
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LLMSELECTOR: TOWARDS MODEL SELECTION OPTI-
MIZATION FOR COMPOUND AI SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Compound AI systems that combine multiple LLM calls, such as Self-Refine and
Multiagent-Debate, are increasingly critical to AI advancements. Perhaps surpris-
ingly, we find empirically that choosing different models for different modules
has a substantial effect on these systems’ performance. Thus, we ask a core ques-
tion in compound AI systems: for each LLM call or module in the system, how
should one decide which LLM to use? As a first step, we formally show that the
model selection problem (MSP) is computationally intractable. Next, we propose
LLMSELECTOR, a principled framework that learns LLMs’ strengths and weak-
nesses across different modules through an LLM evaluator and then performs an
efficient optimization to select which models to use in any given compound sys-
tem with a bounded number of modules. Our theoretical analysis gives mathe-
matical conditions under which LLMSELECTOR only requires LLM calls scaling
linearly with the number of modules and the number of LLMs to identify the
optimal model selection. Extensive experiments across diverse tasks, including
multimodal question answering, health knowledge comprehension, and advanced
reasoning challenges, demonstrate that LLMSELECTOR achieves up to 79% gains
for compound AI systems like Self-Refine, Multiagent-Debate, and Majority-Vote
with frontier reasoning models including GPT-5 and Gemini 2.5 Pro. Similarly,
LLMSELECTOR unlocks up to 73% performance improvements as well when us-
ing general-purpose models such as GPT-4o and Claude 3.5 Sonnet.

1 INTRODUCTION

(a) Vanilla Self-Refine (c) Overall Performance(b) Proposed LLMSELECTOR

32

53 52

67

0%

20%

40%

60%

80%

A
cc
ur
ac

y

C
la

ud
e

So
nn

et
 4

LL
M

SE
LE

C
TO

R

G
em

in
i 2

.5
 P

ro

G
PT

-5

x
GPT-5GPT-5 GPT-5

Claude
Sonnet 4

Claude
Sonnet 4

Claude
Sonnet 4

Gemini
2.5 Pro

Gemini
2.5 Pro

Gemini
2.5 Pro

GPT-5Claude
Sonnet 4

Gemini
2.5 Pro

generator refinercritic

Figure 1: Demonstration of LLMSELECTOR on Self-Refine, a widely-used compound AI system.
Self-Refine consists of three modules: a generator, a critic, and a refiner. (a) Vanilla Self-Refine uses
one fixed model for all modules, limited by the model’s ability to handle each module effectively.
(b) Instead, our proposed LLMSELECTOR learns to select the best-suited model per module while
considering interdependencies between modules to optimize the compound system as a whole. (c)
This allows LLMSELECTOR to bring substantial performance gains (14%) over the best fixed model
on a real-world dataset Word Sorting.

Researchers and developers are increasingly leveraging large language models (LLMs) by compos-
ing multiple LLM calls in a compound AI system to tackle complex tasks (Du et al., 2024; Zhang
et al., 2024b; Madaan et al., 2023; DeepMind, 2023; Shinn et al., 2023; Renze & Guven, 2024;

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Zaharia et al., 2024). For example, a common practice is to use one LLM call to generate one initial
answer, one LLM call to give feedback, and one more call to refine the answer based on the feed-
back, known as Self-Refine (Renze & Guven, 2024; Madaan et al., 2023; Ji et al., 2023). Another
example is Multiagent-Debate (Du et al., 2024; Liang et al., 2024; Khan et al., 2024), where multiple
LLM calls are made to propose initial answers and then debate which ones are correct. Compared to
making a single model call, significant improvements are possible because the compound systems
decompose challenging tasks into simpler sub-tasks, and perform one LLM call for each sub-task.

Most existing work on compound systems focuses on optimizing prompts used in individual mod-
ules and/or module interactions, while using the same LLM for all modules (Khattab et al., 2024;
Yuksekgonul et al., 2024; Wu et al., 2023; Chase et al., 2022). While this simplifies compound
system design, it leaves important questions unaddressed. In particular, does using different models
across modules improve a compound system’s performance? Perhaps surprisingly, we find empiri-
cally that these choices have a substantial effect on quality: different models are better at different
modules. Then how should one select which model to use for each module? With the growing num-
ber of LLM calls in compound systems and available LLMs, automated model selection is critical
to enhance generation quality, simplify decision-making, and improve accessibility for non-experts.

We take a first step by systematically studying model selection in one of the most widely used
families of systems, namely, static compound AI systems, i.e., those where the number of modules,
the sequencing of module calls, and the mapping between modules and models are fixed. In this
context, we find that allocating different LLMs to different modules leads to a significant increase in
performance than allocating the same LLM to all modules (Figure 1). As an example, consider again
the Self-Refine system (Madaan et al., 2023) consisting of three modules: a generator, a critic, and
a refiner. LLM A may be better at providing feedback but worse at generating and refining answers
than LLM B. In this case, allocating LLM A for the critic and LLM B for the generator and refiner
is better than allocating either one to all modules.

Next, we formulate the model selection problem (MSP), i.e., identifying the best model each module
should use to maximize the overall performance. MSP is challenging in principle, as it is infeasible
to exhaustively search the exponentially large space of all model choices. More precisely, there are
|M ||V | choices, where |V | is the number of components, and |M | is the number of models. We
show that choosing the models optimally involves solving a problem that is NP-Hard.

