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ABSTRACT

Reinforcement learning with verifiable rewards (RLVR) has emerged as a promis-
ing approach for training reasoning language models (RLMs) by leveraging su-
pervision from verifiers. Although verifier implementation is easier than solu-
tion annotation for many tasks, existing synthetic data generation methods remain
largely solution-centric, while verifier-based methods rely on a few hand-crafted
procedural environments. In this work, we scale RLVR by introducing RESYN,
a pipeline that generates diverse reasoning environments equipped with instance
generators and verifiers, covering tasks such as constraint satisfaction, algorith-
mic puzzles, and spatial reasoning. A Qwen2.5-7B-Instruct model trained with
RL on RESYN data achieves consistent gains across reasoning benchmarks and
out-of-domain math benchmarks, including a 27% relative improvement on the
challenging BBEH benchmark. Ablations show that verifier-based supervision
and increased task diversity both contribute significantly, providing empirical ev-
idence that generating reasoning environments at scale can enhance general rea-
soning abilities in RLMs.

1 INTRODUCTION

Pioneered by OpenAl-ol and DeepSeek-R1 (OpenAll [2024; DeepSeek-AlL [2025), recent work has
demonstrated that reinforcement learning (RL) can substantially enhance the reasoning capabilities
of large language models (LLMs) by training on math and coding data. These RL-trained models
exhibit “emergent behaviors” — including backtracking, self-verification, and reasoning over long
chains of thought — that correlate strongly with task success (Gandhi et al.}|2025)). A key insight from
this line of research is that such behaviors do not need to be imitated from human demonstrations;
instead, they can be surfaced by reinforcing reasoning-intensive outcomes, such as arriving at the
correct solution to a math problem.

This line of work has largely focused on math and code, where correctness can be checked against
reference answers or unit tests. While this provides a clear reward signal, it also constrains us
to problems with known ground-truth outputs, limiting both the quantity and difficulty of problems
available for RL. By contrast, many other reasoning tasks encourage similar problem-solving behav-
iors while being much easier to verify. For instance, completing a Sudoku puzzle can be challenging,
but verifying a filled grid is straightforward. Likewise, tasks such as dependency sorting and con-
straint satisfaction require long reasoning chains but can be verified with simple rule checks. Even
when efficient algorithms exist, reasoning about these tasks in natural language challenges LLMs to
plan multi-step strategies, track intermediate states, and correctly apply symbolic rules.

Several studies have begun to explore code-based, puzzle-like reasoning environments for LLM
training (Pan et al.| 2025} |Liu et al.| 20254} [Stojanovski et al.|[2025)). These works show that, despite
their simplicity, training in these environments can improve downstream performance on reasoning
benchmarks and elicit behaviors similar to those observed in math training. However, prior efforts
have relied on a small set of manually curated environments, where problem instances are procedu-
rally generated according to hand-crafted logic. While this strategy is effective at generating a lot of
data, it offers limited variation in reasoning patterns, producing repetitive problems that may fail to
elicit more generalizable skills. Ultimately, task diversity is limited by the manual effort required to
design new environments.
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Figure 1: Overview of synthetic environment generation in the ReSyn data pipeline. An LLM is
prompted with seed keywords to synthesize Python implementations of reasoning environments,
each defining instance generation pg, observation O, and reward R. The generated environment is
evaluated by an LLM judge. Ones that pass are added to the ReSyn dataset, while failed ones are
revised with feedback and re-evaluated.

In this paper, we scale up this approach by automatically generating a diverse collection of reasoning
environments. Each synthetic environment is equipped with a problem generator and a verifier, both
implemented in LLM-synthesized code. This design combines the diversity of model-based data
generation with the scalability of procedural instance generation. Ablation experiments show that
scaling the number of environments, controlled for the total number of instances, leads to substantial
improvements in downstream performance. This suggests a promising avenue for automatically
improving LLM reasoning capability without requiring manual effort to create new tasks.

