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ABSTRACT

Compound Al systems that combine multiple LLM calls, such as Self-Refine and
Multiagent-Debate, are increasingly critical to Al advancements. Perhaps surpris-
ingly, we find empirically that choosing different models for different modules
has a substantial effect on these systems’ performance. Thus, we ask a core ques-
tion in compound Al systems: for each LLM call or module in the system, how
should one decide which LLM to use? As a first step, we formally show that the
model selection problem (MSP) is computationally intractable. Next, we propose
LLMSELECTOR, a principled framework that learns LLMs’ strengths and weak-
nesses across different modules through an LLM evaluator and then performs an
efficient optimization to select which models to use in any given compound sys-
tem with a bounded number of modules. Our theoretical analysis gives mathe-
matical conditions under which LLMSELECTOR only requires LLM calls scaling
linearly with the number of modules and the number of LLMs to identify the
optimal model selection. Extensive experiments across diverse tasks, including
multimodal question answering, health knowledge comprehension, and advanced
reasoning challenges, demonstrate that LLMSELECTOR achieves up to 79% gains
for compound Al systems like Self-Refine, Multiagent-Debate, and Majority-Vote
with frontier reasoning models including GPT-5 and Gemini 2.5 Pro. Similarly,
LLMSELECTOR unlocks up to 73% performance improvements as well when us-
ing general-purpose models such as GPT-40 and Claude 3.5 Sonnet.

1 INTRODUCTION
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Figure 1: Demonstration of LLMSELECTOR on Self-Refine, a widely-used compound Al system.
Self-Refine consists of three modules: a generator, a critic, and a refiner. (a) Vanilla Self-Refine re-
quires users to manually select a model for all modules, limited by the model’s ability to handle each
module effectively. (b) Instead, our proposed LLMSELECTOR autonomously learns to select the
best-suited model per module while considering interdependencies between modules for end-to-end
optimization. (c) On a real-world dataset (Word Sorting), LLMSELECTOR brings large performance
gains (14%) to Self-Refine over manually allocating any fixed model. Note that LLMSELECTOR is
also applicable to many other compound systems such as Majority-Vote and Multiagent-Debate.

Researchers and developers are increasingly leveraging large language models (LLMs) by compos-
ing multiple LLM calls in a compound Al system to tackle complex tasks (Du et al.| 2024; Zhang
et al., 2024bj [Madaan et al., 2023; [DeepMind, 2023; [Shinn et al., [2023; Renze & Guven, 2024;
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Zaharia et al.,|2024). For example, a common practice is to use one LLM call to generate one initial
answer, one LLM call to give feedback, and one more call to refine the answer based on the feed-
back, known as Self-Refine (Renze & Guven, [2024; Madaan et al., [2023; Ji et al., [2023). Another
example is Multiagent-Debate (Du et al.,|2024; Liang et al.,|2024; Khan et al.,|2024), where multiple
LLM calls are made to propose initial answers and then debate which ones are correct. Compared to
making a single model call, significant improvements are possible because the compound systems
decompose challenging tasks into simpler sub-tasks, and perform one LLM call for each sub-task.

Most existing work on compound systems focuses on optimizing prompts used in individual mod-
ules and/or module interactions, while using the same LLM for all modules (Khattab et al.} 2024;
Yuksekgonul et al., |2024; [Wu et al 2023} (Chase et al., 2022). While this simplifies compound
system design, it leaves important questions unaddressed. In particular, does using different models
across modules improve a compound system’s performance? Perhaps surprisingly, we find empiri-
cally that these choices have a substantial effect on quality: different models are better at different
modules. Then how should one select which model to use for each module? With the growing num-
ber of LLM calls in compound systems and available LLMs, automated model selection is critical
to enhance generation quality, simplify decision-making, and improve accessibility for non-experts.

