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ABSTRACT

This paper addresses the problem of learning Nash equilibria in monotone games
where the gradient of the payoff functions is monotone in the strategy profile
space, potentially containing additive noise. The optimistic family of learning
algorithms, exemplified by optimistic Follow-the-Regularized-Leader and opti-
mistic Mirror Descent, successfully achieves last-iterate convergence in scenarios
devoid of noise, leading the dynamics to a Nash equilibrium. A recent emerging
trend underscores the promise of the perturbation approach, where payoff func-
tions are perturbed based on the distance from an anchoring, or slingshot, strategy.
In response, we first establish a unified framework for learning equilibria in mono-
tone games, accommodating both full and noisy feedback. Second, we construct
the convergence rates toward an approximated equilibrium, irrespective of noise
presence. Thirdly, we introduce a twist by updating the slingshot strategy, anchor-
ing the current strategy at finite intervals. This innovation empowers us to identify
the Nash equilibrium of the underlying game with guaranteed rates. The pro-
posed framework is all-encompassing, integrating existing payoff-perturbed algo-
rithms. Finally, empirical demonstrations affirm that our algorithms, grounded in
this framework, exhibit significantly accelerated convergence.

1 INTRODUCTION

This study delves a variant of online learning algorithms, such as the Follow the Regularized Leader
(FTRL) (McMahan, 2017) and mirror descent (MD) (Nemirovskij & Yudin, 1983; Beck & Teboulle,
2003), within the realm of monotone games. In these games, the gradient of the payoff functions
exhibits monotonicity concerning the strategy profile space. This encompasses diverse games, in-
cluding Cournot competition (Bravo et al., 2018), A-cocoercive games (Lin et al., 2020), concave-
convex games, and zero-sum polymatrix games (Cai & Daskalakis, 2011; Cai et al., 2016). Due
to their extensive applicability, various learning algorithms have been developed and scrutinized to
compute a Nash equilibrium efficiently.

Traditionally, no-regret learning algorithms, such as FTRL, are widely used because their averaged
strategy profile over iterations converges to an equilibrium (referred to as average-iterate conver-
gence). Nevertheless, research has shown that the actual trajectory of update strategy profiles fails
to converge even in two-player zero-sum games, a specific class within monotone games (Mer-
tikopoulos et al., 2018; Bailey & Piliouras, 2018). On the contrary, optimistic learning algorithms,
incorporating recency bias, have shown success. The day-to-day strategy profile converges to a Nash
equilibrium (Daskalakis et al., 2018; Daskalakis & Panageas, 2019; Mertikopoulos et al., 2019; Wei
et al., 2021), termed last-iterate convergence.

However, the optimistic approach faces challenges with feedback contaminated by some noise. Typ-
ically, each agent updates his or her strategy according to the perfect gradient feedback of the payoff
function at each iteration, denoted as full feedback. In a more realistic scenario, noise might dis-
tort this feedback. With noisy feedback, optimistic learning algorithms perform suboptimally. For
instance, Abe et al. (2023) empirically demonstrated that optimistic Multiplicative Weights Update
(OMWU) fails to converge to an equilibrium, orbiting around it.

Alternatively, perturbation of payoffs has emerged as a pivotal concept for achieving conver-
gence (Perolat et al., 2021; Liu et al., 2023), even under noise (Abe et al., 2023). Payoff functions are
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perturbed using the distance from an anchoring, or slingshot, strategy. However, perturbing payoffs
alone fall short of reaching a Nash equilibrium of the underlying game.

This paper proposes a unified framework for perturbing approaches that ensure last-iterate conver-
gence to the equilibrium of the underlying game with both full and noisy feedback. This framework
extends Perolat et al. (2021); Abe et al. (2022) by utilizing the strongly convex divergence be-
yond the KL divergence, encompassing Bregman divergence, reverse KL, a-divergence, and Rényi
divergence. By using this framework, we can instantiate algorithms that rapidly converge to a near-
equilibrium of the underlying game. Subsequently, in order to reach an equilibrium of the underlying
game, the slingshot strategy is updated at regular intervals. Interestingly, the integration of these two
components ensures last-iterate convergence at quantitatively guaranteed rates.

Our contributions are manifold. Firstly, we establish a unified framework covering a wide array of
existing payoff-regularized algorithms (Tuyls et al., 2006; Perolat et al., 2021; Abe et al., 2022). Sec-
ondly, we provide convergence results to an approximate Nash equilibrium, which can be defined as
a Nash equilibrium for the perturbed game with both full and noisy feedback. Thirdly, we introduce
the concept of the slingshot strategy update, which allows us to demonstrate the last-iterate conver-
gence properties. Over the course of the entire 7 iterations, and given full feedback, our algorithm
converges toward a Nash equilibrium of the underlying game at a rate of O(InT'/ VT ). In the case
of noisy feedback, the convergence rate is O(In 7'/T'10 ). Finally, through empirical illustrations, we
show that our algorithms converge more rapidly than OMWU in a variety of games.

2 PRELIMINARIES

Monotone games. This paper focuses on a continuous game, which is denoted by
(IN], (X)iein> (vi)ieiny)- [N] = {1,2,--- N} represents the set of N players, X; C R%
represents the d;-dimensional compact convex strategy space for player ¢ € [N], and we write
X = Hie[ N] AX;. Each player ¢ chooses a strategy m; from X; and aims to maximize her differen-
tiable payoff function v; : X — R. We write 7_; € [] i i as the strategies of all players except
player 4, and denote the strategy profile by m = (7;);e(n] € X. We assume that &; is an affine
subset, i.e., there exists a matrix A € R¥:*di_a vector b € R¥i such that Aw; = b for all 7; € X}.
This study particularly considers a smooth monotone game, where the gradient (V,v;);c|n) of the
payoff functions is monotone:

N
vV, e X, Z(Vﬂivi(m—,ﬂ,i) — Vaevi(nh,w' ), m — ) <0, (1)

i=1

and L-Lipschitz:

N
vr, 7’ € X, Z |V, 05 (5, 7_3) — Vi, vs(wh, 7 )17 < L||m — |2, )
i=1

where || - || is the £2-norm.

Monotone games include many common and well-studied classes of games, such as concave-convex
games, zero-sum polymatrix games, and Cournot competition.

Example 2.1 (Concave-Convex Games). Let us consider a max-min game ([2], (X7, X2), (v, —v)),
where v : X7 X A — R. Player 1 aims to maximize v, while player 2 aims to minimize v. If v is
concave in 1 € & and convex in x5 € Xs, the game is called a concave-convex game or minimax
optimization problem, and it is easy to confirm that the game is monotone.

Example 2.2 (Zero-Sum Polymatrix Games). In a zero-sum polymatrix game, each player’s pay-
off function can be decomposed as v;(7) = E#i u;(m, mj), where u; @ A; x X; — R
is represented by w;(m;, m;) = m] M7, with some matrix M) € R%*di and satisfies
u;(m;, mj) = —u;(mj, ;). In this game, each player ¢ can be interpreted as playing a two-player
zero-sum game with each other player j # i. From the linearity and zero-sum property of u;, we
can easily show that Zill(vai(m, m—;) — Vpv(nl,nl,), 7 — wl) = 0. Thus, the zero-sum
polymatrix game is a special case of monotone games.
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Nash equilibrium and exploitability. A Nash equilibrium (Nash, 1951) is a common solution
concept of a game, which is a strategy profile where no player can improve her payoff by deviating
from her specified strategy. Formally, a Nash equilibrium 7* € X satisfies the following condition:
Vi € [N],Vm; € X, vi(n],7";) > vi(mi, m5,).
We denote the set of Nash equilibria by IT*. Note that a Nash equilibrium always exists for any
smooth monotone game since these games are also concave games (Debreu, 1952). Furthermore,
we define exploit(w) := Zi\; (maxz,cx, vi (7, m—;) — v;(m)) as exploitability of a given strategy
profile 7. Exploitability is a metric of proximity to Nash equilibrium for a given strategy profile

7 (Johanson et al., 2011; 2012; Lockhart et al., 2019; Abe & Kaneko, 2021). From the definition,
exploit(m) > 0 for any = € X, and the equality holds if and only if 7 is a Nash equilibrium.

Problem setting. In this study, we consider the online learning setting where the following process
is repeated for T iterations: 1) At each iteration ¢ > 0, each player ¢ € [N] chooses her strategy
wt € X; based on the previously observed feedback; 2) Each player i receives the gradient feedback

@Wiﬂi(ﬂ'f? mt ;) as feedback. This study considers two feedback models: full feedback and noisy
feedback. In the full feedback setting, each player receives the perfect gradient vector as feedback,
e, Vvl mt,) = Va,vi(wl, 7). In the noisy feedback setting, each player’s feedback is

given by V., v;(nl, 7t,) = V,vi(nl, 7t,) + &, where & € R% is a noise vector. Specifically, we
focus on the zero-mean and bounded-variance noise vectors.

Other notations. We denote a d-dimensional probability simplex by AY = {p ¢
[0,1]¢ | Z;l:l p; = 1} . We define diam(X) := sup, ey |7 — «| as the diameter of X.
For a strictly convex and differentiable function v, the associated Bregman divergence is defined by
Dy (m;, 7)) = (m;) —(n}) — (Vp(n}), m — w}). We denote the Kullback-Leibler (KL) divergence

by KL(m;, m}) = Z?;l m;; In %, Besides, with a slight abuse of notation, we represent the sum
xJ

of Bregman divergences and the sum of KL divergences by Dy (7, 7’") = Z@Z\; Dy (m;,m}), and
KL(m, ') = Zf\il KL(m;, 7}), respectively.

3 FOLLOW THE REGULARIZED LEADER WITH SLINGSHOT PERTURBATION

In this section, we introduce Follow the Regularized Leader with Slingshot Perturbation (FTRL-SP),
which is an extension of standard FTRL algorithms. Letting us define the differentiable divergence
function G(-,-) : &X; x X; — [0,00) and the slingshot strategy o; € X;, FTRL-SP perturbs each
player’s payoff by the divergence from the current strategy 7! to the slingshot strategy o, i.e.,
G(rt, 0;). Specifically, each player’s update rule of FTRL-SP is given by:

t
7r;?+1 = arg max {Zns <$,rivi(7rf, 7w ,) — uVa, G(7s, Ji),x> — w(x)} , 3)
TEX; s=0

where 1, € (0,00) is the learning rate at iteration s, u € (0, 00) is the perturbation strength,
¥ X; — R is the regularization function, and V., G denotes differentiation with respect to first
argument. We assume that G(-, ;) is strictly convex for every o; € AXj;, and takes a minimum
value of 0 at o;. Furthermore, we assume that ¢ is differentiable and p-strongly convex on X; with
p € (0,00), and Legendre (Rockafellar, 1997; Lattimore & Szepesvari, 2020). The pseudo-code of
FTRL-SP is Algorithm 1.

The conventional FTRL updates its strategy based on the gradient feedback of the payoff function
and the regularization term. The regularization term adjusts the next strategy so that it does not devi-
ate significantly from the current strategy. The main idea of our framework is to perturb the gradient
vector so that the next strategy is pulled toward a predefined strategy, which we call the slingshot
strategy. The intuition is that perturbation with the slingshot strategy stabilizes the learning dy-
namics. Indeed, Mutant FTRL instantiated in Example 3.1 encompass replicator-mutator dynamics,
which is guaranteed to an approximate equilibrium in two-player zero-sum games (Abe et al., 2022).
FTRL-SP inherits the nice features of Mutant FTRL beyond two-player zero-sum games.

FTRL-SP can reproduce some existing learning algorithms that incorporate payoff perturbation. For
example, the following learning algorithms can be viewed as instantiations of FTRL-SP.
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Algorithm 1 FTRL-SP with slingshot strategy update for player i. T, = oo corresponds to fixing
the slingshot strategy.

Require: Learning rate sequence {7, };>0, divergence function for perturbation G, perturbation
strength 41, update interval T,,, initial strategy 77, initial slingshot strategy o
k0,70, 30«0
fort=0,1,2,--- do R
Receive the gradient feedback V., v; (7!, 7t ;)

Update the cumulative gradient vector y! ™' < y! +n; (ﬁmvi(ﬂ t,) — uVa, G(nt O'k)>

i 2

Update the strategy by /1! = arg I;laX {(yf“, z) —¢(2)}
TEX;

if - = T, then
k<—k+1, 70
ol « mt

end if

1:

2:

3

4

5

6: T+ T1T+1
7.

8

9

10

11: end for

Example 3.1 (Mutant FTRL (Abe et al., 2022)). Let us define X; = A%, and assume that the
reverse KL divergence is used as G, i.e., G(m;, 7)) = KL(n}, m;) = Zj L T In ” . Then, (3) can
be rewriten as:

7t = arg max ZnSij (qu — — (o3 — m})) — () 3,
ij

€A% s=0 j=1

where qf] = (@,rivi(wf ,m%;));. This is equivalent to Mutant FTRL (Abe et al., 2022).

Example 3.2 (Reward transformed FTRL (Perolat et al., 2021)). Let us consider the contlnuous-
time FTRL-SP dynamics with N = 2, X; = A%, and G(m, 7;) = KL(m;, 7}). Defining q” =

(Vm. v;(m$, 7)), FTRL-SP dynamics can be described as:

t [ di d; s
t Ui 1 Tik
T;; = arg max TR — Y Tpln
0 — — Oik
k=1 k=1

ds — ()

rEAL

This algorithm is equivalent to FTRL with reward transformation (Perolat et al., 2021).

