT HOOT VideoCube MOSE OVIS Mean

Baseline-B-256-N 68.4 47.0 83.5 55.9 70.7 57.0 61.9 28.9 56.4 45.5 51.4 55.3 59.4
GRM-Base 69.9 47.3 84.0 57.0 70.2 54.5 62.4 28.8 56.7 45.4 52.4 56.7 60.2
SeqTrack-Base 69.9 49.5 83.3 54.9 69.2 56.8 63.5 29.8 50.3 48.5 49.8 54.7 59.3
ARTrack-Base 70.4 46.4 84.2 57.5 67.7 59.9 62.7 30.8 56.2 44.4 52.4 57.7 60.6
ARTrackV2-Base 71.6 50.8 84.9 59.2 69.9 - - - - - - - -
Ours-B-256-M 69.5 47.9 83.6 61.2 69.2 57.6 63.1 30.6 56.5 47.4 55.5 60.1 62.0
Baseline-L-256-N 69.9 47.1 84.4 59.6 67.9 58.3 62.4 30.2 61.1 47.4 52.4 57.5 60.9
SeqTrack-L 72.1 50.5 85.0 56.9 69.7 61.1 65.5 31.5 51.4 51.2 52.8 58.2 61.7
Ours-L-256-M 71.6 48.2 84.2 65.0 69.1 60.1 65.2 30.5 62.0 48.5 55.6 61.2 63.6
Baseline-L-384-N 70.8 47.0 85.0 60.5 70.3 59.6 63.4 31.0 61.8 48.6 57.5 63.3 63.4
GRM-L320 71.4 51.5 84.4 58.2 70.8 57.5 64.8 32.5 58.5 50.9 51.5 56.6 61.3
SeqTrack-L384 72.5 50.7 85.5 57.8 68.5 63.1 65.6 30.8 53.2 51.8 54.3 59.8 62.4
ARTrack-L384 73.1 52.4 85.6 61.1 69.2 64.5 66.2 34.2 63.1 43.0 55.3 61.3 63.9
ARTrackV2-L384 73.6 53.4 86.1 61.6 71.7 - - - - - - - -
Ours-L-384-M 73.1 53.0 84.7 66.3 69.7 60.5 67.3 32.0 62.0 53.1 55.7 61.5 64.8

final score. By integrating this diverse range of datasets, GTrack Bench provides a comprehensive
and realistic framework for evaluating model performance across varied and challenging environ-
ments. This enhanced benchmark allows for a more robust assessment of tracking models’ abilities
in real-world scenarios, and we will use GTrack Bench for evaluation in the following experiments.
Please see Appendix A.2 for more details about our GTrack Bench.

4.3 CLOSE-LOOP SCALING UP

To validate the effectiveness of our DT-Training and close-loop scaling strategy, we conducted a
comparison between models trained using our approach and those trained with a traditional, naive
training method.

Effectiveness and Generalization of DT-Training. Firstly, to assess the generalization capability
and effectiveness of our DT-Training method, we start with a baseline model trained on a limited
set of commonly used datasets (e.g. COCO (Lin et al., 2014), TrackingNet (Muller et al., 2018),
LaSOT (Fan et al., 2019), and GOT-10k (Huang et al., 2019)), following previous works (Ye et al.,
2022; Bai et al., 2024; Cui et al., 2022). We then independently examine the impact of three critical
factors in scaling law: model size, training data, and image resolution, as explored in Section 2.
The results, presented in Table 2, demonstrate that our DT-Training consistently surpasses tradi-
tional training approaches across the three scaling conditions. Specifically, when only the training
data was scaled up, we expand the dataset beyond the initial set (e.g., COCO, TrackingNet, La-
SOT, GOT-10k) by adding more diverse and larger-scale datasets, which results in a 0.7% increase
in the mean AUC score across three datasets compared to naive training. In cases where only the
model size is scaled up, we increase the complexity of the model by using a larger architecture,
moving from ViT-B to ViT-L. This adjustment yields a 0.5% increase in the mean AUC score over
naive training. Additionally, when the image resolution is increased from 256 to 384, we observe a
performance boost of approximately 0.6% in mean accuracy. In summary, our DT-Training demon-
strates significant effectiveness, as evidenced by consistent performance improvements across the
three scaling conditions compared to traditional training methods.

