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Abstract

In this work, we focus on synthesizing high-fidelity novel
view images for arbitrary human performers, given a set
of sparse multi-view images. It is a challenging task due to
the large variation among articulated body poses and heavy
self-occlusions. To alleviate this, we introduce an effec-
tive generalizable framework Generalizable Model-based
Neural Radiance Fields (GM-NeRF) to synthesize free-
viewpoint images. Specifically, we propose a geometry-
guided attention mechanism to register the appearance
code from multi-view 2D images to a geometry proxy which
can alleviate the misalignment between inaccurate geome-
try prior and pixel space. On top of that, we further conduct
neural rendering and partial gradient backpropagation for
efficient perceptual supervision and improvement of the per-
ceptual quality of synthesis. To evaluate our method, we
conduct experiments on synthesized datasets THuman2.0
and Multi-garment, and real-world datasets Genebody and
ZJUMocap. The results demonstrate that our approach out-
performs state-of-the-art methods in terms of novel view
synthesis and geometric reconstruction.

1. Introduction
3D digital human reconstruction has a wide range of ap-

plications in movie production, telepresence, 3D immersive

communication, and AR/VR games. Traditional digital hu-

man production relies on dense camera arrays [10, 14] or

depth sensors [12, 20] followed by complex graphics ren-

dering pipelines for high-quality 3D reconstruction, which

limits the availability to the general public.

Reconstructing 3D humans from 2D images captured

by sparse RGB cameras is very attractive due to its low

cost and convenience. This field has been studied for

decades [21, 46, 50]. However, reconstruction from sparse

RGB cameras is still quite challenging because of: 1) heavy

self-occlusions of the articulated human body; 2) inconsis-

tent lighting and sensor parameters between different cam-

*Equal contribution. †Corresponding authors. Codes are available at

https://github.com/JanaldoChen/GM-NeRF

Figure 1. The effect of inaccurately estimated SMPL. Com-

pared with GNR [8] and KeypointNeRF [26], our method still

yields a reasonable result.

eras; 3) highly non-rigid and diverse clothes.

In recent years, with the rise of learning-based methods,

we can reconstruct high-quality digital humans from sparse

cameras. Learning-based methods [32, 36, 43, 49, 52] have

made great processes, however, they lack multi-view geo-

metric consistency due to the mere usage of a 2D neural

rendering network. To address this problem, many recent

works [5, 47, 54] adopt neural radiance fields as 3D rep-

resentations, which achieves outstanding performance on

novel view synthesis. However, these methods are not ro-

bust to unseen poses without the guidance of human geo-

metric prior.

To better generalize to unseen poses, NeuralBody [31]

introduces a statistical body model SMPL [23] into neural

radiance fields which can reconstruct vivid digital humans

from a sparse multi-view video. However, NeuralBody is

designed for identity-specific scenarios, which means it re-

quires laborious data collection and long training to obtain

the model for one person. Such a limitation restricts its ap-

plication in general real-world scenarios.

In this work, we focus on synthesizing high-fidelity

novel view images for arbitrary human performers from a

set of sparse multi-view images. Towards this goal, some

very recent works [7, 8, 19, 26] propose to aggregate multi-

view pixel-aligned features using SMPL as a geometric

prior. However, these methods usually assume perfect ge-

ometry (e.g. accurate SMPL [23] estimation from 2D im-

ages) which is not applicable in practical applications. In
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practice, the geometry error does affect the reconstruction

performance significantly. As illustrated in the red box of

Fig. 1, when the estimated SMPL does not align well with

RGB image, prior SMPL-dependent methods [8, 26] yield

blurry and distorted results. The such performance gap is

caused by the misalignment between the 3d geometry (i.e.

SMPL) and the pixel space (i.e. pixel-aligned feature and

ground-truth image). Specifically, the misalignment will

cause: 1) blur and distortion when fusing the geometry

and pixel-aligned features; 2) unsuitable supervision during

training with a pixel-wise loss like L1 or L2. To alleviate

the issue of misalignment, we propose to take the geome-

try code as a proxy and then register the appearance code

onto the geometry through a novel geometry-guided atten-

tion mechanism. Furthermore, we leverage perceptual loss

to reduce the influence of misalignment and promote sharp

image synthesis, which is evaluated at a higher level with a

larger perceptual field. It is non-trivial to apply perceptual

loss in NeRF-based methods as the perceptual loss requires

a large patch size as input which is memory-consuming

through volume rendering. We introduce 2D neural ren-

dering and partial gradient backpropagation to alleviate the

memory requirement and enhance the perceptual quality.

