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ABSTRACT

Deep neural networks operating on non-Euclidean geometries, such as Rieman-
nian manifolds, have recently demonstrated impressive performance across var-
ious machine-learning applications. Motivated by the success of the attention
mechanism, several works have extended it to different geometries. However,
existing Riemannian attention methods are mostly designed in an ad hoc manner,
i.e., tailored to a selected few geometries. Recent studies, on the other hand, show
that several matrix manifolds, such as Symmetric Positive Definite (SPD), Sym-
metric Positive Semi-Definite (SPSD), and Grassmannian manifolds, admit gyro
structures, offering a principled way to build Riemannian networks. Inspired by
this, we propose a Gyro Attention (GyroAtt) framework over general gyro spaces,
applicable to various matrix manifolds. Empirically, we manifest our framework
on three gyro structures in the SPD manifold, three in the SPSD manifold, and one
in the Grassmannian manifold. Extensive experiments on four electroencephalog-
raphy (EEG) datasets demonstrate the effectiveness of the proposed framework.

1 INTRODUCTION

Recently, Deep Neural Networks (DNNs) over Riemannian manifolds, known as Riemannian neu-
ral networks, have garnered increasing attention in various applications (Huang & Van Gool, 2017;
Gulcehre et al., 2018; Brooks et al., 2019; Shimizu et al., 2021; Kobler et al., 2022; Chen et al., 2023;
Wang et al., 2024b; Nguyen et al., 2024; Wang et al., 2024a; Chen et al., 2024e). Commonly encoun-
tered manifolds include vector manifolds, such as hyperbolic (Ungar, 2005b) and spherical spaces
(Thurston, 1997), and matrix manifolds, such as Symmetric Positive Definite (SPD) (Arsigny et al.,
2005), Symmetric Positive Semi-Definite (SPSD) (Bonnabel & Sepulchre, 2010; Bonnabel et al.,
2013), and Grassmannian manifolds (Absil et al., 2004). Among these non-Euclidean spaces, hy-
perbolic manifolds stand out due to the rich algebraic structure of gyrovector spaces (Ungar, 2002;
2005b; 2014), which enables principled and convenient extensions of Euclidean deep learning to
hyperbolic manifolds (Gulcehre et al., 2018; Shimizu et al., 2021; Bdeir et al., 2024). In contrast,
matrix manifolds provide a compelling balance between structural richness and computational fea-
sibility (Cruceru et al., 2021). Consequently, neural networks on matrix manifolds have emerged as
appealing alternatives to their hyperbolic counterparts in various applications (Kim, 2020; Nguyen,
2022b; Nguyen & Yang, 2023; Chen et al., 2024a; Ju et al., 2024). Recently, Kim (2020); Nguyen
(2022a;b); Nguyen & Yang (2023) have demonstrated that several matrix manifolds, including SPD,
SPSD, and Grassmannian, admit gyrovector space structures, enabling the extension of several fun-
damental building blocks to matrix manifolds (Nguyen et al., 2024).

Inspired by the great success of the attention mechanism in DNNs (Vaswani et al., 2017; Hu et al.,
2018; Dosovitskiy, 2020), researchers have developed attention operations on different geometries.
Gulcehre et al. (2018) introduced an attention mechanism for hyperbolic spaces based on the hy-
perboloid and Klein models, while Pan et al. (2022) extended the attention mechanism to SPD
manifolds under Log-Euclidean Metric (LEM). Subsequently, Wang et al. (2024a) further adapted it
to Grassmannian manifolds using an extrinsic approach under the projective perspective. However,
these designs are tailored for specific manifolds and metrics, limiting their applicability.

As self-attention serves as the prototype of other attention variants, this paper focuses on self-
attention. Given that several matrix manifolds admit gyrovector structures, we propose a general
framework for attention over gyrovector spaces, called GyroAtt. Unlike previous Riemannian at-
tention approaches, which are tailored to specific geometries (Gulcehre et al., 2018; Pan et al.,
2022; Wang et al., 2024a), GyroAtt can be applied across different matrix geometries. Additionally,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

GyroAtt naturally generalizes several basic attention blocks to manifolds, including linear transfor-
mations, attention computation, and feature aggregation. Specifically, we introduce gyro homomor-
phisms, which extend linear transformations to gyro spaces. The attention mechanism is computed
via a score function based on geodesic distances, while aggregation is performed using the weighted
Fréchet mean, the manifold counterpart of the Euclidean weighted average. Empirically, we demon-
strate the GyroAtt framework on three gyro structures in the SPD manifold, three in the SPSD
manifold, and one in the Grassmannian manifold. In summary, our main contributions are:

• Generalizing the attention mechanism to gyrovector spaces. We propose a principled
framework for attention mechanisms over general gyrovector spaces, called GyroAtt. Our
method provides a way to directly vary the geometry under the same network structure
without constructing manifold-specific operations.

• Implementation on seven matrix gyrovector spaces. We implement the GyroAtt frame-
work across three different manifolds: three gyro structures on the SPD manifold, one on
the Grassmannian manifold, and three on the SPSD manifold.

• Empirical validation on EEG tasks. We validate the effectiveness of the proposed Gy-
roAtt framework through experiments on four benchmark EEG datasets. Apart from the
superior performance of our GyroAtt, the optimal geometries vary across different tasks,
demonstrating the efficacy and flexibility of our GyroAtt framework.

The rest of the paper is organized as follows. Sec. 2 introduces the essential background of gyrovec-
tor spaces and Riemannian manifolds. Section 3 examines existing manifold attention mechanisms.
We then present our general GyroAtt framework in Sec. 4, detailing its application to various matrix
manifolds in Sec. 5. Finally, in Sec. 6, we validate our proposed model on four benchmark EEG
datasets. Sec. 7 conclude this paper.

2 PRELIMINARY

In this section, we briefly review gyrovector spaces and the concrete gyrovector spaces in the SPD,
Grassmannian, and SPSD manifolds. For more in-depth discussions, please refer to Ungar (2005b;
2014); Pennec et al. (2006); Arsigny et al. (2005); Bonnabel et al. (2013); Bendokat et al. (2024).

2.1 GYROGROUPS AND GYROVECTOR SPACES

Gyrogroups and gyrovector spaces generalize groups and vector spaces, offering a powerful frame-
work to analyze non-Euclidean geometries. Below, we formally present their definitions.

Definition 2.1 (Gyrogroups (Ungar, 2014)). A gyrogroup is a generalization of groups. Let G be
a nonempty set with a binary operation ⊕ and an identity element E ∈ G. Then, a pair (G,⊕) is a
gyrogroup if it satisfies the following axioms:

(G1) There exists an identity element E ∈ G such that for all A ∈ G, E⊕A = A.

(G2) For each A ∈ G, there exists a left inverse ⊖A ∈ G satisfying ⊖A⊕A = E.

(G3) For all A,B,C ∈ G, there exists an automorphism gyr[A,B](·) : G→ G, satisfying

A⊕ (B⊕C) = (A⊕B)⊕ gyr[A,B](C). (1)

Here, the map gyr[A,B](·) is called the gyroautomorphism, or the gyration ofG generated by A,B.

(G4) For all A,B ∈ G, The map gyr[A,B] generated by each A,B satisfies the left loop property:
gyr[A,B] = gyr[A⊕B,B].

Definition 2.2 (Gyrocommutative Gyrogroups Ungar (2014)). A gyrogroup (G,⊕) is gyrocom-
mutative if it satisfies the gyrocommutative law: A⊕B = gyr[A,B](B⊕A) for all A,B ∈ G.

The following definition of gyrovector spaces is derived from Nguyen (2022b, Def. 2.3), which is
slightly different from in Ungar (2014, Def. 3.2).

Definition 2.3 (Gyrovector Spaces (Nguyen, 2022b)). A gyrocommutative gyrogroup (G,⊕)
equipped with a scalar multiplication ⊗ : R×G→ G is a gyrovector space if the following axioms
are satisfied:

(V1) 1⊗A = A, 0⊗A = t⊗E = E, and (−1)⊗A = ⊖A.
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(V2) (s+ t)⊗A = s⊗A⊕ t⊗A.

(V3) (st)⊗A = s⊗ (t⊗A).

(V4) gyr[A,B](t⊗C) = t⊗ gyr[A,B]C.

(V5) gyr[s⊗A, t⊗A] = Id, where Id is the identity map.

2.2 SPD, GRASSMANNIAN, AND SPSD MANIFOLDS

Table 1: Summary of the gyro additions and geodesic distances over different manifolds.

Manifold Metric Gyro addition Geodesic distance

SPD
AIM
LEM
LCM

P⊕ai Q = P
1
2QP

1
2

P⊕le Q = expm(logm(P) + logm(Q))
P⊕lc Q = L −1 (⌊L (P)⌋+ ⌊L (Q)⌋+ D(L (P))D(L (Q)))

∥∥∥logm(Q− 1
2PQ− 1

2

)∥∥∥
F

∥logm(P)− logm(Q)∥F
∥ψLC(P)− ψLC(Q)∥F

Grassmannian ONB perspective U⊕̃grV = expm([LoggrId,q (UU⊤), Id,q])V
∥ arccos(Σ)∥

U⊤V
SVD
:= OΣR⊤

SPSD (ggr, λgspd) (UP ,SP )⊕psd,g (UQ,SQ) = (UP ⊕̃grUQ,SP ⊕g SQ) dgr(UP ,UQ) + λ dgspd(SP ,SQ)

SPD manifolds. Let S++
d denote the set of d × d SPD matrices, defined as S++

d := {X ∈
Rd×d | X = X⊤,v⊤Xv > 0,∀v ∈ Rd \ {0d}}. When endowed with a Riemannian metric,
S++
d forms a manifold known as the SPD manifold. Various Riemannian metrics have been intro-

duced on SPD manifolds. In this study, we focus on three prevalent metrics: the Log-Euclidean
Metric (LEM) (Arsigny et al., 2005), the Affine-Invariant Metric (AIM) (Pennec et al., 2006), and
the Log-Cholesky Metric (LCM) (Lin, 2019). As shown in Nguyen (2022a), these metrics induce
corresponding gyrovector spaces—LE, AI, and LC—with the binary operations denoted as ⊕le,
⊕ai, and ⊕lc, and their geodesic distance dlespd(·), d

ai
spd(·), and dlcspd(·) given by Tab. 1. Here,

P,Q ∈ S++
d , logm(·) and expm(·) are the matrix logarithm and exponential, respectively. L (P)

represents the Cholesky decomposition of P, yielding a lower triangular matrix with positive diag-
onal elements such that P = L (P)L (P)⊤. ⌊L (P)⌋ denotes the strictly lower triangular part of
L (P), where ⌊L (P)⌋(i,j) = L (P)(i,j) if i > j, and zero otherwise. L −1(·) is the inverse of
Cholesky decomposition. D(P) returns diagonal matrices, where D(P)(i,i) = P(i,i).