Effectiveness of close-loop scaling up strategy. We conduct experiments to evaluate the effec-
tiveness of our close-loop scaling up strategy. We also adopt the baseline model trained on the
four limited datasets (e.g., COCO, TrackingNet, LaSOT, GOT-10k) to serve as the start point of our
close-loop scaling up process. We then progressively expand the training data, the model size, and
the resolution of the input images by levaraging our DT-Training. Besides, we finetune the scaled
model on LaSOT for 40 epochs. We compare the result with naive training the baseline model on
the four limited datasets by using the GTrack Bench and show the result in Table 3. We record the
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Figure 3: Ablation study on mask ration and regularization parameters. We conduct experi-
ments to explore the impact of mask ration p and regularization parameters λtransfer and λalign.

AUC score of each benchmark and the mean score. Our model share the same inference speed with
baseline model. Our model has a performance gain of at least 2% in the average AUC over ten
benchmarks over normal training in all different settings. Our training manner not only is proven
to be effective when scaling a single element, but also demonstrate strong effectiveness and flexible
scalability in closed-loop scaling experiments. This also demonstrates the superiority of our training
manner and close-loop scaling up strategy compared to naive training.

Comparison with existing models. To further verify the effectiveness of our closed-loop scaling up
strategy, we compare our models with state-of-the-art counterparts on GTrack Bench, as presented
in Table 4. Our models achieve competitive accuracy, surpassing existing models by at least 1.4
mean AUC. Notably, while existing models such as ARTrack (Bai et al., 2024), and SeqTrack (Chen
et al., 2023) rely on complex architectural designs for performance gains, our models obtain superior
results with a simpler structure. This underscores the effectiveness of our DT-Training and closed-
loop scaling strategy.

4.4 ABLATION STUDY

To verify the effectiveness of our proposed DT-Training, we conduct a comprehensive analysis of
its various components, performing detailed exploratory studies. Unless otherwise noted, Unless
otherwise specified, the following experiments use a ViT-B model trained on four datasets (COCO,
TrackingNet, LaSOT, and GOT-10k) as a teacher model to train another ViT-B tracker on the same
datasets, for the purpose of eliminating the influence of other factors, such as resolution, training
data volume, and model parameter size.

4.4.1 SMALL TEACHER TRANSFER & MASK ALIGNMENT.

Table 5: Ablation Study on Small Teacher
Transfer & Mask Alignment. We investigate the
effects of teacher transfer and mask alignment.

# Teacher Mask LaSOT LaSOText TNL2K Mean

1 68.4 47.0 56.4 57.3
2 ✓ 68.9 47.1 56.7 57.6
3 ✓ 69.4 47.2 56.5 57.7
4 ✓ ✓ 70.1 47.4 56.6 58.0

We conduct experiments to investigate the ef-
fects of teacher transfer and mask alignment,
with the results presented in Table 5. It can
be observed that both the small teacher trans-
fer (# 2) and mask alignment (# 3) can en-
hance accuracy compared to naive training (#
1). Moreover, combining small teacher transfer
with mask alignment (# 4) can further improve
model performance. Importantly, by using the same training data, model size, and input image res-
olution as the baseline training (# 1), our approach significantly boosts performance, highlighting
effectiveness of our DT-Training.

4.4.2 MASK RATIO.

To explore the influence of mask ratio p on mask alignment, we test model performance across
different mask ratio and record results on the left side of Figure 3. The results reveal that a low mask
ratio (0.1 and 0.2) fails to fully exploit the model’s capabilities, while an excessively high mask ratio
(0.5) increases training difficulty, negatively impacting performance. Thus, selecting an appropriate
mask ratio is crucial to maximizing performance. We begin with a lower mask ratio to allow for
faster learning and, as training stabilizes, gradually increase the mask ratio to enhance difficulty,
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Table 6: Compression experiments. Our model maintains competitive accuracy after compression.