To summarize, our work contributes as follows:

• A novel generalizable model-based framework GM-

NeRF is proposed for the free-viewpoint synthesis of arbi-

trary performers.

• To alleviate the misalignment between 3D geometry

and the pixel space, we propose geometry-guided attention

to aggregate multi-view appearance and geometry proxy.

• To enable perceptual loss supervision to further allevi-

ate misalignment issues, we adopt several efficient designs

including 2D neural rendering and partial gradient back-

propagation.

2. Related work
Implict Neural Representation. Implicit neural represen-

tations (also known as coordinate-based representations)

are a popular way to parameterize content of all kinds, such

as audio, images, video, or 3D scenes [27, 38, 40, 42]. Re-

cent works [25, 27, 28, 40] build neural implicit fields for

geometric reconstruction and novel view synthesis achiev-

ing outstanding performance. The implicit neural represen-

tation is continuous, resolution-independent, and expres-

sive, and is capable of reconstructing geometric surface de-

tails and rendering photo-realistic images. While explicit

representations like point clouds [1, 52], meshes [43], and

voxel grids [22, 25, 39, 44] are usually limited in resolution

due to memory and topology restrictions. One of the most

popular implicit representations - Neural Radiance Field

(NeRF) [27] - proposes to combine the neural radiance field

with differentiable volume for photo-realistic novel views

rendering of static scenes. However, NeRF requires opti-

mizing the 5D neural radiance field for each scene indi-

vidually, which usually takes hours to converge. Recent

works [5, 47, 54] try to extend NeRF to generalization with

sparse input views. In this work, we extend the neural radi-

ance field to a general human reconstruction scenario by in-

troducing conditional geometric code and appearance code.

3D Model-based Human Reconstruction With the emer-

gence of human parametric models like SMPL [23, 29]

and SCAPE [3], many model-based 3D human reconstruc-

tion works have attracted wide attention from academics.

Benefiting from the statistical human prior, some works

[2, 4, 9, 18] can reconstruct the rough geometry from a sin-

gle image or video. However, limited by the low resolu-

tion and fixed topology of statistical models, these methods

cannot represent arbitrary body geometry, such as clothing,

hair, and other details well. To address this problem, some

works [33,34] propose to use pixel-aligned features together

with neural implicit fields to represent the 3D human body,

but still have poor generalization for unseen poses. To al-

leviate such generalization issues, [15, 35, 57] incorporate

the human statistical model SMPL [23,29] into the implicit

neural field as a geometric prior, which improves the per-

formance on unseen poses. Although these methods have

achieved stunning performance on human reconstruction,

high-quality 3D scanned meshes are required as supervi-

sion, which is expensive to acquire in real scenarios. There-

fore, prior works [15, 33, 34, 57] are usually trained on syn-

thetic datasets and have poor generalizability to real scenar-

ios due to domain gaps. To alleviate this limitation, some

works [6, 30, 31, 41, 48, 51] combine neural radiance fields

[27] with SMPL [23] to represent the human body, which

can be rendered to 2D images by differentiable rendering.

Currently, some works [7, 8, 19, 26, 35, 53] can quickly cre-

ate neural human radiance fields from sparse multi-view im-

ages without optimization from scratch. While these meth-

ods usually rely on accurate SMPL estimation which is not

always applicable in practical applications.

3. Method
We introduce an effective framework GM-NeRF for

novel view synthesis and 3D human reconstruction as il-

lustrated in Fig. 2. GM-NeRF learns generalizable model-

based neural radiance fields from calibrated multi-view im-

ages by introducing a parametric model SMPL as a geo-

metric prior, which can generalize to unseen identity and

unseen pose.

Given m calibrated multi-view images {Ik}mk=1 of a per-

son, we use Easymocap [11] to obtain the SMPL [23] pa-

rameters M(θ, β) of the person. We feed the multi-view

images into the encoder network E to extract multi-view

feature maps,

Hk = E(Ik), k = 1, 2, . . . ,m. (1)

20649

Authorized licensed use limited to: Zhejiang Tmall Technology Co.Ltd.. Downloaded on April 16,2025 at 07:39:02 UTC from IEEE Xplore.  Restrictions apply. 