Compared to prior work on LLM-based synthetic data generation for RL (Guo et al., 2025} |[Havrilla
et al., 2025), which relies on model-generated reasoning as ground truth, our pipeline synthesizes
code-based verifiers to provide rewards during RL. This enables reliable supervision for problems
that exceed the natural language reasoning capacity of the teacher model, either by leveraging com-
putational tools or by exploiting the fact that many tasks are easier to verify than to solve. Our
ablations confirm that utilizing verifiers grounded in code provides better supervision than training
on model-generated solutions, resulting in a 14% relative improvement (vs. 4% with no code or
verifier) from the original -Instruct model on BBH.

Using this pipeline-termed RES YN-we expand the scale and diversity of synthetic reasoning envi-
ronments by over an order of magnitude compared to previous work. Training models with RL on
RESYN data leads to substantial gains on general reasoning and math benchmarks (+14% and +27%
relative improvement on BBH and BBEH, respectively), demonstrating that diverse, verifier-driven
synthetic tasks form an effective foundation for developing stronger reasoning models.

2 RESYN DATA PIPELINE

Typical reasoning datasets consist of pairs of questions and reference answer (@, A), where model
outputs are judged by matching against A. This setup is limiting: many reasoning problems admit
multiple valid solutions, and it is often more natural to specify how to verify correctness than to
provide a single reference answer. Motivated by this, we represent each problem as a pair (Q, V),
where V' is a verifier that maps a candidate solution to a binary reward. Our goal is to generate a
diverse dataset of such pairs using an LLM.

While LLMs can directly generate question—answer pairs for reasoning (Guo et al., 2025)), procedu-
ral generation methods like that in|Liu et al.[(2025a); |Stojanovski et al.|(2025) offer other important
advantages. First, they allow virtually unlimited data to be generated by executing a simple program,
often with controllable difficulty. Second, a single verifier can be reused across many instances,
avoiding the cost of creating a new one for each problem.

Shown in Fig. |1} our pipeline combines these benefits by leveraging the coding capabilities of LLMs.
Rather than creating individual (@, A) pairs, it generates synthetic environments E, implemented in
code, that encapsulate both instance generation and verification logic. The final (Q, V') pairs used
for RLVR training are then obtained by sampling from the state distribution of these environments.
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2.1 PROBLEM FORMULATION

Let X* denote the set of all strings, including all natural language questions and potential responses
from an LLM. We model a reasoning environment as a tuple

E= (87“47 RvapO)
Where:

» S is the space of instance parameters, where each s € S specifies a different problem instance.
» A = ¥* is the action space — natural language responses from the policy LLM.

* O : S — X* is the observation function, mapping from instance parameters to natural language
questions that can be understood by a human or LLM.

R : S x A — {0,1} is the reward function, checking whether a response a € A is a correct
solution to problem instance s € S.

po(d) € A(S) is the initial state distribution over .S, which defines the distribution of problem
instances. We parameterize it with an adjustable difficulty level d.

2.2 DATA PIPELINE

Our synthetic data generation pipeline starts from a small set of seed topics and produces a large
collection of (@, V') pairs. It comprises five stages:

1. Keyword/Topic Extraction. We first compile a list of topic keywords that span diverse reason-
ing skills. We begin by collecting keywords from target benchmarks: we show an LLM one example
from each subtask of KOR-Bench (Ma et al.,2024) and Big-Bench Hard (without the answer label),
and instruct it to list several relevant keywords. After deduplication, this yields roughly 100 can-
didates. We then manually filter out topics ill-suited for rule-based verification (e.g., ambiguous
pronoun resolution, which effectively reduces to fixed answer lookup) and augment the list with
additional algorithm and data structure keywords, which empirically tend to produce high-quality
reasoning tasks. We provide the list of keywords in Appendix

2. Task Synthesis. For each keyword, we prompt the LLM to write Python code implementing a
complete reasoning environment E in a standardized format. The LLM is instructed to implement
functions defining the state distribution pg, observation function O, and reward function R:

* R(s,a) is implemented as a method with signature S x A — {0,1}. In practice, this method
extracts the candidate answer from a response a € A, executes problem-specific verification
against instance parameters s € S, and returns 1 if correct.