However, in this paper we show that solving MSP is possible with much lower complexity, specif-
ically, O(|M | · |V |). This leverages two key insights we make that apply to many cases: (i) the
end-to-end performance can be monotonic in per-module performance, i.e., if you replace the model
of a component with a better model, the end-to-end system’s performance will improve, and (ii)
per-module performance can be estimated accurately by an LLM evaluator. This motivates us to de-
sign LLMSELECTOR, a framework that tackles MSP efficiently for any static system with provable
guarantees on performance optimality and linear computation complexity under mild assumptions.
LLMSELECTOR first learns the strengths and weaknesses of each model on different modules via an
LLM evaluator. Then it initializes each module with the learned best model and iteratively updates
each module. This is applicable to any compound system whose number of modules is fixed. Fur-
thermore, LLMSELECTOR incurs only limited overhead. We provide the mathematical conditions
under which LLMSELECTOR finds the optimal solution for MSP with linear complexity, i.e., uses
a number of LLM calls that is linear in the number of modules and models (Section 4).

We conduct systematic experiments on a diverse set of compound AI systems using frontier rea-
soning models (including GPT-5, Claude Sonnet 4, and Gemini 2.5 Pro) as well as general-purpose
LLMs (including GPT-4o, Claude 3.5 Sonnet, and Gemini 1.5 Pro), for a range of tasks, such as mul-
timodal question answering, health knowledge comprehension, and advanced reasoning challenges.
Given a task, choosing a model carelessly easily leads to more than 50% accuracy drop than using
a carefully selected model. LLMSELECTOR achieves 2%-79% performance gains compared to al-
locating the same LLM to all modules using reasoning models (Figure 5 in Section 5) and 4%-73%
using general-purpose models (Figure 6 in Section 5). LLMSELECTOR also outperforms advanced
techniques specializing in prompt optimization (Table 3 in the appendix). This further highlights the
importance of model selection for compound AI systems. In short, our main contributions are:

• Model selection problem. We formulate the model selection problem (MSP) for com-
pound AI systems, an increasingly important but under-explored problem. We have found

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

empirically that allocating different models to different modules has large performance
effects (up to 100%), and show formally that optimizing MSP is NP-Hard.

• The LLMSELECTOR framework. To optimize MSP, we propose LLMSELECTOR, a
principled framework that learns the strengths and weaknesses of each model across dif-
ferent modules via an LLM evaluator, and then performs an efficient optimization to select
which modules to use. We give mathematical conditions under which LLMSELECTOR
finds the optimal solution for MSP with linear complexity, i.e., uses a number of LLM
calls that is linear in the number of modules and models.

• LLMSELECTOR’s practical effectiveness. Through extensive experiments on practical
compound systems using frontier reasoning models (such as GPT-5 and Gemini 2.5 Pro)
and general-purpose LLMs (including GPT-4o, Claude 3.5 Sonnet, and Gemini 1.5 Pro),
we have found that LLMSELECTOR offers substantial performance gains (2%-79%) over a
range of tasks including multimodal question answering and complex reasoning challenges.

2 RELATED WORK

Compound AI system optimization. Prompt engineering and module interaction design is a cen-
tral topic of compound AI system optimization. While existing work often relies on manually tuning
them (DeepMind, 2023; Shinn et al., 2023; Zhou et al., 2024b; Pryzant et al., 2023; Fourney et al.,
2024; Zhao et al., 2024; Lu et al., 2023; Zhao et al., 2024), recent work studies how to automate
this process, such as DSPy (Khattab et al., 2024), Textgrad (Yuksekgonul et al., 2024), and Auto-
gen (Wu et al., 2023; Zhang et al., 2024a). For example, DSPy uses Bayesian optimization to adjust
prompts for all modules, while Textgrad uses textual feedback to optimize prompts for individual
modules. On the other hand, our work focuses on model selection, a third axis for compound system
optimization, complementary to prompt optimization and module interaction design.

Model market utilization. Model market utilization studies how to use all available models for
downstream tasks (Lu et al., 2024a; Ramı́rez et al., 2024; Miao et al., 2023). Extensive work has
built various techniques such as model cascade (Chen et al., 2024b), model routing (Hu et al., 2024;
Stripelis et al., 2024), and mixture-of-experts (Wang et al., 2024a). While they mainly focus on
single-stage tasks such as classification (Chen et al., 2020; Huang et al., 2025) and question answer-
ing (Chen et al., 2024b; Shekhar et al., 2024), we study model utilization for compound AI systems
requiring multiple stages. This is much more challenging as the search space is much larger.

Model selection. Model selection is a critical part of classic ML and has been extensively studied
in the literature (Kohavi, 1995; Akaike, 1974; Elsken et al., 2019; Raschka, 2018). While classic
techniques focus on model selection for one ML task (He et al., 2021; Feurer et al., 2022; Salehin
et al., 2024), compound systems involve multiple ML tasks. Thus, model selection becomes more
challenging as the search space is exponentially large in the number of tasks.

LLM-as-a-judge. LLMs are widely used for judging complex generations, termed LLM-as-a-
judge. Researchers have extensively studied how LLM judges align with human preference (Zheng
et al., 2023; Shankar et al., 2024), how to improve its quality (Kim et al., 2023), how to evalu-
ate it (Chiang et al., 2024; Chen et al., 2024a; Zeng et al., 2023), as well as many other applica-
tions (Johri et al., 2025; Dhole et al., 2024; Gu et al., 2024; Zhou et al., 2024a). In this paper, we
find a novel use case of LLM-as-a-judge: evaluating module-wise performance to accelerate model
selection optimization.

