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Abstract

This work investigates the challenge of learn-
ing and reasoning for Commonsense Question
Answering given an external source of knowl-
edge in the form of a knowledge graph. We
propose a novel graph neural network architec-
ture, called dynamic relevance graph network
(DRGN). DRGN operates on a given KG sub-
graph based on the question and answers enti-
ties and uses the relevance between the nodes
to establish new edges dynamically for learn-
ing node representations in the graph network.
Using the relevance between the graph nodes
in learning representations helps the model to
not only exploit the existing relationships in
the KG subgraph but also recover the missing
edges. Moreover, our model improves han-
dling the negative questions due to consider-
ing the relevance between the global question
node and the graph entities. Our proposed ap-
proach shows competitive performance on two
QA datasets with commonsense knowledge,
CommonsenseQA and OpenbookQA, and im-
proves the state-of-the-art published results.

1 Introduction

Solving Question Answering (QA) problems usu-
ally requires both language understanding and hu-
man commonsense knowledge. Large-scale pre-
trained language models (LMs) have achieved suc-
cess in many QA benchmarks (Rajpurkar et al.,
2016, 2018; Min et al., 2019; Yang et al., 2018).
However, LMs have difficulties predicting the an-
swer when reasoning over external knowledge is
required (Yasunaga et al., 2021; Feng et al., 2020).

Therefore, using the external sources of knowl-
edge in the form of knowledge graphs (KGs) is
a common practice in question answering mod-
els (Lin et al., 2019; Feng et al., 2020). As shown in
Figure 1 taken from the CommonsenseQA bench-
mark, answering the question requires common-
sense reasoning over question and candidate an-
swers, while the external KG provides the required

What island country is ferret popular?
A. B.

C. Great Britain

Figure 1: An example of CommonsenseQA benchmark.
Given the question (blue boxes) and answer choice (red
box and orange boxes), we predict the answer by rea-
soning over the question information and the extracted
KG subgraph.

background information. The current state-of-the-
art models on CommonsenseQA (Yasunaga et al.,
2021) reason over the question and KG by adding
the question node to a selected KG entity subgraph
and jointly updating the representations by a graph
neural model.

However, two issues exist in the current ap-
proaches: a) the extracted KG subgraph misses
some links between entities, which breaks the chain
of reasoning or the paths between entities are too
long that the current models can not exploit the con-
nections, b) reasoning when negative terms exist in
the question, such as no and not, is problematic.

The first above-mentioned issue can be caused
by the following reasons. First, the knowledge
graph is originally imperfect and does not include
those relational edges. Second, when constructing
the subgraph, to reduce the graph size, most of
the models select the entities that appear in two-
hop paths (Feng et al., 2020). Therefore, some



intermediate concept nodes and links are missed
in the extracted KG subgraph. In such cases, the
subgraph cannot establish a complete chain of rea-
soning. Third, the current models often cannot
reason over long paths when there is no direct con-
nection between the involved concepts. Looking
back at Figure 1, the KG subgraph misses the direct
connection between “Great Britain” and “island”
(green arrow), where the term “island” is the most
crucial term in the question. For the issue of the
negative questions, as Lin et al. points out, Kag-
Net and MHGRN models are not sensitive to the
negation words and consequently predict opposite
answers. QA-GNN (Yasunaga et al., 2021) model
is the first related work to deal with the negative
questions. QA-GNN improves the negative reason-
ing, to some extent, by adding the question node to
the graph. However, the challenge still exists.

To solve the above challenges, we propose a
novel architecture called Dynamic relevance graph
network (DRGN). The motivation of our DRGN is
to recover the missing links or establish the short-
cut connection to facilitate multi-hop reasoning. In
particular, our DRGN model uses a graph network
module in which it recovers the missing links or
establish a shortcut connection based on the rele-
vancy of the node representations in the KG dur-
ing the training. The module can potentially cap-
ture the connections between distant nodes while
benefiting from the existing KG edges. At each
convolutional layer of the graph neural network,
we compute the similarity of the nodes based on
their current representations and build the neighbor-
hoods based on this similarity, forming a relevance
matrix accordingly. In this way, the neighborhoods
are constructed dynamically. This can be seen as
a way to learn new edges based on the relevance
of the nodes as the training goes forward in each
layer. Moreover, since the graph includes the ques-
tion node, the relevance between the question node
and entity node is computed at every layer, making
the model consider the negation information when
learning node representations during the training.