Grassmannian manifolds. The Grassmannian manifold consists of all q-dimensional linear sub-
spaces within Rd. Points on the Grassmannian manifold have different matrix representations
under various perspectives (Bendokat et al., 2024). In this study, we center on the Orthonormal
Basis (ONB) perspective. For clarity, we denote points in the ONB and projector perspective as
Y ∈ G̃(q, d). In the ONB perspective, a linear subspace is expressed by its orthonormal basis
Y ∈ Rd×q , where Y⊤Y = Iq and Iq is the q× q identity matrix. Thus, points on the Grassmannian
manifold are equivalence classes of orthonormal bases:

[Y] = {Ỹ | Ỹ = YO,O ∈ O(q)}. (2)
By abuse of notation, we use [Y] or Y interchangeably. As shown by Nguyen & Yang (2023),
Grassmannian manifolds in the ONB perspective form nonreductive gyrovector spaces. The binary
operation ⊕̃gr and geodesic distance dgr(·) for U,V ∈ G̃(q, d) are defined in Tab. 1. Here, Id,q =[
Iq 0
0 0

]
∈ Rd,d, Ĩd,q =

[
Iq
0

]
∈ Rd×q , [·, ·] denotes the matrix commutator, and LoggrId,q is the

Grassmannian logarithmic map at Id,q in the projector perspective (details are App. C).

SPSP manifolds. The set of d × d SPSD matrices with rank q ≤ d is denoted as S+d,q . For any

P ∈ S+d,q , we decompose it as P = UPSPU
⊤
P , where UP ∈ G̃(q, d) and SP ∈ S++

d (Bonnabel &
Sepulchre, 2010; Bonnabel et al., 2013). Nguyen et al. (2024) introduced a canonical representation
of P in the structure space G(q, d) × S++

q . We follow this approach to derive the canonical repre-
sentation of each point in S+d,q . Detailed computations are provided in App. E. Based on the above

decomposition, we obtain a canonical representation in structure space (UP ,SP ) ∈ G̃(q, d)×S++
q .

When S++
q is endowed with different Riemannian metrics, it forms distinct nonreductive gyrovector

spaces. We use the subscript g ∈ {ai, le, lc} to denote the Riemannian metric on SPD manifolds.
Accordingly, the binary operation ⊕psd,g and geodesic distance dpsd,g are defined in Tab. 1, the
subscript g ∈ {ai, le, lc} to denote the Riemannian metric on SPD manifolds, λ > 0.
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Weighted Fréchet mean. The Weighted Fréchet Mean (WFM) of a set of points {Pi...N} on
a Riemannian manifold M is defined as the point S ∈ M that minimizes the weighted sum of
squared geodesic distances to all points {Pi...N}. Given weights {w1...N} satisfying the convexity
constraint, i.e.,∀i, wi > 0 and

∑
i wi = 1, the WFM is expressed as:

WFM({wi}, {Pi}) = argmin
S∈M

∑N

i=1
wi d

2 (Pi,S) , (3)

where d(Pi,S) is the geodesic distance between the points S and Pi.

3 REVISITING ATTENTION MECHANISMS ON DIFFERENT GEOMETRIES

Table 2: Summary of attention methods on different geometries, where fs(·) denotes the softmax.

Method Geometries Transformations d(qi,ki) Attention Aij Aggregation ri(Ri)

Transformer
(Vaswani et al., 2017) Euclidean Linear(xi) ∥ qi − kj∥F fs(⟨qi,kj⟩ /

√
dk)

Arithmetic mean∑N
j Aijvj

HAN
(Gulcehre et al., 2018) Hyperbolic πR→H (Linear(xi))

πR→K (Linear(xi))
arccosh(−⟨qi,ki⟩M ) fs (−β d(qi,kj)− c)

Einstein midpoint∑N
j

[
Aijγ(vj)∑N
l Aijγ(vl)

]
vj

MAtt
(Pan et al., 2022)

SPD
under LEM WXiW

⊤ ∥logm(Qi)− logm(Ki)∥F fs

(
(1 + log(1 + d(Qi,Kj)))

−1
) LEM-based WFM

expm
(∑N

j Aij logm(Vj)
)

GDLNet
(Wang et al., 2024a)

Grassmannian
under ONB ReOrth (WXi)

∥∥QiQ
⊤
i −KjK

⊤
j

∥∥
F

fs

(
(1 + log(1 + d(Qi,Kj)))

−1
) Extrinsic WFM

Φ−1
(∑N

j AijΦ(Vj))
)

GyroAtt Gyro spaces
(SPD, SPSD, Grassmann)

Homomorphism
Eq. (7) Geodesic distance fs

(
(1 + log(1 + d(Qi,Kj)))

−1
)

WFM

The attention mechanism has become a fundamental component in Euclidean deep learning
(Vaswani et al., 2017), prompting researchers to extend it to manifolds. A typical attention block
comprises three basic units: linear transformation, attention computation, and feature aggregation.
Below, we review several Riemannian representatives and summarize the comparison in Tab. 2.

Euclidean. Following Vaswani et al. (2017), let X, Q, K, V and R represent sets of input features,
queries, keys, values, and output features, respectively, and xi,qi,ki,vi, and ri denote i-th rows
of the corresponding matrices. The feature transformation is performed by a linear map, Linear(·).
Attention is computed as Softmax(⟨qi,kj⟩/

√
dk), where ⟨·, ·⟩ denotes the Frobenius inner product

and dk is the dimension of the keys. feature aggregation is defined as
∑N

j=1Aijvj , where N is the
number of values. Generally speaking, the self-attention block requires three basic blocks: 1). a
linear transformation to generate qi,ki,vi; 2). a correlation- or similarity-based attention for each
pair of {vi,vj}; 3). the aggregation of the attention-weighted features.

Hyperbolic. Gulcehre et al. (2018) introduced the Hyperbolic Attention Network (HAN), a self-
attention mechanism for hyperbolic spaces. HAN employs the hyperboloid Hd and Klein models
Kd of hyperbolic space. Points in the Klein model are obtained by projecting points in Euclidean via
πR→K(·). The mapping πR→H(·) converts Euclidean points to the hyperboloid model using pseudo-
polar coordinates. HAN generates attention using −β d(qi,kj)− c, where β and c are parameters,
and employs the Einstein midpoint (Ungar, 2005a) for aggregation.

SPD manifolds. Pan et al. (2022) proposed a self-attention mechanism for SPD manifolds under
LEM. Considering the input as a set of SPD matrices, we denote Xi,Qi,Ki,Vi,Ri as the input
features, queries, keys, values, and output features, respectively. The transformation is applied as
WXiW

⊤, where Xi ∈ Rd1×d1 , W ∈ Rd2×d1 with d1 > d2, and W is semi-orthogonal. Attention
is computed as Softmax

(
(1 + log(1 + d(Qi,Kj)))

−1
)

with d(·) denotes the LEM-based geodesic
distance. Aggregation uses the LEM-based WFM.

Grassmannian manifolds. Wang et al. (2024a) proposed a self-attention mechanism for Grass-
mannian manifolds. By abuse of notation, we use a similar notation to the SPD cases. GDLNet
applies the transformation ReOrth (WXi) (Huang et al., 2018), where Xi ∈ Rd1×q , W ∈ Rd2×d1

with d1 > d2, W is semi-orthogonal, q is the dimension of the linear subspaces, and ReOrth(·) is
defined as ReOrth(WXi) = Ω, with WXi = ΩU be a QR decomposition of WXi. Attention is
computed as Softmax

(
(1 + log(1 + d(Qi,Kj)))

−1
)

with d(·) denotes the geodesic distance. The
extrinsic WFM (Srivastava & Klassen, 2004) is used for aggregation.
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In summary, the above Riemannian attention approaches are confined to particular manifolds or
metrics, limiting their application to a broader range of geometries.

4 ATTENTION MECHANISMS ON GYROVECTOR SPACES

In this section, we extend the basic attention operations to gyrovector spaces. The Euclidean atten-
tion mechanism, as described in Tab. 2, consists of three main operations:

1). Feature transformation. This generates qi, ki, and vi through a linear map Linear(·) :
Rn → Rm, which preserves the vector structure as a homomorphism over vector spaces:

Linear(z1 + z2) = Linear(z1) + Linear(z2); Linear(tz) = tLinear(z), (4)

for any z, z1, z2 ∈ Rn and t ∈ R.

2). Attention calculation. This computes the correlation- or similarity-based attention be-
tween Qi and Kj for each pair {vi,vj}.

3). Aggregation. This aggregates all vi based on attention weight matrix A.

We now define the gyro counterparts of the three basic operations mentioned above: 1). Transfor-
mation through gyro homomorphisms, which preserve the gyrovector space structure; 2). Distance-
based attention; 3). Aggregation via geodesic-based WFM.
Definition 4.1 (Gyro Homomorphisms). Let (M,⊕M,⊗M)→ (N ,⊕N ,⊗N ) be two (nonreduc-
tive) gyrovector spaces. The map hom(·) : (M,⊕M,⊗M) → (N ,⊕N ,⊗N ) is a (nonreductive)
gyrovector space homomorphism if it satisfies:

hom(A⊕M B) = hom(A)⊕N hom(B), ∀A,B ∈M (5)
hom(t⊗M A) = t⊗N hom(A), ∀A ∈M,∀t ∈ R. (6)

If we only consider (nonreductive) gyrogroups, (M,⊕M) and (N ,⊕N ), a map hom(·) :
(M,⊕M) → (N ,⊕N ) satisfying Eq. (5) is called a (nonreductive) gyrogroup homomorphism,
which has been introduced by Suksumran & Wiboonton (2014). By abuse of notations, we call the
above homomorphisms collectively gyro homomorphisms.

Obviously, gyro homomorphism naturally generalizes the linear map in the vector space to the gy-
rovector space. Thus, we use hom(·) for the feature transformation. For attention, we calculate the
correlation between Qi and Kj using their geodesic distance, then map d(Qi,Kj) to an attention
score, as defined in Eq. (8). For aggregation, we resort to WFM based on the geodesic distance. For
a set of input {Xi...N ∈M}, the key operations of Gyro Attention (GyroAtt) are

Qi = hom(Xi),Ki = hom(Xi),Vi = hom(Xi) (transformation) (7)

A = Softmax
(
(1 + log(1 + d(Qi,Kj)))

−1
)

(Attention) (8)

Ri = WFM(Ai,Vi...N ) (Aggregation) (9)

Here, Ai denote i-th rows of A, each output Ri is the WFM of a set of weights Ai and Vi...N .

To enhance the model’s expressivity and capture more complex non-Euclidean correlation, we fur-
ther apply bias and non-linearity after the aggregation step:

ϕ(Ri) = σ(B⊕Ri), (10)

where B is a bias, σ is a power-based nonlinear activation function.

So far, we have all the ingredients to build attention over general gyrovector spaces, as illustrated in
Alg. 1.