We take a first step by systematically studying model selection in one of the most widely used
families of systems, namely, static compound Al systems, i.e., those where the number of modules,
the sequencing of module calls, and the mapping between modules and models are fixed. In this
context, we find that allocating different LLMs to different modules leads to a significant increase in
performance than allocating the same LLM to all modules (Figure[I). As an example, consider again
the Self-Refine system (Madaan et al., 2023) consisting of three modules: a generator, a critic, and
arefiner. LLM A may be better at providing feedback but worse at generating and refining answers
than LLM B. In this case, allocating LLM A for the critic and LLM B for the generator and refiner
is better than allocating either one to all modules.

Next, we formulate the model selection problem (MSP), i.e., identifying the best model each module
should use to maximize the overall performance. MSP is challenging in principle, as it is infeasible
to exhaustively search the exponentially large space of all model choices. More precisely, there are
|M|IV! choices, where |V| is the number of components, and |M| is the number of models. We
show that choosing the models optimally involves solving a problem that is NP-Hard.

However, in this paper we show that solving MSP is possible with much lower complexity, specif-
ically, O(]M| - |V|). This leverages two key insights we make that apply to many cases: (i) the
end-to-end performance can be monotonic in per-module performance, i.e., if you replace the model
of a component with a better model, the end-to-end system’s performance will improve, and (ii)
per-module performance can be estimated accurately by an LLM evaluator. This motivates us to de-
sign LLMSELECTOR, a framework that tackles MSP efficiently for any static system with provable
guarantees on performance optimality and linear computation complexity under mild assumptions.
LLMSELECTOR first learns the strengths and weaknesses of each model on different modules via an
LLM evaluator. Then it initializes each module with the learned best model and iteratively updates
each module. This is applicable to any compound system whose number of modules is fixed. Fur-
thermore, LLMSELECTOR incurs only limited overhead. We provide the mathematical conditions
under which LLMSELECTOR finds the optimal solution for MSP with linear complexity, i.e., uses
a number of LLM calls that is linear in the number of modules and models (Section [)).

We conduct systematic experiments on a diverse set of compound Al systems using frontier rea-
soning models (including GPT-5, Claude Sonnet 4, and Gemini 2.5 Pro) as well as general-purpose
LLMs (including GPT-40, Claude 3.5 Sonnet, and Gemini 1.5 Pro), for a range of tasks, such as mul-
timodal question answering, health knowledge comprehension, and advanced reasoning challenges.
Given a task, choosing a model carelessly easily leads to more than 50% accuracy drop than using
a carefully selected model. LLMSELECTOR achieves 2%-79% performance gains compared to al-
locating the same LLM to all modules using reasoning models (Figure[5]in Section [5) and 4%-73%
using general-purpose models (Figure[6]in Section[5). LLMSELECTOR also outperforms advanced
techniques specializing in prompt optimization (Table[3]in the appendix). This further highlights the
importance of model selection for compound Al systems. In short, our main contributions are:

* Model selection problem. We formulate the model selection problem (MSP) for com-
pound Al systems, an increasingly important but under-explored problem. We have found
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empirically that allocating different models to different modules has large performance
effects (up to 100%), and show formally that optimizing MSP is NP-Hard.

* The LLMSELECTOR framework. To optimize MSP, we propose LLMSELECTOR, a
principled framework that learns the strengths and weaknesses of each model across dif-
ferent modules via an LLM evaluator, and then performs an efficient optimization to select
which modules to use. We give mathematical conditions under which LLMSELECTOR
finds the optimal solution for MSP with linear complexity, i.e., uses a number of LLM
calls that is linear in the number of modules and models.

* LLMSELECTOR’s practical effectiveness. Through extensive experiments on practical
compound systems using frontier reasoning models (such as GPT-5 and Gemini 2.5 Pro)
and general-purpose LLMs (including GPT-40, Claude 3.5 Sonnet, and Gemini 1.5 Pro),
we have found that LLMSELECTOR offers substantial performance gains (2%-79%) over a
range of tasks including multimodal question answering and complex reasoning challenges.