Method LaSOT LaSOText TNL2K TrackingNet UAV123
AUC PNorm P AUC P AUC P AUC PNorm P AUC P

HiT-Base (Kang et al., 2023) 64.6 73.3 68.1 44.1 - - - 80.0 84.4 77.3 65.6 -
HiT-Samll (Kang et al., 2023) 60.5 68.3 61.5 40.4 - - - 77.7 81.9 73.1 63.3 -
HiT-Tiny (Kang et al., 2023) 54.8 60.5 52.9 35.8 - - - 74.6 78.1 68.8 53.2 -
SMAT (Gopal & Amer, 2024) 61.7 71.1 64.6 - - - - 78.6 84.2 75.6 64.3 83.9
MixFormerV2-S (Cui et al., 2024) 60.6 69.9 60.4 43.6 46.2 48.3 43.0 75.8 81.1 70.4 65.8 86.8

CompressTracker-4 (Hong et al., 2024a) 66.1 75.2 70.6 45.7 50.8 53.6 52.5 82.1 87.6 80.1 67.4 88.0
CompressTracker-4-Ours 66.9 76.3 71.7 46.0 51.4 54.8 54.9 82.6 87.9 80.5 67.9 88.3

Table 7: Multi-modal robustness experiments. Our model is robust to multi-modal data.
RGB+D Tracking

DeT
Yan et al. (2021b)

OSTrack
Ye et al. (2022)

SPT
Zhu et al. (2022)

ProTrack
Yang et al. (2022)

ViPT
Zhu et al. (2023a)

OneTracker
Hong et al. (2024b)

OneTracker
Ours

DepthTrack
Yan et al. (2021c)

F-score(↑) 53.2 52.9 53.8 57.8 59.4 60.9 61.6
R(↑) 50.6 52.2 54.9 57.3 59.6 60.4 61.2
P(↑) 56.0 53.6 52.7 58.3 59.2 60.7 61.5

VOT
RGBD2022

Kristan et al. (2023)

EAO(↑) 65.7 67.6 65.1 65.1 72.1 72.7 73.5
Accuracy(↑) 76.0 80.3 79.8 80.1 81.5 81.9 83.0

Robustness(↑) 84.5 83.3 85.1 80.2 87.1 87.2 88.1

RGB+T Tracking
APFNet

Xiao et al. (2022)
OSTrack

Ye et al. (2022)
TransT

Chen et al. (2021)
ProTrack

Yang et al. (2022)
ViPT

Zhu et al. (2023a)
OneTracker

Hong et al. (2024b)
OneTracker

Ours
LasHeR

Li et al. (2021)
PR(↑) 50.0 51.5 52.4 53.8 65.1 67.2 68.3
SR(↑) 36.2 39.4 41.2 42.0 52.5 53.8 55.1

RGBT234
Li et al. (2019b)

MPR(↑) 79.0 82.3 82.7 79.5 83.5 85.7 86.2
MSR(↑) 57.3 57.5 57.9 59.9 61.7 64.2 64.8

RGB+E Tracking
LTMU

Dai et al. (2020)
SiamRCNN

Voigtlaender et al. (2020)
MDNet

Nam & Han (2016)
OSTrack

Ye et al. (2022)
ViPT

Zhu et al. (2023a)
OneTracker

Hong et al. (2024b)
OneTracker

Ours
VisEvent

Wang et al. (2021b)
MPR(↑) 65.5 65.9 66.1 69.5 75.8 76.7 77.4
MSR(↑) 45.9 49.9 - 53.4 59.2 60.8 61.7

thereby fully harnessing the model’s potential (0.05-0.4). This adaptive strategy ensures the model
achieves optimal performance by balancing learning ease and challenge.

4.4.3 REGULARIZATION PARAMETERS.

The regularization parameters also have influence on model performance. As shown in the middle
of Figure 3, small teacher transfer enhances model performance, but different λtransfer exert a rel-
atively minor influence. In the fourth bar, teacher transfer is employed during the initial 270 epochs
to boost training efficiency and performance. In the final 30 epochs, teacher transfer is disabled,
allowing the model to independently refine its capabilities, thereby further enhancing performance.
This method effectively capitalizes on the strengths of teacher transfer while enabling autonomous
learning, resulting in superior model performance. In the right side of Figure 3, we examine the
impact of λalign. We find that both overly high and low λalign can negatively impair effectiveness,
highlighting the importance of selecting an appropriate λalign for optimal results.