Example 3.3 (Boltzmann Q-Learning (Tuyls et al., 2006)). In Example 3.2, we specifically assume

that the regularizer is entropy and the slingshot strategy is a uniform distribution, i.e., ¥(m;) =
d;
> joy mijInmij and oy = (1/d;) jeq,), We have

d
%ij - (qm Zﬂ—lkqik> - M,]Tfj <111’]T Z/]T’Lk 11171' > )

which is equivalent to Boltzman Q-learning (Tuyls et al., 2006; Bloembergen et al., 2015).

4 CONVERGENCE TO AN APPROXIMATE NASH EQUILIBRIUM

Let us define 7#:¢ as the Nash equilibrium of the game perturbed by pG(-, 0;):
Vi € [N], w7 = arg max {v;(m;, 7)) — pG(m;,04)} . 4)

T
T €EX;

This section proves that the strategy 7 updated by FTRL-SP converges to 7*+?. Note that 7/
always exists since the perturbed game is still monotone.

In this section, we fix the slingshot strategy. Specifically, we consider FTRL-SP as Algorithm 1 with
the assumption that 7, = co. We also assume a specific condition on the divergence function G:
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Assumption 4.1. G(-,0;) is S-smooth and ~-strongly convex relative to i, i.e., for any 7;, 7w, € X,
vDy (7}, m;) < G(n},04) — G(mi, 05) — (Vo,G(m5,04), w0, — m;) < BDy (), m;) holds.

Note that these assumptions are always satisfied with 8 = v = 1 when G is identical to D,; thus,
these are not strong assumptions.

4.1 FULL FEEDBACK SETTING

First, we present the convergence rate to w/? of FTRL-SP with full feedback. In this case, each
player receives the perfect gradient vector @m vi(mt,mt ) = Vg, (ml, wt ), at each iteration t. We
show in Theorem 4.2 that FTRL-SP with a constant learning rate 1, = 7 converges exponentially
fast towards 7+ for any fixed p and o.

Theorem 4.2. Let 77 € X be the strategy profile that satisfies (4). Suppose that Assumption 4.1
2

holds with 3,7 € (0,00). If we use the constant learning rate n; = n € (0, W), the

strategy T updated by FTRL-SP satisfies that for any initial strategy profile ° € X and t > 1:

t
D,/,(?T#’U,ﬂ't) < D¢(W“’U,WO) (1 — %) .
Based on this theorem, we can show that the exploitability of ¢ converges to the value of O(p).

Theorem 4.3. In the same setup of Theorem 4.2, the exploitability for FTRL-SP is bounded as:

N t
exploit(n?) < p- diam(X), | Y|V, G, 07) |2 + O ((1 - @) ) .
=1

We note that lower p reduces the exploitability of 7#+7 (as in the first term of Theorem 4.3), whereas
higher 1 makes 7t converge faster (as in the second term of Theorem 4.3). Thatis, i controls a trade-
off between the speed of convergence and the exploitability. Recall that 5 = v = 1 always holds
when G is identical to D,,. Therefore, we can derive the following corollary:

Corollary 4.4. Assume that G is identical to D,,. If we set n € (0, 3#22;;%), the strategy
updated by FTRL-SP satisfies that for t > 1:

t
Dy, ) < Dy, ) (1- Y

We provide the proofs of Theorems 4.2, 4.3, and Corollary 4.4 in Appendix B.

By applying Theorem 4.3 and Corollary 4.4, we demonstrate the convergence results for the existing
learning algorithms presented in Examples 3.1-3.3.

Example 4.5 (Mutant FTRL with log-barrier regularization in Example 3.1). Let us consider
the same setup of Example 3.1. Using the log-barrier regularization ¢ (m;) = — Z?"zl In(m;;)
(p = 1), we obtain the Itakura-Saito divergence as the associated Bregman divergence: Dy, (7, ') =

IS(m, 7)== SN, Z?;l (”” —In 54 — 1). The Itakura-Saito divergence is not equivalent to

G(m, ") = KL(#', 7). Howé7\/er, it is not hard to show that G is B-smooth and ~y-strongly con-
vex relative to the Itakura-Saito divergence, where 3 = 1 and v = min;c|ny,je[a,] 0ij- There-
fore, from Theorem 4.2, the Itakura-Saito divergence from 77 to 7* decreases exponentially fast:
IS(m, mt) < TS(w7, 70) (1 — 22)" for ) € (0, -2t )-

Example 4.6 (Reward transformed FTRL in Example 3.2). Let us consider the same setup of Exam-
ple 3.2. If we use entropy regularization ¢ (7;) = Z?;l m;; In7;;, associated Bregman divergence
is given by Dy (m;, 7;) = KL(m;, 7}) = G(m;, m;) and p = 1. Thus, from Cororally 4.4, the KL di-
vergence from 77 to 7! decreases exponentially fast: KL (77 7t) < KL(7#7, 7%) (1 — nu/2)"
forn € (0, ?mi%)

Example 4.7 (Boltzman Q-learning in Example 3.3). In Example 3.3, we can use a similar argument
to the one in Example 4.6. From Cororally 4.4, the KL divergence from 7*7 to 7 decreases
exponentially fast: KL(7#? 7t) < KL(7#7, 7%) (1 — nu/2)" forn € (0

2u )
bl 3M2+8L2 .



Under review as a conference paper at ICLR 2024

4.2 NOISY FEEDBACK SETTING

Next, we consider the noisy feedback setting, where each player ¢ receives a gradient vector with
additive noise: V., v;(w!, 7t ;) + & Define the sigma-algebra generated by the history of the ob-

servations: F; = o <(§mﬂi(ﬂ?,79'))ie[z\r]7 e (Vo ? wt_l))ie[N]) ,Vt > 1. We assume

(] i 0 =i
that £¢ € R% is a zero-mean independent random vector with bounded variance:

Assumption 4.8. For allt > 1 and i € [N), the noise vector &! satisfies the following properties:
(a) Zero-mean: E[¢E|F] = (0,---,0)T; (b) Bounded variance: E[||&¢|?|F;] < C2.

This is a standard assumption in learning in games with noisy feedback (Mertikopoulos & Zhou,
2019; Hsieh et al., 2019) and stochastic optimization (Nemirovski et al., 2009; Nedi¢ & Lee, 2014).
In this setting, the convergence to the stationary point 7 is achieved by FTRL-SP using a decreas-
ing learning rate sequence. The convergence rate obtained by FTRL-SP is O(InT"/T):

Theorem 4.9. Let 0 = W and . = B}. Suppose that Assumptions 4.1 and 4.8
hold and the strategy 7 is updated by FTRL-SP with the learning rate sequence of the form n; =
1/(kt + 26). Then, for all t > 0,

2% — x NC? 1 K 1
EID., (7% 7t < D (7 70 - ([ ZIn(—=t+1 .
[Dy (47, 7 )]—Ht+29 p(m%,m )+p(lit+29) K n(29 * )+20

The proof is given in Appendix C and is based on the standard argument of stochastic optimiza-
tion, e.g., Nedi¢ & Lee (2014). However, the proof is made possible by taking into account the
monotonicity of the game and the relative (strong and smooth) convexity of the divergence function.

4.3 EXTENSION TO MIRROR DESCENT

In previous sections, we introduced and analyzed FTRL-SP, which extends the standard FTRL ap-
proach. Similarly, it is possible to extend the mirror descent approach as well. In this section, we
present Mirror Descent with Slingshot Perturbation (MD-SP), which incorporates the perturbation
term pG(-, 0;) into the conventional mirror descent algorithm:

it = arg max {nt <§mvi(7rf,7rt_i) — pVa,G(rl, 0;), :v> - DM:L’,?Tf)} . Q)
reEX;
MD-SP achieves the same convergence rates as FTRL-SP in full and noisy feedback settings.
Theorem 4.10. Let 77 € X be the strategy profile that satisfies (4). Suppose that Assumption 4.1
2
holds with 3,7 € (0,00). If we use the constant learning rate n; = n € (0, W), the
strategy T updated by MD-SP satisfies that for any initial strategy profile 7° € X and t > 1:

t
Dw(ﬂ#’”,ﬂt) < Dd,(ﬂ“"’,wo) (1 — @) .

Theorem 4.11. Let § = W and k = 5. Suppose that Assumptions 4.1 and 4.8
t

hold and the strategy ©" is updated by MD-SP with the learning rate sequence of the form n, =
1/(kt + 20). Then, for all t > 0,

20 — k NC? 1 K 1
EID w0 _t+1 < D w0 0 — [ =1 —t 1 an |
[Dy (a7, w0 < g Dy (7, m )+p(Kt+29) n<29 * )+ 20

K
The proofs of these theorems can be found in Appendix D. Note that MD-SP does not rely on the

assumption that the regularization function 1) is Legendre nor that X is an affine subset. As a result,
MD-SP is applicable to a broader class of games compared to FTRL-SP.

S5 SLINGSHOT STRATEGY UPDATE FOR LAST-ITERATE CONVERGENCE

In the preceding section, we demonstrated the convergence results for our framework with a fixed
slingshot strategy profile o. Perturbation of the payoff functions enables 7 to converge quickly to
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7 (as in Theorem 4.2), whereas it also moves 7#>? away from the Nash equilibrium of the original
game (as in Theorem 4.3). On the other hand, when the slingshot strategy profile ¢ is close to an
equilibrium 7* € II*, the solution of (4), i.e., 7, is close to 7*. Therefore, we iteratively update
o to a better strategy so that it converges to an equilibrium. To this end, we overwrite ¢ with the
current strategy profile ¢ every T, iterations. The pseudo-code of FTRL-SP with this adaptation
method corresponds to Algorithm 1 with finite 7;.

Last-Iterate Convergence Rates to Nash equilibria. We denote o as the slingshot strategy after
k updates and K as the total number of the slingshot strategy updates over the entire T'(= T, K)
iterations. We demonstrate the last-iterate convergence rates for . The complete proofs are pre-

sented in Appendix E. According to Theorems 4.2 and 4.9, we can observe that D, (W“*”k Joh ) =
Dy (" oF)exp(—O(T,)) in the full feedback setting, and E[D,, (7" c*1)] = O(In T, /T,,)
in the noisy feedback setting for & > 0, respectively. Here, we assume that G is the squared £2-
distance, meaning that G(m;, 7)) = |m; — m;||%. We adjust T, = Q(In K) and T, = Q(K*) in
the full/noisy feedback setting, respectively. From the first-order optimality condition for mho , We
can show that the distance between o* and a Nash equilibrium 7* does not increase too much, i.e.,
okt — m)|2 — |lo* — 7|2 < —||7r""”c — o%||2/2 + O(1/K?). By telescoping this inequality,
we get Y1t et — o2 < O(||o° — 7*||2 + 1/K2). Again using the first-order optimality
condition for 7" and 7" ", we can derive that ||7*7" — %2 < ||o% — oF 1|2 + O(1/K?).
Finally, we observe that H7r“7"K71 — o512 < O(1/VK) , leading to the last-iterate convergence
rates of O(1/v/K) and O(In K/+/K) in the full/noisy feedback setting, respectively:

Theorem 5.1. Assume that HW""’k — oMt < ||7r“7"k — oF| (%)Ta for some ¢ > 1, and

\/Ef\il |Vr,vi(m)||12 < C for any # € X. Then, if we set G as squared (*-distance G (7, 7)) =

||m; — wl||? and T, > max (2 In K + 264 1), we have for any Nash equilibrium 7* € I1*:

eptr) < DL A LD i g (s - + ).

VK
Theorem 5.2. Assume that IE[HW“"’k — ok t2 | ok < cz%for any k > 0 for some ¢ > 0, and
\/Ef\il |Vr,vi(m)||12 < ¢ for any # € X. Then, if we set G as squared (*-distance G (7, 7}) =
U7 — m}||? and T, > max(K*, 3), we have for any Nash equilibrium * € II*:
2(diam() - (L + py/ey2diam(X) + & + ¢) + eC) In K + g - diam(X)*
NG .

We emphasize that we have obtained the overall last-iterative convergence rates of our algorithm for
the entire T iterations in both full and noisy feedback settings. Specifically, from Theorem 5.1, we

can derive the rate of exploit(r?) < O(InT/+/T) by setting T, = O(InT) in the full feedback
setting. Similarly, from Theorem 5.2, the rate of E[exploit(77)] < O(InT/T10) in the noisy
feedback setting can be achieved when T, is set to T}, = O(T*/%).

E[exploit(a’)] <

We also provide the convergence results for our algorithm where G is one of the following diver-
gence functions in Appendix G: 1) Bregman divergence; 2) a-divergence; 2) Rényi-divergence; 3)
reverse KL divergence. We note that these results cover the algorithms in Example 3.1, 3.2, and 3.3.

Our algorithm is related to Clairvoyant Mirror Descent (Farina et al., 2022; Piliouras et al., 2022;
Cevher et al., 2023), which have been considered only in the full feedback setting. In contrast to this
algorithm, we achieve last-iterate convergence with rates in both full and noisy feedback settings by
utilizing the strong convexity of G.