2 RELATED WORK

Compound Al system optimization. Prompt engineering and module interaction design is a cen-
tral topic of compound Al system optimization. While existing work often relies on manually tuning
them (DeepMind, [2023; |Shinn et al., [2023; [Zhou et al.| 2024b; [Pryzant et al., 2023} [Fourney et al.|
2024; [Zhao et al., 2024; Lu et al., 2023} |Zhao et al., [2024)), recent work studies how to automate
this process, such as DSPy (Khattab et al.| [2024])), Textgrad (Yuksekgonul et al., 2024), and Auto-
gen (Wu et al.} 2023} Zhang et al.,|2024a). For example, DSPy uses Bayesian optimization to adjust
prompts for all modules, while Textgrad uses textual feedback to optimize prompts for individual
modules. On the other hand, our work focuses on model selection, a third axis for compound system
optimization, complementary to prompt optimization and module interaction design.

Model market utilization. Model market utilization studies how to use all available models for
downstream tasks (Lu et al., 2024a; Ramirez et al., |[2024; Miao et al., [2023). Extensive work has
built various techniques such as model cascade (Chen et al., 2024b), model routing (Hu et al.| [2024;
Stripelis et al., 2024), and mixture-of-experts (Wang et al., [2024a). While they mainly focus on
single-stage tasks such as classification (Chen et al.,2020; [Huang et al.,|2025)) and question answer-
ing (Chen et al.| [2024b} Shekhar et al., 2024)), we study model utilization for compound Al systems
requiring multiple stages. This is much more challenging as the search space is much larger.

Model selection. Model selection is a critical part of classic ML and has been extensively studied
in the literature (Kohavi, [1995; |Akaike, |1974; [Elsken et al., [2019; [Raschka, [2018). While classic
techniques focus on model selection for one ML task (He et al.| 2021} |[Feurer et al., |2022; |Salehin
et al., [2024)), compound systems involve multiple ML tasks. Thus, model selection becomes more
challenging as the search space is exponentially large in the number of tasks.

LLM-as-a-judge. LLMs are widely used for judging complex generations, termed LLM-as-a-
judge. Researchers have extensively studied how LLM judges align with human preference (Zheng
et al., 2023} |Shankar et al.| [2024), how to improve its quality (Kim et al.| [2023)), how to evalu-
ate it (Chiang et al., 2024; |Chen et al., [2024a; [Zeng et al., |2023), as well as many other applica-
tions (Johri et al., 2025} [Dhole et al., [2024; |Gu et al., 2024} |[Zhou et al., [2024a). In this paper, we
find a novel use case of LLM-as-a-judge: evaluating module-wise performance to accelerate model
selection optimization.

3 COMPOUND AI SYSTEMS: SCOPES AND EXAMPLES

Static Compound Al systems. As defined by (Zaharia et al., [2024), compound Al systems ad-
dress Al tasks by synthesizing multiple components that interact with each other. Here, we denote a

static compound Al system by a directed acyclic graph G £ (V, E), where each node v € V' denotes
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(a) Self-Refine (b) Multiagent-Debate

Figure 2: Examples of static compound Al systems. (a) Self-Refine system. (b) Multiagent-Debate
system. The diamond and star represent the input and output modules, and the circles represent the
LLM modules. Directed lines represent data flow. We omit query inputs for simplicity.

one module, and each directed edge e £ (u,v) € E indicates that the output from module  is sent
to module v as input.

LLM modules. An LLM module is a module that utilizes an LLM to process the inputs. It typi-
cally concatenates all inputs as a text snippet (via some prompt template), obtain an LLM’s response
to this snippet, and send the response as output (potentially after some postprocessing). Throughout
this paper, all modules are LLM modules to simplify notations. In practice, if a module is not an
LLM module, one can either merge it into an LLM module or convert it into an LLM module by
conceptually “adding” an LLM to the module.