Figure 2. The architecture of our method. Given m calibrated multi-view images and registered SMPL, we build the generalizable

model-based neural human radiance field. First, we utilize the image encoder to extract multi-view image features, which are used to

provide geometric and appearance information, respectively. In order to adequately exploit the geometric prior, we propose the visibility-

based attention mechanism to construct a structured geometric body embedding, which is further diffused to form a geometric feature

volume. For any spatial point x, we trilinearly interpolate the feature volume G to obtain the geometric code g(x). In addition, we also

propose geometry-guided attention to obtain the appearance code a(x,d) directly from the multi-view image features. We then feed the

geometric code g(x) and appearance code a(x,d) into the MLP network to build the neural feature field (f , σ) = F (g(x),a(x,d)).
Finally, we employ volume rendering and neural rendering to generate the novel view image.

For any 3D position p, we can project it onto the feature

map Hk according to the corresponding camera parameters,

which is defined as πk(·), then use bilinear interpolation

Ψ(·) to obtain the pixel-aligned feature hk(p) and pixel-

aligned color rk(p) as follows,

hk(p) = Ψ(Hk, πk(p)),

rk(p) = Ψ(Ik, πk(p)).
(2)

In order to adequately exploit the geometric prior, we pro-

pose the visibility-based attention mechanism to construct

a structured geometric body embedding, which is further

diffused to form a geometric feature volume (Sec. 3.1). Af-

terward, we trilinear interpolate each spatial point x in the

feature volume G to obtain the geometric code g(x). To

avoid the misalignment between the appearance code and

geometry code, we utilize the geometry code as a proxy and

then register the appearance code a(x,d) directly from the

multi-view image features with a novel geometry-guided

attention mechanism (Sec. 3.2). We then feed the geo-

metric code g(x) and appearance code a(x,d) into the

MLP network to build the neural feature field (f , σ) =
F (g(x), a(x,d)) followed by volume rendering and neu-

ral rendering for novel view image generation (Sec. 3.3).

To obtain high-quality results, we carefully design an opti-

mization objective including a novel normal regularization.

(Sec. 3.4) as well as an efficient training strategy (Sec. 3.5).

3.1. Structured Geometric Body Embedding

Different from neural radiance fields on general scenes,

we introduce a parametric body model to provide the ge-

ometric prior for constructing the neural human radiance

field, which can enhance generalizability under unseen

poses. In our experiments, we choose the SMPL [23] model

as the parametric model. The SMPL [23] model M(θ, β)

is a mesh with N = 6, 890 vertices {vi}Ni=1, where it is

mainly controlled by the pose parameter θ, and the shape

parameter β. NeuralBody [31] optimizes a set of structured

latent codes from scratch on vertices of the SMPL model

for each specific identity. However, not only does it fail to

represent a new identity but also has poor generalizability

on unseen poses. To address such limitation, we extract the

structured latent codes Z = {zi}Ni=1 from the multi-view

feature map Hk as a geometric embedding to represent ar-

bitrary identities. For vertex vi, we design a visibility-based

attention mechanism as shown in Fig. 2 to fuse multi-view

features.

Qg(vi) = F g
Q (ni)

Kg(vi) = F g
K({hk(vi)⊕ dk}mk=1)

Vg(vi) = F g
V ({hk(vi)}mk=1)

zi = F g (Att (Qg(vi),Kg(vi),Vg(vi)))

(3)

where ⊕ is the concatenation operator, and ni is the normal

of the vertex vi. F g
Q, F g

K , F g
V denote the geometric linear
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layers producing the query, key, and value matrices Qg(vi),
Kg(vi), Vg(vi), respectively. Att is the attention mecha-

nism proposed by [45]. F g is the geometric feed-forward

layer. The intuition of this visibility-based attention mecha-

nism is that the closer the input camera direction dk is to the

normal ni, the more the corresponding feature contributes.

As shown in Fig. 5, the visualization result demonstrates the

plausibility of this design.

Similar to NeuralBody [31], we use SparseConvNet [13]

D to diffuse the structured latent codes {zi}Ni=1 into the

nearby space to form a 3D feature volume G.

G = D({zi}Ni=1)

g(x) = Φ(x,G) (4)

where Φ(·) is the trilinear interpolation operation, which is

applied to obtain the geometric code g(x) for any 3D posi-

tion x during volume rendering.