6 EXPERIMENTS

This section empirically compares the representative instance of FTRL, namely Multiplicative
Weight Update (MWU) and its Optimistic version (OMWU), with our framework. Specifically,
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— MWU FTRL-SP u = 0.1 D,=KL G=KL FTRL-SP 4 =1.0 D,=L2 G=L2
OMWU  —— FTRL-SP u=0.1 D,=KL G=RKL
3BRPS Random payoff (10 actions) Random payoff (50 actions)
~ 0 0.0 fF——— 0 e e
=
= -2.5 -2 —\\
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Figure 1: Exploitability of ¢ for FTRL-SP, MWU, and OMWU with full feedback. The shaded area
represents the standard errors. Note that the KL divergence, reverse KL divergence, and squared £2-
distance are abbreviated to KL, RKL, and L2, respectively.
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Figure 2: Exploitability of 7 for FTRL-SP, MWU, and OMWU with noisy feedback.

we consider the following three instances of FTRL-SP: (i) the divergence function G is the reverse
KL divergence, and the Bregman divergence D, is the KL divergence, which matches Mutant FTRL
in Example 3.1. (ii) both G' and D,, are the KL divergence, which is also an instance of Reward
transformed FTRL in Example 3.2. Note that if the slingshot strategy is fixed to a uniformly ran-
dom strategy, this algorithm corresponds to Boltzmann Q-Learning in Example 3.3; (iii) both are
the squared #2-distance.

We focus on two zero-sum polymatrix games: Three-Player Biased Rock-Paper-Scissors (3BRPS)
and three-player random payoff games with 10 and 50 actions. For the 3BRPS game, each player
participates in two instances of the game in Table 2 in Appendix H simultaneously with two other
players. For the random payoff games, each player ¢ participates in two instances of the game with
two other players j simultaneously. The payoff matrix for each instance is denoted as M (»7). Each
entry of M (%7) is drawn independently from a uniform distribution on the interval [—1, 1].

Figures 1 and 2 illustrate the logarithmic exploitability averaged over 100 instances with different
random seeds. We assume that the initial slingshot strategy 7° is chosen uniformly at random in
the interior of the strategy space X = Hle A% in each instance for 3BRPS, while 7 is chosen as
(1/d;)jeqa,) for i € [3] in every instances for the random payoff games.

First, Figure 1 depicts the case of full feedback. Unless otherwise specified, we use a constant
learning rate n = 0.1 and a perturbation strength p = 0.1 for FTRL-SP. Further details and addi-
tional experiments can be found in Appendix H. Figure 1 shows that FTRL-SP outperforms MWU
and OMWU in all three games. Notably, FTRL-SP exhibits the fastest convergence in terms of
exploitability when using the squared ¢>-distance as both G and D,,. Next, Figure 2 depicts the
case of noisy feedback. We assume that the noise vector ! is generated from the multivariate
Gaussian distribution A/(0, 0.1?I) in an i.i.d. manner. To account for the noise, we use a lower
learning rate n = 0.01 than the full feedback case. In OMWU, we use the noisy gradient vector

Vi, vi(ﬂt_l, wt_l) at the previous step ¢ — 1 as the prediction vector for the current iteration t. We

% —1
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observe the same trends as with full feedback. While MWU and OMWU exhibit worse performance,
FTRL-SP maintains its fast convergence, as predicted by the theoretical analysis.

7 RELATED LITERATURE

Recent progress in achieving no-regret learning with full feedback has been driven by optimistic
learning (Rakhlin & Sridharan, 2013a;b). Optimistic versions of well-known algorithms like Follow
the Regularized Leader (Shalev-Shwartz & Singer, 2006) and Mirror Descent (Zhou et al., 2017;
Hsieh et al., 2021) have been proposed to admit last-iterate convergence in a wide range of game
settings. These optimistic algorithms have been successfully applied to various classes of games,
including bilinear games (Daskalakis et al., 2018; Daskalakis & Panageas, 2019; Liang & Stokes,
2019; de Montbrun & Renault, 2022), cocoercive games (Lin et al., 2020), and saddle point problems
(Daskalakis & Panageas, 2018; Mertikopoulos et al., 2019; Golowich et al., 2020b; Wei et al., 2021;
Lei et al., 2021; Yoon & Ryu, 2021; Lee & Kim, 2021; Cevher et al., 2023). Recent advancements
have provided solutions to monotone games and have established convergence rates (Golowich et al.,
2020a; Cai et al., 2022a;b; Gorbunov et al., 2022; Cai & Zheng, 2023).

The exploration of literature with noisy feedback poses significant challenges, in contrast to full
feedback. In situations where feedback is imprecise or limited, algorithms must estimate action
values at each iteration. There has been significant progress in achieving last-iterate convergence in
specific classes of games when noisy feedback is present. This progress is particularly noticeable
in potential games (Cohen et al., 2017), strongly monotone games (Giannou et al., 2021b;a), and
two-player zero-sum games (Abe et al., 2023). Previous results with noisy feedback have often
relied on strict (or strong) monotonicity (Bravo et al., 2018; Kannan & Shanbhag, 2019; Hsieh
et al., 2019; Anagnostides & Panageas, 2022) and strict variational stability (Mertikopoulos et al.,
2019; Azizian et al., 2021; Mertikopoulos & Zhou, 2019; Mertikopoulos et al., 2022). Even if these
restrictions are not imposed, convergence is demonstrated in an asymptotic sense and the rate is not
quantified (Koshal et al., 2010; 2013; Yousefian et al., 2017; Hsieh et al., 2022; Abe et al., 2023).
As a result, prohibitively long rounds may be required to achieve this convergence.

From an algorithmic perspective, our work is closely related to payoff-regularized learning, where
the payoff or utility functions of each player are perturbed or regularized through entropy functions
or ¢?-distance functions (Cen et al., 2021; 2023; Cai et al., 2023; Pattathil et al., 2023). Previous
studies have successfully achieved convergence to stationary points or approximate equilibria char-
acterized by the payoff regularizing parameter. For instance, Sokota et al. (2023) showed that their
mirror descent-based algorithm converges to a quantal response equilibrium (McKelvey & Palfrey,
1995; 1998), which can be viewed as an approximate equilibrium. Similar results have been obtained
with the Boltzmann Q-learning dynamics (Tuyls et al., 2006) in continuous-time settings (Hussain
et al., 2023). Our framework provides a comprehensive understanding of the relationship between
convergence points of dynamics and approximate equilibria. We can argue that our framework uni-
fies the existing payoff-regularized learning algorithms, each of which perturbs payoffs by different
functions, e.g., strongly convex functions (Facchinei & Pang, 2003; Liu et al., 2023; Bernasconi
et al., 2022; Sokota et al., 2023) or divergence functions (Perolat et al., 2021; Abe et al., 2022;
2023). Although Sokota et al. (2023) employs a similar perturbation to our slingshot strategy, which
they call magnetic strategy, they only provide convergence toward an approximate equilibrium. On
the contrary, we manage to derive convergence toward a Nash equilibrium of the underlying game
by incorporating iterative updates of the slingshot strategy. This non-trivial convergence with full
and noisy feedback arises from the interplay between our simple, but distinct payoff perturbation
technique and the iterative updates.

8 CONCLUSION

We developed a slingshot framework to compute equilibria in monotone games, where the slingshot
perturbation enables convergence even when the noise is present. This research could lead to several
intriguing future studies, such as finding the best perturbation strength for the optimal convergence
rate and achieving convergence with more limited feedback, for example, using bandit feedback
(Bravo et al., 2018; Tatarenko & Kamgarpour, 2019; Drusvyatskiy et al., 2022).
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A NOTATIONS

In this section, we summarize the notations we use in Table 1.

Table 1: Notations

Symbol Description
N Number of players
X; Strategy space for player ¢
X Joint strategy space: X = vazl X
v; Payoff function for player ¢
e Strategy for player ¢
™ Strategy profile: m = (7;);e[n]
& Noise vector for player ¢ at iteration ¢
m* Nash equilibrium
I Set of Nash equilibria
exploit(m)  Exploitability of 7: exploit(m) = Zfil (maxz,cx, vi (7, m—;) — v;i(7))
Al d-dimensional probability simplex: A? = {p € [0,1]¢ | Z?zl p; =1}
diam(X) Diameter of X': diam(X') = sup, . cx |7 — 7'
KL(-, ") Kullback-Leibler divergence
Dy(-,-) Bregman divergence associated with 1)
Vi,V Gradient of v; with respect to 7;
i Learning rate at iteration ¢
W Perturbation strength
o Slingshot strategy profile
G(-,") Divergence function for payoff perturbation
\vaye Gradient of G with respect to first argument
Ty Update interval for the slingshot strategy
K Total number of the slingshot strategy updates
o Stationary point satisfies (4) for given p and o
wt Strategy profile at iteration ¢
ok Slingshot strategy after k& updates
L Smoothness parameter of (v;);e[n]
p Strongly convex parameter of v
I¢] Smoothness parameter of G(-, o;) relative to
0% Strongly convex parameter of G (-, ;) relative to ¢
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B PROOFS FOR SECTION 4.1

B.1 PROOF OF THEOREM 4.2

Proof of Theorem 4.2. First, we introduce the following lemma:

Lemma B.1. Let us define T(y;) = arg max{(y;, z) — 1(x)}. Assuming ¢ : X; — R be a convex
rEX;

function of the Legendre type, we have for any 7; € X;:
Dy (mi, T(yi)) = (ms) = O(T(y:) — (i mi — T(yi))-

Defining 4! = 73" o (Vae,0i(nf,7%,) — iV, G(n5,0;)) and letting 7; = 77, y; = y! in

Lemma B.1, we have:

Dyt w1 = () — () — (gl = wi ).

» e [

Using this equation, we get for any ¢ > 0:
Dy(m}"7, m*) = Dy (w7, wf) + Dy (nH f)

» e [ 7
= (%) = (i) = (yp mfT =) = () () + (e - )
F(m ) = () — (v =)
= —(yf,mf"” —m )+ (T -t

% g %
t—1 _t4+1
i » Ty

= (yi — v
= n(V,vi(rl, 7t ) = pVa, Gl o), wltt — w7y, (6)

2 K3

1)

Next, we derive the following convergence result for 7'

Lemma B.2. Suppose that Assumption 4.1 holds with 3,y € (0,00), and the updated strategy
profile 7t satisfies the following condition: for any t > 0,

Dy (%, 1) = Dy, 1) + Dy(n**, )
N
<0 (Vevi(rl,h) = uVa, G(xl, 00), 7t — 7lo7).
i=1
Then, for any t > 0:

¢
Dy (m#7 7ty < Dy (a7, 7°) (1 — M) .

2
Itis easy to confirm that (6) satisfies the assumption in Lemma B.2. Thus, we conclude the statement.
O
B.2 PROOF OF THEOREM 4.3
Proof of Theorem 4.3. Since v; (-, w" ;) is concave, we can upper bound the exploitability as:
N
exploit(n') = Zl <;né%)>(( vi (7, ) — vi(wt)>
i
N
< _ t
<3 mox (Veui(r). 7= )
i=
N
= m:ﬁz (Vi (), 7oy = 7%) = (Vi (), — 7t
1=
+ (Vrvi(mh) = Vo (7)), 7 — 7l)) (7)

Here, we introduce the following lemma from Cai et al. (2022a):
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Lemma B.3 (Lemma 2 of Cai et al. (2022a)). For any m € X, we have:

N

N
max Ve vi(m), 7 —m) < diam(X)- min — Vv () + a2,
g (Vi) 7o) <) i (32 = V() +a

where N () = {(a:)ieiny € [TIL, R% | SN (as, 7, —m) <0, Vo' € X}

From Lemma B.3, the first term of (7) can be upper bounded as:

N
max Vo, 05 (%), 7t — w7) < diam(X) - min — Ve v; () 4+ a4l|2.
g Do (Vi) T ) e g (S V)

From the first-order optimality condition for 7m*?, we have for any m € A’:

N
Z<vﬂ'ivi(ﬂ-%0) - /’LvﬂiG(ﬂ-i’ha’O’i)vﬂ-i - Trfﬁ> <0,
i=1

and then (V,v;(7#7) — uV,,G(7!"7, 04))icin) € N (7). Thus,

N
max Z(Vﬂivi(w“’g), 7 — )

i=1

N
< diam(X) | Y || = Vi vi(m7) + Vi vi(m) — pV o, Gt 0) |2

i=1

N
= p-diam(X), | > ||V, G, 03) |12, ®)
=1

Next, from Cauchy—Schwarz inequality, the second term of (7) can be bounded as:

N N
=D (Vi) b = 7)<t =7 | D (Vi (o )2, ©)
i=1

i=1

Again from Cauchy—Schwarz inequality, the third term of (7) is bounded by:

N N
D (Vi) = Vi (w#9), 7 = wf) < |7 = 7|y | D |V 0i(7t) = Vrvg(mio) |12
i=1 1=1
N
< diam(X) | Y |V vi(7t) = Vv (i) ||2
i=1
< L-diam(X) ||zt — 77|, (10)

where the third inequality follows from (2).
By combining (7), (8), (9), and (10), we get:

exploit (")

N N
< p-diam(X), | Y Ve Gl o) |2 + | L diam(X) + | > [ Vavi(meo) |2 | ot — ]|,
i=1 i=1
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Thus, from Theorem 4.2 and the strong convexity of ¢, we have:

N
exploit(7') < p - diam(X) Z |Var, G(7t7 0;)|]?