The contributions of this work are as follows:
1) Our proposed DRGN architecture exploits the
edges in the KG subgraph and uses the relevance
between the nodes to establish shortcut connections
or recover the missing edges dynamically. This
helps capture the full reasoning path in the graph
for answering the question.

2) Our model exploits the relevance between ques-

tion information and the graph entities, which helps
in boosting the performance of reasoning over neg-
ative questions.

3) Our proposed model obtains competitive re-
sults on both CommonsenseQA and OpenbookQA
benchmarks. Our analysis demonstrates the signifi-
cance and effectiveness of the DRGN model.

2 Related Work
2.1 QA using Knowledge Graph

Many recent research has studied methods to aug-
ment QA systems with external knowledge. Most
of the existing works study pre-trained language
models that potentially serve as implicit knowl-
edge bases. To provide more interpretable knowl-
edge, some recent works utilize KGs to the QA
models (Feng et al., 2020). However, given that
the KGs are usually large and contain many irrele-
vant nodes to the question in hand, the QA models
can not use the KG’s information effectively (Feng
et al., 2020). Moreover, with larger KGs, the com-
putational complexity of learning over them will
increase. Several works deal with this issue by
pruning KG nodes based on some metrics (Deffer-
rard et al., 2016; Zhou et al., 2020; Velickovic et al.,
2018; Hamilton et al., 2017; Ying et al., 2018).

Furthermore, some recent works use the text con-
text as an additional node in the KG subgraph. For
example, Koncel-Kedziorski et al. and Yasunaga
et al. introduce sentence node into the graph, while
Fang et al. and Zheng and Kordjamshidi add the
paragraph node and sentence node to construct a
hierarchical graph structure. In our work, we use
the question node as the external node and add it
to the KG subgraph. Therefore, the graph repre-
sentations can learn more contextual information
by computing the relevance between the question
node and graph entity nodes.

2.2 Graph Neural Networks

Graph convolutional network (GCN) (Kipf and
Welling, 2017) is a classic multi-layer graph neural
network. The node representations in the graph
are strongly related to their neighborhood nodes
and edges. For each layer of GCN, the node repre-
sentations capture the information of their neigh-
borhood nodes and edges via message passing and
graph convolutional operation. R-GCN is a vari-
ation of GCN that deals with the multi-relational
graph structure (Schlichtkrull et al., 2018). Li et al.
proposes an Adaptive Graph Convolution Network
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Figure 2: Our proposed DRGN model is composed of the Language Context Encoder module, KG Subgraph
Construction module, Graph Neural Network module, and Answer Prediction module. The blue color entity nodes
represent the entity existing in the question. The yellow color node represents the answer node. The red color node
is the question node. We use different colors to draw the dynamic relevance matrix 1 and 2 because the relevance

matrix changes dynamically in each graph neural layer.

(AGCN) to learn the underlying relations and learn
the residual graph Laplacian to improve spectral
graph performance. Meanwhile, some varients of
GCN try to replace the graph Fourier transform.
Graph wavelet neural network (GWNN) (Xu et al.,
2019) applies the graph wavelet transform to the
graph, and achieves better performance compared
to the graph Fourier transform in some tasks.

Meanwhile, several models try to use the atten-
tion operator on the graphs. For example, the graph
attention network (GAT) (Vaswani et al., 2017)
uses the self-attention method and multi-head at-
tention strategy to learn the node representations
that consider the neighbors of the nodes. Besides,
the gated attention network (GaAN) (Zhang et al.,
2018) uses self-attention to aggregate the differ-
ent heads’ information. GaAN utilizes the gate
mechanism to replace the average operation that is
commonly used in the GAT model.

Dynamic GCN (Ye et al., 2020) is another branch
of the GCN family. The dynamic graphs are con-
structed for different input samples. Moreover, Dy-
namic GCN learns the dynamic graph structure
by a context-encoding network, which takes the
whole feature map from the convolution neural net-
work as input and directly predicts the adjacency
matrix. Besides, Malik et al. proposes Dynamic
Graph Convolutional Networks using the Tensor
M-Product. Unlike these works, our DRGN model
maintains the graph structure statically, but com-
putes the relevance edges dynamically and learns
node representation. Besides, our approach uses
the existing relationships in the KG, captures the
missing ones or finds the shortcut connections by

computing the relevance between nodes dynami-
cally. We consider this as learning new edges based
on the relevance of the nodes as the training goes
forward in each layer.