* O(s) is a method that creates a natural language question from instance parameters s. It usually
does this by inserting instance parameters into a string template. The LLM is instructed to ensure
that the natural language question is well-specified.

* po(d,n) is a method that takes in difficulty level d and randomly generates n instances that define
problems of that difficulty.

These components work together by defining a self-contained problem generator: py produces struc-
tured instance parameters, O turns these parameters into a natural language prompt for the solver,
and R evaluates any proposed solution against the underlying parameters. This design ensures that
all instances of a task share the same verification logic, while allowing unlimited procedural varia-
tion in the questions themselves.

3. LLM-as-a-Judge. We employ two stages of LLM evaluation to filter generated environments.
The first stage evaluates the code implementation of R and O with emphasis on two key criteria. The
first, reference-free verification, requires R to verify solutions without access to a reference answer,
exploiting the generator-verifier gap when possible. The second criterion, computational advantage,
seeks tasks that can be efficiently solved with computational tools (e.g., graph algorithms, constraint
solvers) but are challenging to solve by hand. Environments must pass at least one of these key cri-
teria, along with basic requirements for implementation completeness and proper difficulty scaling.

The second stage examines NL questions at each difficulty level, denoted Q = O(s); s ~ po(d).
It assesses whether they are well-specified (providing complete context, clearly defined operations,
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ReSyn Environment Example: Grid Path Cost Optimization

Instance Generation (po):
def generate_instance (difficulty):
s = difficulty + 2
grid = [[randint (1, 9) for _ in range(s)]
for _ in range(s)]

return {
’grid’: grid,
3]

’ 7q

gz’ 8 9,

Sample Instance (difficulty=2):
grid: [[2,7,3,1),[5,1,8,4],(3,6,2,9],[1,4,7,2]]

size: 4

Generated Question:

Find minimum cost path from top-left to bottom-right
(only right/down moves):

2731

5184

3629

1472

Answer: <answer>NUMBER</answer>

Reward Function (R):

def solve_grid(grid: List[List[int]]):
# Helper to solve grid via dynamic programming
n = len(grid)
dp = [[float(’inf’)] » n for _ in range(n)]

dp[0][0] = grid[0][0]

for i in range(0,n):
for j in range(0,n):
if 1 > 0:
dp[i] [j]=min(dp[i] []],
dp[i-1][j]l+grid[i] []])
if § > 0:
dp[i] [J1=min(dp[i] []],
dp[il [§-11+grid[il[F]1)
return dp[n-1] [n-1]

def verify(response, instance):
match = re.search (r’<answer> (\d+)</answer>’,
response)
if not match:
return False

answer = int (match.group (1))
return answer == solve_grid(instance[’grid’])

Note: Code has been restructured for space with no change to functionality.

Figure 2: Example synthetic environment generated by the ReSyn pipeline.

and unambiguous goals) and free from logical loopholes that could bypass the intended reasoning
process. For failed environments, we maintain a record of issues identified by the LLM judge and
provide them with the original implementation to be revised. Revised environments are evaluated
by the same process again and discarded if they still fail.

4. Instance Generation. For each surviving environment, we sample a fixed number of problem
instances {s}"_; = po(d,n) for each difficulty level d € {1,...,5}. We create training-ready
(Q, V) pairs from each s by using the reward and observation functions:

Ilustrated in Figs [2] this step is entirely procedural and does not require additional LLM queries.

5. LLM Solving & Difficulty Calibration. Finally, we prompt the LLM to generate solutions for
each question Q: a ~ prrm(- | @), and compute scores by calling the verifier on V' (a). From these
results, we compute the solve rate at each difficulty level, producing an accuracy-difficulty curve
per environment. To retain only environments whose difficulty parameter d meaningfully controls
problem hardness, we test for a significant negative correlation between solve rate and difficulty
level using a one-sided Wald test with o = 0.05. Environments failing this test — often because they
are trivial (near-100% accuracy across all levels) or impossible (0% accuracy) — are removed.