5 TRANSFER ABILITY PROBING

In the previous section, we validate the effectiveness of our proposed closed-loop scaling up strategy,
but the transfer ability of our model has not been verified. While our model demonstrates excellent
performance across numerous datasets, the transfer ability remains unexplored. Therefore, in this
section, we conduct additional experiments to thoroughly evaluate the model’s transfer capabilities.

Model Compression. Firstly, we aim to verify whether our model can maintain its excellent perfor-
mance after compression. We follow CompressTracker (Hong et al., 2024a) framework and com-
press our scaled ViT-B model into a smaller version with just four transformer layers. Except for
using a different initial teacher model, all other training parameters, such as data and epochs, remain
consistent. As shown in Table 6, our model achieves superior performance, recording a 66.9% AUC
on LaSOT benchmarks, which is a 0.8% AUC improvement over the original CompressTracker.,
thanks to our stronger model. Additionally, our model outperforms other lightweight tracking mod-
els, confirming its ability to maintain excellent performance after compression.

Robustness to multi-modal data. Furthermore, we investigate the the generalization ability of our
model on multimodal data such as thermal maps. By adopting the OneTracker (Hong et al., 2024b)
architecture, we explore the adaptability of our models to different modalities, including depth,
thermal, and event maps. As shown in Table 7, our model shows strong generalization to multi-
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modal data. Through replacing the backbone of OneTracker (Hong et al., 2024b) with our model,
OneTracker obtains consistent performance improvement across various multimodal benchmarks.
These findings, with our previous experiments, underscore robust transferability of our model.

5.1 GENERALIZATION EXPERIMENTS

Table 8: Generalization Experiments. Our DT-
Training can also be applied to other tasks, such
as object detection.

Model AP APS APM APL

Deformable DETR-R50 44.5 27.1 47.6 59.6
Deformable DETR-R50-Ours 46.0 27.4 49.3 61.1

Our DT-Training and closed-loop scaling up
strategy can be applied to other downstream vi-
sion tasks. To verify the generalization capa-
bility of our method, we conduct experiments
on object detection. We apply our method to
Deformable DETR (Zhu et al., 2020) and train
it on COCO (Lin et al., 2014) dataset for 50
epochs, maintaining the original settings. As show in Table 8, our method yields a 1.5 AP perfor-
mance improvement over origin Deformable DETR under identical settings. Experiments on both
tracking and object detection demonstrate that our model effectively operates on both CNN networks
and Transformer architectures, demonstrating generalization ability of our method.

6 RELATED WORKS

6.1 SCALING LAW IN UPSTREAM TASKS

Scaling laws in neural language processing and vision pretraining tasks have been extensively stud-
ied in prior works (Hestness et al., 2017; Sun et al., 2017; Brown, 2020). Studies such as (Hoffmann
et al., 2022; Kaplan et al., 2020; Tay et al., 2021; Touvron et al., 2023) explore neural scaling laws
in language models, demonstrating a power law relationship between model performance and the
scale of model size, data, and training compute. Similar power law dependencies have also been
observed in vision tasks (Riquelme et al., 2021; Zhai et al., 2022; Dehghani et al., 2023; Kolesnikov
et al., 2020; Xie et al., 2023; Alabdulmohsin et al., 2024). Additionally, works like (Radford et al.,
2021; Pham et al., 2023; Jia et al., 2021; Alabdulmohsin et al., 2022; Radford et al., 2021; Ramesh
et al., 2022; Rombach et al., 2022; Cherti et al., 2023; Fang et al., 2022; Yu et al., 2022) leverage
vast datasets of weakly aligned image-text pairs to strengthen the connection between vision and
language tasks. While scaling laws in pretraining have been well studied, the impact of scaling laws
on downstream vision tasks has been less explored. Understanding these dynamics is critical for
optimizing model design and performance in downstream vision scenarios.