3 Dynamic Relevance Graph Network

3.1 Problem Formulation

The problem of QA over commonsense knowledge
graphs is to choose a correct answer a4 from a
set of N candidate answers {a1, as, ..., a, } given
input question ¢ and an external knowledge graph
(KG). In fact, not the whole KG is input to the
problem but a subgraph, G, = (V, E), is selected
inspired by Feng et al. and Yasunaga et al.. The
node set V' represents entities in the knowledge
subgraph, and the edge set F represents the edges
between entities.

3.2 Model Description

Figure 2 shows the proposed Dynamic Relevance
Graph Network (DRGN) architecture. Our DRGN
includes four modules: Language Context En-
coder module, KG Subgraph Construction mod-
ule, Graph Neural Network module, and Answer
Prediction module. This section introduces our ap-
proach in detail and then explains how to train it
with an efficient algorithm.

3.3 Language Context Encoder

For every question ¢ and candidate answer a; pair,
we concatenate them to form Q:

Q = [[CLS]; ¢; [SEP]; ail, )]



where [CLS] and [SEP] are the special tokens used
by large-scale pre-trained Language Models (LMs).
We feed input () to a pre-trained RoBERTa en-
coder to obtain the list of token representations
hg € RUdltlal+2)xd  where |q| represents the
length of the question, while |a| represents the
length of the candidate answer. Then we use the
[CLS] representation, denoted as, hj,] € RY, as
the representation of the question and candidate
answer pair.

3.4 KG Subgraph Construction

We use ConceptNet, a general-domain knowl-
edge graph, as the commonsense KG. ConceptNet
graph has multiple semantic relational edges, e.g.,
HasProperty, IsA, AtLocation, etc. We follow Feng
et al. work to extract the subgraphs from KG for
each example. The approach is to extract a sub-
graph from KG that contains the entities mentioned
in the question and answer choices. The entities
are selected with the exact match between n-gram
tokens and ConceptNet concepts using some nor-
malization rules. Then another set of entities is
added to the subgraph by following the KG paths
of two hops of reasoning based on the current enti-
ties in the subgraph.

Furthermore, we add the question as a separate
node to the subgraph. This node provides an ad-
ditional question information to the KG subgraph,
G sup, as suggested by Yasunaga et al.. We link
the question node to entity nodes mentioned in the
question. The question node is initialized by the
[CLS] representation described in Section 3.3. The
initial representation of the other entities is derived
from applying RoBERTa and pooling over their
contained tokens (Feng et al., 2020).

3.5 Graph Neural Network Module

The basis of our learning representation is
Multi-relational Graph Convolutional Network (R-
GCN) (Schlichtkrull et al., 2018). R-GCN is an
extension of GCN that operates on a graph with
multi-relational edges between nodes. In our case,
the relation types between entities are taken from
the 17 semantic relations from ConceptNet. Mean-
while, an additional type is added to represent the
relations between the question node and the enti-
ties, which the graph structure is different from
previous works. We denote the set of relations as
R. N denotes the neighbor nodes of node ¢ under
relation r, where r € R.

We use h¥) to represent node representations in
the [-th layer. In R-GCN, node representations are
computed as follows:

h§l+1) — 0 Wél Zl) +Z Z l)h

reRgeN’“ b
2
R+ — [hélJrl); hglﬂ) h|(€/+|1)] c RIVIxd,
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where d; ;. is the normalization factor (Schlichtkrull

et al., 2018). Wr(l) is the learned relational weight,
and W) is the learned self-loop weight, and |V| is
the number of nodes in the subgraph.