N
2Dy, (mHe 70) nuy\?
0 2 ¥ ? — =
+ | L-diam(X) + E IV &, vi (m#2)|| \/ 5 (1 5 )

B.3 PROOF OF COROLLARY 4.4

Proof of Corollary 4.4. From the definition of the Bregman divergence, we have for all 7;, 7, € A;:
Dy (m}, 03) = Dy (mi, 04) — <VmD¢(7TmUi)a7T§ — )
=Y(m;) —¥(oi) — (Vw(az) —0i) —(m;) +Y(03) + (Vp(03), mi — 04)
—(Vip(m;) — Vip(ay), 7} — 7Tz'>
= P(m) — (i) — (Vep(mi), mj — m3)
= Dy(mj, mi).
Therefore, Assumption 4.1 holds with 5 = v = 1, and then we conclude the statement. O

B.4 DETAILS OF EXAMPLE 4.5

Details of Example 4.5. Defining ¢ (m;) = — Z?‘:l In(m;;), we have Dy (m;, m;) = IS(m;, m}) =

Z?’:l (:,J —In 5% — 1) for all m;, 7/ € A%. Furthermore, v is twice differentiable and has a
7 i

diagonal Hessian:

V() =

”?di ’
and thus, its smallest eigenvalue is lower bounded by 1. That is, p = 1.
Next, we have:

G(mi,0i) — G(mi,04) — <V G(mi, 00), T — i)

d; d;
:ZUU ln< ) ZUU In (7%> —I—Z(ﬂ;j—mj)%

j=1 Jj=1
d; di, /
Tij Tij — Tij
= E o ln | —= | + E 04 ——
¢ T . ¢ ﬂ-ij
j=1 (] j=1

Thus, G satisfies that:

G(rl,0;) — G(mi,00) — (V. G(m, 04), 7 — m3) > m[ldn] o I1S(m, i),
]E i

G(r},0;) — G(mi,00) — (Vo G(miy 04), 7 — mi) < IS(m), ;).
Therefore, Assumption 4.1 holds with 8 = 1 and v = min,¢(n],je[q4,) 04j- Hence, from Theorem

4.2, we have for n e (07 W)

I8(en 7, ) < 15(07,70) (1 247

17
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B.5 DETAILS OF EXAMPLE 4.6
Details of Example 4.6. When ) (m;) = Z?;l mi; In(m;;5), we have Dy (m;, 7)) = KL(m;, 7)) =
G(m;,w}) for all 7;, 7, € Adi. Furthermore, 1 is twice differentiable and has a diagonal Hessian:

1
il

V() =
1

Tid,;

)

and thus, its smallest eigenvalue is lower bounded by 1. Therefore, v is 1-strongly convex, and then

we have p = 1. By plugging p = 1 into Corollary 4.4, we have for ) € (0, 3“224_%):

wn,o _t < M,U _@
KL(7"7, 7t) < KL(x )(1 2).

B.6 DETAILS OF EXAMPLE 4.7

Details of Example 4.7. Let us define 0; = (1/d;)¢[4,) in Example 4.6. Since the convergence rate

holds for any o € X, we have for ) € (0, Mﬁ%):

¢
KL(7#7, ') < KL(7*7, 1) (1 - %) .

C PROOFS FOR SECTION 4.2

C.1 PROOF OF THEOREM 4.9

Proof of Theorem 4.9. Writing y! = >\ ns(Vr,vi(m5,7,) + & — Vi, G(n3,7;)) and using
Lemma B.1 in Appendix B.1,

Dy(n}"?, mi*h) = Dy (", f) + Dy (i, mh)
<y o yt 1 7_‘,1?+1 o ,u a’>
7 1 y e
= <va1( ) MVmG(W“ 0-1) _|_£ t+1 ﬂ_zllt,a>.

We have the following Lemma that replaces the gradient with Bregman divergences:

Lemma C.1. Under the noisy feedback setting, suppose that Assumption 4.1 holds with B,~ €
(0, 00), and the updated strategy profile ' satisfies the following condition: for any t > 0,

Dy, 71) = Dy (e, 71) + Dy, )
N
<n Z<Vﬂ—i1}i(ﬂ' ) MVmG(ﬂ'l,UZ) + gw ;H—l 7T£L,0'>.
=1

Then, for anyt > 0:
Dy (nt7, 7wt ) — Dy (w7, 1) + Dy (n' 1, 7")

2,2 2
pwoyp (v +28) + 8L t+1 Y , t+1 u,
< (2 Dy(att, 1) — EL Dy (7 7 +mz )

t” vp? (y+28)+8L> > /w

The proof of Lemma C.1 is given in Appendix F.3. Note tha S 2

lemma completes the proof.

. The following

18
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Lemma C.2. Suppose that with some constants 0 > k > 0, for all t > 0, the following inequality
holds:

Dﬂ’(ﬂ—u’aaﬂ—Hl) - Dw(ﬂ—ﬂﬁ’ Wt) + Dw(ﬂprlv’frt)
N

< (0D (r" T w) — KDy (w7, 7)) 4 Y (€ — ).
i=1
Then, under Assumption 4.8, for all t > 0,

20 — K NC? 1 1
E[Dy (77, 7t+1)] < Dy(m? 7% + ————( =In (-t +1 :
[ 73[,(7T , T )} Y 111(77 ) T )+ p(lit+29) ( (29 + ) 29)

The proof of Lemma C.2 is given in Appendix F.4 O

D PROOFS FOR SECTION 4.3

D.1 PROOF OF THEOREM 4.10

Proof of Theorem 4.10. From the definition of the Bregman divergence, we have:
Dy (nf7,m; ) = Dy (i}, ) + Dy (ni ™ )

= P(l7) = (m ) = (Ve (r ), mf — it
= (@) + () + (Vap(m), w7 — )

+op(m ) — () — (Vo (), m ™ — i)
= (Vip(m) = Vip(m ), 7 — ). (1)
From the first-order optimality condition for 7rf+1 we get:

((Vrvi(mi, ) = uVar, G(rf,00)) = Vp(mi™h) + Vop(p), wf” = mi ) <0 (12)
By combining (11) and (12), we have:

Dy (m; Gaﬂ“l)*Dw( iy Z)Jqur/J( t+1,7r§)
< (Vg vi(nt, mh,) — pVa, Gnt, 0y), wltt — 7o),
Thus, we can apply Lemma B.2, and we conclude the statement. 0

D.2 PROOF OF THEOREM 4.11

Proof of Theorem 4.11. Writing g! = V,v;(wl, 7,) — uV,, G(xt, 0;), from the first-order opti-
mality condition for 7, 1 we get:

(nelgi + &) = Ve(m ™) + Vo), 77 — m ™) <0. (13)
By combining (11) and (13), we have:

Dw( U’ﬂ—?l) Dw( HU, Z)—I-Dw( t+17ﬂf)— <gz +€z7 f+1 F¢)0>‘
Thus, we can apply Lemma C.1, and we have for all ¢ > 0,
Dy (mh", 7ty — Dy, (7, ) + Dw(ﬂ'tﬂ, )
N

2 2 2
ueyp(y +28) + 8L Yy o o
< M (( (2 2) Dw(WHlﬂrt) - ij(W“’ ) ) A e Z< Lo - %)
Hwyp i1
(0 Dy (w7, 7") — KDy (a7 7 +mZ &mtt =),

By applying Lemma C.2,

20 — K NC? 1 K 1
E[D,,(mH° 7t+t1)] < Dy 7 4+ ———— [ —In(—=t+1)+ = ).
[Dy (w7, )] < Kt + 20 w7 )+p(lit+29) K n(29 + )+

This concludes the proof. O
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E PROOFS FOR SECTION 5

E.1 PROOF OF THEOREM 5.1

Proof of Theorem 5.1. First, we prove that exploitability can be decomposed as follows:

Lemma E.1. Assume that \/Zszl |Vrvi(m)||2 < ¢ for any m € X. Then, we have for any
m,w e X:

exploit(7) < diam(X) - w?}éﬁ - ; | = Va,0i(7") + a;||2 + (L - diam(X) + ¢) |7 — 7’|

From Lemma E.1, we have:

exploit(a)
N K-—1
< diam(X) - min D = Vai(mmo ) 4 |2 + (L - diam(X) 4 ) [0 — 77
((lq‘,)ENX(‘IT“*GK?l) i—1
(14)
From the first-order optimality condition for w”’”Kfl, we have for any 7 € X:
N K K—-1 K-—1
Z<vﬂ'ivi(ﬂ-#70’ ) )_.U’(ﬂ-zl’hg _0'1‘}(_1) aﬂ-i_ﬂ-zl‘t’g > SO,
i=1
and then (vai(ﬂ“’gl(_l) — (Wf’ax_l - Uinl)) N € Nx(m*°"™"). Thus, the first term
i€[N
of (14) can be bounded as:
min | = Vv (™71 4 a2
(ai)ENX(ﬂ'”’U zz;

N
<\ Dl = Vauilmto ) 4 Vi (o) — g (w7 = o)
=1

= pllw 7 .

—1

Here, ||7r“="K — o =1]| can be upper bounded as follows:

Lemma E.2. Assume that Hﬂ'“"’k — o < ||7T“*‘7k — o (%)Ta Sfor some ¢ > 1, and

\/Zf\;l IV 03 (m)||2 < ¢ for any m € X. Then, if we set T, = max(;- In K + 264 1) .

Inc>

have for any Nash equilibrium ©* € I1*:

_ 22
e okt < 2Y2 e _ g (8|7r* o0+ <>.
VK I

By using Lemma E.2, the first term of (14) can be upper bounded as:

2
i3I Vet < W\/H = ot (sl o0l + 3

(ai)ENx (mmso™
(15)
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Next, from the assumption that ||7r“*"k —oktl < Hﬂ'“"’k —a¥| (%)T" and Lemma E.2, the second
term of (14) can be bounded as:

o5 — |

2V ¢ —T 8||7r* o0 + C)

oK — 7o) <

< 2%
mww .y 8H7r o0 ) (16)

By combining (14), (15), and (16), we get:

ey 22t D) diam(X) 4O [ .
exploit(c®) < Wi \/|7r oV (8||7T % + N)l

O
E.2 PROOF OF THEOREM 5.2
Proof of Theorem 5.2. From Lemma E.1, we have:
E[exploit(c)]
<E |diam(X) - min Z | = Vo 0i(70 ) 4 ag||2 + (L - diam(X) + ¢) [|oX — a7
(ai)ENX(ﬂ’“v" o
A7)
From the first-order optimality condition for e’ , forany m € X
N K—-1 K—-1 K-—1
S (Ve = (w7 =0l ) ) <,
i=1
and then (Vwivi(ﬁ‘“ok_l) — <7Tf’UK_1 - UiK*l>) n € N (mo""). The first term of (17)
) i€[N
can be bounded as:
E|  min ZH = V(e ) o+ o

(a;)ENx (7 oK =1

N
<E Z | — Vnivi(mt,aKfl) + vai(ﬂ'“’”Kil) —u (7_‘_570—1(71 _ UiK_l) 2

i=1

— i [J|w" = R

Here, E [u”ﬁ“"’Kﬁl — okt H} can be upper bounded as follows:

Lemma E.3. Assume that IE[HW“"’k —oF 20k < ¢ 21nT“ Sfor any k > 0 for some ¢ > 0, and

\/Ef\il |V r,vi(m)||2 < C for any m € X. Then, if we set T, > max(K*, 3), we have for any Nash
equilibrium * € I1*:

|| — o2 4 4c (Zdiam(X) + % + c) In K

K-1
E W0 _ K-1 <
i oK) < -
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By using Lemma E.3, the first term of (17) can be bounded as:

N
E|  win Sl = Vil ) + a2

(a'i)ENX(ﬂ'“‘”K_l) i=1

| — 002 + 4e <2diam(X) + % + c) In K

<up 17 (18)

Next, from the assumption that E[”T(”’Uk — b | o*] < ¢y /2Ee < 22K and Lemma E.3,

the second term of (17) can be bounded as:

_ InT, In K

Ello" — x| < c\/ T < 20“;2 . (19)
By combining (17), (18), and (19), we get:
E[exploit(a)]

|7 — 002 + 4¢ (Qdiam(X) + < c) In K

< pu- diam(X
< p - diam(X) e

VInK
+2¢(L - diam(X) + ) -

3 <
_ o diam(X) |7 — o) ¢ (2iam(X) + £ + ) m K

+ 2p - diam(X)

< Nics %

+ 2¢ (L - diam(&X) + ¢) ;?2[(

< all diam(%ﬂ* — ol + 2 <diam(X) . (cL + ,u\/c (Zdiam(X) + % + c)) + c() %
2 (diam(/’\,’) : (cL + /ey 2diam(X) + £ + c) + cC) In K + p - diam(X)?

<

VK

E.3 PROOF OF THEOREM G.1

Proof of Theorem G.1. When G(m;, ;) = Dy (m;,w;) forall i € [N] and 7,7’ € X, we can show
that the Bregman divergence from a Nash equilibrium 7* € II* to o**! monotonically decreases:

Lemma E.4. Assume that G is a Bregman divergence D, for some strongly convex function 1.
Then, for any Nash equilibrium ™ € I1I* of the original game, we have for any k > 0:

Dy (") = Dy (%, 0%) < =Dy (0541, o).