3 COMPOUND AI SYSTEMS: SCOPES AND EXAMPLES

Static Compound AI systems. As defined by (Zaharia et al., 2024), compound AI systems ad-
dress AI tasks by synthesizing multiple components that interact with each other. Here, we denote a
static compound AI system by a directed acyclic graph G , (V,E), where each node v 2 V denotes

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Gen 1

Gen 2

Gen 3

Debate
1

Debate
2

Debate
3

(a) Self-Refine

Gen Critic Refine

(b) Multiagent-Debate

Figure 2: Examples of static compound AI systems. (a) Self-Refine system. (b) Multiagent-Debate
system. The diamond and star represent the input and output modules, and the circles represent the
LLM modules. Directed lines represent data flow. We omit query inputs for simplicity.

one module, and each directed edge e , (u, v) 2 E indicates that the output from module u is sent
to module v as input.

LLM modules. An LLM module is a module that utilizes an LLM to process the inputs. It typi-
cally concatenates all inputs as a text snippet (via some prompt template), obtain an LLM’s response
to this snippet, and send the response as output (potentially after some postprocessing). Throughout
this paper, all modules are LLM modules to simplify notations. In practice, if a module is not an
LLM module, one can either merge it into an LLM module or convert it into an LLM module by
conceptually “adding” an LLM to the module.

Examples. Consider two examples of static compound AI systems, Self-Refine and Multiagent-
Debate. Self-Refine, as shown in Figure 2(a), consists of three modules: a generator, a critic, and
a refiner. Given a query, the generator produces an initial answer. The critic provides feedback
on the initial answer, and the refiner uses the feedback to improve the initial answer. Figure 2(b)
shows the architecture of a six-module system: Multiagent-Debate. Here, three generators first give
their initial answers to a question, then three debaters debate with each other based on these initial
answers. Refinements and debates can be iterative, but we focus on only one iteration for simplicity.

Notations. Table 1 in Appendix A lists our notations. We also use fi!k to indicate a function that
is the same as function f except that the value i is mapped to the value k.

4 THE MODEL SELECTION PROBLEM: MODELING AND OPTIMIZATION

This section presents how to model and optimize model selection for static compound AI systems.

4.1 PROBLEM STATEMENT

Consider a static compound AI system G = (V,E) and a set of LLMs M , {1, 2, · · · , |M |} to use.
Let F : V 7! M denote all possible model allocations, each of which allocates an LLM k 2 M to
a module v 2 V . Given a task distribution D, the performance of the compound AI system using
the model allocation f 2 F is P(f) , Ez2D[p(f, z)]. Here, z denotes a task sampled from the data
distribution, and p(f, z) is the performance of the compound AI system on the given task z using
the allocation f . The model selection problem is modeled as maximizing the expected performance

max
f2F

P(f) (1)

4.2 THE ASSUMPTIONS

Problem 1 is challenging without any assumptions. In fact, as the search space grows exponentially
in the number of modules |V |, we can actually show that Problem 1 is NP-Hard.
Lemma 4.1. Problem 1 is NP-Hard in |V | (number of modules).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

OutputInput

...

Training set

A compound system's architecture

Candidate LLMs

LLMSELECTOR
1. quality learning

2. module-wise ascent

LLM 1 LLM 2 LLM |M|

An optimized model allocation

...
(1) (2)

(3) (4)

Figure 3: LLMSELECTOR workflow. LLMSELECTOR takes as input a compound AI system’s ar-
chitecture, a pool of candidate LLMs, and a training dataset consisting of question-answer pairs. The
first step, quality learning, uses an LLM evaluator to learn each model’s effectiveness on different
modules. The second step, module-wise ascent, iteratively optimizes model allocation to one mod-
ule while fixing other modules’ allocations. This is repeated until no performance gain is possible
or a training budget B is reached. Finally, LLMSELECTOR returns an optimized model allocation.

The proof is left to Appendix B. In the following, we list our assumptions to enable tractable analysis.

Binary performance. For simplicity, we only consider binary performance, i.e., p(f, z) 2 {0, 1}.

Decomposition to per-module performance. In classic computing systems such as a hardware
stack, optimizing individual components (such as CPU, GPU, and memory) often leads to better
overall performance. Similarly, improving individual modules’ quality should also lead to better
overall quality of a compound AI system. Here we assume that a compound system’s performance is
a monotone function of individual modules’ performance. Formally, let pi(f, z) denote module vi’s
performance on the task z using allocation f . Then the end-to-end performance can be decomposed
as p(f, z) = h(p1(f, z), p2(f, z), · · · , pL(f, z)), where h(·) is monotonically increasing.

Monotone module-wise performance. The module-wise performance needs to satisfy certain
properties to enable us to analyze the interplay between individual modules and the compound sys-
tems. In this paper, we focus on module-wise performance pi with the following two conditions.

• pi is intra-monotone:pi(fi!k, z) � pi(fi!k0 , z) =) pi(f 0
i!k, z) � pi(f 0

i!k0 , z). In
simple terms, pi induces a “ranking” for each module: no matter how models are allocated
to other modules, allocating model k to a given module is always “better” than model k0.