Our dynamic relevance graph network (DRGN)
architecture is the variation of the R-GCN model.
To consider the direct relevance between the nodes
in learning node representations, we compute the
similarity between the nodes in the subgraph dy-
namically based on their current representations.
Then we build the neighborhoods based on this rel-
evance and form a dynamic relevance matrix, M.,
accordingly. This can be seen as a way to learn
new edges based on the relevance of the nodes as
the training goes forward in each layer. We use
inner product to compute the relevance matrix as
follows:

M(l+1) _

rel -

RUFDT R+ ¢ RUVIFD-VIFD - (4

where |V| is the graph entity nodes sizes, and the
other 1 represents the question node. The relevance
matrix re-scales the way that the neighborhood
nodes’ representations are aggregated in the R-
GCN base model. M,.; is computed dynamically,
and the neighborhood scores change while the rep-
resentations are further trained. This makes the
neighborhood computations dynamic. The forward-
pass message passing updates of the nodes denoted
by v; in our proposed relational graph are calcu-
lated as follows:

W = [ 3 ot nf el )
reRjENT b
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R+ — (Msizrl) /D) Wg) e RUVIHD+d,
(8)

where o is the activation function, W) is the learn-
ing weight, F, is a two-layer MLP, h, is the ques-
tion node representation. We then use the dynamic
dynamic relevance matrix computed from the (I41)
graph layer to multiply the node representation ma-
trix H/U+D that helps the node representation to
learn the direct relevance between the nodes during
the massage passing, which is shown in Formula 8.

3.6 Answer Prediction

Given a question ¢ and an answer choice, we use
the information from both the language represen-
tation h.), question node representation h, learn-
ing from the KG subgraph, and the representation
pooled from the KG subgraph, G, to calculate
the scores of the answers. The probability is com-
puted as follow:

p(a|Qa Gsub) = fout([h[cls}; hq;pOOZ(thub)Dv

where f,,; is a two-layer MLP. Finally, we choose
the highest scored answer from /N candidate an-
swers as the prediction output. We use the cross
entropy loss to optimize the End-to-End model.

4 Experiments and Results

4.1 Datasets

We evaluate our model on two different QA bench-
marks, CommonsenseQA and OpenbookQA. Both
benchmarks come with an external knowledge
graph. We apply ConceptNet to the external knowl-
edge graph on these two benchmarks.
CommonsenseQA is a QA dataset that requires
human commonsense reasoning capacity to answer
the questions. Each question in CommonsenseQA
has five candidate answers without any extra infor-
mation. The dataset consists of 12, 102 questions.
OpenbookQA is a multiple-choice QA dataset that
requires reasoning with commonsense knowledge.
The OpenbookQA benchmark is a well-defined
subset of science QA (Clark et al., 2018), requiring
to find the chain from the open book and commonly
known supporting facts. The dataset contains about
6,000 questions.

4.2 Implementation Details

We implemented our DRGN architecture using
PyTorch '. We use the pre-trained RoBERTa-

'Our code will be available after the paper is accepted.

Models Dev ACC%  Test ACC%
RoBERTa-no KG 69.68% 67.81%
R-GCN 72.69% 68.41%
GconAttn 72.61% 68.59%
KagNet 73.35% 69.22%
RN 73.65% 69.59%
MHGRN 74.45% 71.11%
QA-GNN 76.54% 73.41%
DRGN 78.10% 75.26 %

Table 1: Dev accuracy and Test accuracy of various
models on the CommonsenseQA benchmark.

large (Liu et al., 2019) to encode the question. We
use cross-entropy loss and RAdam optimizer (Liu
et al., 2020) to train our End-to-End architecture.
Moreover, we set the batch size to 16, the maxi-
mum text input sequence length to 128. Our model
use early stopping strategy during the training. Fur-
thermore, we use 3-layer graph neural module in
our experiments. Section 5.3 describes the effect
of different number of layers. The learning rate for
the LMs is 1e — 5, while the learning rate for the
graph module is 1e — 3.

4.3 Baseline Description

KagNET (Lin et al., 2019) is a path-based model
that models the multi-hop relations by extracting
relational paths from Knowledge Graph and then
encoding paths with an LSTM sequence model.
MHGRN (Feng et al., 2020): Multi-hop Graph
Relation Network (MHGRN) is a strong baseline.
MHGRN model applies LMs to the question and
answer context encoder, uses GNN encoder to learn
graph representations, and chooses the candidate
answer by these two encoders.

