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Abstract

This work investigates the challenge of learn-001
ing and reasoning for Commonsense Question002
Answering given an external source of knowl-003
edge in the form of a knowledge graph. We004
propose a novel graph neural network architec-005
ture, called dynamic relevance graph network006
(DRGN). DRGN operates on a given KG sub-007
graph based on the question and answers enti-008
ties and uses the relevance between the nodes009
to establish new edges dynamically for learn-010
ing node representations in the graph network.011
Using the relevance between the graph nodes012
in learning representations helps the model to013
not only exploit the existing relationships in014
the KG subgraph but also recover the missing015
edges. Moreover, our model improves han-016
dling the negative questions due to consider-017
ing the relevance between the global question018
node and the graph entities. Our proposed ap-019
proach shows competitive performance on two020
QA datasets with commonsense knowledge,021
CommonsenseQA and OpenbookQA, and im-022
proves the state-of-the-art published results.023

1 Introduction024

Solving Question Answering (QA) problems usu-025

ally requires both language understanding and hu-026

man commonsense knowledge. Large-scale pre-027

trained language models (LMs) have achieved suc-028

cess in many QA benchmarks (Rajpurkar et al.,029

2016, 2018; Min et al., 2019; Yang et al., 2018).030

However, LMs have difficulties predicting the an-031

swer when reasoning over external knowledge is032

required (Yasunaga et al., 2021; Feng et al., 2020).033

Therefore, using the external sources of knowl-034

edge in the form of knowledge graphs (KGs) is035

a common practice in question answering mod-036

els (Lin et al., 2019; Feng et al., 2020). As shown in037

Figure 1 taken from the CommonsenseQA bench-038

mark, answering the question requires common-039

sense reasoning over question and candidate an-040

swers, while the external KG provides the required041

What island country is ferret popular?
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D. Hutch E. Outdoors
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Figure 1: An example of CommonsenseQA benchmark.
Given the question (blue boxes) and answer choice (red
box and orange boxes), we predict the answer by rea-
soning over the question information and the extracted
KG subgraph.

background information. The current state-of-the- 042

art models on CommonsenseQA (Yasunaga et al., 043

2021) reason over the question and KG by adding 044

the question node to a selected KG entity subgraph 045

and jointly updating the representations by a graph 046

neural model. 047

However, two issues exist in the current ap- 048

proaches: a) the extracted KG subgraph misses 049

some links between entities, which breaks the chain 050

of reasoning or the paths between entities are too 051

long that the current models can not exploit the con- 052

nections, b) reasoning when negative terms exist in 053

the question, such as no and not, is problematic. 054

The first above-mentioned issue can be caused 055

by the following reasons. First, the knowledge 056

graph is originally imperfect and does not include 057

those relational edges. Second, when constructing 058

the subgraph, to reduce the graph size, most of 059

the models select the entities that appear in two- 060

hop paths (Feng et al., 2020). Therefore, some 061
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intermediate concept nodes and links are missed062