5 GYRO ATTENTION MECHANISMS ON MATRIX MANIFOLDS

In this section, we showcase our GyroAtt in Alg. 1 across various matrix gyrovector spaces, includ-
ing three SPD gyro spaces, one Grassmannian gyro space, and three SPSD gyro spaces.
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Algorithm 1: Gyro Attention (GyroAtt) over gyrovector spaces
Input : A set of manifold-valued features {X1...N ∈M}
Output : A set of manifold-valued features {R′

1...N}
for i← 1 to N do

Queries: Qi = hom(Xi)
Keys: Ki = hom(Xi)
Values: Vi = hom(Xi)

end
for i← 1 to N do

for j ← 1 to N do
Similarity calculation: Sij = (1 + log(1 + d(Qi,Kj)))

−1

end
Attention calculation: Aij = Softmax(Sij)
Aggregation: Ri = WFM({Aij}Nj=1, {Vj}Nj=1)
Bias and nonlinearity: R′

i = σ(Ri ⊕B)
end

5.1 GYRO ATTENTION MECHANISMS ON SPD GYROVECTOR SPACES

As shown by Tab. 1, there are three SPD gyrovector spaces, induced by AIM, LEM, and LCM,
respectively. The geodesic distance (for attention calculation) and gyro addition (for biasing) have
already been well studied over these three metrics (Arsigny et al., 2005; Pennec et al., 2006; Lin,
2019). The operations have been summarized in Tab. 1. We only need to discuss the gyro homomor-
phisms, WFM, and activation over these three geometries. We first identify the concrete expressions
of gyro homomorphism over different SPD gyro spaces. Due to page limitations, the proofs are
provided in the App. G and can be accessed by clicking [↓].
Theorem 5.1 (AIM Homomorphisms). [↓] Let P ∈ (S++

d ,⊕ai,⊗ai), and O ∈ O(d) be an or-
thogonal matrix. The transformation map homai(·) : (S++

d ,⊕ai,⊗ai)→ (S++
d ,⊕ai,⊗ai) defined

by
homai(P) = OPO⊤, (11)

is a gyro homomorphism.
Theorem 5.2 (LEM Homomorphisms). [↓] Let P ∈ (S++

d ,⊕le,⊗le), and let M ∈ Rn×n. The
transformation map homle(·) : (S++

d ,⊕le,⊗le)→ (S++
d ,⊕le,⊗le) defined by

homle(P) = expm(M logm(P)M⊤), (12)

is a gyro homomorphism.
Corollary 5.3 (LEM Homomorphisms). [↓] For P ∈ (S++

d ,⊕le,⊗le), if O ∈ O(d) is an orthog-
onal matrix, the gyro homomorphism Eq. (12) is simplified as

homle(P) = OPO⊤. (13)

Theorem 5.4 (LCM Homomorphisms). [↓] Let P ∈ (S++
d ,⊕lc,⊗lc), and let M ∈ Rn×n. The

transformation map homlc(·) : (S++
d ,⊕lc,⊗lc)→ (S++

d ,⊕lc,⊗lc) defined by

homlc(P) = L −1
(
⌊L(P)⌋+ expm(D(L(P)))

)
, (14)

where
L(P) = M

(
⌊L (P)⌋+ ⌊L (P)⌋⊤ + D(L (P))

)
M⊤, (15)

is a gyro homomorphism.

Transformation. Orthogonal constraints can improve network generalization by serving as implicit
regularization (Lezcano-Casado & Martınez-Rubio, 2019). Therefore, we further impose orthogo-
nality on M in both homlc(·) and homle(·). Consequently, the involved transformation layers under
three metrics are Eq. (11) for AIM, Eq. (13) for LEM, and Eq. (14) for LCM.

WFMs. The WFMs under LEM and LCM have closed-form expressions, while the ones under AIM
can be computed using the Karcher flow algorithm (Karcher, 1977), an iterative method. (Karcher,
1977). Detailed algorithms for the WFMs under AIM are provided in App. D.1.
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Table 3: Key operators in calculating GyroAtt on gyrovector spaces.

Manifold SPD Grassmannian SPSD

Metric AIM LEM LCM ONB perspective (ggr, λgspd)

Homomorphism OPO⊤ OPO⊤ Eq. (14) OU (homgr (UP ) ,homg (SP ))

WFM Karcher flow
Alg. A1

Closed-form
Eq. (A17)

Closed-form
Eq. (A18)

Karcher flow
Alg. A2 (WFMspd,WFMgr)

Bias and Non-linearity (Bspd ⊕g Ri)
p Bgr⊕̃grRi (URi

, (SRi
)p)

Activation. As demonstrated by Chen et al. (2024d, Fig. 1) and Chen et al. (2024b, Sec. 5.1), the
matrix power can deform the latent SPD geometries. Thus, we use matrix power as the activation
function to activate the underlying Riemannian geometry.

5.2 GYRO ATTENTION ON GRASSMANNIAN MANIFOLDS

We implement the GyroAtt framework on the ONB Grassmannian nonreductive gyrovector spaces.
The geodesic distance and gyro addition are given by Tab. 1. Similar to the SPD gyro spaces, we use
gyro homomorphism for transformation and WFM for aggregation. As shown by Nguyen & Yang
(2023, Sec. 2.3.2), the Grassmannian gyro addition can be viewed as non-linear activation. There-
fore, we do not use additional activation before the Grassmannian gyro biasing. In the following,
we discuss gyro homomorphism and WFM over the Grassmannian.
Theorem 5.5 (Grassmannian Homomorphisms). [↓] Let U ∈ (G̃(q, d), ⊕̃gr, ⊗̃gr), and let O =[
Oq 0
0 Od−q

]
∈ Rd,d, where Oq ∈ Rq×q and Od−q ∈ R(d−q)×(d−q) are orthogonal matrices. The

transformation map homgr(·) : (G̃(q, d), ⊕̃gr, ⊗̃gr)→ (G̃(q, d), ⊕̃gr, ⊗̃gr) defined by

homgr(U) = OU, (16)

is a gyro homomorphism.

We use Eq. (16) for the Grassmannian feature transformation. For weighted aggregation, since
the WFM on the Grassmannian manifold lacks a closed-form solution, we utilize the Karcher flow
algorithm (Absil et al., 2004; Karcher, 1977). More details are exposed in App. D.2.

5.3 GYRO ATTENTION MECHANISMS ON SPSD MANIFOLDS

As outlined in Sec. 2, any P ∈ S+d,q can be represented in the structured space as (UP ,SP ) ∈
G̃(q, d)×S++

q using the canonical representation. As shown in Tab. 1, the distance and gyro addition
in the structured space are defined by the product space. To implement the GyroAtt framework in
the SPSD gyrovector space, we only need to show gyro homomorphism, WFM, and activation.
Theorem 5.6 (SPSD Homomorphisms). [↓] Let (UP ,SP ) ∈ (G̃(q, d) × S++

q ,⊕psd,g,⊗psd,g),
with g ∈ {ai, le, lc}. The transformation map hompsd,g(·) : (G̃(q, d) × S++

q ,⊕psd,g,⊗psd,g) →
(G̃(q, d)× S++

q ,⊕psd,g,⊗psd,g) defined by

hompsd,g (UP ,SP ) = (homgr (UP ) ,homg (SP )) , (17)

is a gyro homomorphism.

For the aggregation, we use the WFM by the product of the structured space, detailed in App. D.3.
Bias and non-linearity are also defined by product space:

ϕpsd(URi
,SRi

) = (URi
, (SRi

)p). (18)

5.4 SUMMARY OF GYROATT IN MATRIX MANIFOLDS

In summary, our GyroAtt framework comprises several basic operations. We begin by applying the
mapping hom(·) to obtain the Qi, Ki, and Vi. Attention scores are then computed using geodesic
distances between these queries and keys. To aggregate the values Vi, we employ the WFM. Finally,
we enhance the model’s expressive capacity by introducing bias and applying a non-linear activation
function. Tab. 3 summarizes all the key ingredients for computing GyroAtt on SPD, Grassmannian,
and SPSD manifolds.
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Table 4: Average test set results and standard deviation on the MAMEM-SSVEP-II and BCI-ERN
datasets. Other Riemannian attention methods are highlighted with a light yellow background. The
best three results are highlighted with red, blue, cyan.

Methods MAMEM-SSVEP-II BCI-ERN
EEGNet (Lawhern et al., 2018) 53.7 ± 7.2 74.3 ± 2.5
ShallowCNet (Schirrmeister et al., 2017) 56.9 ± 6.7 71.9 ± 2.6
SCCNet (Wei et al., 2019) 62.1 ± 7.7 70.9 ± 2.3
EEG-TCNet (Ingolfsson et al., 2020) 55.5 ± 7.7 77.1 ± 2.5
FBCNet (Mane et al., 2021) 53.1 ± 5.7 60.5 ± 3.1
TCNet-Fusion (Musallam et al., 2021) 45.0 ± 6.6 70.5 ± 2.9
MBEEGSE (Altuwaijri et al., 2022) 56.5 ± 7.3 75.5 ± 2.3
SPDNetBN (Brooks et al., 2019) 62.8 ± 3.1 72.3 ± 3.5

MAtt (Pan et al., 2022) 65.2 ± 3.1 75.7 ± 2.2
GDLNet (Wang et al., 2024a) 65.5 ± 2.9 78.2 ± 2.5
GyroAtt-SPD 66.3 ± 2.2 76.1 ± 4.2
GyroAtt-Gr 67.1 ± 1.6 78.4 ± 1.4
GyroAtt-SPSD 68.7 ± 1.5 79.1 ± 1.7

Table 5: Average test set results and standard deviation on the BNCI2014001 and BNCI2015001
datasets. Other Riemannian attention methods are highlighted with a light yellow background. The
best three results are highlighted with red, blue, cyan.

Methods BNCI2014001 BNCI2015001
Inter-session Inter-subject Inter-session Inter-subject

FBCSP+SVM (Ang et al., 2008) 60.6 ± 4.9 32.3 ± 7.3 81.5 ± 4.4 58.6 ± 13.4
TSM+SVM (Barachant et al., 2011) 61.8 ± 4.1 34.7 ± 8.6 75.7 ± 5.1 56.0 ± 6.0
FB+TSM+LR (Kobler et al., 2021) 69.8 ± 4.8 36.5 ± 8.2 80.9 ± 6.0 60.6 ± 10.9
EEGNet (Lawhern et al., 2018) 41.8 ± 5.8 43.3 ± 17.0 72.4 ± 8.4 59.2 ± 9.5
ShConvNet (Schirrmeister et al., 2017) 51.3 ± 2.3 42.2 ± 16.2 74.1 ± 4.2 58.7 ± 5.8
FBCSP+DSS+LDA (Hehenberger et al., 2021) 71.3 ± 1.8 48.3 ± 14.3 84.6 ± 4.8 67.7 ± 14.3
URPA+MDM (Rodrigues et al., 2018) 59.5 ± 2.7 46.8 ± 14.6 79.2 ± 4.6 70.3 ± 16.1
SPDOT+TSM+SVM (Yair et al., 2019) 66.8 ± 3.8 38.6 ± 8.6 77.5 ± 2.9 63.3 ± 8.1
TSMNet (Kobler et al., 2022) 69.0 ± 3.6 51.6 ± 16.5 85.8 ± 4.3 77.0 ± 13.7
Graph-CSPNet (Ju & Guan, 2023) 71.9 ± 13.3 45.2 ± 9.3 79.8 ± 14.6 64.2 ± 13.4