The final output is a collection of parameterized reasoning environments { E;} like the one shown
below, and a pool of procedurally generated question-verifier pairs {(Q), V');}. This design sup-
ports RLVR by enabling large-scale data generation and fine-grained control over both diversity and
difficulty. All stages of the pipeline use Claude 3.5 Sonnet v2 as the LLM.

3 EXPERIMENTS

We construct the Re Syn dataset using the pipeline detailed in §2] synthesizing 418 distinct environ-
ments, for a total of 16K training instances and 500 validation instances. As described above, each
instance is a (@, V') pair where () is a natural language question and V is a verifier implemented
in code. While the pipeline can in principle produce far more environments, we match the dataset
scale of prior work (Liu et al.|[2025a) and remain within available training compute.
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Model #Params BBH (zero-shot) BBEH GSMS8K-test AIME 2024
mean @4 mean @4 mean @4 mean @128
Qwen-2.5-Instruct 7B 65.9 11.2 82.3 9.8
SynLogic* 7B 66.5 8.0 — 10.0
ReSyn 7B 75.2 14.3 914 14.0
Llama-3.1-Instruct 8B 44.7 8.2 70.7 3.5
Mistral-Instruct 7B 28.2 6.4 22.3 0.1

Table 1: Evaluation of ReSyn versus the base Instruct model across reasoning and math benchmarks.
All benchmarks are evaluated in zero-shot conditions using temperature 0.8 and top-p 0.95 sampling.
*Performance of SynLogic-7B is taken as reported in|Liu et al.[(2025a).

3.1 REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS

Reinforcement learning with verifiable rewards (RLVR) provides a mechanism for training a policy
model 7y using the dataset of (@, V') pairs. At each iteration, a question @ is sampled and presented
to the model. The model then generates candidate solutions a1, . ..,ag ~ (- | Q).

The verifier V' associated with ) evaluates each solution and returns a binary reward signal
r; = V(az)

where r; = 1 if the solution is judged correct and 0 otherwise. A format reward is sometimes also
added to encourage certain response structures.

The collected rewards are then used to update the model parameters 6 by taking gradient steps
against a reinforcement learning objective £ (g, Q, {a;}$ 1, {ri}%,). In general, this objective
encourages 7y to increase the likelihood of solutions that receive positive reward and decrease the
likelihood of those that are incorrect. Over repeated interactions, this process, illustrated in Fig. [3
aligns the model toward solutions that pass the verifiers across the synthetic environments.

3.2 TRAINING DETAILS

Our policy model is initialized from Qwen?2 . 5-7B-Instruct (Team||[2024). We do not initialize
from the base model Qwen?2 . 5-7B to avoid having to re-learn basic instruction following and out-
put formatting. This also helps ensure that evaluation metrics can reflect genuine gains in reasoning
performance rather than format adherence.

We train this model on RESYN data using the open-source DAPO recipe (Yu et al.l[2025). Although
our method could in theory work with many similar RL algorithms, we use DAPO because it has
been shown to be effective in similar settings. Unless otherwise noted, we train all models for 400
update steps with default hyperparameters.

Each prompt @) is prefixed with explicit instructions to place intermediate reasoning inside
<think>...</think> tags and the final answer inside <answer>...</answer> tags, follow-
ing conventions from prior work (DeepSeek-All [2025). The exact prompt prefix is provided in[A.4]

Following these conventions, the reward is computed as the product of two components:

* Format score: a binary indicator of whether the output follows the required tag structure.

» Answer score: equal to V(extract(ai))ﬂ We first extract from <answer> tags and then apply
the question-specific verifier.

'Since V is implemented by an LLM, it may occasionally throw errors; in such cases, we assign a return
value of 0. After our filtering stages, the error rate is negligible. Moreover, the dynamic sampling mechanism
(Yu et al.,2025) in DAPO ensures that verifiers that consistently fail are ignored in model updates.
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Figure 3: Overview of the ReSyn training pipeline. Left (Instance Generation): Each environ-
ment generates instances from pg, which are transformed by the observation function O and reward
function R into questions and verifiers (@, V). Right (Reinforcement Learning): A policy model
generates candidate solutions for (), which are evaluated by V' to provide rewards for model updates.