By summing the inequality in Lemma E.4 from k£ = 0 to K, we have:

K K

* p

Dy (n*,06%) > Dyr(a* T, o) > 3 > ottt — k|2,
k=0 k=0

where the second inequality follows from the strong convexity of 4. Therefore, > .-, [loFtt —

o*||2 < oo, which implies that ||o¥*! — o%|| — 0 as k — oo.

By the compactness of X' and Bolzano—Weierstrass theorem, there exists a subsequence k,, and a
limit point & € X such that 0% — & as n — oo. Since ||o*»T1 — o | — 0 as n — oo, we have
oFn»*t1 — & asn — oo. Thus, the limit point & is the fixed point of the updating rule. From the
following lemma, we show that the fixed point & is a Nash equilibrium of the original game:
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Lemma E.5. Assume that G is a Bregman divergence D, for some strongly convex function 1,
and c*+1 = 71" for k> 0. If "1 = o*, then o* is a Nash equilibrium of the original game.

On the other hand, by summing the inequality in Lemma E.4 from k¥ = k, to k = K — 1 for
K >k, + 1, we have:

0< Dd,/((AT,O'K) < le(&,()’k").

Since o*» — & as n — oo, we have 0 — & as K — oo. Since 4 is a Nash equilibrium of the

original game, we conclude the first statement of the theorem.
O

E.4 PROOF OF THEOREM G.2

Proof of Theorem G.2. We first show that the divergence between IT* and o* decreases monotoni-
cally as k increases:

Lemma E.6. Suppose that the same assumptions in Theorem G.2 hold. For any k > 0, if o* €
X\ 1T, then:

min KL(7*, o) < min KL(7*,0").
meell* mrell*

Otherwise, if o* € T1*, then o**! = o* € IT*.

From Lemma E.6, the sequence {min, e+ KL(7*,0%)}1>0 is a monotonically decreasing se-

quence and is bounded from below by zero. Thus, {min e+ KL(7*, 0%)} x>0 converges to some
constant b > 0. We show that b = 0 by a contradiction argument.

Suppose b > 0 and let us define B = min, e+ KL(7*, 0%). Since min, e+ KL(7*, o*) mono-
tonically decreases, o* isin the set Q, p = {0 € X' | b < ming e+ KL(7*,0) < B} forall k > 0.
Since min« ¢+ KL(7*, -) is a continuous function on X', the preimage €2, 5 of the closed set [b, B]
is also closed. Furthermore, since X’ is compact and then bounded, 2, 5 is a bounded set. Thus,
Q4 p is a compact set.

Next, we show that the function which maps the slingshot strategies o to the associated stationary
point 77 is continuous:

LemmaE.7. Let F(0) : X — X be a function that maps the slingshot strategies o to the stationary
point w7 defined by (4). In the same setup of Theorem G.2, F(-) is a continuous function on X.

From Lemma E.7, ming- e+ KL(7*, F(0)) — mingen+ KL(7*,0) is also a continuous func-
tion. Since a continuous function has a maximum over a compact set {2, g, the maximum
§ = maxycq, p {Ming- e~ KL(7*, F(0)) — ming«cn- KL(7*, o)} exists. From Lemma E.6 and
the assumption that b > 0, we have § < 0. It follows that:

min KL(7*,0"%) = min KL(7*,0° —|— (mln KL(7*,0'*1) — min KL(7*, O’l)>

m*ell* m*ell* m*ell* m*ell*
< B—i-Z(S: B+ k6.

This implies that ming-cp- KL(7*,0%) < 0 for &k > %, which contradicts
min, e« KL(7*,0) > 0. Therefore, the sequence {min, e+ KL(7*,0%)}1>0 converges to 0,

and o* converges to IT*. 0O
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F PROOFS FOR ADDITIONAL LEMMAS

F.1 PROOF OF LEMMA B.1
Proof of Lemma B.1. First, from the definition of the Bregman divergence, for any 7; € &;:
Dy (m, T(yi)) = p(m) = (T (i) = (VO(T (i), mi — T(yi))- (20)

Recall that X; satisfies Am; = b for all m; € X; for a matrix A € RFixdi gnd p € RF:.
From the assumption for ¢ and the first-order optimality condition for the optimization problem
of arg max{(y;, x) — ¥(z)}, there exists v € R¥: such that

rzeX

yi — VY(T(yi)) = ATy,
Thus, we get:

(yi,mi = T(yi)) = (ATv + V(T (), 7 — T(yi))
= (VO(T(y:)),m; — T(y;)) + v Ami — v AT(y;)
= (VO(T(y:)),mi = T(ys)) + v b—v'b
(VO(T(y:)), mi — T(ys)). 1)

By combining (20) and (21), we have:
Dy (m, T(yi)) = (m) = (T(y:)) — (i, mi — T(ys))-

F.2 PROOF OF LEMMA B.2

Proof of Lemma B.2. We first decompose the inequality in the assumption as follows:

Dy ("7, m; ") = Dy (nf"", ) + Dy (w1 m)

Rt [

< n<vmvi(ﬂ-z¢’ﬂ-t—i) - MVMG(ﬂ-Zt’vUi)vﬂ-f-‘rl - 7757(7)

= (Vrvi(ml,wly), it = 7l + (Ve G(nl o), mh — w4+ Ve, Gl 03), 07 — 7l

i %

(22)
From the relative smoothness in Assumption 4.1 and the convexity of G(-, 7;):
(Va,G(r, 00),m — i)
< G(mf,05) = G(m™, 03) + BDy (m ™, )
< Gt 0i) = Gl 00) + (Va, G} 00), w7 — i Hh) + BDy (n 7). (23)

Also, from the relative strong convexity in Assumption 4.1:

G(TFZ?, Ui) - G(WH705 Ui) < <va(ﬂ'f7O'i),7T§ - 7T%0> - ’YDdJ(TréL,U ﬂ't)' (24)

By combining (22), (23), and (24), we have:
Dy ("% mi ™) = Dy (w7 mh) + Dy (mH, wf)

i 0 i

<(Vavilmy,mly), = ml7) 4 (Ve Gl 00), w7 — mi )

— nuyDy (nt7, ml) + nuBDy (xith, 7l),

and then:

Dy (mt 7, 7y = (1= muy) Dy (w7 7}) + (1 — nuB) Dy (xi T, )

<V vi(ml,mwly), it = 7l gV, Gl o), w7 — i)
= 77<vmvi(7rf+1, Wt_tl), 7-(24‘1 _ 7T£L70'> + 77,LL<v7riG(7TlH’a7 0'7:)7 7T1H’U B 7T5+1>
(Vo ) — Vi v (L, w1y it pteooy,
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Summing this inequality from ¢ = 1 to /N implies that:

Dy (a7, '+ ) — (1 = npy) Dy (a7, 7") + (1 = Wﬁ)Dw( )

N
SUZ<V7T,L-U1‘(7TE+1’7TZ+¢1); t+1 +77MZ 7TL ) i)77rého-_7rf+1>
i=1

N
0> (Vi 1) = Vo (et 1), w41 et

—1 ? K2

N
<n ) (Vevi(m?, 7)) — uVr, G(m"7, 0y) m =)

» (3

@
Il
—

Mz

<VTFLUZ( ) VTI',/UZ( H—l 7Tt+-1) 7T?+1 —7TH’U>

—1 ? 2 K2

-
Il
_

<) (Veui(r),7ly) = Veoi(m ™ a0, mth — a7

—1 ? Z

) (25)

-

N
Il
-

where the second inequality follows from (1), and the third inequality follows from the first-order
optimality condition for 7+

Here, from Young’s inequality, we have for any A > 0:

N
Z<V7Tz‘vi(ﬂ—f» i) — Varvi(m; i Witl)vﬂﬁl —-m%)
i=1
N N
(Vavilmi,mly) — VWLU%(WtJrl 7Tt:gl)7 775+1 —m) + Z<vai(7rfv77t—i) - vaz(ﬂ'prl 7775:;1)7 T —
i=1 i=1
al 1
Z: [V vs(mi T w5 = Voo, ) |12 + ﬁ”ﬂtﬂ S ol - w2
2 1 t+1 t112 1 t 1,0 (12
< (L2204 o ) It = w2 4t — )
1 2 t+1 ¢t 1 wn,o _t
; 2L >\+ by D (71' ,77)+ij,¢,(71' T, ) (26)

where the second inequality follows from (2), and the fourth inequality follows from the strong
convexity of 1.

By combining (25) and (26), we get:
1 202\ 1
Dy (nt7, 7 Hh) < (1 -1 (w - m)) Dy (m?, ') — (1 -1 (uﬁ o )) Dy ("1, 7h).

PA
By setting A = W
2 412
Dw(’ITM7U,7Tt+1) < (1 . %) D¢(W“’U,Wt) o (1 - </1'(’7'2’_ ﬁ) + MFW)Q)) D¢(7Tt+1,ﬂ't)
2, 2 9 12
_ (1 B M) Dy, 7ty — (1 (P20 (v+26)+8 Dy (1, ).
2 2uryp?

Thus, when 1 <
2y

2
5 pzé‘ﬁé’BHSLZ < %, we have for all £ > 0:

t+1
Dot £ (1 50) Dy, < (1 22)" iy,

25
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F.3 PROOF OF LEMMA C.1

Proof of Lemma C.1. We first decompose the inequality in the assumption as follows:
Dy(rf?, m ") — Dw( w7, ) + Dy (mi )

K2

< (Vi vi(m; t ) Nva(WmUz)""fzv zt+1 éhg>

=m<vaz‘(7ﬁ Wt D)=l 7) (Ve Glaf, 03), m -
+ 0V, G(rh, o), 7 — ) (&b mitt — ooy, 27
By combining (23), (24) in Appendix F.2, and (27),
Dy (i}, m ) = Dy(nf", )+D (m 7))
< (Voi(f, wly), mi = w7 Vi, Gl o), w7 = m ) B Dy (7wl

—m/wa(Wf’Uva)+ ( zt’ﬂ—zt-H 7T?0>'
Summing up these inequalities with respect to the player index,
Dy (77, atthy — Dy (77, ) + Dw(WHl, )

N
<> AVaeuvilnl,wh) = pG(al?, o), with = al7) 4+ B Dy (x' 1 7t
=1
N
— mepy Dy (7 )+ (gl mitt — wlo7)
1=1

M (Vv (mf T 7o) — uVa Gt 0y), wi T — wt7) — mypy Dy (27, 7') + muBDy (7', )

3 ? K3

I
.MZ

Il
-

(2

N N
+ Z<V‘MU2( L) - Vo vi(m; i Wi—gl)a zt+1 )+ Z< faW;H_l %)
i=1 =1
N
<D (Vi 7T ) = pVr, Gl o3), mi T = wlT) — oy D (7, 7)o Dy (' )
=1
N
e S (Vs L) = Vion(r, w50), = nto) o (el mlH - )
. 1=1

< —ippyDy (a7, wt) + nepBDy (n* 1, w)
N N
+nt Z<V7T1,U'L(7r’f7 ) vﬂlvl( t+1 ﬂ-t——‘gl)?ﬂ-;-‘rl 77T£L,a-> +nt Z< 1,1;77(-’[;-"_1 77T$L7U>7 (28)
i=1 i=1
where the second inequality follows (1), and the third inequality follows from the first-order opti-
mality condition for 7#7.

By combining (26) in Appendix F.2 and (28), we have for any A > 0:
Dw(ﬂ.u,o’ﬂ.t—&-l) _ Dw(ﬂ”u’a, ﬂ.t) + Dw(ﬂ't-‘rlﬂrt)
< ey Dy (7, 7') + nepuBDy (n' 1, 1)

N
1
# 2 (302004 1) D', 7) + 2Dy ) i S (EL T = ).
i=1
i - 2
By setting \ = i
Dy (77 ) — Dy (747, ) + Dy (x'1, 7t)
2,2 2 N
T HY ot p2yp?(y +28) + 8L 11t ¢ _tHl o
< -y on ) 4 (02 D) 4 D )
This concludes the proof. O
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F.4 PROOF OF LEMMA C.2

Proof of Lemma C.2. Reforming the inequality in the assumption,
Dy (7, 7t
N
< (1= rne) Dy (w7, 7") = (1= ) D (w1 ') g Y (&h T = wf7)

i=1
= (1 — #m) Dy (77, 7") = (1 = 0e) Dy (n" 1, 1)
N N

oy (Eml—al ) b > (€l mit —al).

i=1 i=1
By taking the expectation conditioned on F; for both sides and using Assumption 4.8 (a),
E[Dy (r7, 71| F]

N

< (1 - Knt)Dw(WMUvﬂt) - (1 - ntG)E[Dw(WH_l, 7Tt)|-7:t] + Z [<77t£zv zt+1 f>|]:t]
=1

= (1 — wne) Dy (7, 7t) — (1 — :0)E[Dy (1, 7t | Fi]

+ZE <\/1——77t9)7 p(l nte)( R f)> ]:75‘|

(1*ﬂm)D (W“” ') — (1= mO)E[Dy(r", 7")|F

ZEIIEtII 7+ AL a7y

2 N
7]
< (1w Dy (a7 ') + M%} E[J|€L 1?17
i=1

—1:0)
1 772 N
< - - ot o t)|2 .
< (1 Hze/ﬁ)Dw(ﬂ )+ DBl

i=1
Therefore, rearranging and taking the expectations,

NC?
t+20/k)E[Dy (n"7, 7] < (t — 1+ 20/K)E[Dy (77, 7*)] + —————.
(t+20/W)EIDy (v, )] < (= 1+ 20/mE[Dy (7, 7)] + ey
Telescoping the sum,

t

NC? 1
20/K)E[Dy (77, 7)) < (20/k — 1) Dy (w7, 7°
(84 20/K)E[Dy (x7, w )] < 20/ = 1) Dy (w7, 77) + —2 z::()/ferQt‘)

t

20 — k NC? 1
EID w0 t4+1 < D wo 0 .
= EDy(r7,m )]7/-115—0—29 v(m 7ﬂ)+p(nt+29)§ns+29

Here, we introduce the following lemma, whose proof is given in Appendix F.12, for the evaluation
of the sum.

