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Abstract
Molecule inverse design is of critical significance
in drug discovery which requires molecules to be
generated based on certain chemical properties or
structural compositions. Generative models, most
popularly diffusion models, have shown great
promise in performing inverse design through
conditioning techniques and/or explicit energy
guidance during sampling. In this work, we
propose a novel guidance framework, Energy-
Free Guidance for Geometric Diffusion Models
(EFG-GDM), that effectively boosts the utility
of molecule inverse design without any auxiliary
energy head for guidance. The key innovation lies
in the joint training strategy for the conditional
and unconditional score models via random mask-
ing, which are then composed during sampling in
an SE(3)-equivariant fashion, ensuring the critical
physical symmetry of the geometric distribution.
This feature alleviates practitioners from needing
additional efforts in training energy prediction
heads and avoids the adversarial gradient coming
from them. We conduct experiments on a diverse
range of inverse design tasks on QM9, showing
that our approach achieves state-of-the-art on 4
out of 6 design targets without leveraging any
external energy gradients.

1. Introduction
Generative models, especially diffusion models (Sohl-
Dickstein et al., 2015; Song & Ermon, 2019; Ho et al.,
2020; Song et al., 2021), have made remarkable progress
in de novo 3D molecular design, a fundamental component
in the blueprint of artificial intelligence-driven drug discov-
ery (Cheng et al., 2021). The core to the success of these
models, namely geometric diffusion models (Xu et al., 2022;
2023; Hoogeboom et al., 2022), lies in the preservation of
the physical symmetry in the marginal distribution of the
generated molecules. In particular, they feature an SE(3)-
equivariant diffusion process with the reverse kernels param-
eterized by SE(3)-equivariant graph neural networks, thus
ensuring that the molecular structures reachable via rota-
tions and translations in 3D share the same likelihood. This

consideration has been demonstrated as being effective in
promoting the sample quality of geometric diffusion models.

Among the tasks in molecule design, 3D molecular inverse
design (Bao et al., 2022) has attracted growing interest,
which requires generation of 3D molecules conditioning on
desired properties, e.g., polarizability or structural patterns.
However, tackling such a task is highly challenging, since
the inverse design requires the model to capture gradient sig-
nals that guide the generated molecule towards the desired
property. Moreover, the target distribution for the generated
molecule should also preserve the SE(3)-invariance. To
address these challenges, existing works resort to explicitly
training a conditional geometric diffusion model that takes
as input the property to design (Hoogeboom et al., 2022;
Xu et al., 2023) or employing an externally trained energy
prediction model as the source of the gradient for guidance
(Bao et al., 2022). Yet, conditional models have been
reported to have relatively weak guidance towards the target
distribution, leading to unsatisfactory designed samples
that fail to closely abide by the target property. The energy
guidance technique (Bao et al., 2022), although offering
stronger guidance, requires additional efforts in training
an energy prediction model per property, and is applied
as an adversarial gradient during sampling, which loses
guarantees on sampling quality.

To overcome these challenges, in this work, we propose
energy-free guidance for geometric diffusion models (EFG-
GDM) for 3D molecule inverse design, inspired by classifier-
free diffusion guidance (Ho & Salimans, 2022). Our key
innovation lies in training an SE(3)-equivariant score model
that can produce both the unconditional and the conditional
score by randomly masking the conditioning property dur-
ing training. The model is then leveraged in sampling, which
enforces guidance through the composition of the uncon-
ditional and conditional score, controlled by a guidance
weight. By such design, our approach gets rid of training
additional energy prediction heads and derives the guidance
through the scores without any application of an adversarial
gradient. The entire framework is also carefully designed to
meet the physical symmetry, e.g., the SE(3)-invariance of
the marginal distribution, when the guidance is applied.

We comprehensively benchmark EFG-GDM on multiple
inverse design tasks on the QM9 dataset (Ramakrishnan
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Figure 1: Schematic of EFG-GDM. EFG-GDM generates molecules under a given condition c and has an equivariant score
network that uses conditional and unconditional scores for guidance.

et al., 2014). Our results illustrate that EFG-GDM achieves
state-of-the-art performance in terms of the mean-absolute-
error between the property of the generated molecule and
the design target on 4 out of 6 properties, while matching the
performance of the energy guidance approach on the others
with less degradation to molecule stability. We also perform
ablation studies that further verify the necessity of the joint
training strategy via masking, as opposed to leveraging both
a conditional and unconditional score model.