Examples. Consider two examples of static compound Al systems, Self-Refine and Multiagent-
Debate. Self-Refine, as shown in Figure a), consists of three modules: a generator, a critic, and
a refiner. Given a query, the generator produces an initial answer. The critic provides feedback
on the initial answer, and the refiner uses the feedback to improve the initial answer. Figure 2[b)
shows the architecture of a six-module system: Multiagent-Debate. Here, three generators first give
their initial answers to a question, then three debaters debate with each other based on these initial
answers. Refinements and debates can be iterative, but we focus on only one iteration for simplicity.

Notations. Tableu]in Appendixlélists our notations. We also use f;_, to indicate a function that
is the same as function f except that the value ¢ is mapped to the value k.

4 THE MODEL SELECTION PROBLEM: MODELING AND OPTIMIZATION
This section presents how to model and optimize model selection for static compound Al systems.

4.1 PROBLEM STATEMENT

Consider a static compound Al system G' = (V, E) and aset of LLMs M = {1,2,--- ,|M]|} to use.
Let F : V — M denote all possible model allocations, each of which allocates an LLM k£ € M to
a module v € V. Given a task distribution D, the performance of the compound Al system using
the model allocation f € Fis P(f) = E.cp[p(f, 2)]. Here, z denotes a task sampled from the data
distribution, and p(f, z) is the performance of the compound Al system on the given task z using
the allocation f. The model selection problem is modeled as maximizing the expected performance

I;lggP(f) (1

4.2 THE ASSUMPTIONS

Problem |I]is challenging without any assumptions. In fact, as the search space grows exponentially
in the number of modules |V, we can actually show that Problem [1]is NP-Hard.

Lemma 4.1. Problem[l]is NP-Hard in |V | (number of modules).

The full proof is left to Appendix [B| The proof key is reducing any 3-SAT to MSP. This can be
done by mapping modules to Boolean variables and model allocations to variable assignments, and
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Figure 3: LLMSELECTOR workflow. LLMSELECTOR takes as input a compound Al system’s ar-
chitecture, a pool of candidate LLMs, and a training dataset consisting of question-answer pairs. The
first step, quality learning, uses an LLM evaluator to learn each model’s effectiveness on different
modules. The second step, module-wise ascent, iteratively optimizes model allocation to one mod-
ule while fixing other modules’ allocations. This is repeated until no performance gain is possible
or a training budget B is reached. Finally, LLMSELECTOR returns an optimized model allocation.

a clause’s satisfiability to model allocations’ correctness on a query. In the following, we list our
assumptions to enable tractable analysis.

Binary performance. For simplicity, we only consider binary performance, i.e., p(f, z) € {0,1}.

Decomposition to per-module performance. In classic computing systems such as a hardware
stack, optimizing individual components (such as CPU, GPU, and memory) often leads to better
overall performance. Similarly, improving individual modules’ quality should also lead to better
overall quality of a compound Al system. Here we assume that a compound system’s performance is
a monotone function of individual modules’ performance. Formally, let p;(f, z) denote module v;’s
performance on the task z using allocation f. Then the end-to-end performance can be decomposed
as p(f,2) = h(p1(f,2),p2(f,2), -+, p(f, 2)), where h(-) is monotonically increasing.

Monotone module-wise performance. The module-wise performance needs to satisfy certain
properties to enable us to analyze the interplay between individual modules and the compound sys-
tems. In this paper, we focus on module-wise performance p; with the following two conditions.

* p; is intra-monotone:p; (fik, z) > pi(fiswr,2) = pi(flp2) = pi(fl 4. 2). In
simple terms, p; induces a “ranking” for each module: no matter how models are allocated
to other modules, allocating model & to a given module is always “better” than model %'.

* p; is inter-monotone: p;(fik, 2) > pi(fisw,2) = Y5, 0;(flp2) = i (fl 4, 2). In
other words, if module ¢th performance is higher by replacing its allocated model from A
to B, then such a replacement should not hurt other modules’ performance.

Do the assumptions always hold? The above two conditions simplify our analysis, but they are not
always satisfied in practice. In these cases, while our analysis may not hold, LLMSELECTOR is still
applicable and demonstrates superior performance (as shown later in Section [5).