Lemma F.1. Forany k,0 > 0andt > 0,
t

Z . L1 ~ln (55t +1)-
KS 4 29 =20 20
In summary, we obtain the following inequality:

20 — K NC? 1 K 1
E[D,,(m"° 7t+t1)] < Dy 7 4+ ———— [ —In(—=t+1)+ = ).
[Dy (w7, )] < Kt + 20 w7 )+p(lit+29) K n(29 + )+

This concludes the proof. O
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F.5 PROOF OF LEMMA E.1

Proof of Lemma E. 1.

TEX
(29)
From Lemma B.3, the first term of (29) can be upper bounded as:
N N
max Vo, vi(n), 7 — 7l) < diam(X) -  min — Vv () + a;]|2 30
> (Vi) s =) < diam(@) - min | S = V() £l G0)
Next, from Cauchy-Schwarz inequality, the second term of (29) can be upper bounded as:
N N
= (Vmui(@),m = wl) < =l | D IV oi(a)|1?
i=1 1=1
< (= . (€29
Again from Cauchy-Schwarz inequality, the third term of (29) can be upper bounded as:
N N
D (Vavilm) = Vavi(w'), 7 = mi) < 7 = 7lly | D [ Vrvilm) = Vioi(a)]|2
i=1 i=1
N
< diam(X) | > [V 0i(m) = Vi, vi(n') |2
i=1
< L-diam(X) - |7 — 7| (32)

By combining (29), (30), (31), and (32), we get:

N
exploit(m) < diam(X)-  min Z | = Vevi(n) + a;]|2 + (L - diam(X) + ) || — =]
(a;)€Nx(m’) Pt

O

F.6 PROOF OF LEMMA E.2

Proof of Lemma E.2. First, we prove the following lemma:

Lemma F.2. Assume that \/Zfil IVzvi(m)||2 < ¢ for any m € X. Then, we have for any
k € [K]:

2 ,
7 — H|2 < flo* — * P 2o et ¥,
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From Lemma F.2, we can bound ||7%" — ¢*||2 as:
o — P

2¢

< flo* = F TP 4+ = T o]
i

_ _ _ o 2 _
B e [ Y IR S )

(33)

Next, we upper bound ||7r“"’k — 0%||? using the following lemma:

Ty .
Lemma F.3. Assume that Hﬂ'“"’k —ofH| < ||7r“"’k —o®|| (£)°7 for some ¢ > 1. Then, if we set
T, = max(% In K + 1&63, 1), we have for any Nash equilibrium * € 11*:

K-1 .
Do T —o|P < 16]ln” — o).
k=0

Using Lemma F.3, we have:
k K-l k
et — k)2 < 37 it — 0|2 < 1) — o2,
k=0

and then from the assumption, we get:

T
ok ok 1\ 4fx*—o°
ot — o1 < e — by (1) < A2 e
c cle
By combining (33) and (34), we have:
- N L Lt ad G | el PN 2 47" = o)
[t = o*||? < [l S R 2T +2 cT- Af|m _00||+*T
B el AR Laad
< [ -0 "+ i + W I
- 8||7* — o
<l = R M (6””* — o’ + C)
cle I
Therefore, we get:
- - 8||7* — o
R (W — o'l + i)
SK |l — 0
< |lwtt — k|2 + M <6||7r* — | + C) : (35)
cle I
By combining (35) and Lemma F.3, we have:
K—1
- SK?||r* — o”
Kllnt™™" — K2 < Y flrrt — o 4 ST 22 <6||7r* — %+ C)
cle I
k=0
8K2 * -0
< 16 — o012+ 2T — 7 <6||7r* — %+ C)
cle I
< 16fr° — |2 + 85" - o°] (ol — o7 + &)
I
_ * 0 * 0 C
=87 = || | 87" —o"[[+ = .
I
O
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F.7 PROOF OF LEMMA E.3

Proof of Lemma E.3. From Lemma F.2 and the assumption of E[|| 747" —ak+1|| | %] < ¢,/ 2Lz <

T, —
26\/1nK

o> WE have:

E[|n#7" — %2 | o*]
9 _

< flo* = oF U2 B | X ok ak]
1

2¢

[ [ [ e {20’“ — T = o)+ ;W-l —o"||| “k}

_ InT, , InT, 2 InT,
< ||mro _gk—1\|2+c2%+2d1am(2\f)~c\/ I;U +%1/%

- X 4’ In K vin K
< ||ﬂ.u,0k 1 —ak_1H2+ CKIi + 4c ;2 (diam(/'l")—i—,i).
Therefore, we get:
- - 4’In K vin K
R S i e (diamwwf)
4’In K vin K
SE[||TI'H70JC70—]€||2]+ CKI; +4ec ]I; (diam(X)Jr'i). (36)

Here, we derive the following upper bound in terms of ]E[Hw“"’k — "2

Lemma F.4. Assume that ]E[Hﬂ'“"’k — o* 12 | ok) < 22Le for any k > 0 for some ¢ > 0. Then,

if we set T, > max(K*, 3), we have for any Nash equilibrium 7* € 11*:

K-1
O'k * . 4C an
S |l —a’“n?] < " = 0O + diam(¥) - <V
k=0

By combining (36) and Lemma F.4, we have:

KE[|x7" " — %117

ot 42 In K ¢
<E LZ:; et — ng] + g +deVinK <diam(X) + u)

4ev/InK  4c?In K
< ||7* — o°|* + diam(X) - c KI; + CKI; +4evin K <diam(X) + C)
W

< |l7* = o%|2 + 4c <2diam(X) + % + c) In K.

F.8 PROOF OF LEMMA E.4

Proof of Lemma E.4. Recall that G(m;, 7)) = Dy (m;,w}) for any ¢ € [N] and 7;, 7, € X;. By the
first-order optimality condition for ¥+, we have for all 7* € IT*:

N
> (Vevilof oM T — w(VY (o) = Vi (0f)), 77 — o) < 0.
=1
Then,
N 1 N
SV (o) = VY (o), o T — w7y < =3 (b = Ve vi(of T 0P ).
i

i=1 i=1
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Moreover, we have for any 7* € IT*:

Dys(n*,0" 1) = Dy (n*,0")

(' () = "0 h) = (V' (o7 ), ) — o ) = () + 4 (o) + (V' (o), ) — of

I
.MZ

=1

(= (aF ) + 4/ (oF) + (V' (oF), o1 — o) — (V! (011 — V! (oF), 7] — o))

|
.MZ

i=1

N
= =Dy (0", 0") + Y (VY (o7™) = Vi (of), 0t — 7).
i=1
By combining these inequalities, we get for any 7* € II*:
N

Dy (%, 1) — Dy (%, 0%) < =Dy (6%, %) + 0 > (ot —ap, Ve vi(of T ot )
=1
1 N
< =Dy (M) 4 Yol = V(7))
1=1

where the second inequality follows from (1). Since 7* is the Nash equilibrium, from the first-order
optimality condition, we get:

N
Z<U§+l - 77:7 vmvi(ﬂ-:vﬂii» <0.

i=1
Thus, we have for 7* € IT*:

Dy (") = Dy (%, 0%) < =Dy (0541, o).

F.9 PROOF OF LEMMA E.5

k+1

Proof of Lemma E.5. By using the first-order optimality condition for ;" ", we have forall 7 € X"

N
D (Vevilof T oM ) — w(Vr ) (0F ) = Vit (0F), mi — o) <0,

A vV —1 7
i=1

and then
N N

> (Vevilof oM m = of ) < pd (Ve (0F ) = Ve (of), m — o T,

i=1 i=1

Under the assumption that 0¥+ = ¢*, we have for all 7 € X:

N
Y (Veuilop ot m — o) < 0.
i=1
This is equivalent to the first-order optimality condition for 7* € IT*. Therefore, o*! = o is a
Nash equilibrium of the original game. O

F.10 PROOF OF LEMMA E.6

Proof of Lemma E.6. First, we prove the first statement of the lemma by using the following lem-
mas:

Lemma E.5. Assume that "1 = 77" for k > 0, and G is one of the following divergence: 1)
a-divergence with o € (0,1); 2) Rényi-divergence with a € (0,1); 3) reverse KL divergence. If
okt = o then o is a Nash equilibrium of the original game.

31
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Lemma F.6. Assume that o*+1 = qio" for k > 0, and G is one of the following divergence: 1)
a-divergence with o € (0, 1); 2) Rényi-divergence with o € (0, 1); 3) reverse KL divergence. Then,
if oFt1 £ oF we have for any 7 € I1* and k > 0:

KL(7*, oF 1) — KL(7*, o) < 0.

From Lemma F5, when o € X \ II*, o1 # oF always holds. Let us define 7* =
arg min KL(7*, 7). Since o**1 £ oF, from Lemma F.6, we have:
T ell*

min KL(7*, %) = KL(7*,0%) > KL(7*,6""!) > min KL(7*, o**1).

w*ell* % €I
Therefore, if 0% € X'\ IT* then min, - e+ KL(7*, 0% *1) < ming«e- KL(7*, %),
Next, we prove the second statement of the lemma. Assume that there exists o € II* such that
of*t1 o ok In this case, we can apply Lemma F.6, hence we have KL(7*, 0**1) < KL(7*, o%)
for all 7* € IT*. On the other hand, since o* € II*, there exists a Nash equilibrium 7* € IT* such

that KL(7*, o%) = 0. Therefore, we have KL(7*,0**1) < KL(7*,0*) = 0, which contradicts
KL(7*,c**1) > 0. Thus, if o* € IT* then o*+1 = o, O

F.11 PROOF OF LEMMA E.7

Proof of Lemma E.7. For a given o € X, let us consider that ¢ follows the following continuous-
time dynamics:

7 = arg max { (y!,m;) — (m;)}, (37)
T, EX;

t Y (s sy_ ., 9 s .
yij _A <7Ti_j vl(ﬂ—z?’”fz) ,U/ﬂ-ij G(’]TNO'Z)> .

We assume that ¢(m;) = Z?;l m;; In ;. Note that this dynamics is the continuous-time version
of FTRL-SP (3), so clearly 7#¢ defined by (4) is the stationary point of (37). We have for a given
o’ € X and the associated stationary point 77 = F(o”):

d d
ZKL(r 8y = Z Dy (rt it

where ¥* (y!) = max,,cx, {(y!, ) —¥(m;)}. When ¢(m;) = Z?;l mi; Inm;;, we have

& xp(yt. di - <p(ut.
w*(yzt) = Z ¢ M — Z N p(yw) ln € p(yz])

i

1) —~d; d
SO exp(yl) S S exp(yl) Y5 exp(yl)

- In Z _, exp( y” i: (!
- d; Z.]
Z] =1 exp(y” j=1
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and then,
a . exp(y};) & In Y250 exp(yl) :

5 VW) = s D expluy) - S exp(uly) Y exp(uiy)
Yij (Z]‘/:1 exp(yij,)) §'=1 (Z] =1 eXp(yzj ) §'=1

d;
In =% exp(yj;)
d;
Zj’:l eXP(yfj/)
exp(y;;) :
di—t = Trij'
Zj’:l eXp(yij’)

eXP(yfj)

Therefore, we get Vio* (y!) = !. Hence,

d
LKLt
o (w7 7t

N o4 /
Z<dtyzv z_ﬂ-éha>

=1

I
M= 1

1

.
Il

|
.MZ

@
I
-

+
I:

i=1

The first term of (38) can be written as:
N
S (Fvirt,wy) = iV, Gt o)t — w7

(Vv (mh? ,77“’.‘7/) — uVa, Gt o), ml — 7t >

—1

MZ =

@
Il
—

I
.MZ

(Vaoi(alo? at? )l = 7o) = p Y (Ve Gl o), = 7

&
Il
-
-
Il
-

(Vaoi(m 7y =y, G ol), wt — 7o)

[
AMZ

=1 " '
N !
Z Vw,G vTr,G( z{)’ﬂf - 71-?70 >
= . |
S 7Nz<v G(T( g; ) VTHG( ;)vﬂf - ﬁfﬁ >
i=1

<vﬂ'ivi(ﬂ-£7ﬂ't—i) - /u‘vﬂ'iG(ﬂ-ztva'i)?ﬂ-z? - WHJ >

<v7"ivi(ﬂ-’?7 Wiz) - NVMG(va 02), Wf - nya >

N
Z — V.Gl o), 7! —77“‘7).