2. Related Work
Generative modeling for molecule design. There have
been initial attempts of generative modeling for molecule de-
sign using variational autoencoders (Lim et al., 2018), gener-
ative adversarial networks (Lee et al., 2021), and flow-based
models (Luo & Ji, 2022; Satorras et al., 2021a). Recently,
geometric diffusion models have emerged and achieved
superior performance in 3D molecule generation. In par-
ticular, Hoogeboom et al. (2022) propose EDM, an equiv-
ariant diffusion model with symmetry constraints imposed
on the transition kernels and marginal distribution. Xu et al.
(2023) further incorporate a latent diffusion mechanism for
enhanced performance. Our approach can be seamlessly
built upon these geometric diffusion models, but with addi-
tional enhancements that offer stronger guidance to match
the inverse design target.

Diffusion guidance. Diffusion guidance aims to drive the
marginal distribution towards a certain property. Classifier
guidance (Song et al., 2020; Dhariwal & Nichol, 2021; Zhao
et al., 2022) was initially proposed to improve sample qual-
ity for conditional image generation. Energy guidance has
been explored for molecule inverse design through an invari-
ant energy function to ensure equivariance (Bao et al., 2022).
However, this approach requires training additional energy
predictors and is applied as an adversarial gradient to the

sampling process, degrading the sample quality. Classifier-
free guidance (CFG) (Ho & Salimans, 2022), instead, de-
rives the guidance through a composition of the conditional
and unconditional score, both of which are computed from
one score network. It has been widely adopted on tasks like
image generation due to its simplicity and desirable perfor-
mance. Our approach is inspired by CFG but is developed
for 3D molecule inverse design with additional considera-
tions in ensuring the SE(3)-invariance of the marginal.

3. Method
3.1. Preliminaries

Notations. A molecule is represented as (h,x) where h ∈
RN×H is the one-hot encoding of the atomic numbers, and
x ∈ RN×3 is the coordinate with N as the number of atoms.

Geometric diffusion models. We mainly focus on Equiv-
ariant Diffusion Models (EDM) (Hoogeboom et al., 2022)
in this work, while our framework can also be seamlessly
incorporated into other geometric diffusion models like
geometric latent diffusion (Xu et al., 2023). Specifically,
EDM constructs a diffusion process on the product space
spanned by invariant and equivariant features with the la-
tent variables zt := [zx

t , z
h
t ] for t = 1, · · · , T , where T

is the number of diffusion steps, zx
t ∈ RN×3 is the la-

tent variable for equivariant feature, and zh
t ∈ RN×H

is similarly defined for the invariant feature. The frame-
work consists of a forward diffusion and a reverse denois-
ing process, both of which are Markovian. The forward
diffusion process is given by the transition q(zt|x,h) =
N (zx

t ;αtx, σ
2
t I) · N (zh

t ;αth, σ
2
t I), where σt is specified

by certain noise schedule (Ho et al., 2020). In correspon-
dence, the reverse denoising process is specified by the
transition kernel pθ(zt−1|zt) := N (zt−1;µθ(zt, t), ρ

2
t I),

where µθ(zt, t) is parameterized by an EGNN (Satorras
et al., 2021b), and ρt is also predefined. With the equiv-
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ariant reverse kernel and the isotropic Gaussian prior, the
marginal is guaranteed rotation-invariance. To deal with
translation-invariance, all variables zt are projected on the
translation-invariant zero-CoM (center-of-mass) subspace
(more details in Appendix A). The model is optimized by the
variational lower bound, which is equivalent to the simpli-
fied noise-prediction objective in (Hoogeboom et al., 2022):

L = E(x,h)∼Ddata,t∼Unif(1,T ),ϵ∼N (0,I)

[
λ(t)∥ϵ− ϵθ(zt, t)∥2

]
,

(1)

where λ(t) is the weighting factor and ϵθ is the score
network (Song et al., 2021), which is a re-parameterization
of the mean µθ in the reverse kernel.

3.2. Energy-free Guidance for Geometric Diffusion
Models

Conditioning. In order to perform inverse design, Hooge-
boom et al. (2022); Xu et al. (2023) train a conditional
geometric diffusion model that utilizes the design target as
an explicit condition. This is fulfilled by concatenating the
design target c to the input of the score network, leading to
the following conditional training objective:

Lcond :=E(x,h,c),t,ϵ

[
λ(t)∥ϵ− ϵθ(zt, c, t)∥2

]
, (2)

where (x,h, c) ∼ Ddata, t ∼ Unif(1, T ) and ϵ ∼ N (0, I).