3.2. Multi-View Appearance Blending

Although the structured geometric body embedding pro-

vides a robust geometric prior, high-frequency appearance

details such as wrinkles and patterns are lost, due to the

low resolution and the minimally-clothed topology of the

parametric model. In practice, inaccurate SMPL estimation

will lead to the misalignment between the 3D geometry and

pixel space, which will cause blur and distortion when fus-

ing the geometry and pixel-aligned feature. To solve this

problem, we design a geometry-guided attention mecha-

nism as shown in Fig. 2, which utilizes the geometry code

as a proxy and then registers the appearance code a(x,d)
directly from the multi-view image features for any 3D po-

sition x and view direction d.

Qa(x) = F a
Q (g(x)⊕ d)

Ka(x) = F a
K({hk(x)⊕ dk}mk=1)

Va(x) = F a
V ({hk(x)⊕ rk(x)}mk=1)

a(x,d) = F a (Att (Qa(x),Ka(x),Va(x)))

(5)

where F a
Q, F a

K , F a
V denote the appearance layers producing

the query, key, and value matrices Qa(x), Ka(x), Va(x),
respectively. F a is the appearance feed-forward layer.

3.3. Differential Rendering

After we get the geometric code and appearance code of

any 3D point, we design a two-stage MLP network F (·) to

build the neural feature field.

(f , σ) = F (g(x), a(x,d)) (6)

Unlike classical NeRF [27], which regresses color c and

density σ, our decoder outputs the intermediate feature f
and density σ. However, the original volume rendering pro-

cess is memory-consuming, we use a combination of vol-

ume rendering and neural rendering to get the final image.

3D Volume Rendering. We use the same volume ren-

dering techniques as in NeRF [27] to render the neural ra-

diance field into a 2D image. Then the pixel colors are ob-

tained by accumulating the colors and densities along the

corresponding camera ray τ . In practice, the continuous in-

tegration is approximated by summation over sampled N
points {xi}Ni=1 between the near plane and the far plane

along the camera ray τ .

F(τ) =
N∑
i=1

αi (xi)
∏
j<i

(1− αj (xj)) f (xi)

M(τ) =
N∑
i=1

αi (xi)
∏
j<i

(1− αj (xj))

αi(x) = 1− exp (−σ(x)δi)

(7)

where δi = ‖xi+1 − xi‖2 is the distance between adjacent

sampling points. αi(x) is the alpha value for x. The inter-

mediate feature image IF ∈ R
H
2 ×W

2 ×MF and the silhouette

image IM ∈ R
H
2 ×W

2 ×1 is obtained by Eq. (7).

2D Neural Rendering. We utilize a 2D convolutional

network Gθ to convert the intermediate feature image IF ∈
R

H
2 ×W

2 ×MF rendered by volume rendering into the final

synthesized image It ∈ R
H×W×3.

It ←− Gθ (IF ) (8)

where θ is the parameters of the 2D neural rendering net-

work G, which means the rendering procedure is learnable.

3.4. Loss Functions

To stabilize the training procedure, we adopt the pixel-

wise L2 loss widely used in [8, 19, 54] to constrain the ren-

dered image It and the alpha image IM.

L = λr

∥∥∥Ĩt − It

∥∥∥
2

2
+ λs

∥∥∥ĨM − IM
∥∥∥
2

2
(9)

where Ĩt, ĨM are the ground-truth of the RGB image and

silhouette image, respectively and λr, λs are the weights.

Beyond that, we also introduce the following loss functions

to optimize the networks together,

Perceptual Loss . We use a perceptual loss [16] based

on the VGG Network [37]. It is more effective when the

size of the images is closer to the network input, while it is

memory intensive to render the whole image by volume ren-

dering. To address these limitations, we adapt both neural

rendering as well as partial gradient backpropagation.

Lp =
∑ 1

N j

∣∣∣pj
(
Ĩt

)
− pj (It)

∣∣∣ (10)

where pj is the activation function and N j is the number of

elements of the j-th layer in the pretrained VGG network.
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Figure 3. Qualitative comparison with generalizable NeRFs. We input m = 4 multi-view images of unseen identity, and our method

produces a more photo-realistic novel view image compared to other state-of-the-art generalizable human NeRFs [8, 19, 26, 47]. The first

two rows are from Multi-Garment [4], the third row from THuman2.0 [55] and the last row from GeneBody [8].