Optimality Characterization. Suppose the module-wise performance is both intra-monotone and
inter-monotone. Then we are able to study the optimal allocation via the lens of module-wise per-
formance. In particular, we first argue that it is possible to find a model allocation that maximizes
the performance for each module. This is because the module-wise performance is inter-monotone:
improving the model used for one module can only improve the performance for other modules.
The second observation is that a module-wise optimal allocation must also be the globally optimal
allocation, as the end-to-end performance is monotonic with individual module-wise performance.

4.3 THE LLMSELECTOR FRAMEWORK

The above analysis motivates our design of LLMSELECTOR, a principled framework for efficiently
optimizing model allocation in compound Al systems.



Under review as a conference paper at ICLR 2026

Figure 3| gives an overview of how LLMSELECTOR works. It takes the compound Al system archi-
tecture G, the set of LLM M, a training dataset Dy, and a training budget B (i.e., number of model
calls divided by |V| - |Dr|) as input, and returns an optimized model allocation f as the output.
Here, each data point in the training dataset z = (¢, a) € Dy is a question-answer pair specifying
a possible question and desired answer. LLMSELECTOR consists of two stages, namely, quality
learning and module-wise descent.

Quality learning. In the first stage, an allocation f® is learned via an LLLM evaluator, which
estimates the ith module performance for any given module i, task z and allocation f, denoted
by pi(f, 2). Specifically, for a given z, we start with some random allocation f*, and iteratively
update each module with the best module-wise performance estimated by the LLM evaluator:
[ max  pi(f,2),wherei=1,2,--- |V]. 2)
F3k,f=120"

We take the majority vote as the learned allocation, i.e., f* < mode({f*!V1}.cp, ).

Module-wise ascent. The learned allocation is not necessarily optimal because the LLM evaluator
can be noisy, and thus we perform additional search based on the ground-truth overall performance.
Starting with the learned allocation f¢, we iteratively update each module by the model with the
best overall performance until budget is reached or no more improvement is possible:

fi+  max Z p(f,z),where f* = fi' =i (mod |V]). 3)

F3kF=F 0 oD,
The details can be found in Algorithm [T} The following result shows when LLMSELECTOR can
identify the optimal allocation, and we leave the proof to Appendix [B]due to space limit.

Theorem 4.2. Algorithm|l|always terminates. Suppose Problem|l|has a unique optimal solution,
for each task z in Dy, the optimal allocation is unique, and the LLM evaluator p; = p;. Then for
some constant ¢ > 0, with probability at least 1 — O(exp(|V|1n | M| — ¢|Dy,|)), Algorithm[I| returns
the optimal solution to Problem|I|for any training budget B > |M||V|.

Theorem[d.2]reveals several properties of LLMSELECTOR. First, LLMSELECTOR is guaranteed to
converge. Second, assuming that the LLM evaluator is perfect, a small training set is sufficient to
find the optimal model allocation. Indeed, the training data size only needs to grow linearly with
the number of modules and log-linearly with the number of models with high probability. Finally,
the number of iterations required to find the optimal solution with high probability is linear to the
number of modules, much faster than a brute-force approach.

Algorithm 1: How LLMSELECTOR works.
Input: A compound Al system G = (V, E), a pool of K candidate LLMs, a training
dataset Dy, and a training budget B

Output: An optimized model allocation f
1 Choose arandom f® € F// initialize

» Compute f* by equation (I%I) Vz € Dy, i=1,- - ,min{|V|],| £ ]}
3 fO < mode({f>™™MIVhlstl}y e ) // quality learning
4 Compute f* by equation (3) Vi = 1, -+, min{ L‘%j —|V],0}]// module-wise