MAtt (Pan et al., 2022) 66.5 ± 8.9 45.3 ± 11.3 80.8 ± 14.8 63.1 ± 10.1
GDLNet (Wang et al., 2024a) 58.1 ± 8.9 46.3 ± 5.1 76.9 ± 13.6 63.3 ± 14.2

GyroAtt-SPD 75.4 ± 7.4 53.1 ± 14.1 86.2 ± 4.5 77.9 ± 13.0
GyroAtt-Gr 72.5 ± 7.3 52.1 ± 14.2 85.0 ± 7.7 75.3 ± 13.7
GyroAtt-SPSD 72.9 ± 6.2 52.4 ± 15.6 85.3 ± 5.3 76.0 ± 14.1

6 EXPERIMENTS

In this paper, we evaluate the performance of the proposed Gyro Attention Network in EEG sig-
nal classification. Building on prior studies (Pan et al., 2022; Kobler et al., 2022), we evalu-
ate four datasets: BNCI2014001 (Faller et al., 2012), BNCI2015001 (Tangermann et al., 2012),
MAMEM-SSVEP-II (Spiros, 2016), and BCI-ERN (Margaux et al., 2012). For the BNCI2014001
and BNCI2015001 datasets, we conduct both inter-session and inter-subject evaluations. For the
inter-session evaluation, models are trained exclusively on data from the corresponding subject. The
balanced accuracy calculated by the average recall across classes is taken as our performance metric
(Kobler et al., 2022). For the MAMEM-SSVEP-II and BCI-ERN datasets, accuracy is used as the
evaluation metric for MAMEM-SSVEP-II, while for BCI-ERN, the Area Under the Curve addresses
class imbalance. In the experiments, the first four sessions of each subject in each dataset are desig-
nated for training, with one session reserved for validation. The network is subsequently tested on
the fifth session. App. B.2 introduces all the used datasets and preprocessing steps.

Implementation details. The GyroAtt network architecture, depicted in Fig. 1, comprises three
main components: a feature extraction module, a Gyro Attention module, and a classification mod-
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Figure 1: The GyroAtt network architecture comprises three components: a feature extraction mod-
ule that converts EEG signals into manifold-valued data, a Gyro Attention module that explicitly
captures long-range dependencies among features, and a classification module that flattens manifold
data before classification using a fully connected layer and a softmax function.

ule. In the feature extraction module, we first apply two convolutional blocks to the EEG signals
to extract low-redundancy features. We then perform pyramid-like segmentation along the time di-
mension on the outputs, partitioning the data into s non-overlapping subparts at each level s. For
each subpart, a covariance matrix is computed. For GyroAtt-SPD, these covariance matrices Xi

serve directly as inputs to the subsequent layers. In GyroAtt-SPSD and GyroAtt-Gr, each covari-
ance matrix is transformed into its canonical form (Ui

X ,S
i
X) using Alg. A3, mapping them into the

structure space G̃(q, d)× S++
q . Here, Ui

X is used as the input for GyroAtt-Gr, while both Ui
X and

Si
X are used for GyroAtt-SPSD. We employ the corresponding GyroAtt block, as shown in Alg. 1,

to capture long-range dependencies between different feature regions on the manifolds. In the clas-
sification module, we first perform manifold flattening by projecting the manifold-valued data into
a flat space and vectorizing it. for the GyroAtt-SPD, we apply matrix power normalization to the
output matrix P from the GyroAtt block, defined as ψθ(P) = 1

θP
θ with θ > 0 and P ∈ S++

d , fol-
lowing the approach in Wang et al. (2020); Chen et al. (2024c). The scaling factor 1

θ ensures gradient
stability during optimization. For GyroAtt-Gr, we project each element Yi ∈ G(q, d) into Euclidean
space using the operator Φ(Yi) = YiY

⊤
i . In the GyroAtt-SPSD model, both Ui

X and Si
X are pro-

cessed accordingly within the classification module. Across all three models, the resulting matrices
are vectorized, concatenated, and passed through a fully connected layer followed by a Softmax
function for classification. For manifold parameter optimization and detailed implementations for
different datasets, please refer to App. F and App. B.3.

Parameter settings. We report results using the best settings for each manifold; additional results
are provided in Tab. 6. We use the notation {Metric, p, θ} to specify parameters—e.g., {AIM,
0.5, 0.5} means the metric is AIM with p and θ set to 0.5. For GyroAtt-SPD, the settings are:
{AIM, 0.75, 0.75} on MAMEM-SSVEP-II, {LEM, 0.75, 0.75} on BCI-ERN, and {AIM, 0.5, 0.5}
on both BNCI2014001 and BNCI2015001. For GyroAtt-SPSD, the settings are {LCM, 0.5, 0.5}
on MAMEM-SSVEP-II, {LEM, 0.5, 0.25} on BCI-ERN, {AIM, 0.5, 0.5} on BNCI2014001, and
{LEM, 0.25, 0.25} on BNCI2015001.

Main results. We evaluated the performance of our proposed GyroAtt framework on four EEG
classification datasets, with the 10-fold cross-validation results summarized in Tab. 4 and Tab. 5.
Our models—GyroAtt-SPD, GyroAtt-Gr, and GyroAtt-SPSD—were compared against other lead-
ing methods. The manifold yielding the most effective GyroAtt layer varies across datasets. Specif-
ically, GyroAtt-SPSD provides optimal performance on the MAMEM-SSVEP-II and BCI-ERN
datasets, surpassing GDLNet by 3.2% and 0.9%, respectively. GyroAtt-SPD achieves the best results
on the BNCI2014001 and BNCI2015001 datasets, outperforming TSMNet by 6.4%, 1.5%, 0.4%,
and 0.9%. This finding highlights the versatility of our framework. Although GyroAtt-Gr performs
worse than GyroAtt-SPSD on these datasets, it still surpasses GDLNet across all four datasets. These
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Table 6: Ablations of GyroAtt on Riemannian metrics and matrix power activation p. The best result
under each geometry is highlighted in bold.

Geometry p
BNCI2014001 BNCI2015001 MAMEM-SSVEP-IIInter-session Inter-subject Inter-session Inter-subject

SPD-AIM

w/o 74.8 ± 6.7 51.2 ± 15.7 85.5 ± 5.0 75.4 ± 12.9 64.3 ± 2.4
0.25 75.2 ± 6.9 51.4 ± 14.3 85.8 ± 6.8 77.1 ± 12.8 61.9 ± 2.5
0.50 75.4 ± 7.1 53.1 ± 14.8 86.2 ± 4.5 77.9 ± 13.0 66.1 ± 2.6
0.75 75.0 ± 8.1 51.0 ± 13.8 85.9 ± 6.6 77.4 ± 12.6 66.3 ± 2.2

SPD-LEM

w/o 74.9 ± 7.3 51.7 ± 15.8 85.2 ± 5.2 75.3 ± 12.3 65.6 ± 2.3
0.25 74.7 ± 6.7 52.3 ± 14.1 85.6 ± 6.7 75.6 ± 13.0 63.7 ± 2.5
0.50 75.3 ± 6.5 51.4 ± 14.1 85.7 ± 5.5 76.6 ± 13.7 65.3 ± 2.7
0.75 75.1 ± 7.3 52.3 ± 15.0 85.4 ± 7.0 75.5 ± 12.8 66.2 ± 2.5

SPD-LCM

w/o 73.2 ± 6.7 51.9 ± 14.8 85.3 ± 7.2 76.2 ± 13.3 64.0 ± 2.8
0.25 73.4 ± 7.5 52.4 ± 13.4 85.6 ± 7.5 75.4 ± 14.0 64.3 ± 2.5
0.50 74.0 ± 8.2 52.7 ± 13.6 85.9 ± 6.7 77.4 ± 13.2 64.1 ± 3.2
0.75 74.2 ± 7.8 51.7 ± 14.6 86.0 ± 6.8 76.3 ± 13.2 65.1 ± 2.5

SPSD-AIM

w/o 72.2 ± 7.2 49.2 ± 13.7 84.1 ± 7.2 73.6 ± 14.3 65.8 ± 2.6
0.25 72.4 ± 6.8 50.7 ± 14.8 84.0 ± 6.8 75.5 ± 13.8 66.4 ± 3.0
0.50 72.9 ± 7.1 52.4 ± 15.6 84.7 ± 6.6 74.2 ± 14.2 66.5 ± 2.9
0.75 72.5 ± 6.7 51.0 ± 15.3 84.0 ± 4.9 74.5 ± 13.6 65.7 ± 2.7

SPSD-LEM

w/o 72.1 ± 6.7 49.8 ± 12.9 83.9 ± 5.1 74.2 ± 14.4 66.2 ± 1.9
0.25 72.8 ± 6.9 49.9 ± 14.0 85.3 ± 5.3 76.0 ± 14.1 66.5 ± 2.3
0.50 72.5 ± 6.6 50.5 ± 14.2 84.5 ± 5.8 75.4 ± 14.5 66.4 ± 2.5
0.75 72.7 ± 7.6 50.5 ± 13.2 85.2 ± 4.8 75.0 ± 14.2 66.2 ± 1.7

SPSD-LCM

w/o 72.3 ± 7.3 49.5 ± 12.0 84.8 ± 6.1 75.4 ± 13.2 66.5 ± 2.4
0.25 72.2 ± 7.5 50.6 ± 13.9 85.1 ± 4.8 74.9 ± 12.6 67.7 ± 2.3
0.50 72.9 ± 6.7 48.4 ± 13.3 84.9 ± 6.1 74.5 ± 13.6 66.2 ± 3.6
0.75 72.8 ± 6.3 51.7 ± 13.1 85.1 ± 5.8 73.9 ± 15.4 68.7 ± 1.5

observations highlight the generality and effectiveness of our GyroAtt approach. Furthermore, the
superior performance of GyroAtt can be attributed to its attention mechanism, which effectively
captures long-range dependencies and spatiotemporal fluctuations inherent in EEG data.

Ablations on the Riemannian metrics and matrix power-based nonlinear activation σ(·) in
GyroAtt. Tab. 6 illustrates the impact of the different metrics and power parameter p (as defined in
Tab. 3) on the performance of GyroAtt based on two Riemannian matrix manifolds. The candidate
values of metrics are AIM, LEM, and LCM, with p values set to {0.25, 0.50, 0.75}. As shown
in this table, for SPD-based architectures, GyroAtt under the SPD-AIM geometry with p = 0.5
achieves the highest accuracy on both the BNCI2014001 and BNCI2015001 datasets, while the
SPD-LCM geometry with p = 0.75 records the second-highest inter-session accuracy (86.0%) on
the BNCI2015001 dataset. For SPSD-based settings, GyroAtt under the SPSD-LCM geometry with
p = 0.75 reaches the highest accuracy (68.7%) on the MAMEM-SSVEP-II dataset. Furthermore,
it is evident that GyroAtt is generally robust to variations in p across all experimental scenarios.
These findings emphasize the importance of selecting the metric space of the underlying feature
manifold and demonstrate that the proposed matrix power activation enhances model performance
by introducing nonlinearity into the metric space.