Multi-Garment [4] THuman2.0 [55] ZJUMocap [31] GeneBody [8]

Model PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
IBRNet [47] 28.44 0.924 0.0917 25.66 0.916 0.1033 25.25 0.876 0.2323 24.71 0.889 0.1364

NHP [19] 26.04 0.925 0.0701 26.99 0.935 0.0734 25.92 0.904 0.1623 22.75 0.872 0.1659

GNR [8] 28.61 0.937 0.0511 25.82 0.929 0.0605 25.39 0.903 0.1306 22.21 0.887 0.1254

KeypointNeRF [26] 28.36 0.938 0.0471 25.93 0.929 0.0607 25.85 0.910 0.1092 24.34 0.902 0.1236

Ours 30.18 0.947 0.0305 28.88 0.952 0.0335 26.74 0.919 0.0955 23.90 0.906 0.0865

Table 1. Quantitative comparisons with the generalizable NeRF methods. We evaluate the novel view synthesis performance on the

unseen identity of different datasets. Our method significantly outperforms the state-of-the-art methods.

Normal Regularization. Although NeRF [27] can pro-

duce realistic images, the geometric surfaces generated by

Marching Cubes [24] are extremely coarse and noisy. To

alleviate it, we introduce normal regularization to constrain

the normal among adjacent points.

Ln =
∑
xs∈S

‖n (xs)− n (xs + ε)‖2

n (xs) =
∇xsσ (xs)

‖∇xs
σ (xs)‖2

(11)

where S is the points set randomly sampled near the SMPL

mesh surface. n (xs) is the normal of the sampled point xs

and ε is a gaussian random noise with a variance of 0.1.

The final loss can be summarized as

Lfull = L+ λpLp + λnLn (12)

where λp and λn are the weights of the perceptual loss and

the normal regularization, respectively.

3.5. Efficient Training

During training, we select m multi-view images {Ik}mk=1

as inputs to build the generalizable model-based neural ra-

diance fields and synthesize the target image It with given

camera pose. It is memory-consuming to synthesize the

whole image at the same time by volume rendering, so we

only generate an image patch of the resolution Hp × Wp

sampled randomly from the whole target image, which
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Figure 4. Qualitative results of novel pose synthesis on ZJUMocap [31] datasets. Fs denotes training from scratch, Ft indicates fine-

tuning the model after pretraining on Multi-Garment [4] dataset.

Novel View Synthesis Novel Pose Synthesis

Model PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
NB [31] 28.30 0.9462 0.0951 23.86 0.8971 0.1427

Ani-N [30] 26.19 0.9213 0.1399 23.38 0.8917 0.1594

A-NeRF [41] 27.43 0.9379 0.1019 22.40 0.8629 0.1991

ARAH [48] 28.51 0.9483 0.0813 24.63 0.9112 0.1070

Ours (Fs) 27.56 0.9314 0.0904 26.68 0.9241 0.0984

Ours (Ft) 28.45 0.9419 0.0733 27.63 0.9361 0.0798

Table 2. Quantitative comparisons with case-specific optimiza-
tion methods on ZJUMocap dataset.

means we only need to synthesize the half intermediate fea-

ture image of the resolution
Hp

2 × Wp

2 by volume render-

ing. Meanwhile, since the perceptual loss requires a large

enough image as input, we use partial gradient backprop-

agation introduced in CIPS-3D [58] to further reduce the

memory cost caused by volume rendering. Specifically, we

randomly choose np camera rays to participate in the gradi-

ent calculation, and the remaining rays
Hp

2 × Wp

2 − np are

not involved in gradient backpropagation.

4. Experiments

4.1. Datasets

We conduct experiments on two synthesized datasets

Thuman2.0 [55] and Multi-garment [4] and real-world

datasets Genebody [8] and ZJUMocap [31] for the gener-

alizable scene task. The Thuman2.0 dataset contains 525
human scan meshes, of which we selected 400 for training

and the remaining 125 for testing. For the Multi-garment

dataset, we used 70 meshes for training and 25 meshes for

evaluation. For each scanned mesh, we rendered it into

66 multi-view images of resolution 1024 × 1024. Specif-

ically, we first place each scanned mesh into the center of a

unit sphere at a distance of 5.4m, with the camera orienta-

tion always pointing towards the center of the sphere. We

Figure 5. The visualization of visibility-based attention confi-
dence. We visualize the contribution of different input views to

the SMPL vertices. (Red indicates high confidence, while blue

represents low confidence.)

move the camera around the sphere, sample a yaw angle

from 0◦ to 60◦ with an interval of 30◦, and sample a roll

angle from 0◦ to 360◦ with an interval of 30◦. The Gene-

body consists of 50 sequences at a 48 synchronized cam-

eras setting, each of which has 150 frames. Specifically, we

choose 40 sequences for training and another 10 sequences

for testing. For ZJUMocap, which captures 10 dynamic hu-

man sequences with 21 synchronized cameras, we use 7 se-

quences for training and the rest 3 sequences for testing. To

compare with the case-specific methods, we conduct exper-

iments about novel view synthesis and novel pose synthesis

on ZJUMocap. Following the evaluation protocols used in

NB [31], we select 4 fixed view videos for training.