ascent

s return f* // optimized model choices

5 EXPERIMENTS

We compare the performance of LLMSELECTOR with vanilla compound Al systems using real-
world LLM models in this section. Our goal is three-fold: (i) understanding when and why com-
pound systems optimized by LLMSELECTOR outperform vanilla systems quantitatively, (ii) mea-
suring the performance gains enabled by LLMSELECTOR across different tasks qualitatively, and
(iii) validating whether LLMSELECTOR is applicable to different types of Al models.
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Figure 4: A case study on the TableArithmetic dataset. (a) An example question in Table Arithmetic.
It has a table of two rows, ID and Task, and the goal is to solve a task corresponding to a given ID. (b)
We use a two-module system, Locate-Solve. The first module extracts the task, and the second mod-
ule solves it. (c) Vanilla systems using a fixed model fail at the task. (d) LLMSELECTOR answers
the question correctly, as it learns to use the model best-suited for each module. (e) GPT-5 performs
the best for module 1 while Gemini 2.5 Flash Lite is the best for module 2. LLMSELECTOR learns
to allocate GPT-5 to module 1 and Gemini 2.5 Flash Lite to module 2. Thus, its performance is
substantially better than using any fixed model. (f) Compared to naive approaches, LLMSELECTOR
is much more efficient. For example, it requires 75% fewer data than exhaustive search to converge.

Experiment setups. The main experiments are conducted with | M| = 8 frontier models, includ-
ing GPT-5, GPT-5 Mini, GPT-5 Nano, Claude Sonnet 4, Claude 3.5 Haiku, Gemini 2.5 Pro, Gemini
2.5 Flash, and Gemini 2.5 Flash Lite. More details can be found in Appendix [C.T.

5.1 A CASE STUDY ON TABLEARITHMETIC

We start with a case study on TableArithmetic, a synthetic dataset consisting of 100 questions. As
shown in Figure [d(a), each question involves a table consisting of “ID” and “task” rows. The goal
is to solve the task corresponding to a specific ID. ID is a 10-digit number, and the task is a math
problem like “What is X + (10.9 > 10.11)?”, where X is a random integer between 1 and 100. The
table in each question has 200 entries in total.
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Figure 5: LLMSELECTOR’s performance using frontier reasoning models including GPT-5 and
Gemini 2.5 Pro. The error bar is the standard deviation over 5 runs. Overall, we have observed that
LLMSELECTOR consistently offers substantial (2% to 79%) performance improvements compared
to using any fixed reasoning models.

The Locate-Solve system. We use the Locate-Solve system using two modules for the case study.
As shown in Figure @b), the first module, locate, extracts the task with the corresponding ID, and
the second module, solve, takes the first module’s output and then answers the extracted task.

Performance gains. We first observe that vanilla systems using one fixed model all fail to address
this question. Figure fc) gives a few example responses. GPT-5 correctly solves the first task, but
then it incorrectly believes 10.9 < 10.11 and thus the final answer is still incorrect. Claude Sonnet 4
and Gemini 2.5 Flash Lite both fail at the first module. On the other hand, LLMSELECTOR learns to
use GPT-5 for the locate module and Gemini 2.5 Flash Lite for the solve module. As shown in Figure
(), this leads to the correct answer 49. This is because using GPT-5 for the locate module correctly
extracts the desired task, and using Gemini 2.5 Flash Lite solves the extracted task perfectly. To
further understand this, Figure d[e) shows the end-to-end as well as per-module performance of the
system using each fixed model and LLMSELECTOR. Here, module 1 is considered correct if the
extracted task is the desired task, and module 2 is considered correct if, given the desired task, it
returns the correct final answer. One can see that GPT-5 is the best for module 1, but Gemini 2.5
Flash Lite is the best for module 2. Notably, LLMSELECTOR learns to use the best-suited model
for each module without ground-truth per-module performance labels.