7 CONCLUSION

In this paper, we propose the GyroAtt framework, which extends the Euclidean attention mechanism
to general gyrovector spaces in a principled manner. Specifically, we adopt gyro homomorphisms,
geodesic-based attention, and WFM as counterparts to the transformation, attention, and aggregation
operations in Euclidean attention. Notably, we identify the concrete non-trivial expressions of gyro
homomorphisms on different matrix gyro spaces. The principled construction of GyroAtt enables
a direct assessment of the impact of geometry on a given task while keeping the neural network
architecture constant. Extensive experiments on four EEG datasets demonstrate the efficacy and
flexibility of our approach. For future avenues, we will implement our GyroAtt framework on other
concrete gyro spaces.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Riemannian geometry of Grassmann man-
ifolds with a view on algorithmic computation. Acta Applicandae Mathematica, 80:199–220,
2004.

Ghadir Ali Altuwaijri, Ghulam Muhammad, Hamdi Altaheri, and Mansour Alsulaiman. A multi-
branch convolutional neural network with squeeze-and-excitation attention blocks for EEG-based
motor imagery signals classification. Diagnostics, pp. 995, 2022.

Kai Keng Ang, Zheng Yang Chin, Haihong Zhang, and Cuntai Guan. Filter bank common spatial
pattern (FBCSP) in brain-computer interface. In IJCNN, pp. 2390–2397. IEEE, 2008.

Vincent Arsigny, Pierre Fillard, Xavier Pennec, and Nicholas Ayache. Fast and simple computations
on tensors with log-Euclidean metrics. PhD thesis, INRIA, 2005.
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A NOTATIONS AND ABBREVIATIONS

For better clarity, we summarize all the notations and the abbreviations used in this paper in Tab. A1
and Tab. A2, respectively.

Table A1: Summary of notations.

Notations Explanation
(G,⊕) A gyrogroup G with a binary operation ⊕
S++
d Space of d× d SPD matrices
Sd Space of d× d symmetric matrices
S+d,q Space of d× d SPSD matrices with rank q ≤ d
G(q, d) Grassmannian in the projector perspective
G̃(q, d) Grassmannian in the ONB perspective

⊕ai,⊖ai,⊗ai Binary, inverse, and scalar multiplication operations in S++
d under AIM

⊕le,⊖le,⊗le Binary, inverse, and scalar multiplication operations in S++
d under LEM

⊕lc,⊖lc,⊗lc Binary, inverse, and scalar multiplication operations in S++
d under LCM

⊕̃gr, ⊖̃gr, ⊗̃gr Binary, inverse, and scalar multiplication operations in G̃(q, d)
⊕gr,⊖gr,⊗gr Binary, inverse, and scalar multiplication operations in G(q, d)

⊕psd,g,⊖psd,g,⊗psd,g Binary, inverse, and scalar multiplication operations in G̃(q, d)× S++
d under metrics g

⟨P,Q⟩g Inner product in S++
d under metrics g

⟨U,V⟩gr Inner product in G̃(q, d)
⟨(UP ,SP ), (UQ,SQ)⟩psd,g Inner product in G̃(q, d)× S++

d under metrics g
∥⊖gP⊕g Q∥spdg the gyrodistance in S++

d under metrics g∥∥⊖̃grU⊕̃grV
∥∥gr the gyrodistance in G̃(q, d)∥∥(⊖̃grUP ⊕̃grUQ,⊖gSP ⊕g SQ

)∥∥g
psd

the gyrodistance in G̃(q, d)× S++
d under metrics g

[·, ·] the matrix commutator
expm(·), logm(·) Matrix exponentiation and logarithm
L (·), L −1(·) Cholesky decomposition and its inverse

D(·) A diagonal matrix with diagonal elements from a square matrix
⌊·⌋ The strictly lower triangular part of a square matrix

LoggrP (Q) Logarithmic map of Q at P in G(q, d)
M,N Matrix manifold
WFM the weighted Fréchet mean

homai(·),homle(·),homlc(·) the maps in S++
d under AIM, LEM, and LCM satisfying gyro homomorphism

homgr(·) the maps in G̃(q, d) satisfying gyro homomorphism
hompsd,g(·) the maps in G̃(q, d)× S++

d under metrics g satisfying gyro homomorphism
∥ · ∥F The norm induced by the standard Frobenius inner product
O(d) The special orthogonal group

ExpaiP (A) Exponential map of A at P in S++
d under AIM

LogaiP (Q) Logarithmic map of Q at P in S++
d under AIM

ExpgrP (W) Exponential map of W at P in G(q, d)
Ẽxp

gr

X (H) Exponential map of H at X in G̃(q, d)
L̃og

gr

P (Q) Logarithmic map of Q at P in G̃(q, d)

Table A2: Summary of Abbreviations.

Abbreviations Explanation
SPD Symmetric Positive Definite

SPSD Symmetric Positive Semi-Definite
Homs Homomorphisms

GryoAtt Gyro Attention
EEG Electroencephalography
LEM Log-Euclidean Metric
LCM Log-Cholesky Metric
AIM Affine-Invariant Metric
WFM Weighted Fréchet Mean
ONB Orthonormal Basis
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B IMPLEMENTATION DETAILS AND ADDITIONAL EXPERIMENTS

The Brain-computer Interface (BCI) enables direct interaction between the brain and external de-
vices using electrical brain activity. Numerous applications in non-invasive BCI systems depend on
effective modeling and information extraction from Electroencephalography (EEG) signals. EEG is
a technique for measuring neural activity by high temporal resolution capturing the electric fields
generated by the human scalp (Subha et al., 2010). Variations in rhythmic brain activity reflect
cognitive processes (Pfurtscheller & Lopes, 1999), emotional states (Faller et al., 2019), and health
conditions (Zhang et al., 2021). However, EEG signals exhibit a low signal-to-noise ratio (SNR) and
low specificity, complicating meaningful information extraction (Johnson, 2006; Hine et al., 2017).

Table A3: GyroAtt-SPSD architectures across four datasets. The q is the rank of the SPSD matrices.

Block MAMEM-SSVEP-II BCI-ERN BNCI2014001 BNCI2015001 Operation

Input data 1× 8× 125 1× 56× 160 1× 22× 750 1× 13× 768
TempConv 125× 1× 125 22× 1× 160 4× 22× 750 5× 13× 768 Convolution
SpatConv 21× 1× 126 57× 1× 161 43× 1× 750 44× 1× 768 Convolution
Split & CovPool 2× 21× 21 3× 19× 19 6× 43× 43 3× 44× 44 Split + Covariance

SPDDSMBN w/o w/o 6× 43× 43 3× 44× 44
Domain Alignment
Kobler et al. (2022)

SPSDCom 2× (21× 9, 9× 9) 3× (19× q, q × q) 6× (43× 18, 18× 18) 3× (44× 18, 18× 18) Alg. A3
GyroAtt-SPSD 2× (21× 9, 9× 9) 3× (19× q, q × q) 6× (43× 18, 18× 18) 3× (44× 18, 18× 18) Alg. 1
R2E 2× (21× 21, 9× 9) 3× (19× 19, q × q) 6× (43× 43, 18× 18) 3× (44× 44, 18× 18) (Φ(·), ψ(·))
Flat (882, 162) (1083, q2) (11094, 1944) (5547, 972) Vectorization
Classifier 5 2 4 2 FC + Softmax

B.1 DATASETS

MAMEM-SSVEP-II. This dataset includes EEG recordings from 11 subjects performing SSVEP
tasks. Participants focused on one of five visual stimuli flickering at different frequencies for five
seconds. Each subject completed five sessions, with five trials per stimulation frequency in each
session. EEG signals were captured with 256 channels at a sampling rate of 250 Hz.

BCI-ERN. This dataset involves 26 subjects in a P300-based spelling task to measure ERN. EEG
data were recorded from 56 electrodes following the extended 10-20 system at a sampling rate of
600 Hz. Each subject underwent five sessions: the first four with 60 trials each and the fifth with
100 trials. We used data from 16 subjects available in the initial competition release.

BNCI2014001. This dataset comprises EEG recordings from 9 subjects performing four motor
imagery tasks: imagining movements of the left hand, right hand, both feet, and tongue. Each
subject participated in two sessions on different days, each containing six runs. Each run included
48 trials—12 per class—totaling 288 trials per session.

BNCI2015001. EEG signals were recorded from electrodes centered around positions C3, Cz, and
C4, according to the International 10-20 System. Data were collected using a g.GAMMAsys active
electrode system with a g.USBamp amplifier, sampled at 512 Hz with a bandpass filter between 0.5
and 100 Hz and a notch filter at 50 Hz.

B.2 EEG PREPROCESSING

For the BNCI2014001 and BNCI2015001 datasets, we followed the preprocessing steps described
by Kobler et al. (2022). Using the Python packages moabb and mne, we resampled the EEG signals
to 250/256 Hz, applied temporal filters to extract oscillatory activity in the 4–36 Hz range, and
extracted short segments ( ≤ 3 seconds) associated with class labels.

For the MAMEM-SSVEP-II dataset, we adhered to the preprocessing protocol of Pan et al. (2022).
The steps included: (1) band-pass filtering between 1–50 Hz; (2) selecting eight channels (PO7,
PO3, PO, PO4, PO8, O1, Oz, and O2) located in the occipital area corresponding to the visual
cortex; and (3) segmenting each trial into four 1-second segments from 1s to 5s after cue onset.
This resulted in 500 trials of 1-second, 8-channel SSVEP signals per subject, with each input EEG
segment comprising 125 time points.

For the BCI-ERN dataset, we followed the preprocessing procedure outlined by Pan et al. (2022).
The steps involved: (1) downsampling the signals from 600 Hz to 128 Hz; (2) applying a band-
pass filter between 1–40 Hz. After preprocessing, each trial consisted of 56 channels with 160 time
points.
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B.3 ADDITIONAL IMPLEMENTATION DETAILS

Table A4: GyroAtt-SPD architectures across four datasets.

Block MAMEM-SSVEP-II BCI-ERN BNCI2014001 BNCI2015001 Operation

Input data 1× 8× 125 1× 56× 160 1× 22× 750 1× 13× 768
TempConv 125× 1× 125 22× 1× 160 4× 22× 750 5× 13× 768 Convolution
SpatConv 21× 1× 126 57× 1× 161 43× 1× 750 44× 1× 768 Convolution
Split & CovPool 2× 21× 21 3× 19× 19 6× 43× 43 3× 44× 44 Split + Covariance
SPDDSMBN w/o w/o 6× 43× 43 3× 44× 44 Domain Alignment
GyroAtt-SPD 2× 21× 21 3× 19× 19 6× 43× 43 3× 44× 44 Alg. 1
R2E 2× 21× 21 3× 19× 19 6× 43× 43 3× 44× 44 ψ(·)
Flat 882 1083 11094 5547 Vectorization
Classifier 5 2 4 2 FC + Softmax

Table A5: GyroAtt-Gr Architectures across four datasets. The q is the dimension of the linear
subspaces.