Energy-guidance. Bao et al. (2022) reveal that the sim-
ple conditioning technique is insufficient to offer strong
guidance towards the design target. To promote the de-
sign efficacy, they additionally train an energy prediction
network φη for each design target c via the loss,

LEG = E(x,h,c)∼Ddata,t∼Unif(1,T )∥φη(zt, t)− c∥2. (3)

The energy network φη is then leveraged in sampling to
provide additional guidance over the original score:

ϵ′θ(zt, c, t) :=ϵθ(zt, c, t)

− s[Proj
(
∇zx

t
φη(zt, t)

)
,∇zh

t
φη(zt, t)],

(4)

where Proj(·) is the projection on the zero-CoM subspace
for translation invariance and s is the guidance weight. Note
that the guidance is applied on the conditional model, which
is reported to yield better performance.

Energy-free guidance. Here we adopt a different strategy,
i.e., energy-free guidance, that does not require additionally
training the energy predictor, and does not inject the
external energy gradient in Eq. 4 as an adversarial gradient
term. Inspired by classifier-free diffusion guidance (Ho &
Salimans, 2022), we provide the guidance as the inherent
difference in the conditional and unconditional score. To

obtain these scores without introducing additional param-
eters or external networks, we model the conditional and
unconditional scores in one network, which is optimized
by the following objective:

LEFG := Em∼Bern(1;p),(x,h,c),t,ϵλ(t)[
m∥ϵ− ϵθ(zt, t, c)∥2 + (1−m)∥ϵ− ϵθ(zt, t,∅)∥2

]
,

(5)

where similarly (x,h, c) ∼ Ddata, t ∼ Unif(1, T ), ϵ ∼
N (0, I), m ∼ Bern(1; p) is the Bernoulli distribution that
produces the sample 1 with probability p and 0 with prob-
ability 1− p, and the symbol ∅ represents the indicator for
the unconditional score, which is simply implemented as an
all-zero vector. In practice, we first sample the mask m from
the Bernoulli distribution and then decide which term is acti-
vated in Eq. 5 to avoid computing two scores in each forward
pass. With the score network properly trained, during sam-
pling we compose the conditional and unconditional scores
obtained from the score network to exert the guidance:

ϵ′θ(zt, t, c) := ϵθ(zt, t, c) + w (ϵθ(zt, t, c)− ϵθ(zt, t,∅)) ,
(6)

where w is the guidance weight. The adjusted score
ϵ′θ(zt, t, c) is then utilized in the original sampling pro-
cedure as a replacement of the original score ϵθ(zt, t, c).
Remarkably, with the proposed design, we are still able
to guarantee the rotation-equivariance and translation-
invariance of the score after applying guidance, i.e.,
ϵ′θ(Rzt, t, c) = Rϵ′θ(zt, t, c), which is vital to guarantee
the SE(3)-invariance of the marginal distribution, hence
that of the sampled molecules.

4. Experiments
Task and metrics. We employ the QM9 dataset which con-
sists of quantum properties and structural coordinates for ap-
proximately 130,000 molecules, each with up to nine heavy
atoms from the group C, N, O, F. We evaluate EFG-GDM
on the single-property inverse design task, where given
an input property value, our model constructs a molecular
structure with that property. We test on 6 standard QM prop-
erties: polarizability (α), dipole moment (µ), heat capacity
(Cv), highest orbital energy (ϵHOMO), lowest orbital energy
(ϵLUMO) and their gap (∆ϵ). We train a model and a property-
prediction network for each property. Post-training, given a
range of property values c we sample molecules from our
generative model and use the pretrained property predic-
tor to estimate their property values ĉ. We calculate the
MAE between c and ĉ over all generated molecules per
property. We also report the mean molecular stability of
our molecules to ensure stability/structure is not heavily
compromised. More details are deferred to Appendix B.
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Table 1: Performance comparison on conditional generation tasks. Results of baselines are taken from Bao et al. (2022).