6.2 SCALING LAW IN DOWNSTREAM TASKS

Beyond upstream pretraining, significant attention has been directed towards scaling laws in down-
stream tasks. Studies like (Liu et al., 2024; Xia & Huang, 2024) investigate neural scaling laws on
graph-based models from both model and data perspectives. SMLPer-X (Cai et al., 2024) constructs
a large-scale human pose and shape estimation dataset, creating a foundational model. Other studies,
like (Minderer et al., 2024; Tschannen et al., 2024) focus on expanding training data size. However,
these works often attempt to address isolated scaling aspects without establishing a universal scaling
law for downstream vision tasks. In this work, we aim to address this gap by investigating general
scaling laws in downstream vision tasks.

7 CONCLUSIONS

In this work, we explore the scaling law in downstream vision tasks. Firstly, we examine the three
key factors of scaling laws: model size, data volume and input resolution, discovering similar trends
to pretraining tasks. To address the optimization challenges in naive training, we introduce the DT-
Training approach. Additionally, we propose a closed-loop scaling strategy to iteratively enhance
model performance. Our model surpasses existing counterparts on the GTrack Bench. Our approach
can also be applied to other tasks such as object detection. These results highlight the effectiveness
and generalization capabilities of our method.
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Depthtrack: Unveiling the power of rgbd tracking. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 10725–10733, 2021c.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Jinyu Yang, Zhe Li, Feng Zheng, Ales Leonardis, and Jingkuan Song. Prompting for multi-modal
tracking. In ACMMM, pp. 3492–3500, 2022.

Botao Ye, Hong Chang, Bingpeng Ma, Shiguang Shan, and Xilin Chen. Joint feature learning and
relation modeling for tracking: A one-stream framework. In European conference on computer
vision, pp. 341–357. Springer, 2022.

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui
Wu. Coca: Contrastive captioners are image-text foundation models. arXiv preprint
arXiv:2205.01917, 2022.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
12104–12113, 2022.

Zhipeng Zhang, Houwen Peng, Jianlong Fu, Bing Li, and Weiming Hu. Ocean: Object-aware
anchor-free tracking. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XXI 16, pp. 771–787. Springer, 2020.

Jiawen Zhu, Simiao Lai, Xin Chen, Dong Wang, and Huchuan Lu. Visual prompt multi-modal
tracking. arXiv preprint arXiv:2303.10826, 2023a.

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr:
Deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159, 2020.

Xue-Feng Zhu, Tianyang Xu, Zhangyong Tang, Zucheng Wu, Haodong Liu, Xiao Yang, Xiao-Jun
Wu, and Josef Kittler. Rgbd1k: A large-scale dataset and benchmark for rgb-d object tracking.
arXiv preprint arXiv:2208.09787, 2022.

Yabin Zhu, Chenglong Li, Yao Liu, Xiao Wang, Jin Tang, Bin Luo, and Zhixiang Huang. Tiny
object tracking: A large-scale dataset and a baseline. IEEE transactions on neural networks and
learning systems, 2023b.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 9: Statics of current benchmarks. Trajectories in current popular benchmarks are limited.

LaSOT
(Fan et al., 2019)

LaSOText

(Fan et al., 2019)
TrackingNet

(Muller et al., 2018)
TNL2K

(Wang et al., 2021c)
UAV123

(Mueller et al., 2016) Sum

Trajectories 280 150 511 600 123 1664
Videos 280 150 511 600 123 1664
Mean Frames 2512 2395 441 697 1247 -

Table 10: Statics of training data. We combine multiple datasets to create a large scale training
data to conduct scaling up experiments.