Block MAMEM-SSVEP-II BCI-ERN BNCI2014001 BNCI2015001 Operation

Input data 1× 8× 125 1× 56× 160 1× 22× 750 1× 13× 768
TempConv 125× 1× 125 22× 1× 160 4× 22× 750 5× 13× 768 Convolution
SpatConv 21× 1× 126 57× 1× 161 43× 1× 750 43× 1× 768 Convolution
Split & CovPool 2× 21× 21 3× 19× 19 6× 43× 43 3× 44× 44 Split + Covariance
SPDDSMBN w/o w/o 6× 43× 43 3× 44× 44 Domain Alignment
GrCom 2× 21× 9 3× 19× q 6× 43× 18 3× 44× 18 Alg. A3
GyroAtt-Gr 2× 21× 9 3× 19× q 6× 43× 18 3× 44× 18 Alg. 1
R2E 2× 21× 21 3× 19× 19 6× 43× 43 3× 44× 44 Φ(·)
Flat 882 1083 11094 5547 Vectorization
Classifier 5 2 4 2 FC + Softmax

Table A3 provides a summary of the specific network architectures of GyroAtt-SPSD across the four
datasets. The network structures for GyroAtt-Gr (Tab. A5) and GyroAtt-SPD (Tab. A4) are identical
to that of GyroAtt-SPSD. We just introduce GyroAtt-SPSD as an example.

For the MAMEM-SSVEP-II and BCI-ERN datasets, the initial convolutional block consists of a
convolutional layer, followed by batch normalization and an ELU activation function. The subse-
quent convolutional block performs depthwise spatial convolution. A pointwise convolution, batch
normalization, and another ELU activation follow this. In the MAMEM-SSVEP-II dataset, features
are split into two non-overlapping segments, followed by covariance pooling. For the BCI-ERN
dataset, the second convolutional block is repeated in two additional blocks. The outputs from these
blocks are concatenated along the channel dimension. The data is then split along the channel di-
mension, and covariance pooling is applied, resulting in three covariance matrices.

For BNCI2014001 and BNCI2015001 datasets, the initial convolutional layer employs 4 or 5 filters
with a kernel size of (1, 25), performing temporal convolution while maintaining the same size
through padding. The second convolutional layer applies spatial convolution with a kernel size of
(22, 1) to integrate information from different channels. The output sequences undergo temporal
pyramid partitioning, dividing each sequence into i equal segments at the i-th level (with levels set
to 3 and 2, respectively). To address distribution shifts across subjects and runs, we incorporate
subject- and run-specific batch normalization layers (Kobler et al., 2022).

The attention module designed in the gyrovector spaces is constituted by five operation layers, which
are the Gyro homomorphism layer (fhom) used to generate Qi, Ki, and Vi for each input data, the
similarity measurement layer (fsim) for computing the correlation between Qi and Kj , the Softmax
layer (fsmx) used to normalize the obtained attention matrix along the row direction, the weighted
Fréchet Mean layer (fwFM) for the implementation of weighted aggregation, and the power-based
nonlinear activation layer (fpac) used to improve the representational capacity of GyroAtt module
by introducing nonlinearity to the underlying metric space.

For classification, our GyroAtt-SPD model employs matrix power normalization following Wang
et al. (2020) and Chen et al. (2024c). Specifically, we apply the transformation ψθ(P) = 1

θP
θ

to the i-th output matrix P ∈ S++
d , where θ > 0. The coefficient 1

θ stabilizes the gradient flow
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during training and facilitates convergence. In GyroAtt-Gr, we transform elements Yi ∈ G(q, d) by
applying a projection operator Φ(Yi) = YiY

⊤
i to map them into the corresponding flat space. In

contrast, for GyroAtt-SPSD, we project (Ui
X ,S

i
X) ∈ G̃(q, d)×S++

q onto their respective manifolds.
In all three GyroAtt, the transformed matrices are vectorized, concatenated, and fed into a fully
connected layer followed by a Softmax function.

B.4 ABLATIONS ON THE GYROATT COMPONENTS

We conducted an ablation study to evaluate the contributions of the Gyro Homomorphism and
nonlinear activation in GyroAtt. Specifically, we replaced these components in GyroAtt-SPD and
GyroAtt-SPSD with equivalent layers from SPDNet and GrNet, such as Bimap, Frmap, and ReEig,
to assess their impact on performance.

Table A6: Ablations of GyroAtt-SPD, Replacing Gyro Homomorphisms and Power Activations with
SPDNet methods (The Bimap and ReEig layer). The best result under each geometry is highlighted
in bold.

Transformation Activation BNCI2014001 BNCI2015001
Inter-session Inter-subject Inter-session Inter-subject

Bimap Power 74.0 ± 6.5 52.3 ± 15.0 85.2 ± 7.2 77.2 ± 13.2
Homomorphisms ReEig 75.1 ± 6.3 52.6 ± 14.2 85.9 ± 5.3 76.4 ± 12.8
Bimap ReEig 73.6 ± 6.8 52.2 ± 15.2 85.4 ± 7.8 76.8 ± 13.0
Homomorphisms Power 75.4 ± 7.4 53.1 ± 14.1 86.2 ± 4.5 77.9 ± 13.0

Table A7: Ablations of GyroAtt-SPSD, Replacing Gyro Homomorphisms and Power Activations
with SPDNet or GrNet methods (The Frmap and ReEig layers).

Transformation Activation BNCI2014001 BNCI2015001
Inter-session Inter-subject Inter-session Inter-subject

Frmap Power 68.9 ± 6.9 51.2 ± 12.9 82.3 ± 6.2 65.8 ± 13.1
Homomorphisms ReEig 72.3 ± 6.9 49.6 ± 13.3 84.9 ± 6.2 74.1 ± 12.3
Frmap ReEig 68.8 ± 7.2 50.7 ± 13.8 81.6 ± 6.1 72.9 ± 13.3
Homomorphisms Power 72.9 ± 6.2 52.4 ± 15.6 85.3 ± 5.3 76.0 ± 14.1

Implementation of component replacement on GyroAtt. We replaced components in GyroAtt
with their equivalents from MAtt and GDLNet to assess their contributions. Specifically, in GyroAtt-
SPD, we replaced the Gyro Homomorphism hom(·) with the Bimap layer and the matrix power-
based nonlinear activation σ(·) with the ReEig layer. In GyroAtt-SPSD, we replaced hom(·) with
the Frmap layer and σ(·) with the ReEig layer. That is, we substituted homgr (UP ) in hompsd,g(·)
with the Frmap layer and replaced (SRi

)p in (URi
, (SRi

)p) with the ReEig layer.

The BiMap (bilinear transformation) layer is defined as:

X(l) = W(l)X(l−1)W(l)⊤ , (A1)

where X(l) ∈ S++
d2 ,X(l−1) ∈ S++

d1 ,W(l) ∈ Rd2×d1 with d1 > d2 is a semi-orthogonal matrix. For
the parameter W(l), we use the geoopt (Kochurov et al., 2020) package to optimize. The FrMap
layer is defined as:

X(l) = W(l)⊤X(l−1), (A2)
where X(l) ∈ G(d2, q), X(l−1) ∈ G(d1, q), and W(l) ∈ Rd2×d1 is a semi-orthogonal matrix with
d1 > d2. We optimized W(l) using Geoopt.

The ReEig (rectified eigenvalues activation) layer is defined as:

Xl = U(l)max(Σ(l), ϵId)U
(l)⊤ , (A3)

with Xl−1 = U(l)Σ(l)U(l)⊤ , where Σ(l) contains the eigenvalues of Xl−1, and ϵId is used to ensure
numerical stability and set by 1e-4. Here, we set the dimensions of the Bimap layer to 21× 18,
43× 20, and 44× 20 and the frmap layer to 21× 18, 43× 30, and 44× 30 for the MAMEM-
SSVEP-II, BNCI2014001, and BNCI2015001 datasets, respectively.
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As shown in Tab. A6 and Tab. A7, replacing hom(·) with the Bimap layer or σ(·) with the ReEig
layer leads to significant performance degradation across the datasets. Similarly, for GyroAtt-SPSD,
replacing hom(·) with Frmap or σ(·) with ReEig degrades performance. This occurs because hom(·)
and σ(·) respect the gyro algebraic structure and underlying Riemannian geometry. The hom(·)
function, as a Gyro homomorphism, preserves the Gyro algebraic structure of ⊕ and ⊗, serving as a
natural generalization of linear transformations in Euclidean spaces. In contrast, Bimap lacks these
properties. Similarly, σ(·) introduces nonlinearity to SPD matrices and, more importantly, acts as
an activation and deformation mechanism for the Riemannian metric, as discussed in Chen et al.
(2024d). On the other hand, to some extent, ReEig is primarily a numerical activation method, en-
suring only S++

d → S++
d without addressing these deeper structural and geometric considerations.

B.5 ABLATIONS ON THE SIMILARITY CALCULATION IN GYROATT

In Euclidean space, attention mechanisms commonly use the inner product as similarity measures.
Nguyen & Yang (2023); Nguyen et al. (2024) extends this concept by defining the inner product on
SPD, SPSD, and Grassmannian manifolds. The specific formulations are detailed as follows:

Table A8: Ablations of GyroAtt, Replacing distance-based similarity to inner product-based simi-
larity, where BNCI2014001 and BNCI2015001 datasets under inter-session settings.

Methods similarity BNCI2014001 BNCI2015001 MAMEM-SSVEP-II

GyroAtt-SPD inner product 74.7 ± 6.8 85.6 ± 5.4 63.9 ± 3.2
geodesic distance 75.4 ± 7.4 86.2 ± 4.5 66.3 ± 2.2

GyroAtt-Gr inner product 72.4 ± 7.3 83.4 ± 5.9 65.7 ± 3.1
geodesic distance 72.5 ± 7.3 85.0 ± 7.7 67.1 ± 1.6

GyroAtt-SPSD inner product 71.6 ± 6.3 83.3 ± 5.4 65.0 ± 2.6
geodesic distance 72.9 ± 6.2 85.3 ± 5.3 68.7 ± 1.5

For P,Q ∈ S++
d , the SPD inner product is given by (Nguyen & Yang, 2023):

⟨P,Q⟩g = ⟨LoggId(P),LoggId(Q)⟩gId , (A4)

For U,V ∈ G̃(q, d), the inner product is given by:

⟨U,V⟩gr = ⟨L̃og
gr

Ĩd,q
(U), L̃og

gr

Ĩd,q
(V)⟩̃Id,q , (A5)

For (UP ,SP ) , (UQ,SQ) ∈ G̃(q, d)× S++
q , the inner product is defined as:

⟨(UP ,SP ), (UQ,SQ)⟩psd,g = λ⟨UPU
⊤
P ,UQU

⊤
Q⟩

gr

Ĩd,q
+ ⟨SP ,SQ⟩gIq , (A6)

We replaced the distance-based similarity computation in Eq. (8) with the inner product defined in
follow and conducted ablation experiments on the MAMEM, BNCI2014001, and BNCI2015001
datasets under inter-session settings.