Cv (cal/mol) α (Bohr3)

MAE Atom Stable Mol Stable MAE Atom Stable Mol Stable

CondEDM 1.065 98.25 80.82 CondEDM 2.78 98.13 79.33
EEGSDE (s=10) 0.941 98.03 79.07 EEGSDE (s=3) 2.50 98.26 80.95
EFG-GDM (w=1.5) 0.902 97.93 77.01 EFG-GDM (w=3) 2.27 98.58 90.10

∆ϵ (meV) ϵLUMO (meV)

MAE Atom Stable Mol Stable MAE Atom Stable Mol Stable

CondEDM 671 98.30 81.95 CondEDM 601 98.26 81.34
EEGSDE (s=3) 487 97.76 77.43 EEGSDE (s=3) 447 98.14 80.00
EFG-GDM (w=3.5) 423 97.68 83.75 EFG-GDM (w=2.5) 410 98.54 90.63

µ(D) ϵHOMO(meV)

MAE Atom Stable Mol Stable MAE Atom Stable Mol Stable

CondEDM 1.123 98.17 80.25 CondEDM 371 98.17 79.61
EEGSDE (s=2) 0.777 98.06 78.92 EEGSDE (s=1) 302 98.08 78.90
EFG-GDM (w=4.25) 0.790 98.34 75.00 EFG-GDM (w=1.0) 318 98.59 81.25

Table 2: Ablation study on the joint training strategy.

∆ϵ (meV) ϵLUMO(meV) α (Bohr3)

MAE Mol Stable MAE Mol Stable MAE Mol Stable

EFG-GDM 474 83.75 410 90.63 2.27 90.10
EFG-GDM-sep 499 77.50 464 77.44 2.64 61.60

Baselines. We compare against conditional EDM ((Hooge-
boom et al., 2022)) and the energy-guided approach
EEGSDE ((Bao et al., 2022)). EEGSDE reports results
over a range of guidance weights. Similarly, we range our
guidance weight between w = 0 to w = 5, and select the
best reported results from our EFG-GDM and EEGSDE
according to MAE. We also report our result swept over the
range of varied guidance weights in Appendix C.2.

Main results. The main results are presented in Table 1.
Remarkably, our approach outperforms CondEDM and
EEGSDE, the current state-of-the-art method, on 4 out of 6
tasks: α, ϵLUMO, Cv, and ∆ϵ. More concretely, we decrease
the MAE by 6.8%, 4.1%, 4.0%, and 2.7% for the α, ϵLUMO,
Cv, and ∆ϵ tasks relative to EEGSDE and 15.1%, 34%,
29.4%, and 15.3% relative to CondEDM. In particular,
we observe that EEGSDE is able to improve MAE over
CondEDM with the aid of the energy gradient. However,
our EFG-GDM produces molecules that align with the
design target more closely and all scores can be computed
by one score network without the need for training an
additional energy predictor. Interestingly, while achieving
lower MAE, EFG-GDM generally preserves higher stability,
and even enhances the stability by a large margin on α and
ϵLUMO. By contrast, EEGSDE usually incurs degradation
in stability, due to the adversarial gradient in the predictor.

Ablations and analyses. We further ablate our design in
the training strategy with results depicted in Table 2. In
detail, we implement a variant of EFG-GDM that separately
trains two score networks, one for the conditional score, and
the other for the unconditional score. We observe that our
joint training strategy with random masking consistently
improves the performance, both for the MAE and molecule

𝜶

𝒘

Figure 2: Top: Generated molecules on QM9 when condi-
tioned on α with increasing guidance weight w. Bottom:
Impact of increasing α. Molecules get increasingly polar.

stability. We speculate the joint training approach helps
inherently align the conditional and unconditional score in
the direction of generating stable molecules, which makes
their difference better reflect the direction of the guidance
towards the design target. By contrast, separately training
two networks may result in more gradient conflicts due to
the disentanglement in the parameter space.