(38)

where the first inequality follows from (1), and the second inequality follows from the first-order

optimality condition for 7#'?. When G is a-divergence, GG has a diagonal Hessian is given as:

!’
941

(min)>—2

V3G (m;,0l) =

i
(mia;)* =27
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and thus, its smallest eigenvalue is lower bounded by min ¢4, 0; ;- Therefore,

N
S (Vavilal,7l,) — uVa, Glat,of), nt — 7t
=1
N ’
Z — Vo, Gl al),mt - )
< - i ) It — w2, 39
< ”(iewffl?e[di]"za> It — 2| 39)

On the other hand, by compactness of A, the second term of (38) is written as:

N

Mz<v‘ﬂ'iG(ﬂ-fa O':) - vﬂ'zG(ﬂ'zt ) 7T - 71'“ i >
=1
< g - diam(X Z |V, G(nt,0l) = Vi, G(nt, 072 (40)

By combining (38), (39), and (40), we get:

d ’
%KL(TFH’U , )

N

< min ot ) I =7 P 4 (), 39 Glet o) = Vo Gt )

i€[N], j€(di] im1

Recall that 7/ is the stationary point of (37). Therefore, by setting the start point as 70 = 77,

we have for all ¢ > 0, 7t = 7/47. In this case, for all t > 0, £ KL(r" o' 7t) = 0 and then:

min aé-) 70— |2 < diam(X V. G(rt, Va, G(rt, 04)]2.
sl < Zn Rt.0l) = Vi Gl )|

i€[N], jeld;
. ’
; r_ (mmie[N],je[di]Ui') 2 : H,0
For a given ¢ > 0, let us define & = dam(x) ¢ - Since VG,
is continuous on X;, for &', there exists 6 > 0 such that [0/ — o] < § =

VN VGt 0l) = VoGl o) P < f = MMeiiacin %) 2 Thug, for every
€ > 0, there exists 5 > 0 such that

lo" —all <o

;»||w~,a’_wuvff||<\/ ( et (an o1) - mwa’“,ai)P) <e

MiNie[N], jeld;] U

This implies that F'(+) is a continuous function on X when G is a-divergence. A similar argument
can be applied to Rényi-divergence and reverse KL divergence. O

F.12 PROOF OF LEMMA F.1

Proof of Lemma F.1. Since is a decreasing function for s > 0, for all s > 1,

+20

! </S ! dz
ks +20 — J_ kx + 20
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Using this inequality, we can upper bound the sum as follows.

t t

1 1 1
;KS—FZGZ@—’_ZHS—F%
Jrz/ 1/11‘—1—29

1_|_/t1d
20 Ol€$+29x

1+1/t 1 J
= - - ——Fax
29 K Ox—'_%

| /\

Il
| =
4
5
—~
L
+
—_
~

This concludes the proof. O

F.13 PROOF OF LEMMA F.2

Proof of Lemma F.2. From the first-order optimality condition for 7" and 77“"”“1, we have for
any k > 1:

(Ve a7 ) = (e = ok) ok =t <0,

—1i 3
k—1 k—1 k—1 k
o o w,o k—1 W, o
(Ve vi (3 T )—H(Wi’ — I )aﬂ'i -m7 ) <0

—1

Summing up these inequalities yields:

N
k
02> (Vaui(nlo 77" ) = (w7 = oF) ob =t
i=1

N
-1 k—1 k—1 k k—1
DVt ) = (T o)t
i=1
N k k—1 k N k—1 k
= (Vrui(r] ot ), m T ey > (Ve vilr! wt ), ok — T e — o2
i=1 i=1
N o_k—l M,O’k_l H70k ,U,,O'k_l N k—1 ,LL,O'k_l Magk /J,,G'k_l
Z(vaz( N >+MZ<U¢ - T T )
i=1 i=1
N
k k—1 k—1 k—1 k
= (Vs ) = V(o ) -
i=1
N k k—1 k k—1 k k—1
A e O N e R [ e T S T T
i=1 —
N k k=1 k N k—1 k k—1
> S (et w7 o = ) el = |2 S ok e e e,
=1 ,
where the last inequality follows from (1). Then, since
k _ k k—1 k—1 _
k-1 u,ok71 M,O’kil _ ;L,Uk _ ||7rf7a — O-Z'f 1H2 _ Hﬂ-ét,o —775’0 ||2 _ ||7T§L’U _UzI'C 1”2
(o] ™ » T4 o) = B B) B )
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k k k—1
0> S (Vaui(mt? we") ok — 7o) 4 gl — ok

N
7] k—1 P okl
DI AL A A

N =

N k—1 k k
k—1 TN TR 0"

E (o7 —m > Ty - )

i=1

N
> S (Vavi(we wt ) ok — ) et o2

o
Il

HJ’“I B ngk_l H2 i H7r“’0k B ’n_'u’o'k—1||2 B Hﬁﬂﬁk . ﬂu,ak—l n kal o Wu,ak_l H2>

IR T=
e W

e R L S R L &

) —1 K2

-

©
Il
s

k k k—1 k k
N R B e e e

WE

k k k—1 k k
(Voo w7 ) o =t ) el = oH|? = Sl — b2 = Ejo* — o2

.
Il
_

(Vaoi(wle” w7 ), of =t ) 4 B — oF|2 = Blok — o1,

% I —1q i i

-

©
I
—

where the third inequality follows from (a + b)? < 2(a? + b?) for a,b € R. Thus,
N

. 2 k K
e e e D W AR C . R S
=1

N
_ 2 k—1 k k
< lo* =" P+ EHW”"’ — |l | Do Vmvi(wl w2
i=1

92 .
< ok = o* 12 4 2

F.14 PROOF OF LEMMA F.3

Proof of Lemma F.3. From the first-order optimality condition for p**!, we have:

k k k k
o o 1,0 B\ % o
(Vaoi(m?? 7l ) — (771‘ - Uz‘) m =m0 ) <0.

Thus, from the three-point identity 2(a — b,c — a) = ||b — ¢||?> — ||a — b||* — ||a — ¢||* and Young’s
inequality:

N N

k k k k k
D AVmvi(wl T a7 =) Sy (ml —of )
i=1 i=1
= Bl — o2 = Sl = oH? = Elr — P
= Gl =M P = Sl —oMP = Sl = o* g b 2
_ gllﬂ_* _ 0_k||2 _ %Hﬂ'“’ak _ O_k||2 _ %Hﬂ_* _ 0k+1H2 _ gHo_k-l—l _ ﬂ_p,,akH2 _ M<7T* _ 0_k+1’0_k+1 _ ﬂ_,u,a’“>
< Glln* = oM = Gl oM P = il — oM gl — R ok
3

B s En2 My _po® k2 My« k412 H * k12, OS2 k41 ok 12
< —j7* — — =||lmt — R - - — — 7t .
< Sl =P = Sl = oM P = Sl — oM gl — oM S ot e
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Here, since T, = max(; In K + 264 1), we have ¢*7» > 64cts WK — 64K3. Therefore, we
get:

N
S (vl w7 ) i — )
i=1
: 32uk® o (1N

< Bl = ot = Bl = M = B = MR 4 e - ot ok — et ()
< Sl = o* |2 = Sl = oM P = Sl — oM+ gl = P Lot —
= Sl — o2 = Sl — o* 2 = Bl — oM+ gl - AP
Summing up this inequality from £ = 0 to K — 1 yields:

u u K— MK 1 .

P+ 012 * _ _k+1p2 & wo® k|2

LA T D VL G B DI Lty

T

M-

<val( o’ Wﬁf ), i *W#J >

k=0 i=1
K-1 N

> > S (Vauilrf,wt ), m =7l
k=0 i=1

> 0.

Then, from Cauchy—Schwarz inequality, we have:

=

" — o2

(]

k=0
i i K-1
< Gl 0"+ s 3 o
i i K—1 2
<5l = i (Z o™ = o] + |ln* - aO|>
k=0 0
i p Kol k 2
< Bjre — o0 4 o (ZUT“ —aTn) + = o)
k=0 7=0
[ " K-1 k
< 3l =01+ g 2 (KZIIUT“ — 07| + |In° —a°|2>
k=0 0
—1
< HHW* 700”2 + H K2 Z ||0k+1 7 O_k:||2 +KH7T* 700”2
-2 32K3
k=0
K-1
< MH * 012 H K2 k+1 u,ok p,ak k 2 Klr* 012
< Bjn — o0 4 R N L ) S P E
k=0

By applying ||7ru,ak — okt < ||7rwfk — ¥ (%)T” to the above inequality, we get:

K-1 .
£ " — ok
k=0
By 02 I 2K y ||U _W“U | o k i * 02
§§||7T —a’| +32K3 K + |77 =" | + K7 ="
k=0
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K-1
By s 012 H 2 oF e * 02
< §||7T —o’||*+ e (K ; <2H7T“ -0 H) + K||7* = " >

—1
- g””* —oF+ 32/;(3 <4K2 Sl — ok P + K|t - 0'02)
k=0

11 p "
(g4 5 I - P+ g X o
k=0
Therefore, for K > 1, we get:
K= k
D flete = o®)? < 167 — 0%
k=0

i

F.15 PROOF OF LEMMA F.4

Proof of Lemma F.4. From the first-order optimality condition for p**!, we have:
ok " ok k oF
(Vvi(mt7  wtt? )—,u(ﬂé“’ —o}),m —nt"7 ) <.

Thus, from the three-point identity 2{a — b,c — a) = ||b — ¢||?> — ||a — b||*> — ||a — ¢||* and Young’s
inequality:

N N
k k k k k
DAVl wh ) w - w ) S p Y (mwlh — ok mi - wh)
=1 =1
= Gl = | = Sl — oM = G — |
2 2 2
— E||7T* —ok|2 - E||7Tu,a‘"' A E||7T* _ gkl | gkl WMU’CHQ
2 2 2
= Sl = oM = Sl = oM? = Sl — o2 = Dot — it et — o4 oM -
< Blln* = 0¥ = Bt = oHP = Ljla — 0F P ot — 4o |
P 7 K 7 . g
< Sllam = oM P = Sl = oM P = Gl = M e diam(X) o — |
Here, since T, > max(K*,3), we have h,lri < 4}‘;4}{ . Therefore, we get:
N k k k
E [Z(Vwﬂi(ﬂha 77rli7ig )77‘-;{ - ﬂ-fﬂ > | 0';|
=1
InT,
<E (Sl = 012 = Sl = oM = e = P 0] 4 diamn() - o2
2 2 2 T
2vVIn K
<E[ Sl —oF I = Sllne" — |2 = Zilnt = oH 2 | oF| + pe- diam(X) - 5=

Summing up this inequality from £ = 0 to K — 1 and taking its expectation yields:

K-1
H Z ||71—M7o'k _O—k||2 2\/ an
2 — K2

K—1 N . ) k
= l S (Tnvi(mlo” w7 ) =l >]

ay

5 |7c* —c70||2 —E

+ pc - diam(X) -

K—-1 N i
2E [ Z<vai(ﬂfa7fii)»ﬂ§k _W#U >‘|

38



Under review as a conference paper at ICLR 2024

Therefore, for K > 1, we get:

4ev/In K

E 2

K-1
> et - o’ﬂ < [l — 00 + diam(¥) -
k=0

F.16 PROOF OF LEMMA F.5

k+1

i

Proof of Lemma F.5. By using the first-order optimality condition for o

N
Z<vmv’i(af+17 U’j—;l) - uva(az]’c—i_l?Uz]’C)vﬂ-i - Uzl‘f+1> < Oa
=1
and then
N N

Z<vmvi(ak+1 Uk—‘rl)a T — O-I'C+1> < /,LZ<VMG(O'I-€+1,O'£€),7T1‘ - o'k+1>,

1 ’ —1
i=1 i=1

When G is a-divergence, we have for all m € X':

N ] N ok 1-a
D D D) DI ( k+>

, we have forall m € X:

=1 i=1 j=1 Tij
1 &
E+1
e w0
i=1 j=1
where we use the assumption that c¥*1 = oF and X; = A%. Similarly, when G is Rényi-

divergence, we have forall m € X:

N N d;
k+1 _k k+1 « 1 k+1
Z<VmG(U¢+ o) mi— oy ) = 1_ o Z k+1 k\l-—a Z(Ui; = i) <U

d;
i=1 i=1 Zj:l(gij )Q(Jij) j=1

N d;

o« 1 kt1 _
- 17QZ k-+1 k;)lfa Z(Oij _ﬂ-ij) =0.

d;
i1 2o ) (o

Furthermore, if G is reverse KL divergence, we have for all m € X:

N N 4 ok
k+1 K k1 k ij
Z<va(Ui+ 70i)777i_0i+ ) :ZZ(UijJrl _Trij) klj_l
i=1 i=1 j=1 Tij
N d;
= (Uffrl —mi;) =0,
i=1 j=1

Thus, we have for all 7 € X:

N
E+1 _k+1 k+1
D (Vrvilor ™ot m — o) <0,
i=1
This is equivalent to the first-order optimality condition for 7* & II*. Therefore, o
Nash equilibrium of the original game.