The results show that GyroAtt with inner product-based similarity generally performs worse than
with geodesic distance-based similarity across most datasets. This is because the geodesic distance
measures the shortest path between two points along the curved manifold surface. In contrast, the
inner product has notable limitations. It operates in the tangent space, which provides only a linear
approximation of the manifold around Id. Additionally, it depends on the Id, meaning the tangent
space approximation is localized and may not accurately represent relationships between points
farther from vecId. This restricts its ability to model global relationships on the manifold effectively.

B.6 ABLATIONS ON THE MATRIX POWER NORMALIZATION

We conduct ablation experiments to assess the impact of the power normalization parameter θ on
the performance of the proposed GyroAtt, as summarized in Tab. A9. For each gyro structure,
we let the parameter θ vary within the set {0.25, 0.50, 0.75}. Among the SPD-based configura-
tions, our GyroAttNet under SPD-AIM geometry achieves the highest inter-session accuracy on the
BNCI2014001 dataset and the best inter-subject accuracy on the BNCI2015001 dataset at p = 0.5.
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Table A9: Ablations of GyroAtt on matrix power normalization θ used in classification and Rieman-
nian metrics. The best result under each geometry is highlighted in bold.

Geometry θ
BNCI2014001 BNCI2015001 MAMEM-SSVEP-IIInter-session Inter-subject Inter-session Inter-subject

SPD-AIM
0.25 74.9 ± 6.9 51.2 ± 13.6 86.1 ± 7,3 76.2 ± 12.8 61.9 ± 2.5
0.50 75.4 ± 7.1 53.1 ± 14.8 86.2 ± 4.5 77.9 ± 13.0 66.2 ± 2.8
0.75 75.0 ± 8.1 51.7 ± 14.5 86.0 ± 6.5 77.1 ± 14.3 66.3 ± 2.2

SPD-LEM
0.25 75.2 ± 6.7 52.7 ± 12.9 85.1 ± 5.7 76.9 ± 14.5 60.7 ± 2.4
0.50 75.3 ± 6.5 51.4 ± 14.1 85.7 ± 5.5 76.6 ± 13.7 66.1 ± 2.8
0.75 75.1 ± 7.3 52.3 ± 13.3 85.8 ± 6.3 76.4 ± 13.1 66.2 ± 2.5

SPD-LCM
0.25 74.2 ± 7.5 52.1 ± 14.5 85.6 ± 5.9 77.3 ± 13.4 64.5 ± 2.9
0.50 74.0 ± 8.2 52.7 ± 13.6 85.9 ± 6.7 77.4 ± 13.2 64.3 ± 2.8
0.75 74.1 ± 7.8 52.0 ± 14.7 86.0 ± 5.3 75.8 ± 13.8 65.1 ± 2.5

SPSD-AIM
0.25 72.7 ± 7.0 51.2 ± 15.8 84.0 ± 6.8 75.5 ± 13.8 66.3 ± 2.9
0.50 72.9 ± 6.2 52.4 ± 15.6 84.5 ± 6.6 74.2 ± 15.2 66.3 ± 2.4
0.75 72.7 ± 6.7 50.0 ± 15.2 84.4 ± 4.9 75.3 ± 13.5 65.7 ± 2.7

SPSD-LEM
0.25 72.8 ± 7.1 50.7 ± 13.9 85.3 ± 5.3 76.0 ± 14.1 66.6 ± 2.6
0.50 72.5 ± 6.6 50.6 ± 14.2 84.5 ± 5.8 75.1 ± 12.9 66.5 ± 1.9
0.75 72.7 ± 7.4 49.5 ± 12.9 84.3 ± 4.8 74.7 ± 14.3 66.2 ± 1.7

SPSD-LCM
0.25 72.1 ± 7.4 49.9 ± 13.1 85.1 ± 4.8 74.9 ± 12.6 67.6 ± 2.1
0.50 72.9 ± 6.7 48.4 ± 13.3 84.1 ± 5.6 74.4 ± 13.7 68.1 ± 1.6
0.75 71.6 ± 6.1 50.1 ± 12.8 84.1 ± 5.7 75.0 ± 12.9 68.7 ± 1.5

For the SPSD-based settings, SPSD-LEM geometry consistently performs well across multiple met-
rics, especially for the inter-session scenario in BNCI2015001, where it achieves a top accuracy of
85.3. It also can be noted that smaller or larger values of p (e.g., 0.25 or 0.75) tend to yield lower
accuracy in most cases. In contrast, a moderate value of p = 0.5 appears to be more suitable for
both SPD and SPSD geometries, as it could maintain a good normalization power. Besides, GyroAtt
tends to be less sensitive to changes in θ across all experimental scenarios. In short, these results
confirm the effectiveness of the introduced matrix power normalization in classification.

C RIEMANNIAN GEOMETRY OF GRASSMANNIAN MANIFOLDS

We now present the exponential and logarithmic maps, as well as the parallel translation under the
ONB perspective, followed by the project perspective.

For the Grassmannian manifold G̃(q, d) in the ONB perspective, the exponential map at X ∈ G̃(q, d)
is defined as

Ẽxp
gr

X (H) = XV cosΣ+U sinΣ, (A7)

where H is a tangent vector at X, and UΣV⊤ is the thin singular value decomposition (SVD) of
H:

UΣV⊤ = thinSVD(H). (A8)

The logarithmic map, which is the inverse of the exponential map, is given by

L̃og
gr

X (Y) = U tan−1 ΣV⊤, (A9)

where X,Y ∈ G̃(q, d), and

UΣV⊤ = thinSVD
(
(I−XX⊤)Y(X⊤Y)−1

)
. (A10)

As stated in Edelman et al. (1998, Theorem 2.4), let H and ∆ be tangent vectors at point Y on the
Grassmann manifold. The parallel transport of ∆ along the geodesic in the direction Ẏ(0) = H is
given by

τ∆(t) =

(
(YV U)

(
− sin(Σt)
cos(Σt)

)
U⊤ + (I−UU⊤)

)
∆. (A11)
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Shifting to the projector perspective for the Grassmannian manifold G(q, d), let P ∈ G(q, d) and
∆ ∈ TPG(q, d). The exponential map is defined as (Bendokat et al., 2024)

ExpgrP (∆) = expm([∆,P])P expm(−[∆,P]). (A12)

As shown by Sakai (1996), two points are in each other’s cut locus if there exists more than one short-
est geodesic connecting them. When the exponential map ExpgrP is restricted to the injectivity do-
main IDP, for any F ∈ G(q, d)\CutP, there exists a unique tangent vector ∆ ∈ IDP ⊂ TPG(q, d)
such that ExpgrP (∆) = F. For such a point F, the logarithmic map is given by

LoggrP (Q) = [Ω,P], (A13)

where P,Q ∈ Grn,p, and Ω is calculated as

Ω =
1

2
log
(
(In − 2Q)(In − 2P)

)
. (A14)

D WEIGHTED FRÉCHET MEAN

D.1 WEIGHTED FRÉCHET MEAN ON SPD MANIFOLDS

Algorithm A1: Karcher Flow Algorithm on the SPD Manifold under AIM

Input: A set of SPD matrices X1...N ∈ S++
d

A set of weights w1...N > 0 with
∑

i wi = 1
Number of iterations K

Output: The WFM Gk ∈ S++
d

Initialize G0 = I
for k ← 1 to K do

Gk ← ExpaiGk−1

(∑N
i=1 wi Log

ai
Gk−1

(Xi)
)

end

Affine-Invariant Metric. We begin by introducing the exponential and logarithmic maps under
the affine-invariant metric (AIM), followed by the Karcher flow algorithm.

On the manifold S++
d endowed with AIM, the exponential map at a point P ∈ S++

d is given by
(Absil et al., 2004):

ExpaiP (A) = P
1
2 expm

(
P− 1

2AP− 1
2

)
P

1
2 , (A15)

where A ∈ TPS++
d is a tangent vector at P. The logarithmic map, which is the inverse of the

exponential map, is defined as

LogaiP (Q) = P
1
2 logm

(
P− 1

2QP− 1
2

)
P

1
2 , (A16)

for any Q ∈ S++
d .

As shown in Alg. A1, the Karcher flow algorithm computes the weighted Fréchet mean (WFM) on
the SPD manifold through an iterative process. In each iteration, the data points are projected onto
the tangent space at the current estimate Gk−1 using the logarithmic map (Eq. (A16)), a weighted
average is calculated in this tangent space, and the result is mapped back to the manifold using the
exponential map (Eq. (A15)). This algorithm is guaranteed to converge on manifolds with non-
positive curvatures, such as S++

d (Karcher, 1977). We initialize G0 as the identity matrix I and set
the number of iterations K = 1.

Log-Euclidean Metric. Under the log-Euclidean metric (LEM), the WFM has a closed-form ex-
pression provided by Chen et al. (2024b):

G = expm

(∑N

i=1
wi logm(Xi)

)
, (A17)

where X1...N ∈ S++
d , w1...N > 0, and

∑
i wi = 1.
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Log-Cholesky Metric. Similarly, for the log-Cholesky metric (LCM), the WFM also admits a
closed-form solution as shown by Chen et al. (2024b):

G = L −1

(
N∑
i=1

wi⌊L (Xi)⌋+
N∏
i=1

D(L (Xi))
wi

)
, (A18)

where X1...N ∈ S++
d , w1...N > 0, and

∑
i wi = 1.

D.2 WEIGHTED FRÉCHET MEAN ON GRASSMANNIAN MANIFOLDS

Algorithm A2: Karcher Flow Algorithm on the Grassmannian Manifold under ONB Perspective

Input: A set of Grassmannian points X1...N ∈ G̃(q, d)
A set of weights w1...N > 0 with

∑
i wi = 1

Number of iterations K
Output: The WFM G ∈ G̃(q, d)
Initialize G0 = X1

for k ← 1 to K do
Gk ← Ẽxp

gr

Gk−1

(∑N
i=1 wiL̃og

gr

Gk−1
(Xi)

)
end

As shown in Alg. A1, the Karcher flow algorithm computes the WFM on the Grassmannian manifold
through an iterative process. We initialize G0 as the identity matrix Xi and set the number of
iterations K = 1.

D.3 WEIGHTED FRÉCHET MEAN ON SPSD MANIFOLDS

As demonstrated by Bonnabel & Sepulchre (2010), the WFM for a batch of points X1,...N ∈ S+d,q
can be expressed as (WFMgr(U

i
X),WFMg

spd(S
i
X)). Here, WFMgr denotes the WFM on the

Grassmannian manifold, while WFMg
spd(·) represents the WFM on the SPD manifold under metric

g. The matrices Ui
X and Si

X correspond to the canonical representation of Xi.

E CANONICAL REPRESENTATION IN SPSD

Algorithm A3: Computation of Canonical Representation in SPSD manifold

Input: A batch of SPSD matrices X1...N ∈ S+n,q
A constant γ ∈ [0, 1]

Output: A batch of Canonical Representation (Ui
X ,S

i
X)i=1,...,N of SPSD manifold

Um ← Ĩn,q;
(Ui,ΣΣΣi,Vi)i=1,...,N ← SVD((Xi)i=1,...,N )
(Ui)i=1,...,N ← (Ui[:, : q])i=1,...,N ;
if training then

U← GrMean((Ui)i=1,...,N )
Um ← GrGeodesic(Um,U, γ)

end
for i← 1 to N do

(Ui)
⊤Um = Yi(cosΣΣΣi)V

⊤
i

(Ui
X ,S

i
X)← (UiYi,ViY

⊤
i U

⊤
i ΣΣΣiUiYiV

⊤
i )

end

Nguyen et al. (2024) introduced a canonical representation of P in the structure space G̃(q, d)×S++
q .