Optimizer effects. Next, we seek to understand the search efficiency of LLMSELECTOR. In
particular, we compare LLMSELECTOR with two baselines: exhaustive search and greedy search.
Given an LLM API budget B, exhaustive search samples B model allocations (without replace-
ments) from all possible allocations, and then returns the one with the highest end-to-end per-
formance. The greedy search iteratively chooses one module and allocates to it the model with
the highest end-to-end performance. As shown in Figure @{f), we have found that LLMSELEC-
TOR consistently outperforms these baselines. In particular, while exhaustive search needs to ex-
plore all |[M|IVl = 82 = 64 model allocations to ensure optimality, LLMSELECTOR needs only
|M||V| = 8 -2 = 16 model allocations, resulting in 75% cost reduction. Interestingly, there is a
tradeoff between greedy search and exhaustive search: greedy search’s accuracy is higher for large
budgets, while exhaustive search’s performance is better for smaller budgets. One possibility is
that exhaustive search imposes more diversity and inefficiency. When the budget is small, diversity
implies a greater likelihood of running into a good allocation. When the budget is large, diversity
is less important, and the efficiency of greedy search becomes obvious. Notably, LLMSELECTOR
outperforms them for all budgets.
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Figure 6: LLMSELECTOR’s performance using general-purpose models including GPT-40, Claude
3.5 Sonnet, and Gemini 1.5 Pro. The error bar is the standard deviation over 5 runs. Overall, we have
observed that LLMSELECTOR consistently offers substantial performance improvements compared
to using any fixed models.

5.2 MEASURING PERFORMANCE IMPROVEMENTS QUANTITATIVELY

Now we study the performance of LLMSELECTOR applied on different tasks, focusing on both
frontier reasoning models and general-purpose models. For each task, we conduct five independent
runs with random train-test splits, and then report the average performance as well as variance (the
error bars) of using fixed models and LLMSELECTOR.

Frontier models. Figure |5| shows the performance of LLMSELECTOR using frontier reasoning
models applied on four compound Al systems. In particular, Majority-Vote is measured on Math-
Vista (Lu et al.,[2024b)) and MathVQA (Fu et al.||2024), Self-Refine is assessed on Word Sorting and
Buggy Tables (Kazemi et al., |2025), Multiagent-Debate is evaluated on Health (Wang et al., 2024b)
and Management (Du et al.| [2025)), and Locate-Solve is reported on Table Arithmetic and TableBias.
More details on the studied compound systems (such as Majority-Vote) and the datasets can be
found in Appendix [C.I. Overall, we observe that no LLM is universally better than all other LLMs
for all tasks. For example, GPT-5 performs the best on TableArithmetic, but Claude Sonnet 4 is the
best for MathVQA. Second, LLMSELECTOR offers 4%-73% performance gains consistently across
different datasets and compound systems. This suggests that LLMSELECTOR is widely applicable.

General-purpose models. Applying LLMSELECTOR to general-purpose models also leads to
substantial performance improvements. In fact, as shown in Figure[6} LLMSELECTOR brings an up
to 73% performance increase when only GPT-40, Claude 3.5 Sonnet, and Gemini 1.5 Pro are avail-
able. This suggests that LLMSELECTOR is effective across different types of LLMs. Additional
experiments and details can be found in Appendix [C.2 (and in particular Table [3).

5.3 UNDERSTANDING LLMSELECTOR’S IMPROVEMENTS QUALITATIVELY

To further understand when and why LLMSELECTOR outperforms allocating the same model to
all modules, we dive into a few specific examples and compare how LLMSELECTOR’s generations
differ from these by allocating the same LLM. For example, we observe that LLMSELECTOR learns
to allocate different LLMs to answer generators for diverse generations, but the same LLMs to
debators. More details and discussions are presented in Appendix [C.3]due to space limit.

6 CONCLUSION

The complexity of orchestrating multiple LLM calls in compound Al systems underscores the crit-
ical need for strategic model selection to optimize these systems’ performance across diverse tasks.
In this paper, we formalize and analyze the complexity of the model selection problem (MSP), and
then propose LLMSELECTOR, a principled framework that identifies optimal model selection with
provable performance and complexity guarantees, whose effectiveness has also been justified via
extensive experiments on visual question answering, domain-specific knowledge comprehension,
algorithmic logic challenges, and many other tasks. Extending LLMSELECTOR for user-defined
inference-time budget is an interesting future direction. Discussion with Al system developers indi-
cates that joint optimization of model selection and prompting methods is another open problem.
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