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Abstract

Recently, implicit neural representations (INRs) emerged as an effective method for recon-
structing shapes. Several of such methods transform templates to target shapes. Current
template-based methods lack proper regularization. In this work, we add a novel regular-
ization to a deformable template approach and discuss the benefits of this regularization
with a simple test case.
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1. Introduction

3D shape reconstruction using deep learning has important applications in many fields,
for instance, in computer vision (Huang et al., 2021) or in the medical domain (Wiesner
et al., 2022; Balashova et al., 2019). To perform 3D shape reconstruction, several works use
implicit neural representations (INRs) to represent the shape (Park et al., 2019; Mescheder
et al., 2019). The main idea behind this representation is to indicate for each point in the
domain whether the point is inside or outside the shape. The points where a transition
occurs from ’inside’ to ’outside’ correspond to points on the shape.

When using this implicit neural representation for 3D shapes, it is difficult to calculate
point-correspondences between different shapes. To overcome this difficulty, methods are
proposed that combine templates with INRs (Sun et al., 2022). These approaches represent
a template shape as an implicit neural representation and transform this template into other
shapes, allowing for point-to-point correspondences.

Similar to the fact that there are an infinite number of implicit representations to rep-
resent a specific shape, in the template-based approach there are an infinite number of
template and transformation pairs that are able to reconstruct the same shape. This is an
issue as not every choice of template and transformation pair reflects the shape prior of the
data. While the INR approaches are able to select a specific implicit function by neural
network construction (Mescheder et al., 2019) or by regularization (Sitzmann et al., 2020),
not much research has been done in this direction regarding the template-based approaches.

In this work, we address this issue by extending an existing deformable template ap-
proach with a regularization strategy inspired by mathematical shape space analysis. Using
a simple example, we show that adding this regularization selects a specific type of template

© 2022 S. Dummer, N. Strisciuglio & C. Brune.



Dummer Strisciuglio Brune

and deformation pair. More precisely, we show that this choice results in a template that
reflects the shape prior and in learned deformations that give physically plausible interpo-
lations between the template and the data. Moreover, we discuss an additional advantage
of our strategy when compared to more standard INR approaches.

2. Method

2.1. Neural diffeomorphic flow

The model we focus on is neural diffeomorphic flow (NDF) (Sun et al., 2022). It consists
of a template shape and a warping module. The template shape is parameterized by an
INR. More precisely, the template shape is defined via a neural network fθ(x) : R3 → R
that maps a spatial coordinate x to a number y = fθ(x). In this case, the template shape
corresponds to the points x such that fθ(x) = c for some predefined constant c.

The warping module is defined via a neural ordinary differential equation of the form
dx
dt = vθ(x(t), t,z) with x(0) = x0, z a latent code, and vθ(x(t), t,z) a neural network. The
warping function is defined as D(x0, z, t) := x(t).

Combining the template shape representation with the warping module, we define the
implicit representation I(x, z, t) as

I(x, z, t) := fθ(D(x, z, t)) (1)

where I(x, z, 0) equals the implicit representation of the template shape and I(x, z, 1) is
the implicit representation of the shape corresponding to latent code z. The template
shape, the implicit representations I(x, z, 1), and the latent codes of the training samples
are learned via an autodecoder strategy using training shapes represented via an implicit
function (Sun et al., 2022; Park et al., 2019).

2.2. Flow regularization

To let the neural networks learn a specific template and warping module pair, we introduce
a novel regularization on the velocity vector field vθ in the NDF. We regularize vθ via:

Lreg := ESi

(∫
Ω

∫ 1

0
Lv(vθ(D(x, zi, t), t,zi))dtdx

)
(2)

where Si is a training shape, zi is the corresponding latent code, Ω is the region in which
the shape should be present, and Lv is a regularization functional on the velocity vector
field. There are many different choices of Lv. In this paper, we choose an isometric (rigid)
deformation prior on the flow via the Killing energy (Solomon et al., 2011; Tao et al., 2016):

Lv :=
1

2
∥(Jxvθ) + (Jxvθ)

T ∥F (3)

where Jxvθ is the Jacobian of vθ with respect to x. As a consequence, we expect I(x, z, t)
to preserve the template’s structure over time.
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3. Numerical results

In the neural diffeomorphic flow model, we represent the template and training shapes as
occupancy functions (Mescheder et al., 2019). As test case, we use a dataset consisting of
two squares of equal size that are translated and rotated in space. On this dataset, we train
the model with and without the proposed regularization term (Equation (2)) in the loss
function. The result of training can be seen in Figure 1.

Figure 1: Decoding process of the shape I(x, z, t) over time, when flow regularization is used
(first row) or not (second row). The flow regularization enables the preservation
of the shape structure prior in time.

From Figure 1, we see that in both cases the square is well reconstructed. Without
regularization a template and deformation pair is learned that does not resemble the data
class with its prior assumptions. However, when applying regularization, the template shape
rotates to the reconstructed shape as desired. Hence, the deformable template approach
allows for regularizing the template and the interpolations by regularizing the flow in the
warping module. Regularizing the interpolations is much harder to do in standard INRs like
DeepSDF (Park et al., 2019). In this case, one has to infer some particle velocity vector field
from the changes of implicit functions and regularize these velocity vector fields (Atzmon
et al., 2021). In contrast, with the deformable template approach one can immediately
regularize the warping module.

4. Conclusion and future work

We introduced a shape space based regularizer to the neural diffeomorphic flow model and
showed that this regularizer enables template learning to find a shape mean that preserves
the main structure of the data. We showed that learning with the regularizer yields proper
deformations of the learned template shape into the reconstructed training shapes. More-
over, we highlighted that regularizing shape interpolations via the flow is straightforward
compared to regularizing shape interpolations in a more standard implicit neural represen-
tation approach like DeepSDF. In future work, we will apply and analyse the method in
more complex scenarios. In addition, we will investigate the quality of the latent space in
terms of extrapolation and latent code interpolation.
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