4 MAIN RESULTS

We evaluate Qwen?2 .5-7B-ReSyn and Qwen2.5-7B-Instruct on a suite of reasoning and
math benchmarks, including Big-Bench Hard (BBH; Suzgun et al.| (2022))), Big-Bench Extra Hard
(BBEH; [Kazemi et al.| (2025)), GSMS8K (Cobbe et al.| 2021), and AIME 2024 (Finkelstein et al.,
2024]). For all benchmarks, we sample with temperature 0.8 and top-p = 0.95, which helps mitigate
occasional output degeneration observed in both models.

The overall results are reported in table |I} Across all evaluated benchmarks, ReSyn consistently
outperforms the Instruct baseline, including math benchmarks, where no real domain-specific data
was provided. These results support the effectiveness of learning general reasoning skills from
synthetic verifier-based data.

4.1 BIG-BENCH HARD (BBH)

The Big-Bench Hard benchmark consists of 23 tasks spanning topics in logical and commonsense
reasoning, with many requiring multi-step reasoning and task-specific strategies.

In initial experiments, we found that the performance of Qwen2.5-7B-Instruct on BBH is
highly dependent on imitating few-shot CoT examples. To disentangle reasoning skill — i.e., the
ability to devise reasoning steps for an unseen task — from in-context learning ability, we evaluate
both models under 0-, 1-, and 3-shot settings. We also find that|Liu et al.| (2025a) under-reports the
performance of Qwen2.5-7B-Instruct on BBH due to answer extraction issues, so we fix this
and provide details in Appendix[A.2]

The results are presented in Table Across all few-shot settings, ReSyn outperforms Instruct.
Per-task accuracies show that gains are most significant on logical reasoning tasks, such as
logical_deduction_*_objects, temporal_sequences, and web_of_lies. Notably,
0-shot ReSyn exceeds 3-shot Instruct by nearly 5%, suggesting that RL training on ReSyn yields
reasoning ability that can surpass in-context learning from demonstrations. However, unlike In-
struct, ReSyn’s performance does not increase monotonically with more in-context examples. We
hypothesize that imitating provided CoT demonstrations can be less effective than reasoning in the
model’s own preferred style for some tasks.

Model 0-shot 1-shot 3-shot

Instruct 65.9+0.5 67.1+£05 704=£0.5
ReSyn 75.2+£0.5 719+£0.5 73.2+£0.5

Table 2: BigBench-Hard overall accuracy (%) under different prompting setups.
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4.2 BIGBENCH EXTRA HARD (BBEH)

BBEH is a more challenging benchmark for evaluating general reasoning in large language models.
It replaces each task in BBH with a newly designed task that tests the same underlying reasoning
skill but at a substantially higher difficulty level. Notably, many smaller models perform near chance
level on this benchmark, showing large room for improvement.

Given the low accuracy of models around the 7B scale, we also evaluate two trivial baselines:

* Chance: randomly selects the ground-truth answer from any problem within the same task.
* Majority: always outputs the most common ground-truth answer for the task.

Table [3| reports overall accuracies. Instruct underperforms the Majority baseline, highlighting the
difficulty of BBEH. ReSyn achieves 14.29% accuracy — although the absolute number is low, this
gain represents a meaningful relative improvement of ~ 27% over the Instruct model, suggesting
that training on our synthetic data generalizes to harder reasoning problems in BBEH.

Model #Params mean@4 Chance Majority Instruct ReSyn
Chance — 8.834 0.2 Chance - 0 3 2
Majority — 13.1+0.5 Majority 8 - 9 6

Instruct 9 3 - 1
Qwen 2.5-Instruct 7B 11.2+£0.4 ReSyn 11 7 6 —
ReSyn 7B 143+ 04

) Table 4: Number of BBEH tasks (out of 23) where
Table 3: BigBench Extra Hard overall accura-  the row model significantly outperforms the col-
cies (%, micro-average). umn model (« = 0.01, paired bootstrap test).