QA-GNN (Yasunaga et al., 2021) is the most re-
cent SOTA model that uses a working graph to train
language and KG subgraph. The model jointly rea-
sons over the question and KG and jointly updates
the representations. QA-GNN uses GAT as the
backbone to do message passing on the graph. To
learn the semantic edge information, QA-GNN di-
rectly adds the edge feature to the local node feature
and cannot learn the global structure of the edges,
which is inefficient. However, our model uses the
global multi-relational adjacency matrices to learn
the edge information. Our model uses the same
subgraphs as QA-GNN.

4.4 Result Comparison

Table 1 shows the performance of different mod-
els on the CommonsenseQA benchmark. KagNet
and MHGRN are two strong baselines. Our model



Models Dev ACC%  Test ACC%
RoBERTa-large 66.7% 64.8%
R-GCN 65.0% 62.4%
GceonAttn 64.5% 61.9%
RN 66.8% 65.2%
MHGRN 68.1 % 66.8%
QA-GNN 68.6 % 67.8%
DRGN 69.4 % 69.6%
AristoRoBERTaV7 79.2% 77.8%
UnifiedQA(T5-11B) - 87.2%
AristoRoOBERTaV7+MHGRN 78.6% 80.6%
AristoROBERTaV7+QA-GNN - 82.8%
AristoRoBERTaV7+DRGN 80.2% 84.6 %

Table 2: Dev accuracy and Test accuracy of various
model performance on the OpenbookQA benchmark.

outperforms the KagNet by 6.04% and MHGRN
by 4.15% on CommonsenseQA. Moreover, we ob-
tain SOTA results that shows the effectiveness of
our DRGN architecture. Table 2 shows the per-
formance on OpenbookQA benchmark. There are
a few recent papers that exploit larger LMs, such
as T5 (Raffel et al., 2020) that contains 3 billion
parameters (10x larger than our model,) and Uni-
fiedQA (Khashabi et al., 2020) (32x larger). For
a fair comparison, we use the same Roberta set-
ting for the input representation when we evaluate
OpenbookQA. Our model performance, potentially,
will be improved after using these larger LMs. To
demonstrate this point, we also use AristoRoBER-
TaV7 (Clark et al., 2019) as a backbone to train our
model. The results show that our model achieves
the best performance when using the same larger
LMs compared to other strong baseline models. In
the same AristoRoOBERTaV7 setting, DRGN model
has 4% accuracy improvement compared to the
MHGRN model and 2% improvement compared
to QA-GNN on the OpenbookQA benchmark.

5 Analysis
5.1 Effects of Finding the Line of Reasoning

In this subsection, we analyze the effectiveness of
our DRGN that helps in recovering the missing
links or establishing a shortcut connection based
on the relevancy of the node representations in the
KG. As we described in Section 3.4, to keep the
graph size small, most of the models construct the
KG subgraph via selecting the entities that appear
in two-hop paths. Therefore, some intermediate
concept nodes and links are missed in the extracted
KG subgraph, and the complete reasoning chain
from the question entity node to the candidate an-
swer node can not be found.

The black footed ferret is settling in large numbers in what

geographic region?
A. north america B. rocky mountains C. own home D. work
E. out of doors
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Figure 3: A complete reasoning chain from the ques-
tion entity node to the candidate answer node. The blue
nodes are question entity nodes, and the red node is the
gold answer node. The darker orange edges indicate
the higher relevance score to the neighborhood node,
while the lighter orange edges indicate the lower score.
The grey edges are selected from the baseline model.

For example, as shown in Figure 3, the question
is “The black footed ferret is settling in large num-
bers in what geographic region?” and the answer
is “North America”. The long reasoning chain
includes 5 hops, that is, “black footed ferret —
mammal — animal — region — country — North
America”. Since the constructed graph misses the
link between “animal” and “region”, MHGRN and
QA-GNN cannot obtain the complete chain and
predict the wrong answer “out of doors” by the
grey edges described in the Figure. However, the
DRGN model makes a correct prediction. The rea-
son is that we compute the similarity of the nodes
based on their learned representations and form
a relevance edge accordingly. As we describe in
Section 3.4, our model initializes the entity node
representation by ROBERTa. The implicit represen-
tations of LMs are learned from the huge corpora,
and the knowledge is implicitly learned. Therefore,
these two words, animal and region, start with an
implicit connection. By looking at the relevance
matrix, after several layers of graph encoding, we
found that the relevance score between “animal”
and “region” becomes stronger. This is the primary
reason why our DRGN model obtains the complete
reasoning chain.