• pi is inter-monotone: pi(fi!k, z) > pi(fi!k0 , z) =) 8j, pj(f 0
i!k, z) � pj(f 0

i!k0 , z). In
other words, if module ith performance is higher by replacing its allocated model from A
to B, then such a replacement should not hurt other modules’ performance.

Do the assumptions always hold? The above two conditions simplify our analysis, but they are not
always satisfied in practice. In these cases, while our analysis may not hold, LLMSELECTOR is still
applicable and demonstrates superior performance (as shown later in Section 5).

Optimality Characterization. Suppose the module-wise performance is both intra-monotone and
inter-monotone. Then we are able to study the optimal allocation via the lens of module-wise per-
formance. In particular, we first argue that it is possible to find a model allocation that maximizes
the performance for each module. This is because the module-wise performance is inter-monotone:
improving the model used for one module can only improve the performance for other modules.
The second observation is that a module-wise optimal allocation must also be the globally optimal
allocation, as the end-to-end performance is monotonic with individual module-wise performance.

4.3 THE LLMSELECTOR FRAMEWORK

The above analysis motivates our design of LLMSELECTOR, a principled framework for efficiently
optimizing model allocation in compound AI systems.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 3 gives an overview of how LLMSELECTOR works. It takes the compound AI system archi-
tecture G, the set of LLM M , a training dataset DTr, and a training budget B (i.e., number of model
calls divided by |V | · |DTr|) as input, and returns an optimized model allocation f̂ as the output.
Here, each data point in the training dataset z = (q, a) 2 DTr is a question-answer pair specifying
a possible question and desired answer. LLMSELECTOR consists of two stages, namely, quality
learning and module-wise descent.

Quality learning. In the first stage, an allocation f
a is learned via an LLM evaluator, which

estimates the ith module performance for any given module i, task z and allocation f , denoted
by p̂i(f, z). Specifically, for a given z, we start with some random allocation f

z,0, and iteratively
update each module with the best module-wise performance estimated by the LLM evaluator:

f
z,i max

f :9k,f=fz,i�1
i!k

p̂i(f, z),where i = 1, 2, · · · , |V |. (2)

We take the majority vote as the learned allocation, i.e., fa mode({fz,|V |}z2DTr).

Module-wise ascent. The learned allocation is not necessarily optimal because the LLM evaluator
can be noisy, and thus we perform additional search based on the ground-truth overall performance.
Starting with the learned allocation f

a, we iteratively update each module by the model with the
best overall performance until budget is reached or no more improvement is possible:

f
i max

f :9k,f=fi�1
i0!k

X

z2DTr

p(f, z),where f
0 = f

a
, i

0 = i (mod |V |). (3)

The details can be found in Algorithm 1. The following result shows when LLMSELECTOR can
identify the optimal allocation, and we leave the proof to Appendix B due to space limit.
Theorem 4.2. Algorithm 1 always terminates. Suppose Problem 1 has a unique optimal solution,

for each task z in DTr, the optimal allocation is unique, and the LLM evaluator p̂i = pi. Then for

some constant c > 0, with probability at least 1�O(exp(|V | ln |M |�c|DTr|)), Algorithm 1 returns

the optimal solution to Problem 1 for any training budget B � |M ||V |.

Theorem 4.2 reveals several properties of LLMSELECTOR. First, LLMSELECTOR is guaranteed to
converge. Second, assuming that the LLM evaluator is perfect, a small training set is sufficient to
find the optimal model allocation. Indeed, the training data size only needs to grow linearly with
the number of modules and log-linearly with the number of models with high probability. Finally,
the number of iterations required to find the optimal solution with high probability is linear to the
number of modules, much faster than a brute-force approach.

Algorithm 1: How LLMSELECTOR works.
Input: A compound AI system G = (V,E), a pool of K candidate LLMs, a training

dataset DTr, and a training budget B
Output: An optimized model allocation f̂

1 Choose a random f
0 2 F // initialize

2 Compute f
z,i by equation (2) 8z 2 DTr, i = 1, · · · ,min{|V |, b BM c}

3 f
0 mode({fz,min{|V |,b B

M c}}z2DTr) // quality learning
4 Compute f

i by equation (3) 8i = 1, · · · ,min{b B
|M |c � |V |, 0}c// module-wise

ascent
5 return f

i // optimized model choices

5 EXPERIMENTS

We compare the performance of LLMSELECTOR with vanilla compound AI systems using real-
world LLM models in this section. Our goal is three-fold: (i) understanding when and why com-
pound systems optimized by LLMSELECTOR outperform vanilla systems quantitatively, (ii) mea-
suring the performance gains enabled by LLMSELECTOR across different tasks qualitatively, and
(iii) validating whether LLMSELECTOR is applicable to different types of AI models.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

98 95

6 2 18 0 0 0

98

0%
50%

100%

77
22

84
13 0 0

56
98 98

0%
50%

100%

77
21 6 1 0 2 3 1

96

GPT-5
GPT-5 Mini

GPT-5 Nano

Claude Sonnet 4

Claude 3.5 Haiku

Gemini 2.5 Pro

Gemini 2.5 Flash

Gemini 2.5 Flash Lite

LLMSELECTOR

0%
50%

100%

A
cc

ur
ac

y

Module 1 (Locate)

Module 2 (Solve)

End-to-end

Consider a table with two rows, ID and Task. The content
of the two rows are as follows.