It is possible that large improvements are realized on a subset of tasks, while other tasks remain
out of reach. To examine this, we compare models on a per-task basis using paired bootstrap tests
(a = 0.01) for each pair of models. Tabled]reports, for each row—column pair, the number of tasks
(out of 23) on which the row model significantly outperforms the column model. ReSyn outperforms
Instruct on 6 tasks (vs. 1 in the opposite direction) and increases the number of tasks above Chance
(9—11) and Majority (3—7), showing consistent gains on tasks in the benchmark. Names of the
exact tasks and per-task accuracy comparisons are provided in Appendix

5 ABLATION STUDIES

5.1 ABLATION: THE GENERATOR-VERIFIER GAP

A central hypothesis of our work is that synthesizing verifier-based data can provide more effective
supervision than generating solution data. This is an example of the generator—verifier gap: when
generating synthetic solution data, the LLM must solve each problem correctly at generation time,
whereas with verifier-based data, the LLM need only specify the rules for checking a solution. This
allows the generator to specify challenging tasks without being constrained by its own problem-
solving capabilities. To test this hypothesis, we compare our method against ablated versions that
do not use verifiers or do not use code:

* Verifier-RL (Ours): The proposed method, where the LLLM generates verifiers, which are used to
compute rewards during RL.

* Code-RL (Ours): An alternative method, where the LLM generates and executes code to obtain
a reference answer. We then use answer matching rewards during RL.

* Answer-RL: The method most similar to prior work, where the LLM generates reasoning and
answers for each problem. We then use answer matching rewards during RL.

In all cases, LLM-generated verifiers or solutions may produce incorrect rewards. We allow such
errors to occur in our comparison, since a part of our claim is that generating verifiers should be less
error-prone than generating solutions.
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Method BBH BBEH

— \erifier-RL
g ™ Answer-RL Verifier-RL ~ 75.24  14.61
9 0 | = Code-RL 7494  14.24
E Answer-RL  68.83  14.33
2035
g 030 Table 5: Final BBH and BBEH accuracies (%)
s for all ablation settings.
g 0.25
- 020 Configuration BBH mean@4
5 100 150 200 250 300 350 400 (N=400, M =40) 75.19
framing Step (N=100, M=160) 69.85
(N=25, M=640) 71.20

Figure 4: Validation accuracy vs. training step
for the three RL-based ablations, computed on
ReSyn-val and averaged over 16 samples per
problem.

Table 6: Dataset scaling ablation: number of en-
vironments (/V) vs. instances per environment
(M) with dataset size fixed at N x M =~ 16K.

We compare learning dynamics for the three settings in Figure {4, We observe that validation accu-
racy rises fastest for Verifier-RL, followed by Code-RL, and then Answer-RL, suggesting that veri-
fier and code-based rewards provide a stronger and more reliable learning signal during RL training.
This also results in a significant difference in downstream performance on BBH: with the base model
at 65.9, both code-based methods achieve ~14% relative improvement compared to about 4% by
Answer-RL. Overall, Verifier-RL seems to provide the highest quality supervision, achieving the
best performance as measured by the in-domain validation set and reasoning benchmarks.

5.2 ABLATION: SCALING ALONG TASKS VS. INSTANCES

An advantage of our synthetic data generation method, compared to prior approaches, is that it
can produce entirely new task structures rather than only procedurally generating instances of fixed
tasks. This enables scaling the dataset along two axes:

1. Task diversity: leveraging the breadth of LLM knowledge to synthesize new reasoning environ-
ments with different structures and reasoning patterns.

2. Instance count: procedurally generating more instances per environment, which can still provide
new learning signal by requiring reasoning over more information or longer reasoning chains.

To study how scaling along these two axes affects performance, we construct training sets con-
taining varying numbers of environments /N and instances per environment M while control-
ling for the total dataset size N * M. We keep N * M around 16K and train models with
(N, M) € {(400,40), (100, 160), (25,640)}. For each (N, M) configuration, we randomly sample
N environments from the full ReSyn dataset and generate M instances per environment, uniformly
split across difficulty levels 1-5.