Statics
Datasets LaSOT GOT-10K TrackingNet COCO TNL2K UAVDT MOT16 MOT17 MOT20 DanceTrack SportsMOT TAO UVO MOSE OVIS

Trajectories 1400 10000 30600 118288 1300 2593 731 2388 2332 419 639 15997 95308 3210 2482
Videos 1400 10000 30600 - 1300 50 7 21 2 40 45 2921 6850 1307 407
Mean Frames 2512 156 472 - 560 814 759 759 2333 1044 635 1055 89 61 65

A APPENDIX

A.1 MORE RELATED WORKS

Visual Object Tracking. Visual object tracking aims to locate a target object in each frame based
on its initial appearance. Traditional tracking methods (Bertinetto et al., 2016; Li et al., 2018; Zhang
et al., 2020; Bhat et al., 2019; Danelljan et al., 2019; Li et al., 2019a; Bolme et al., 2010; Henriques
et al., 2014; Chen et al., 2021; Yan et al., 2021a) use a two-stream pipeline to separate feature
extraction from relation modeling. Recently, the one-stream pipeline have taken a dominant role (Ye
et al., 2022; Cui et al., 2022; 2024; Bai et al., 2023; Wei et al., 2023; Chen et al., 2022; 2023;
Gao et al., 2023) combining these processes into a unified approach. These one-stream models are
primarily built on the vision transformer architecture, which utilizes a series of transformer encoder
layers. This design enables more effective relationship modeling between the template and search
frame, leading to impressive performance. While previous works enhance model performance by
increasing model parameters or input resolution, they often rely on limited training data and have
not systematically explored the scaling law in visual object tracking tasks.

A.2 GTRACK BENCH

Existing tracking models (Cui et al., 2022; 2024; Ye et al., 2022; Bai et al., 2023) tend to evaluate
performance on a limited set of benchmarks (about 3-4), as detailed in Table 9. These bench-
marks offer limited trajectories and fall short of comprehensively evaluating a model’s tracking
capabilities. Thus we introduce the GTrack Bench, which consists of 12 challenging benchmarks.
Among the 12 benchmarks, 10 are singel object tracking benchmarks, including LaSOT (Fan et al.,
2019), LaSOText (Fan et al., 2019), TrackingNet (Muller et al., 2018), TNL2K (Wang et al., 2021c),
UAV123 (Mueller et al., 2016), Avist (Noman et al., 2022), LaGOT (Mayer et al., 2024), La-
TOT (Zhu et al., 2023b), HOOT (Sahin & Itti, 2023), and VideoCube (Hu et al., 2022). Additionally,
it includes two datasets from VOS and VIS tasks, MOSE (Ding et al., 2023) and OVIS (Qi et al.,
2022). These datasets emphasize real and complex scenarios, offering more challenging videos. By
integrating these datasets, we construct a comprehensive evaluation suite with three times the num-
ber of trajectories (4369 in total), allowing for a more thorough assessment of model capabilities in
real-world scenarios.

A.3 TRAINING DATA

Currently, state-of-the-art tracking models (Cui et al., 2022; 2024; Ye et al., 2022; Bai et al., 2023;
Wei et al., 2023) are trained on a combination of several datasets, including TrackingNet (Muller
et al., 2018), LaSOT (Fan et al., 2019), GOT-10K (Huang et al., 2019), and COCO (Lin et al., 2014).
However, these datasets alone are insufficient for fully training highly capable tracking models.
We datasets from related tasks into a single object tracking format to create a large-scale train-
ing set. These datasets originate from tasks such as single object tracking (LaSOT (Fan et al.,
2019), GOT-10K (Huang et al., 2019), TrackingNet (Muller et al., 2018), COCO (Lin et al., 2014),
TNL2K (Wang et al., 2021c), and UAVDT (Du et al., 2018)), multi-object tracking (MOT16 (Milan
et al., 2016), MOT17 (Dendorfer et al., 2021), MOT20 (Dendorfer, 2020), DanceTrack (Sun et al.,
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2022), SportsMOT (Cui et al., 2023)), video object segmentation (MOSE (Ding et al., 2023)), video
instance segmentation (OVIS (Qi et al., 2022)), and open-world object tracking and segmentation
(TAO (Achal et al., 2020) and UVO (Wang et al., 2021a)). Statistics of these datasets are displayed
in Table 10. By incorporating a substantial number of training trajectories, we expand our dataset to
four times its original size, exceeding the capacity of the initial datasets. We conduct our scaling up
experiments based on this large scale dataset.
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