Looking into another example, the question is
“Bob spent all of his time analyzing the works of
masters because he wanted to become what?” and
the answer is “intelligent”. The reasoning chain
is “analyze — work — master — learn — intelli-
gent”. Due to the missing link between “master —
learn” in KG, the baseline model, MHGRN, can-



Why do parents encourage their kids to play baseball? \
A. round B. cheap C. break window D. hard E. fun to play

MHGRN: | play baseball used fory, hagehall B2y fup to play
QA-GNN: | play baseball ¢4 foty, haseball MYy fup tg play
DRGN: play baseball used foty, hageball WPy, fu to play

Why don’t parents encourage their kids to play baseball?
A. round B. cheap C. break window D. hard E. fun to play

MHGRN: | play baseballtsedory, basehall ™5 Pr%er Yy, fiyp to play

QA-GNN: | play baseballused fory, haseball—22¢°T__y, A ballused for, break window
DRGN: | play baseball¥sedfory play balphassubeventy byrea window

Figure 4: The case study of the negation examples.
The question in the bottom box includes the negative
words. The red color text represents the gold answer,
and the purple color represents the wrong answer. In
the blue box, each line represents a commonsense rea-
soning chain from a model.

not obtain the complete reasoning chain. However,
our DRGN captures the strong relevance between
“master” and “learn” and finds out the complete
reasoning chain to predict the correct answer.

5.2 Effects of Handling Negative Questions

While the graph has a broad coverage of knowl-
edge, it can not perform well on handling nega-
tion (Yasunaga et al., 2021). Since our dynamic
relevance matrix includes the question information,
the relevance between the question and graph enti-
ties is computed at every graph neural layer while
considering the negation in the node representa-
tions. Intuitively, this should improve handling the
negative question in our model.

To analyze this hypothesis for DRGN architec-
ture, we randomly choose 50 samples from the
CommonsenseQA development data. If the ques-
tion is positive, we add the negation words to gener-
ate a negative counterpart question. If the question
includes the negation words, we remove them to
generate a positive counterpart question. We anno-
tate the answer to the new questions manually. This
result is 50 positive samples and their additional
50 negative counterparts of the exact questions (to-
tal 100 samples). We compare the performance
of various models on questions containing nega-
tive words (e.g., no, not, nothing, unlikely). The
result is shown in Table 3. We observe that base-
line models, KagNet and MHGRN, provide limited
improvements over ROBERTa on questions with
negation words (+0.2%). However, our DRGN
model exhibits a huge boost (+7.8%). Moreover,
the DRGN model has a 3.5% accuracy improve-

Models Dev ACC% Dev ACC%
w/o negative negative
RoBERTa-large 69.1% 52.7%
MHGRN 72.5 % 52.9%
QA-GNN 74.3 % 58.0%
DRGN 76.6 % 61.5%

Table 3: Accuracy of the positive questions and nega-
tive questions on 100 samples from CommonsenseQA.

CommonsenseQA Dev Accuracy

L=5 |
L—¢ [E—_——
-3
L=2 |
L-1 [——
0.7 0.72 0.74 0.76 0.78 0.8
® QA-GNN =MHGRN mDRGN

Figure 5: The Effect of different number of layers in
QA-GNN, MHGRN, and DRGN models.

ment compared to the QA-GNN model, demon-
strating the effectiveness of handling negative ques-
tions that experimentally confirm our hypothesis.
An additional ablation study in Table 5 confirms
this idea further. When removing the question in-
formation from DRGN, we observe that the perfor-
mance on negation becomes close to the MHGRN.
Figure 4 shows case studies about the common-
sense question and negative question. As is shown
in the figure, all the models obtain the same rea-
soning chain “play baseball-(used for)— baseball-
(has property)— fun to play”, including MHGRN,
QAGNN, and our architecture. However, when
adding the negative words, MHGRN obtains the
same reasoning chain as the positive situation,
while QAGNN and our DRGN find the correct
reasoning chain. One interesting finding is that our
DRGN finds out the shortcut connection and uses
fewer hops to establish the reasoning chain, which
is shown in Figure 4. The chain of reasoning is
found by looking at the neighborhood matrices in
the model. For DRGN, this neighborhood is the
outcome of multiplication by relevance matrix.