For each configuration, we train a model using the same setup as in our main experiments and
evaluate it on BBH. The results for all configurations are shown in Table [} being able to generate
a large collection of tasks is crucial to ReSyn’s performance on the benchmark. Together, these
ablations indicate that verifier-based supervision and task diversity are the key drivers of ReSyn’s
effectiveness in training stronger reasoning models.

6 RELATED WORKS

Training Large Language Models for Reasoning: In recent years, there has been significant
interest in training large language models (LLMs) to perform reasoning-intensive tasks, particularly
through reinforcement learning (RL). [DeepSeek-Al| (2025)) demonstrated that large-scale RL, even
when guided only by correctness and format rewards, can yield state-of-the-art performance on math
and coding benchmarks. This setup also produced long chains of thought (CoTs) and behaviors re-
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sembling self-verification and reflection. Subsequent research has worked on improving the training
dynamics of this recipe (Yu et al.| 2025} Liu et al., 2025b)).

Synthetic Data Generation for Reasoning: Early work has demonstrated that training on model-
generated data can effectively improve instruction-following ability (Wang et al.| 2023} [Taori et al.,
2023)). Recent research has increasingly turned toward using synthetic data to teach models reason-
ing skills. Approaches in this space can be broadly categorized into several categories:

* Procedural Generation: Several works train models with RL on procedurally generated problems
from manually designed task templates (Pan et all [2025 Xie et al.l [2025; Liu et al.| 2025a),
showing that training on a small number of tasks can already elicit emergent reasoning behaviors
and transfer to real benchmarks such as competition math. Works have created datasets of up
to 100 handcrafted logical reasoning tasks to support training and evaluation |Stojanovski et al.
(2025).

* Model-based Generation: These methods use LLMs to synthesize problems and solutions, al-
lowing greater diversity than procedural templates. Havrilla et al.| (2025)) iteratively calls an LLM
to mutate math problems, following a quality-diversity algorithm, while|Guo et al.[(2025) prompts
with retrieved passages to generate QA data for diverse domains. Project Loong (CAMEL-Alorg,
2025)) introduces code-based solutions to verify correctness, improving the reliability of synthetic
labels.

* Environment Generation: Instead of producing problem—solution pairs, some recent work de-
fines environments with rule-based success criteria. [Verma et al.| (2025) introduces a collection of
board, number, and card games to benchmark LLM reasoning by pitting them against RL-trained
agents. [Zhou et al.| (2025) has language model agents propose challenges for themselves (e.g.,
web browsing tasks), where success criteria are specified via code-based verifiers.

The works most related to ours are SynLogic (Liu et al.l 2025a) and Synthetic Data RL (Guo et al.,
2025). SynLogic relies on 35 manually curated tasks; we instead scale task creation by over an
order of magnitude and achieve much stronger results on BBH and BBEH. Synthetic Data RL
generates domain-specific QA pairs; we instead match its GSM8K performance (91.4% vs. 92.1%)
by generating code-based reasoning environments to provide more reliable rewards for RL.

7 CONCLUSION

We introduced RESYN, a pipeline for synthesizing large collections of reasoning environments
equipped with code-based instance generation and verifiers, enabling reinforcement learning with
verifiable rewards (RLVR) at scale. Unlike prior work that relies on small sets of manually curated
tasks or model-generated solutions, our approach leverages the generator—verifier gap to construct
diverse and challenging tasks that remain straightforward to verify.