What is the solution to the task with ID 1827405601?

ID 4593180651 1827405601 ... 1797544485

Task

What is 48+(10.9>10.11)?

(a) Example Question

What is 31+(10.9>10.11)?

(b) The Locate-Solve System

(c) Vanilla Systems' Responses (d) LLMSELECTOR's Response

(e) Performance (f) Training Efficiency

Locate

Please extract the task
corresponding to the
requested ID.

Please address the
extracted task.

Solve

GPT-5
Gemini

2.5 Flash
Lite

What is 48+(10.9>10.11)? Final answer: 49

GPT-5 GPT-5

What is 48+(10.9>10.11)? Final answer: 48

Claude
Sonnet 4

Claude
Sonnet 4

What is 26+(10.9>10.11)? Final answer: 26

Gemini
2.5 Flash

Lite

Gemini
2.5 Flash

Lite

None I will format my answers

10 20 30 40 50 60 70

0.4

0.5

0.6

0.7

0.8

0.9

1

Exhaustive Search
Greedy Search
LLMSELECTOR

Training Budget

A
cc

ur
ac

y

Figure 4: A case study on the TableArithmetic dataset. (a) An example question in TableArithmetic.
It has a table of two rows, ID and Task, and the goal is to solve a task corresponding to a given ID. (b)
We use a two-module system, Locate-Solve. The first module extracts the task, and the second mod-
ule solves it. (c) Vanilla systems using a fixed model fail at the task. (d) LLMSELECTOR answers
the question correctly, as it learns to use the model best-suited for each module. (e) GPT-5 performs
the best for module 1 while Gemini 2.5 Flash Lite is the best for module 2. LLMSELECTOR learns
to allocate GPT-5 to module 1 and Gemini 2.5 Flash Lite to module 2. Thus, its performance is
substantially better than using any fixed model. (f) Compared to naive approaches, LLMSELECTOR
is much more efficient. For example, it requires 75% fewer data than exhaustive search to converge.

Experiment setups. The main experiments are conducted with |M | = 8 frontier models, includ-
ing GPT-5, GPT-5 Mini, GPT-5 Nano, Claude Sonnet 4, Claude 3.5 Haiku, Gemini 2.5 Pro, Gemini
2.5 Flash, and Gemini 2.5 Flash Lite. More details can be found in Appendix C.1.

5.1 A CASE STUDY ON TABLEARITHMETIC

We start with a case study on TableArithmetic, a synthetic dataset consisting of 100 questions. As
shown in Figure 4(a), each question involves a table consisting of “ID” and “task” rows. The goal
is to solve the task corresponding to a specific ID. ID is a 10-digit number, and the task is a math
problem like “What is X + (10.9 > 10.11)?”, where X is a random integer between 1 and 100. The
table in each question has 200 entries in total.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

61
70

43

75
5759

8 0

80

0%
20%
40%
60%
80%

100%

3237

7

53

3

5251
33

63
5144

31

53
38
55

34
19

57
76

20
8 2 0 2 2 1

96

32

56

13

56

3539

7 2

60

0%
20%
40%
60%
80%

100%

2 10 2 9 2
2026

4

29

7571
62
80
7176

42
26

82

1 0 3 0
16

0 0 0

95

GPT-5 only GPT-5 Mini only GPT-5 Nano only
Claude Sonnet 4 only Claude 3.5 Haiku only Gemini 2.5 Pro only
Gemini 2.5 Flash only Gemini 2.5 Flash Lite only LLMSELECTOR

A
cc
ur
ac

y

MathVista Word Sorting Management TableArithmatic

MathVQA Buggy Tables Health TableBias

Figure 5: LLMSELECTOR’s performance using frontier reasoning models including GPT-5 and
Gemini 2.5 Pro. The error bar is the standard deviation over 5 runs. Overall, we have observed that
LLMSELECTOR consistently offers substantial (2% to 79%) performance improvements compared
to using any fixed reasoning models.

The Locate-Solve system. We use the Locate-Solve system using two modules for the case study.
As shown in Figure 4(b), the first module, locate, extracts the task with the corresponding ID, and
the second module, solve, takes the first module’s output and then answers the extracted task.

Performance gains. We first observe that vanilla systems using one fixed model all fail to address
this question. Figure 4(c) gives a few example responses. GPT-5 correctly solves the first task, but
then it incorrectly believes 10.9 < 10.11 and thus the final answer is still incorrect. Claude Sonnet 4
and Gemini 2.5 Flash Lite both fail at the first module. On the other hand, LLMSELECTOR learns to
use GPT-5 for the locate module and Gemini 2.5 Flash Lite for the solve module. As shown in Figure
4(d), this leads to the correct answer 49. This is because using GPT-5 for the locate module correctly
extracts the desired task, and using Gemini 2.5 Flash Lite solves the extracted task perfectly. To
further understand this, Figure 4(e) shows the end-to-end as well as per-module performance of the
system using each fixed model and LLMSELECTOR. Here, module 1 is considered correct if the
extracted task is the desired task, and module 2 is considered correct if, given the desired task, it
returns the correct final answer. One can see that GPT-5 is the best for module 1, but Gemini 2.5
Flash Lite is the best for module 2. Notably, LLMSELECTOR learns to use the best-suited model
for each module without ground-truth per-module performance labels.