As shown in Alg. A3, we follow this approach to derive the canonical representation of each point in
S+d,q . Canonical Representation of SPSD matrices is obtained in three steps. This first is to impose

a decomposition on Xi, i.e., Xi ≃ UiΣiU
⊤
i , where Ui ∈ G̃(q, d) and Σi ∈ S++

q . Then we use
the mean of Ui)i=1,...,N as the common subspace, and rotated (Ui,Σi) to the identified common
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subspace, denoted as (Ui
X ,S

i
X). Here, GrMean((Ui)i=1,...,N ) computes the Fréchet mean of its

arguments, as described in Alg. A2, with weights set to w1,...,N = 1
N . GrGeodesic(Um,U, γ)

computes a point on a geodesic (Eq. (A11)) from Um to U at step γ (γ = 0.1 in our experiments).

F OPTIMIZATION

We address the optimization of parameters that are SPD matrices by modeling them within the space
of symmetric matrices and applying the exponential map to the identity matrix.

For any parameter P ∈ G̃(d, q), we parameterize it using a matrix B ∈ Rq,d−q such that[
0 B
−B⊤ 0

]
= [LoggrIn,p

(PP⊤), In,p]. (A19)

With this parameterization, the parameter P can be computed as

P = exp

([
0 B
−B⊤ 0

])
Ĩn,p.

To optimize parameters O ∈ SO(n), we start by generating parameter A ∈ Rn×n, then compute its
skew-symmetric matrix S = A−A⊤. With this parameterization, the parameter P can be computed
as

O = (I− S) (I+ S)
−1
, (A20)

This approach enables us to optimize all parameters within Euclidean spaces, eliminating the need
to employ optimization techniques specific to Riemannian manifolds.

G PROOFS OF THE THEOREMS IN THE MAIN PAPER

Proof of Thm. 5.1 . The ⊕ai and ⊗ai are defined by:

P⊕ai Q = P
1
2QP

1
2 . (A21)

t⊗ai P = Pt (A22)

We begin by showing that homai(·) satisfies Eq. (5). let homai(P) = OPO⊤, with any P,Q ∈
S++
d , then we have

homai(P)⊕ai homai(Q)
(1)
=
(
OPO⊤) 1

2 OQO⊤ (OPO⊤) 1
2

(2)
= OP

1
2O⊤OQO⊤OP

1
2O⊤

= OP
1
2QP

1
2O⊤

= homai(P⊕ai Q).

(A23)

The derivation of Eq. (A23) follows.

(1) follow from Eqs. (11) and (A21).

(2) follows from the fact that P is an SPD matrix and O is an orthogonal matrix.

Now, we proof that homai(·) satisfies Eq. (6). For the ⊗ai, we have

t⊗ai homai(P)
(1)
=
(
OPO⊤)t

(2)
= OPtO⊤

=homai(t⊗ai P).

(A24)

The derivation of Eq. (A24) follows.

(1) follow from Eqs. (11) and (A22).

(2) follows from the fact that P is an SPD matrix and O is an orthogonal matrix.
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Proof of Thm. 5.2 . The ⊕le and ⊗le are defined by:

P⊕le Q = expm(logm(P) + logm(Q)), (A25)

t⊗le P = Pt (A26)
We begin by showing that homle(·) satisfies Eq. (5). For the ⊕le, with any P,Q ∈ S++

d , we have

homle(P)⊕le homle(Q)
(1)
= expm

(
M logm (P)M⊤ +M logm (Q)M⊤)

= expm
(
M (logm (P) + logm (Q))M⊤)

= homle(P⊕le Q).

(A27)

The derivation of Eq. (A27) follows.

(1) follow from Eqs. (12) and (A25).

For ⊗le, we have

t⊗le homle(P)
(1)
=
(
expm

(
M logm (P)M⊤))t

(2)
= expm

(
tM logm (P)M⊤)

=homle(t⊗le P).

(A28)

Proof of Cor. 5.3 . For the ⊕le, with any P,Q ∈ S++
d , O ∈ O(d) we have

homle(P)⊕le homle(Q)
(1)
= expm

(
O (logm (P) + logm (Q))O⊤)

(2)
= O expm ((logm (P) + logm (Q)))O⊤

= homle(P⊕ai Q).

(A29)

The derivation of Eq. (A29) follows.

(1) follow from Eqs. (A25) and (A27).

(2) follows from the fact that P is an SPD matrix and O is an orthogonal matrix.

For the ⊗le, we have

t⊗le homle(P)
(1)
= expm

(
tO logm (P)O⊤)

(2)
= O expm (t logm (P))O⊤

=homle(t⊗le P).

(A30)

The derivation of Eq. (A30) follows.

(1) follow from Eqs. (A26) and (A28).

(2) follows from the fact that P is an SPD matrix and O is an orthogonal matrix.

Proof of Thm. 5.4 . The ⊕lc and ⊗lc are defined by:

t⊗lc P = L −1
(
t⌊L (P)⌋+ D(L (P))t

)
, (A31)

P⊕lc Q = L −1 (⌊L (P)⌋+ ⌊L (Q)⌋+ D(L (P))D(L (Q))) . (A32)

We begin by showing that homlc(·) satisfies Eq. (5). With any P,Q ∈ S++
d ,for ⊕lc, we can rewrite

⊕lc and homlc as

P⊕lc Q = L −1 (expD (logD (L (P)) + logD (L (Q)))) , (A33)

homlc(P) = L −1 (expD (L(P))) , (A34)
where L(·) is given by Eq. (15), logD (F) and expD (F) are given by

logD (F) = ⌊F⌋+ logm(D(F)), (A35)
expD (F) = ⌊F⌋+ expm(D(F)), (A36)
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Then we have

homlc(P)⊕lc homlc(Q)
(1)
= L −1 (expD (L(P) + L(Q)))

(2)
= L −1 (expD (L(P+Q)))

= homlc(P⊕lc Q)

(A37)

The derivation of Eq. (A37) follows.

(1) follow from Eqs. (14) and (A32).

(2) follow from the properties of L(·).

Proof of Thm. 5.5 . The ⊕̃gr and ⊗̃gr are defined by:

U⊕̃grV = expm([LoggrId,q (UU⊤), Id,q])V, (A38)

t⊗̃grU = expm
([
tLoggrIn,q

, Id,q

])
Id,q (A39)

we begin by showing that homgr(·) satisfies Eq. (5). For any U,V ∈ G(q, d), we have

homgr(U)⊕̃gr homgr(V)
(1)
= expm([LoggrIn,q

(OUU⊤O⊤), In,q])OV

(2)
= expm([OLoggrIn,q

(UU⊤)O⊤,OIn,qO
⊤])OV

= expm(O[LoggrIn,q
(UU⊤), In,q]O

⊤)OV

(3)
= O expm([LoggrIn,q

(UU⊤), In,q])O
⊤OV

= O expm([LoggrIn,q
(UU⊤), In,q])V

= homgr(U⊕̃grV).

(A40)

The derivation of Eq. (A40) follows.

(1) follow from Eqs. (16) and (A38).

(2) follows from the fact that Loggr
OIn,qO⊤(OUU⊤O⊤) = OLoggrIn,q

(UU⊤)O⊤, and for O =[
Oq 0
0 Od−q

]
,OIn,qO

⊤ = In,q .

(3) follows from the fact that O is an orthogonal matrix.

Now, we proof that homgr(·) satisfies Eq. (6). The differential homomorphism Φ : G̃(q, d) →
G(q, d),U → UU⊤ exists between G̃(q, d) and G(q, d), and ⊗̃gr is derived from ⊗gr via this
differential homomorphism. Thus, to prove that ⊗̃gr satisfies Eq. (6), it suffices to show that ⊗gr

satisfies Eq. (6). The ⊗gr is defined by:

t⊗gr U = expm
([
tŪ, Id,q

])
Id,q expm

([
¯−tU, Id,q

])
(A41)

For ⊗gr, we have

t⊗gr homgr(UU⊤) = (t⊗̃gr homgr(U))(t⊗̃gr homgr(U))⊤

(1)
= expm(t[LoggrIn,q

(OUU⊤O⊤), In,q])In,q expm(t[LoggrIn,q
(OUU⊤O⊤), In,q])

(2)
= O expm([LoggrIn,q

(UU⊤), In,q])O
⊤In,qO expm([LoggrIn,q

(UU⊤), In,q])O
⊤

= O expm([LoggrIn,q
(UU⊤), In,q])In,q expm([LoggrIn,q

(UU⊤), In,q])O
⊤

= homgr(t⊗gr UU⊤).
(A42)

Since ⊗gr satisfies Eq. (6), we can proof ⊗̃gr satisfies Eq. (6).
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Proof of Thm. 5.6 . The ⊕̃psd,g and ⊗psd,g are defined by:

(UP ,SP )⊕psd,g (UQ,SQ) = (UP ⊕̃grUQ,SP ⊕g SQ), (A43)

t⊗psd,g (UP ,SP ) = (t⊗̃grUP , t⊗g SP ) (A44)

we begin by showing that hompsd,g satisfies Eq. (5). As shown in Eq. (17) For any
(UP ,SP ), (UQ,SQ) ∈ G̃(q, d)× S++

q , we have:

hompsd,g((UP ,SP )⊕psd,g (UQ,SQ))
(1)
= hompsd,g(UP ⊕̃grUQ,SP ⊕g SQ)

= (homgr(UP ⊕̃grUQ), homg(SP ⊕g SQ))

(2)
= (homgr(UP )⊕̃gr homgr(UQ), homg(SP )⊕g homg(SQ))

(3)
= (homgr(UP ),homg(SP ))⊕psd,g (homgr(UQ), homg(SQ))

= hompsd,g(UP ,SP )⊕psd,g hompsd,g(UQ,SQ).
(A45)

The derivation of Eq. (A45) follows.

(1) follow from Eqs. (17) and (A43).

(2) and (3) follow from the fact that homgr and homg are gyro homomorphisms.

For scalar multiplication, we have:

hompsd,g(t⊗psd,g (UP ,SP ))
(1)
= hompsd,g(t⊗̃grUP , t⊗g SP )

= (homgr(t⊗̃grUP ),homg(t⊗g SP ))

(2)
= (t⊗̃gr homgr(UP ), t⊗g homg(SP ))

(3)
= t⊗psd,g (homgr(UP ),homg(SP ))

= t⊗psd,g hompsd,g(UP ,SP ).

(A46)

The derivation of Eq. (A46) follows.

(1) follow from Eqs. (17) and (A44).

(2) and (3) follow from the fact that homgr(·) and homg(·) are gyro homomorphisms.
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