F.17 PROOF OF LEMMA F.6

Proof of Lemma F.6. First, we prove the statement for a-divergence: G(

a(l—w) 7=1\"1j i
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* e II*:
N 1 N d; ok 1-a
k:+1 ok k+1 *\ * k+1 ij

S (TGt o ot =) = g 33—l ()

_ * 1] k+1\a/ _k

Sy () s

i=1 j=1 ij i=1j=1
Here, when o € (0, 1), we get Z?;l(ofjﬂ)“(afj)l_“ < 1. Thus,
N N d; O\ 1o
. 1 N 0j N
Z<vﬁiG(0’f+l7Uf)705+l_ﬁi>ZHZZT(U< k?—l) T 1 a
i—1 i=1 j=1 T5j
N e N
= e (| ¥ 23 m(m)
=1 5=1 1]
11—« N
Z 7 anp ZZﬂmln k+1 11—«
=1 j=1
N 11—« N
— KL(7x* k+1y KL(7* k _
e (T (KL 0t - KL o)) - o

where the second inequality follows from the concavity of the In(+) function and Jensen’s inequality
for concave functions. Since In(-) is strictly concave, the equality holds if and only if &

Therefore, under the assumption that o**1 #£ g*

N
KL(r*, o) — KL(7*, o") < I (1
—

N
Z Vo, G(

, we get:

N

i=1

Ic+1’ k) k+1 71'?)7

’L I l

N (Va,Glol T of), o

k+1

k+1

)

ok,

(41)

where the second inequality follows from In(1+x) < « for z > —1. From the first-order optimality

condition for ak+ , we have for all 7* € IT*:
N
Z<vaz( k+1 k+1> ,U/V
i=1
Then,
N
> (Ve Goft o), of T —x) <
i=1

<

*
7

G(ol T of), mr — oty <.
N
1
*Z<vai(af+l k-li-l)7 f-H
Mz’:l
N
1
=3 (Vavi(mg, 7 ), ob T —
Mz’:l

)

);

(42)

where the second inequality follows from (1). Moreover, since 7* is the Nash equilibrium, from the

first-order optimality condition, we get:

N

S (of T - w, Vavi(n wt,) < 0.

i=1

By combining (41), (42), and (43), if o**! # o*, we have any 7* € II*:

KL(7*, 0% 1)

— KL(7*,0%) < 0.
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Next, we prove the statement for Rényi-divergence: G(oF T oh) =
L In (Zj’zl (UZJrl)O‘(ofj)l*a). We have for all 7* € II*:
N 0 N d; O\ 17
k1 _ky _k+1 _ okt ij
STt ot = S ()
i=1 i=1 Z] 1( ) ’L j= 1 Y]
N i 11—«
o« k Na
71_052 k+1 )1 ﬂ-J k+1 1o
i=1 E] 1 ) z j=1 ’Lj

Again, by using Z (ol (ok) = < 1 when o € (0,1), we get:

N l—o
Na
k k k *
E (Vr,G(o; +17 Z)agi+1_7ri>21_a§ :E: Tij (O,k+1> -

11—«
i=1 i=1j=1 iJ

11—«
N« Na
=M (1 szﬂ <k+1> - e

1=15=1 1]

Na l—a Na
Zl—anp ZZﬂwln k+1 “1-a
=1 j=1
Na 1-a v ka1 .k Na
:1_aexp( I (KL(7*, 0" 1) — KL(7*, ")) RS

where the second inequality follows from Jensen’s inequality for In(-) function. Since In(+) is strictly
concave, the equality holds if and only if 0¥+ = ¢*. Therefore, under the assumption that o*+! #£

o¥, we get:

N
KL(r*,0**1) - KL(s", o) < 22 1n< SNV Gl b, ok wr>>

-« N«
=1

N
Z (oFF1 ok, gkt — 7y, (44)

where the second inequality follows from In(1 4+ z) < z for x > —1. Thus, by combining (42),
(43), and (44), if o**1 £ 0¥, we have any 7* € II*:

KL(7*, o) — KL(7*, %) < 0.

k
d;
Finally, we prove the statement for reverse KL divergence: G(oF ™, o) = 3¢ 1o ln SHT +1 We
have for all 7* € II*:
N N d; O'k
k+1 _k k+1 *\ * k41 ij
Z<VmG(‘7i ,07),0; *7T7:>*Z (Wijfgij ) Tl
i=1 i=1 j=1 Tij
N d; k
=3
- Tij ol
i=1 j=1 ij
N d;
Nesp [ | =33 % N
R el I Tij Sk
i=1 j=1 ij
N d; k
>N = > ln—L | - N
P\ N Tig M5
i=1 j=1 ij
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where the inequality follows from Jensen’s inequality for In(-) function. Thus, under the assumption
that o* 11 £ % we get:

N
1
KL(TF*,O'IC+1)KL(W*,Uk)<N1n< NZ TrZ f+170-1k)7 f_‘—l 7T:<>>

N
vac AL okY, of L — a7y, (45)

where the second inequality follows from In(1 + =) < x for x > —1. Thus, by combining (42),
(43), and (45), if o**1 #£ o* we have any 7* € II*:

KL(7*, o) — KL(7*, %) < 0.

G CONVERGENCE RESULTS WITH OTHER DIVERGENCE FUNCTIONS

In this section, we establish the convergence results for our algorithm where G is not squared ¢2-
distance, and T} is sufficiently large. From Theorems 4.2 and 4.9, when T}, is large enough, updating

o becomes equivalent to setting 0¥+ to 7" . First, we provide convergence results for the case
where G is a Bregman divergence:

Theorem G.1. Assume that G is a Bregman divergence D,y for some strongly convex function 1/,
k
and oFtt = o for k > 0. Then, there exists m* € I1* such that X >t as K — oo,

Next, we consider divergence functions G other than Bregman divergence for games

with probability simplex strategy spaces, i.e., &; = A%, Specifically, we pro-
vide the convergence results when G is one of the following divergences; 1) a-
divergence G(m;,0;) = ﬁ (1 - Zj L (mi)e (aij)l’o‘); 2) Rényi-divergence G(m;,0;) =

—L-In (ijl (wij)a(aij)lfo‘) ; 3) reverse KL divergence.

Theorem G.2. Let us define X; = A%. Assume that c*+1 = 7 o for k > 0, and G is one of
the following divergence: 1) a-divergence with o € (0,1); 2) Rényi-divergence with o € (0,1);
3) reverse KL divergence. If the initial slingshot strategy o° is in the interior of X, the sequence
{ok}kzl converges to the set of Nash equilibria I1* of the original game.

H ADDITIONAL EXPERIMENTAL RESULTS AND DETAILS
H.1 PAYOFF MATRIX IN THREE-PLAYER BIASED RPS GAME

Table 2: Three-Player Biased RPS game matrix.

R P S
R 0 -—1/3 1
P 1/3 0 -1/3

S -1 1/3 0

H.2 EXPERIMENTAL SETTING FOR SECTION 6

The experiments in Section 6 are conducted in Ubuntu 20.04.2 LTS with Intel(R) Core(TM) i9-
10850K CPU @ 3.60GHz and 64GB RAM.

In the full feedback setting, we use a constant learning rate 7 = 0.1 for MWU and OMWU, and
FTRL-SP in all three games. For FTRL-SP, we set © = 0.1 and T, = 100 for KL and reverse KL
divergence perturbation, and set = 0.1 and T, = 20 for squared ¢2-distance perturbation. As
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an exception, = 0.01, 4 = 1.0, and T, = 200 are used for FTRL-SP with squared ¢>-distance
perturbation in the random payoff games with 50 actions.

For the noisy feedback setting, we use the lower learning rate 7 = 0.01 for all algorithms, except
FTRL-SP with squared ¢2-distance perturbation for the random payoff games with 50 actions. We
update the slingshot strategy o* every T, = 1000 iterations in FTRL-SP with KL and reverse KL
divergence perturbation, and update it every 7,, = 200 iterations in FTRL-SP with squared ¢2-
distance perturbation. For FTRL-SP with /2-distance perturbation in the random payoff games with
50 actions, we set n = 0.001 and T,, = 2000.

H.3 ADDITIONAL EXPERIMENTS

In this section, we compare the performance of FTRL-SP and MD-SP to MWU, OMWU, and opti-
mistic gradient descent (OGD) (Daskalakis et al., 2018; Wei et al., 2021) in the full/noisy feedback
setting. The parameter settings for MWU, OMWU, and FTRL-SP are the same as Section 6. For
MD-SP, we use the squared ¢2-distance and the parameter is the same as FTRL-SP with squared ¢2-
distance perturbation. For OGD, we use the same learning rate as FTRL-SP with squared ¢2-distance
perturbation.

Figure 3 shows the logarithmic exploitability of 7* averaged over 100 instances with full feedback.
We observe that FTRL-SP and MD-SP with squared ¢2-distance perturbation exhibit competitive
performance to OGD. The experimental results in the noisy feedback setting are presented in Figure
4. Surprisingly, in the noisy feedback setting, all FTRL-SP-based algorithms and the MD-SP-based
algorithm exhibit overwhelmingly superior performance to OGD in all three games.

— MWU FTRL-SP u = 0.1 D,=KL G=KL FTRL-SP u=1.0 D,=L2 G=L2 0GD
OMWU  —— FTRL-SP u=0.1 D,=KL G=RKL ~ —— MD-SP u=1.0 D,=L2 G=L2
3BRPS Random payoff (10 actions) Random payoff (50 actions)

g 5

! -5.0

x

L -10 =75

=

o -10.0

]

-1 -12.5

10° 10' 102 10° 10* 10° 10 10' 102 103 10* 10° 10° 10! 102 103 10* 10° 10°

Iterations

Figure 3: Exploitability of w¢ for FTRL-SP, MD-SP, MWU, OMWU, and OGD with full feedback.
The shaded area represents the standard errors. Note that the KL divergence, reverse KL divergence,
and squared #2-distance are abbreviated to KL, RKL, and L2, respectively.

— MWU FTRL-SP u= 0.1 Dy=KL G=KL FTRL-SP = 1.0 Dy=L2 G=L2 0GD
OMWU  —— FTRL-SP u=0.1 D,=KL G=RKL ~—— MD-SP u=1.0 D,=L2 G=L2
3BRPS Random payoff (10 actions) Random payoff (50 actions)
= 00 R | 0.0 /’_M 0.0
5 \
= v -
'S -05 05 —0s
S .
310 -1.0
o
3 15 wid| —1.0
(_0; -1.5 o
-2.0
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0 1 2 3 4
x10* Iterations x10° x10°

Figure 4: Exploitability of 7t for FTRL-SP, MD-SP, MWU, OMWU, and OGD with noisy feedback.
The shaded area represents the standard errors.
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H.4 COMPARISON WITH THE AVERAGED STRATEGIES OF NO-REGRET LEARNING
ALGORITHMS

This section compares the last-iterate strategies m of FTRL-SP and MD-SP with the average of
strategies % Zizl n7 of MWU, regret matching (RM) (Hart & Mas-Colell, 2000), and regret match-
ing plus (RM+) (Tammelin, 2014). The parameter settings for MWU, FTRL-SP, and MD-SP, as used
in Section H.3, are maintained. Figure 5 illustrates the logarithmic exploitability averaged over 100
instances with full feedback. The results show that the last-iterate strategies of FTRL-SP and MD-SP
squared /2-distance perturbation exhibit lower exploitability than the averaged strategies of MWU,
RM, and RM+.

—— MWU time average —— FTRL-SP u=0.1 Dy=KL G=RKL = MD-SP u=1.0 D,=L2 G=L2 RM+ time average
= FTRL-SP u=0.1 Dy=KL G=KL = —— FTRL-SP u=1.0 D,=L2 G=L2 —— RM time average
3BRPS Random payoff (10 actions) Random payoff (50 actions)

—~ 0y 1 0.0 f=—
E -25

=
5 5 -5.0

o

3
L 10 -75

S

o -10.0
o

-15 -12.5
100 10! 102 103 10* 10° 10° 10! 102 10® 10* 10°
Iterations

Figure 5: Comparison between exploitability of the last-iterate strategy profile of FTRL-SP, MD-
SP, and the averaged strategy profile of MWU, RM, and RM+ with full feedback. The shaded area

represents the standard errors.

H.5 SENSITIVITY ANALYSIS OF UPDATE INTERVAL FOR THE SLINGSHOT STRATEGY

In this section, we investigate the performance when changing the update interval of the slingshot
strategy. We vary the T, of FTRL-SP with KL perturbation in 3BRPS with full feedback to be
T, € {10,100,1000,10000}, and with noisy feedback to be T,, € {10,100,1000,10000}. All
other parameters are the same as in Section 6. Figure 6 shows the logarithmic exploitability of 7’
averaged over 100 instances in 3BRPS with full/noisy feedback. We observe that the smaller the 7,
the faster the exploitability converges. However, if T}, is too small, exploitability does not converge
(See T,, = 10 with full feedback, and T, = 100 with noisy feedback in Figure 6).

m FTRL-SP 1= 0.1 T, = 100
00 0.0 FTRL-SP = 0.1 T, = 1000
- P~ s FTRL-SP 1= 0.1 T, = 10000
L":‘ —2.51 = s FTRL-SP 11 = 0.1 T, = 100000
— = _
_45 —5.01 3 0.5
ot o
—7.51 X
3 310
S -10.0] S
(@)} mem FTRL-SP 4 =0.1 T; =10 ()]
2 _125] FTRL-SP u=0.1 T, = 100 2 315
ms FTRL-SP 4= 0.1 T5 = 1000
_150< me FTRL-SP 1= 0.1 T, = 10000
10° 10' 102 10° 10* 105 10° 00 02 04 06 08 1.0
lterations Iterations x10°
(a) Full feedback (b) Noisy feedback

Figure 6: Exploitability of ¢ for FTRL-SP with varying T, in 3BRPS with full/noisy feedback.
The shaded area represents the standard errors.
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