Optimizer effects. Next, we seek to understand the search efficiency of LLMSELECTOR. In
particular, we compare LLMSELECTOR with two baselines: exhaustive search and greedy search.
Given an LLM API budget B, exhaustive search samples B model allocations (without replace-
ments) from all possible allocations, and then returns the one with the highest end-to-end per-
formance. The greedy search iteratively chooses one module and allocates to it the model with
the highest end-to-end performance. As shown in Figure 4(f), we have found that LLMSELEC-
TOR consistently outperforms these baselines. In particular, while exhaustive search needs to ex-
plore all |M ||V | = 82 = 64 model allocations to ensure optimality, LLMSELECTOR needs only
|M ||V | = 8 · 2 = 16 model allocations, resulting in 75% cost reduction. Interestingly, there is a
tradeoff between greedy search and exhaustive search: greedy search’s accuracy is higher for large
budgets, while exhaustive search’s performance is better for smaller budgets. One possibility is
that exhaustive search imposes more diversity and inefficiency. When the budget is small, diversity
implies a greater likelihood of running into a good allocation. When the budget is large, diversity
is less important, and the efficiency of greedy search becomes obvious. Notably, LLMSELECTOR
outperforms them for all budgets.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

63 63 56
69

0%
20%
40%
60%
80%

100%

36 46 49 52

0 0
27

100

GPT-4o only Claude 3.5 Sonnet only Gemini 1.5 Pro only LLMSELECTOR

Ac
cu

ra
cy

MathVista MathVQA TableArithmatic

Figure 6: LLMSELECTOR’s performance using general-purpose models including GPT-4o, Claude
3.5 Sonnet, and Gemini 1.5 Pro. The error bar is the standard deviation over 5 runs. Overall, we have
observed that LLMSELECTOR consistently offers substantial performance improvements compared
to using any fixed models.

5.2 MEASURING PERFORMANCE IMPROVEMENTS QUANTITATIVELY

Now we study the performance of LLMSELECTOR applied on different tasks, focusing on both
frontier reasoning models and general-purpose models. For each task, we conduct five independent
runs with random train-test splits, and then report the average performance as well as variance (the
error bars) of using fixed models and LLMSELECTOR.

Frontier models. Figure 5 shows the performance of LLMSELECTOR using frontier reasoning
models applied on four compound AI systems. In particular, Majority-Vote is measured on Math-
Vista (Lu et al., 2024b) and MathVQA (Fu et al., 2024), Self-Refine is assessed on Word Sorting and
Buggy Tables (Kazemi et al., 2025), Multiagent-Debate is evaluated on Health (Wang et al., 2024b)
and Management (Du et al., 2025), and Locate-Solve is reported on TableArithmetic and TableBias.
More details on the studied compound systems (such as Majority-Vote) and the datasets can be
found in Appendix C.1. Overall, we observe that no LLM is universally better than all other LLMs
for all tasks. For example, GPT-5 performs the best on TableArithmetic, but Claude Sonnet 4 is the
best for MathVQA. Second, LLMSELECTOR offers 4%-73% performance gains consistently across
different datasets and compound systems. This suggests that LLMSELECTOR is widely applicable.

General-purpose models. Applying LLMSELECTOR to general-purpose models also leads to
substantial performance improvements. In fact, as shown in Figure 6, LLMSELECTOR brings an up
to 73% performance increase when only GPT-4o, Claude 3.5 Sonnet, and Gemini 1.5 Pro are avail-
able. This suggests that LLMSELECTOR is effective across different types of LLMs. Additional
experiments and details can be found in Appendix C.2 (and in particular Table 3).

5.3 UNDERSTANDING LLMSELECTOR’S IMPROVEMENTS QUALITATIVELY

To further understand when and why LLMSELECTOR outperforms allocating the same model to
all modules, we dive into a few specific examples and compare how LLMSELECTOR’s generations
differ from these by allocating the same LLM. For example, we observe that LLMSELECTOR learns
to allocate different LLMs to answer generators for diverse generations, but the same LLMs to
debators. More details and discussions are presented in Appendix C.3 due to space limit.

6 CONCLUSION

The complexity of orchestrating multiple LLM calls in compound AI systems underscores the crit-
ical need for strategic model selection to optimize these systems’ performance across diverse tasks.
In this paper, we formalize and analyze the complexity of the model selection problem (MSP), and
then propose LLMSELECTOR, a principled framework that identifies optimal model selection with
provable performance and complexity guarantees, whose effectiveness has also been justified via
extensive experiments on visual question answering, domain-specific knowledge comprehension,
algorithmic logic challenges, and many other tasks. Extending LLMSELECTOR for user-defined
inference-time budget is an interesting future direction. Discussion with AI system developers indi-
cates that joint optimization of model selection and prompting methods is another open problem.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Hirotugu Akaike. A new look at the statistical model identification. IEEE transactions on automatic

control, 19(6):716–723, 1974.

Harrison Chase et al. Langchain. https://github.com/langchain-ai/langchain,
2022. Accessed: 2025-01-04.

Dongping Chen, Ruoxi Chen, Shilin Zhang, Yinuo Liu, Yaochen Wang, Huichi Zhou, Qihui Zhang,
Yao Wan, Pan Zhou, and Lichao Sun. Mllm-as-a-judge: Assessing multimodal llm-as-a-judge
with vision-language benchmark. arXiv, 2024a.