5.3 Effects of Number of Graph Layers

We evaluate the effects of multiple layers [ for
the baseline models and our DRGN by evaluating
its performance on the CommonsenseQA develop-
ment dataset. As shown in Figure 5, the increase



Models Time Space
I-layer KagNet | O(JR['IVIT1)  O(IR[Y[V]'TH)
I-layer MHGRN | O(|R|*|V|?]) O(|R||V|D)
I-layer QA-GNN O(|V21) O(|R||V]I)
I-layer DRGN O(|R*|V|*1) O(|R||V?1)

Table 4: The time complexity and space complexity
comparison between DRGN and baseline models.

of [ continues to bring benefits until [ = 3 for
our DRGN. However, performance begins to drop
when [ > 3. This might be because of the noise in
the long reasoning chains in the KG. We compare
the performance after adding each layer for MH-
GRN, QA-GNN, and our DRGN. We observe that
DRGN consistently achieves the best performance
with the same number of layers as the baselines.

Table 4 shows the time complexity and the space
complexity comparison between our DRGN model
and baseline model. We compare the computa-
tional complexity based on the number of layers
I, the number of nodes V, and the number of re-
lations 2. We report this for the baseline models
based on their papers (Yasunaga et al., 2021). Our
model and MHGRN have the same time complex-
ity because both models use the R-GCN model as
the backbone. Besides, QA-GNN utilizes graph
attention Transformer (GAT) (Vaswani et al., 2017)
to learn the graph node representation. QA-GNN
directly adds the edge feature to the local node
feature without the global semantic relational ad-
jacency matrices. The scope of the GAT attention
is still in the predefined neighborhood area in the
KG subgraph. However, in our DRGN model, we
consider all nodes in the subgraph. It is hard to eval-
uate which of the two models, R-GCN and GAT, is
more effective. However, after adding the dynamic
relevance information, our R-GCN based DRGN
model achieves better performance compared to
GAT based QA-GNN baseline.

For the space complexity, our model’s space
complexity is larger than MHGRN because DRGN
introduces the extra dynamic relevance matrix.
However, this cost depends on the size of the sub-
graph which is usually small and meanwhile it
leads to 5% performance improvement.

5.4 Ablation Study

To evaluate the effectiveness of various compo-
nents of our DRGN, we perform an ablation study
on the CommonsenseQA development dataset. Ta-
ble 5 shows the results of ablation study. First,

Models Dev ACC
DRGN w/o KG subgraph 69.6%
w/o relational edges in graph 71.3%
w/o question node in graph 74.7%
DRGN 78.1%

Table 5: Ablation Study on CommonsenseQA dataset.

we removed the whole commonsense subgraph.
We observe that our model without the subgraph
obtains 69.6% on the CommonsenseQA dataset.
This shows how the language model can answer
the question without the external KG, which is not
high-performing but still impressive. Second, we
kept the KG subgraph but removed all the relational
edge information from the subgraph (described in
section 3.5). Without the relational edges, the accu-
racy is 71.3% on the CommonsenseQA benchmark
with a 6.8% gap compared to the DRGN model.
This result shows that the multiple relational edges
helps the DRGN learn better representations and
obtain higher performance. Third, we keep the
subgraph and remove the question node. In other
words, we lose an additional type of relationship
between the question node and the graph entities.
More importantly, we cannot obtain the relevance
between question information and entity node in
the dynamic relevance matrix. The accuracy of the
DRGN decreases from 78.1% to 74.7%. It demon-
strates the importance of the relevance between the
question information and the KG subgraph.

6 Conclusion

In this paper, we propose a novel dynamic rel-
evance graph neural network (DRGN) model to
learn commonsense question answering given an
external source of knowledge in the form of a KG.
Our model learns the graph node representation that
exploits the existing relations in KG and recovers
the missing connections or establishes the short-
cut connections based on measuring the relevance
scores of the nodes dynamically during training.
Our quantitative and qualitative analysis shows that
the proposed approach facilitates finding the chain
of reasoning for answering the questions that need
multiple hops of reasoning. Furthermore, since
DRGN considers the relevance between the ques-
tion and graph entities, our model improves the
performance on the negative questions. Our pro-
posed approach shows SOTA performance on two
QA benchmarks, including CommonsenseQA and
OpenbookQA.
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