4.2. Evaluation Metrics

We evaluate our method with state-of-the-art generaliz-

able or per-scene optimized methods to verify the superior-

ity of our performance. We formulate comparative experi-

ments on both geometric reconstruction and novel view syn-

thesis. For quantitative comparison, we adopt peak signal-

to-noise ratio (PSNR), structural similarity index (SSIM),

and learned perceptual image patch similarity (LPIPS [56])

to evaluate the similarity between the rendered image and

the ground-truth. Meanwhile, we also adopt chamfer dis-

tance (Chamfer) and point-to-surface distance (P2S) for ge-

ometric quality evaluation.
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Figure 6. Qualitative results of ablation studies on Multi-Garment dataset.

Model PSNR↑ SSIM↑ LPIPS↓
Base 25.22 0.895 0.1048

Base+MAB 27.08 0.915 0.0611

Base+PL 27.75 0.913 0.0673

Base+MAB+PL 28.72 0.929 0.0423

Base+MAB+NR 30.03 0.940 0.0562

Full Model 30.18 0.947 0.0305

Table 3. Quantitative results of ablation studies on the Multi-
garment. Impact of the different components in our method.

4.3. Implementation Details

In our experiments, we choose m = 4 multi-view images{
Ik ∈ R

512×512×3
}m

k=1
as input to synthesize the target im-

age It ∈ R
512×512×3. During training, the input multi-view

images are selected randomly, while selected uniformly sur-

rounding the person (i.e., the front, back, left, and right

views) for evaluation. The resolution of the patch image

during training is Hp = Wp = 224. The SMPL parame-

ters are obtained using EasyMocap [31]. The size of our 3D

feature volume G is 2243. For partial gradient backpropa-

gation, we randomly sample np = 4, 096 camera rays from

the target image patch to improve memory efficiency. We

then uniformly query N = 64 samples from our feature

volume along the camera ray. We train our network end-to-

end by using the Adam [17] optimizer, and the base learning

rate is 5× 10−4 which decays exponentially along with the

optimization. We train 200, 000 iterations on two Nvidia

RTX3090 GPUs with a batch size of 4. The loss weights

λr = 1, λs = 0.1, λp = 0.01, λn = 0.01.

4.4. Evaluation.

Comparison with generalizable NeRFs. We com-

pare our method with state-of-the-art generalizable methods

IBRNet [47], NHP [19], GNR [8] and KeypointNeRF [26].

We retrain all aforementioned networks with the official

training protocols on GeneBody [8], Multi-Garment [4],

Figure 7. Qualitative results of different multi-view fusion
mechanisms.

Model PSNR↑ SSIM↑ LPIPS↓
Ours with AvgPool 27.81 0.9317 0.05059

Ours with IBRAtt 28.50 0.9345 0.03413

Ours 28.88 0.9518 0.03349

Table 4. Quantitative results of different multi-view fusion
mechanisms on the THuman2.0 dataset. AvgPool is used in

PIFu [33] and PixelNeRF [54]. IBRAtt is proposed by IBRNet.

and THuman2.0 [55] datasets. Specially, we also use m = 3
views as input on ZJUMocap [31] dataset following the

evaluation protocol used in KeypointNeRF. The result can

be seen in Tab. 1 and Fig. 3, which shows our method gener-

alizes to unseen identities well and outperforms the methods

compared. IBRNet, which learns a general view interpola-

tion function to synthesize the novel view from a sparse set

of nearby views, is able to render high-fidelity images for

views close to the input views while having very poor gen-

eralization for views far from the input views. Our method

has better generalization of novel view synthesis and gener-

ates higher quality geometry due to the use of the geometry

prior SMPL. KeypointNeRF utilizes sparse 3D keypoints

as pose priors and has weak expressiveness for unseen poses

when the pose diversity in the training set is insufficient. In

our experiment, we choose the 3D joints of SMPL as the

input of KeypointNeRF. Compared to NHP and GNR, al-

though we both employ SMPL as the geometry prior and

suffer from inaccurate SMPL estimation, our method can

alleviate the ambiguity of misalignment between geometry

and pixel-aligned appearance. Meanwhile, benefiting from
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Figure 8. Visualization results of 3D geometry reconstruction
compared with different methods.