Lingjiao Chen, Matei Zaharia, and James Y Zou. Frugalml: How to use ml prediction apis more
accurately and cheaply. NeurIPS, 2020.

Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models while
reducing cost and improving performance. TMLR, 2024b.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li,
Dacheng Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E Gonzalez, et al. Chatbot arena:
An open platform for evaluating llms by human preference. arXiv, 2024.

DeepMind. Alphacode 2 technical report. 2023. URL https://storage.googleapis.
com/deepmind-media/AlphaCode2/AlphaCode2_Tech_Report.pdf.

Kaustubh D Dhole, Kai Shu, and Eugene Agichtein. Conqret: Benchmarking fine-grained evaluation
of retrieval augmented argumentation with llm judges. arXiv, 2024.

Xinrun Du, Yifan Yao, Kaijing Ma, Bingli Wang, Tianyu Zheng, King Zhu, Minghao Liu, Yiming
Liang, Xiaolong Jin, Zhenlin Wei, et al. Supergpqa: Scaling llm evaluation across 285 graduate
disciplines. arXiv, 2025.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate. In ICML, 2024.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey.
Journal of Machine Learning Research, 20(55):1–21, 2019.

Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer, and Frank Hutter. Auto-
sklearn 2.0: Hands-free automl via meta-learning. Journal of Machine Learning Research, 23
(261):1–61, 2022.

Adam Fourney, Gagan Bansal, Hussein Mozannar, Cheng Tan, Eduardo Salinas, Friederike Niedt-
ner, Grace Proebsting, Griffin Bassman, Jack Gerrits, Jacob Alber, et al. Magentic-one: A gener-
alist multi-agent system for solving complex tasks. arXiv, 2024.

Ling Fu, Zhebin Kuang, Jiajun Song, Mingxin Huang, Biao Yang, Yuzhe Li, Linghao Zhu, Qidi
Luo, Xinyu Wang, Hao Lu, et al. Ocrbench v2: An improved benchmark for evaluating large
multimodal models on visual text localization and reasoning. arXiv, 2024.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan
Shen, Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. arXiv, 2024.

Xin He, Kaiyong Zhao, and Xiaowen Chu. Automl: A survey of the state-of-the-art. Knowledge-

based systems, 212:106622, 2021.

Qitian Jason Hu, Jacob Bieker, Xiuyu Li, Nan Jiang, Benjamin Keigwin, Gaurav Ranganath, Kurt
Keutzer, and Shriyash Kaustubh Upadhyay. Routerbench: A benchmark for multi-llm routing
system. arXiv, 2024.

Keke Huang, Yimin Shi, Dujian Ding, Yifei Li, Yang Fei, Laks Lakshmanan, and Xiaokui Xiao.
Thriftllm: On cost-effective selection of large language models for classification queries. arXiv,
2025.

10

https://github.com/langchain-ai/langchain
https://storage.googleapis.com/deepmind-media/AlphaCode2/AlphaCode2_Tech_Report.pdf
https://storage.googleapis.com/deepmind-media/AlphaCode2/AlphaCode2_Tech_Report.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv, 2024.

Ziwei Ji, Tiezheng Yu, Yan Xu, Nayeon Lee, Etsuko Ishii, and Pascale Fung. Towards mitigating
llm hallucination via self reflection. In EMNLP Findings, pp. 1827–1843, 2023.

Shreya Johri, Jaehwan Jeong, Benjamin A Tran, Daniel I Schlessinger, Shannon Wongvibulsin,
Leandra A Barnes, Hong-Yu Zhou, Zhuo Ran Cai, Eliezer M Van Allen, David Kim, et al. An
evaluation framework for clinical use of large language models in patient interaction tasks. Nature

Medicine, pp. 1–10, 2025.

Mehran Kazemi, Bahare Fatemi, Hritik Bansal, John Palowitch, Chrysovalantis Anastasiou, San-
ket Vaibhav Mehta, Lalit K Jain, Virginia Aglietti, Disha Jindal, Peter Chen, et al. Big-bench
extra hard. arXiv, 2025.

Akbir Khan, John Hughes, Dan Valentine, Laura Ruis, Kshitij Sachan, Ansh Radhakrishnan, Ed-
ward Grefenstette, Samuel R Bowman, Tim Rocktäschel, and Ethan Perez. Debating with more
persuasive llms leads to more truthful answers. arXiv, 2024.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Saiful
Haq, Ashutosh Sharma, Thomas T Joshi, Hanna Moazam, Heather Miller, et al. Dspy: Compiling
declarative language model calls into state-of-the-art pipelines. In ICLR, 2024.

Seungone Kim, Jamin Shin, Yejin Cho, Joel Jang, Shayne Longpre, Hwaran Lee, Sangdoo Yun,
Seongjin Shin, Sungdong Kim, James Thorne, et al. Prometheus: Inducing fine-grained evalua-
tion capability in language models. In ICLR, 2023.

R Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model selection.
Morgan Kaufman Publishing, 1995.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Shuming
Shi, and Zhaopeng Tu. Encouraging divergent thinking in large language models through multi-
agent debate. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), EMNLP, 2024.