Training models on the ReSyn dataset with open RL recipes yields consistent improvements across
reasoning and math benchmarks, including a +14% relative improvement on BBH and a +27%
relative improvement on BBEH. Ablation studies demonstrate that verifier-based supervision pro-
vides more reliable reward signals than solution-based supervision, and that scaling the number of
environments is a particularly effective way to elicit general reasoning skills. These results highlight
verifier-driven synthetic data as a scalable foundation for reasoning-focused LLM training.
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A APPENDIX

A.1 RESYN KEYWORDS

Array traversal, Backtracking, Boolean Evaluation, Boolean Logic, Chain of Dependencies, Cir-
cuit Design, Connected Components (graph), Constraint Satisfaction, Coordinate System, Count-
ing, Custom Operators, Date Calculation, Deductive Reasoning, Direction Tracking, Dyck Words,
Enumeration, Expression Evaluation, Expression Transformation, First-Order Logic, Geometry,
Grid, Grid Search, Grid Traversal, Information Extraction, Information Retrieval, Interval Analysis,
Knowledge Base, Lexicographical Order, Linear Ordering, Linear Search, Logic Expressions, Math
Operations, Matrix, Modal Logic, Number Theory, Order of Operations, Parentheses Matching,
Path Finding, Pattern Matching, Pattern Recognition, Permutation, Permutation Cipher, Position
Tracking, Propositional Logic, Rotation, Rule-based Reasoning, Sequence Arrangement, Set Clas-
sification, Set Theory, Sorting, Stack, State Transition, String Manipulation, String Matching, Table
Analysis, Time Scheduling, Topological Sort, Transposition Cipher, Truth Table, Word Search, Short-
est Paths, Connected Components, Stable Matching, Dynamic Programming, Recursion, Greedy Al-
gorithms, Divide and Conquer, Breadth-First Search, Depth-First Search, Path Optimization, Min-
imum Spanning Tree, Network Flow, Topological Sorting, Sliding Window, Union Find, Priority
Queues, Linear Programming, Tree Traversal, Graph Coloring, Knapsack Problem, Combinatorial
Optimization, Cycle Detection, Interval Scheduling, Minimum/Maximum Flow, Edit Distance, Euler
Tours, Traveling Salesman, Longest Common Subsequence, Longest Increasing Subsequence, Item
Assignment, Boolean Satisfiability, Tabular Data.

A.2 BBH EVALUATION DETAILS

We find that the BBH accuracies reported for Qwen2.5-7B and Qwen2.5-7B-Instruct in
Liu et al.| (2025a) are underestimated due to issues with answer extraction. The default answer
extraction logic searches for fixed phrases such as “So the answer is X,” which often fails due to
minor variations in phrasing. To address this, we (1) modify the prompt to instruct the model to
enclose its answer in <answer>...</answer> tags and provide an example answer from the task,
and (2) relax the matching logic to accept direct statement of the answer (e.g., “Alice” instead of
“(A)” or “(A) Alice”). With these changes, three-shot accuracy for Qwen2.5-7B-Instruct
rises from 62.7% (as reported by |Liu et al.| (2025a)) to 70.4%.

A.3 BBEH SUBTASK PERFORMANCE

Pairwise Per-Task Comparisons: The grid below shows the tasks from BBEH where the row
model outperforms the column model, tested for statistical significance using a paired bootstrap test
(a =0.01).
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Number of Tasks Where Row Model Significantly Outperforms Column Model
(with up to 5 example tasks)
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Per-Task Model Performance: Comparison of Qwen2.5-7B-Instruct and ReSyn-7B on
BBEH. Among the 23 tasks, we display only those where at least one model reaches > 5%
accuracy, since many tasks are out of reach for models of this scale. ReSyn-7B deliv-
ers consistent gains and achieves substantial improvements on several subtasks (e.g., +10% on

causal_understanding).
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A.4 PROMPT PREFIX

During training and inference, we prepend this string to prompts to encourage the model to generate
responses with a specific format.

1 Solve the following problem step by step. First, think about the
reasoning process in the mind and then provide the answer. The
reasoning process is enclosed within <think> </think> and the final
answer 1s enclosed within <answer> </answer> tags, respectively, i.e
., <think> reasoning process here </think> <answer> answer here</
answer>.
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A.5 LLM USAGE
In the writing of this paper, a large language model was used as a writing assistant. It was mainly

used for functions such as rephrasing or shortening text, drafting section introductions and figure
captions, suggesting formatting in LaTeX, and generally polishing the style and flow of writing.
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