We further illustrate how the guidance weight influences
generation at the top of Fig. 2. We fix our original noise
and run our model deterministically with guidance weights
ranging from 0.5 to 2.5. As w increases, we see that the
generated structure matches the target property more closely
(as evidenced by the lower MAE), highlighting that our
guidance empirically works as expected. We provide more
examples of varying guidance weights in Appendix C.2.
Additionally, we demonstrate that our model is responsive
to input property values. Specifically, as we range the po-
larizability α from −1.96 to 7.87 at the bottom of Figure 2,
we notice that our generated molecules go from being more
closed and ring-like to being more elongated and having
noticeably more polar chains.
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5. Conclusion
In this work, we introduce energy-free guidance for geomet-
ric diffusion models (EFG-GDM), with applications to 3D
molecule inverse design. The core insight is to train a score
network that can produce conditional and unconditional
scores, and use their difference as the inherent guidance sig-
nal. Experiments demonstrate EFG-GDM achieves superior
performance on QM9 inverse design tasks. Future work
include extending EFG-GDM to more advanced geometric
diffusion models and applying it to more datasets and tasks,
e.g., target-aware molecule generation.
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A. Translation-Invariant Zero-CoM subspace
The importance of translational and rotational invariance in 3D molecular modeling is acknowledged in several works
(Köhler et al., 2019; Xu et al., 2022). However, it is impossible for a properly normalized distribution in the ambient space
RN×3 to be translation-invariant (Satorras et al., 2021a; Hoogeboom et al., 2022). A widely adopted workaround is to
restrict the distribution into a translation-invariant subspace, among which the zero center-of-mass (CoM) is the most popular
choice due to the simplicity. In detail, the zero-CoM subspace is given by {x :

∑N
i=1 xi = 0}. For any data point x, the

projection of it onto the zero-CoM subspace is given by P (x) = x− 1
N

∑N
i=1 xi. The Gaussian restricted in the zero-CoM

subspace is also isotropic and thus rotation-invariant. To sample from it, one can directly sample from the Gaussian in
the ambient space, and then project the sample onto the subspace via the projection P (·). In practice, geometric diffusion
models operate on the product space of the equivariant feature x and invariant feature h, where the former is restricted to
the zero-CoM subspace, implying that all the latent variables zx

t reside in the zero-CoM subspace, fulfilled by repeatedly
applying the projection during sampling. We refer the readers to Satorras et al. (2021a); Bao et al. (2022) for more details.

B. Additional Experimental Details
Following Hoogeboom et al. (2022); Bao et al. (2022), we partition QM9 into training, validation, and test sets with 100,000,
18,000, and 13,000 molecules, respectively. The training set is further split into two halves: the first half is used to train
a property prediction network, which is used to evaluate the alignment of the generated molecules with their targeted
properties. The second half is used to train the diffusion models.

We also follow the hyperparameter setup as described in Hoogeboom et al. (2022) for both the model architecture and model
training.

C. Additional Results
C.1. Effect of guidance weight on MAE and molecular stability

Table 3 presents additional results from guidance sweeps. As we increase w, we observe that there is a tradeoff between our
MAEs and molecular stability. This is evident for µ, α, andϵLUMO, where at low w, the molecular stability is around 0.90,
which is competitive with most models for unconditional generation. In fact, even with w = 0.75, our α model’s MAE is
still state-of-the-art relative to other conditional models considered in this work. This offers additional evidence to support
that our masking approach does in fact improve molecular generation, as highlighted by the high molecular stabilities, and
that our guidance allows us to trade stability for MAE, as desired.

Table 3: Additional results on the MAE and the molecule stability (MS) of generated molecules targeted to µ, α, and
ϵLUMO.

µ α ϵLUMO

Config MAE Mol Stable Config MAE Mol Stable Config MAE Mol Stable
EFG-GDM (w=0) 1.06 0.91 EFG-GDM (w=0.75) 2.45 0.90 EFG-GDM (w=0.5) 539 0.89
EFG-GDM (w=2) 0.93 0.86 EFG-GDM (w=2.5) 2.4 0.85 EFG-GDM (w=2) 437 0.87
EFG-GDM (w=4.25) 0.79 0.75 EFG-GDM (w=3) 2.27 0.90 EFG-GDM (w=2.5) 410 0.91
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C.2. Visualizations of Generated Molecules Under Increasing Guidance

Figure 3 demonstrates effects of increasing guidance on all 6 quantum properties. As expected, as w increases, the MAE
between the generated and target properties decreases.
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Figure 3: Impact of increasing varying our guidance weight, w on all 6 properties.
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C.3. Visualizations of Generated Molecules Under Increasing Property Value

Figure 4 demonstrates effects of increasing the target property on all 6 quantum properties. As expected, as the property
weight increases, the designed molecules exhibit that property more strongly.

𝛼

𝐶!

∆𝜖

𝜖"#$#

𝜖%&$#

µ

Figure 4: Impact of increasing property values on designed molecules across QM9 properties.
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