Multi-Garment [4] THuman2.0 [55]

Model Chamfer↓ P2S↓ Chamfer↓ P2S↓
GNR [8] 1.3570 1.8981 1.7899 2.5932

NHP [19] 1.4646 2.2438 1.6027 2.3921

Ours 0.7175 0.6919 0.7444 0.6600

Ours(Ft) 0.3721 0.3676 0.5172 0.4506

Table 5. Quantitative comparisons of 3D geometry reconstruc-
tion. Our method consistently outperforms other methods, captur-

ing more local details after fine-tuning.

perceptual loss, our generated images have more photo-

realistic local details. For 3d reconstruction, the mesh sur-

face extracted by Marching Cubes is smoother and more

precise due to normal regularization compared with others

as shown in Fig. 8 and Tab. 5.

Comparison with case-specific Methods. We also

compare with per-scene optimization methods NB [31],

Ani-NeRF [30], A-NeRF [41], ARAH [48]. NB optimizes

a set of structured latent codes associated with SMPL ver-

tices, which are diffused into the observation space by us-

ing SparseConvNet. Since the 3D convolution in SparseC-

onvNet is not rotation-invariant, NB has poor generaliza-

tion on out-of-distribution poses. Ani-NeRF learns a back-

ward LBS network to warp the observation space into the

canonical space, which is not sufficient to model non-rigid

deformations in complex poses. A-NeRF uses skeleton-

relative embedding to model pose dependence deformation,

which requires seeing the subjects from all views in vary-

ing poses. ARAH uses iterative root-finding for simulta-

neous ray-surface intersection search and correspondence

search, which generalizes well to unseen poses. As shown

in Tab 2, the performance of novel view synthesis is com-

parable with these methods, and it is reasonable since our

network has more parameters(13.6M) and struggles with

overfitting when the training data is so limited without any

pretraining. After pretraining on the Multi-Garment and

finetuning 5, 000 steps on ZJUMocap, our results achieve

a noticeable improvement. Anyway, our method has supe-

rior generalization on novel pose synthesis, which is a more

challenging task. Our results are more photorealistic and

preserve more details like wrinkles and patterns as shown

in Fig 4, which benefit from the sparse multi-view input.

4.5. Ablation studies

The baseline (Base) is an extended version of NB to ex-

press arbitrary identities as our baseline. Specifically, our

structured latent codes are obtained by fusing multi-view

input, rather than optimizing from scratch for a specific

identity. Beyond that, we introduce multi-view appearance

blending (MAB), perception loss (PL), and neural render-

ing (NR). The experimental results prove the effectiveness

of each component as shown in Tab. 3 and Fig. 6. In ad-

dition, we explore the effects of different multi-view fusion

mechanisms, and the experiments prove that our proposed

visibility-based attention and geometry-guided attention are

more effective than AvgPool [33, 54] and IBRAtt [47].

5. Limitations
There are some limitations of our method that need

to be improved: i) Due to the minimal-clothed topology

of SMPL, our model struggles to express extremely loose

clothes and accessories. ii) When the testing pose is out-

of-distribution, our method may produce some artifacts in

results since 3D convolution in SparseConvNet [13] is not

rotation-invariant. iii) As the target view moves further

away from the input views, artifacts tend to emerge in the

unobserved areas.

6. Conclusion
In this paper, we propose an effective framework to build

generalizable model-based neural radiance fields (GM-

NeRF) from sparse calibrated multi-view images of arbi-

trary performers. To improve generalization on novel poses

and identities, we introduce SMPL as the structured geo-

metric body embedding. However, inaccurate estimations

of SMPL have a negative impact on the reconstruction

results. To address this, we propose a novel geometry-

guided multi-view attention mechanism that can effectively

alleviate the misalignment between SMPL geometric prior

feature and pixel-aligned feature. Meanwhile, we pro-

pose strategies such as neural rendering and partial gradient

backpropagation to efficiently train our network using per-

ceptual loss. Extensive experiments show that our method

outperforms concurrent works.
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