Jinliang Lu, Ziliang Pang, Min Xiao, Yaochen Zhu, Rui Xia, and Jiajun Zhang. Merge, ensemble,
and cooperate! a survey on collaborative strategies in the era of large language models. arXiv,
2024a.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu,
and Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning with large language mod-
els. NeurIPS, 36, 2023.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of
foundation models in visual contexts. In ICLR, 2024b.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. NeurIPS, 36, 2023.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Hongyi Jin, Tianqi Chen, and Zhihao
Jia. Towards efficient generative large language model serving: A survey from algorithms to
systems. arXiv, 2023.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
optimization with” gradient descent” and beam search. arXiv, 2023.

Guillem Ramı́rez, Alexandra Birch, and Ivan Titov. Optimising calls to large language models with
uncertainty-based two-tier selection. arXiv, 2024.

Sebastian Raschka. Model evaluation, model selection, and algorithm selection in machine learning.
arXiv, 2018.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Matthew Renze and Erhan Guven. Self-reflection in llm agents: Effects on problem-solving perfor-
mance. arXiv preprint arXiv:2405.06682, 2024.

Imrus Salehin, Md Shamiul Islam, Pritom Saha, SM Noman, Azra Tuni, Md Mehedi Hasan, and
Md Abu Baten. Automl: A systematic review on automated machine learning with neural archi-
tecture search. Journal of Information and Intelligence, 2(1):52–81, 2024.

Shreya Shankar, JD Zamfirescu-Pereira, Björn Hartmann, Aditya Parameswaran, and Ian Arawjo.
Who validates the validators? aligning llm-assisted evaluation of llm outputs with human prefer-
ences. In UIST, 2024.

Shivanshu Shekhar, Tanishq Dubey, Koyel Mukherjee, Apoorv Saxena, Atharv Tyagi, and Nishanth
Kotla. Towards optimizing the costs of llm usage. arXiv, 2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. NeurIPS, 2023.

Dimitris Stripelis, Zijian Hu, Jipeng Zhang, Zhaozhuo Xu, Alay Dilipbhai Shah, Han Jin, Yuhang
Yao, Salman Avestimehr, and Chaoyang He. Tensoropera router: A multi-model router for effi-
cient llm inference. arXiv, 2024.

James Thorne, Andreas Vlachos, Oana Cocarascu, Christos Christodoulopoulos, and Arpit Mittal.
The FEVER2.0 shared task. In FEVER, 2018.

Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents enhances
large language model capabilities. arXiv preprint arXiv:2406.04692, 2024a.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging
multi-task language understanding benchmark. NeurIPS, 2024b.

Jason Wei, Nguyen Karina, Hyung Won Chung, Yunxin Joy Jiao, Spencer Papay, Amelia Glaese,
John Schulman, and William Fedus. Measuring short-form factuality in large language models.
arXiv, 2024.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via multi-
agent conversation framework. arXiv preprint arXiv:2308.08155, 2023.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and
James Zou. Textgrad: Automatic” differentiation” via text. arXiv, 2024.

Matei Zaharia, Omar Khattab, Lingjiao Chen, Jared Quincy Davis, Heather Miller, Chris Potts,
James Zou, Michael Carbin, Jonathan Frankle, Naveen Rao, and Ali Ghodsi. The shift from
models to compound ai systems. https://bair.berkeley.edu/blog/2024/02/18/
compound-ai-systems/, 2024.

Zhiyuan Zeng, Jiatong Yu, Tianyu Gao, Yu Meng, Tanya Goyal, and Danqi Chen. Evaluating large
language models at evaluating instruction following. arXiv, 2023.

Shaokun Zhang, Jieyu Zhang, Jiale Liu, Linxin Song, Chi Wang, Ranjay Krishna, and Qingyun Wu.
Offline training of language model agents with functions as learnable weights. In ICML, 2024a.

Yusen Zhang, Ruoxi Sun, Yanfei Chen, Tomas Pfister, Rui Zhang, and Sercan Ö Arik. Chain of
agents: Large language models collaborating on long-context tasks. arXiv, 2024b.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel:
Llm agents are experiential learners. In AAAI, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
et al. Judging llm-as-a-judge with mt-bench and chatbot arena. NeurIPS, 2023.

Ruiyang Zhou, Lu Chen, and Kai Yu. Is llm a reliable reviewer? a comprehensive evaluation of llm
on automatic paper reviewing tasks. In LREC-COLING, 2024a.

Wangchunshu Zhou, Yixin Ou, Shengwei Ding, Long Li, Jialong Wu, Tiannan Wang, Jiamin Chen,
Shuai Wang, Xiaohua Xu, et al. Symbolic learning enables self-evolving agents. 2024b.

12

https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/

	Introduction
	Related Work
	Compound AI Systems: Scopes and Examples
	The Model Selection Problem: Modeling and Optimization
	Problem Statement
	The assumptions
	The LLMSelector framework

	Experiments
	A Case Study on TableArithmetic
	Measuring Performance Improvements Quantitatively
	Understanding LLMSelector's improvements Qualitatively

	Conclusion
	Notations
	Missing Proofs
	Proof of Lemma 4.1
	Proof of Theorem 4.2

	Experiment Supplements
	Experiment Setups
	Compound AI Systems
	Datasets and Evaluation Metrics
	LLM Endpoints and Providers

	Quantitative Results
	Full Evaluations with Legacy Models
	LLM Evaluators: Prompts and Ablation Studies

	Qualitative Analyses

	Limitations and Broader Impacts