in the extracted KG subgraph. In such cases, the063

subgraph cannot establish a complete chain of rea-064

soning. Third, the current models often cannot065

reason over long paths when there is no direct con-066

nection between the involved concepts. Looking067

back at Figure 1, the KG subgraph misses the direct068

connection between “Great Britain” and “island”069

(green arrow), where the term “island” is the most070

crucial term in the question. For the issue of the071

negative questions, as Lin et al. points out, Kag-072

Net and MHGRN models are not sensitive to the073

negation words and consequently predict opposite074

answers. QA-GNN (Yasunaga et al., 2021) model075

is the first related work to deal with the negative076

questions. QA-GNN improves the negative reason-077

ing, to some extent, by adding the question node to078

the graph. However, the challenge still exists.079

To solve the above challenges, we propose a080

novel architecture called Dynamic relevance graph081

network (DRGN). The motivation of our DRGN is082

to recover the missing links or establish the short-083

cut connection to facilitate multi-hop reasoning. In084

particular, our DRGN model uses a graph network085

module in which it recovers the missing links or086

establish a shortcut connection based on the rele-087

vancy of the node representations in the KG dur-088

ing the training. The module can potentially cap-089

ture the connections between distant nodes while090

benefiting from the existing KG edges. At each091

convolutional layer of the graph neural network,092

we compute the similarity of the nodes based on093

their current representations and build the neighbor-094

hoods based on this similarity, forming a relevance095

matrix accordingly. In this way, the neighborhoods096

are constructed dynamically. This can be seen as097

a way to learn new edges based on the relevance098

of the nodes as the training goes forward in each099

layer. Moreover, since the graph includes the ques-100

tion node, the relevance between the question node101

and entity node is computed at every layer, making102

the model consider the negation information when103

learning node representations during the training.104

The contributions of this work are as follows:105

1) Our proposed DRGN architecture exploits the106

edges in the KG subgraph and uses the relevance107

between the nodes to establish shortcut connections108

or recover the missing edges dynamically. This109

helps capture the full reasoning path in the graph110

for answering the question.111

2) Our model exploits the relevance between ques-112

tion information and the graph entities, which helps 113

in boosting the performance of reasoning over neg- 114

ative questions. 115

3) Our proposed model obtains competitive re- 116

sults on both CommonsenseQA and OpenbookQA 117

benchmarks. Our analysis demonstrates the signifi- 118

cance and effectiveness of the DRGN model. 119

2 Related Work 120

2.1 QA using Knowledge Graph 121

Many recent research has studied methods to aug- 122

ment QA systems with external knowledge. Most 123

of the existing works study pre-trained language 124

models that potentially serve as implicit knowl- 125

edge bases. To provide more interpretable knowl- 126

edge, some recent works utilize KGs to the QA 127

models (Feng et al., 2020). However, given that 128

the KGs are usually large and contain many irrele- 129

vant nodes to the question in hand, the QA models 130

can not use the KG’s information effectively (Feng 131

et al., 2020). Moreover, with larger KGs, the com- 132

putational complexity of learning over them will 133

increase. Several works deal with this issue by 134

pruning KG nodes based on some metrics (Deffer- 135

rard et al., 2016; Zhou et al., 2020; Velickovic et al., 136

2018; Hamilton et al., 2017; Ying et al., 2018). 137

Furthermore, some recent works use the text con- 138

text as an additional node in the KG subgraph. For 139

example, Koncel-Kedziorski et al. and Yasunaga 140

et al. introduce sentence node into the graph, while 141

Fang et al. and Zheng and Kordjamshidi add the 142

paragraph node and sentence node to construct a 143

hierarchical graph structure. In our work, we use 144

the question node as the external node and add it 145

to the KG subgraph. Therefore, the graph repre- 146

sentations can learn more contextual information 147

by computing the relevance between the question 148

node and graph entity nodes. 149

2.2 Graph Neural Networks 150

Graph convolutional network (GCN) (Kipf and 151

Welling, 2017) is a classic multi-layer graph neural 152

network. The node representations in the graph 153

are strongly related to their neighborhood nodes 154

and edges. For each layer of GCN, the node repre- 155

sentations capture the information of their neigh- 156

borhood nodes and edges via message passing and 157

graph convolutional operation. R-GCN is a vari- 158

ation of GCN that deals with the multi-relational 159

graph structure (Schlichtkrull et al., 2018). Li et al. 160

proposes an Adaptive Graph Convolution Network 161
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Figure 2: Our proposed DRGN model is composed of the Language Context Encoder module, KG Subgraph
Construction module, Graph Neural Network module, and Answer Prediction module. The blue color entity nodes
represent the entity existing in the question. The yellow color node represents the answer node. The red color node
is the question node. We use different colors to draw the dynamic relevance matrix 1 and 2 because the relevance
matrix changes dynamically in each graph neural layer.

(AGCN) to learn the underlying relations and learn162

the residual graph Laplacian to improve spectral163

graph performance. Meanwhile, some varients of164

GCN try to replace the graph Fourier transform.165

Graph wavelet neural network (GWNN) (Xu et al.,166

2019) applies the graph wavelet transform to the167

graph, and achieves better performance compared168

to the graph Fourier transform in some tasks.169

Meanwhile, several models try to use the atten-170

tion operator on the graphs. For example, the graph171

attention network (GAT) (Vaswani et al., 2017)172

uses the self-attention method and multi-head at-173

tention strategy to learn the node representations174

that consider the neighbors of the nodes. Besides,175

the gated attention network (GaAN) (Zhang et al.,176

2018) uses self-attention to aggregate the differ-177

ent heads’ information. GaAN utilizes the gate178

mechanism to replace the average operation that is179

commonly used in the GAT model.180

Dynamic GCN (Ye et al., 2020) is another branch181

of the GCN family. The dynamic graphs are con-182

structed for different input samples. Moreover, Dy-183

namic GCN learns the dynamic graph structure184

by a context-encoding network, which takes the185

whole feature map from the convolution neural net-186

work as input and directly predicts the adjacency187

matrix. Besides, Malik et al. proposes Dynamic188

Graph Convolutional Networks using the Tensor189

M-Product. Unlike these works, our DRGN model190

maintains the graph structure statically, but com-191

putes the relevance edges dynamically and learns192

node representation. Besides, our approach uses193

the existing relationships in the KG, captures the194

missing ones or finds the shortcut connections by195

computing the relevance between nodes dynami- 196

cally. We consider this as learning new edges based 197

on the relevance of the nodes as the training goes 198

forward in each layer. 199

3 Dynamic Relevance Graph Network 200

3.1 Problem Formulation 201

The problem of QA over commonsense knowledge 202

graphs is to choose a correct answer a
ans

from a 203

set of N candidate answers {a1, a2, ..., an} given 204

input question q and an external knowledge graph 205

(KG). In fact, not the whole KG is input to the 206

problem but a subgraph, G
sub

= (V,E), is selected 207

inspired by Feng et al. and Yasunaga et al.. The 208

node set V represents entities in the knowledge 209

subgraph, and the edge set E represents the edges 210

between entities. 211

3.2 Model Description 212

Figure 2 shows the proposed Dynamic Relevance 213

Graph Network (DRGN) architecture. Our DRGN 214

includes four modules: Language Context En- 215

coder module, KG Subgraph Construction mod- 216

ule, Graph Neural Network module, and Answer 217

Prediction module. This section introduces our ap- 218

proach in detail and then explains how to train it 219

with an efficient algorithm. 220

3.3 Language Context Encoder 221

For every question q and candidate answer a
i

pair, 222

we concatenate them to form Q: 223

Q = [[CLS]; q; [SEP ]; a
i

], (1) 224
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where [CLS] and [SEP] are the special tokens used225

by large-scale pre-trained Language Models (LMs).226

We feed input Q to a pre-trained RoBERTa en-227

coder to obtain the list of token representations228

h

Q

2 R(|q|+|a|+2)⇤d, where |q| represents the229

length of the question, while |a| represents the230

length of the candidate answer. Then we use the231

[CLS] representation, denoted as, h[cls] 2 Rd, as232

the representation of the question and candidate233

answer pair.234

3.4 KG Subgraph Construction235

We use ConceptNet, a general-domain knowl-236

edge graph, as the commonsense KG. ConceptNet237

graph has multiple semantic relational edges, e.g.,238

HasProperty, IsA, AtLocation, etc. We follow Feng239

et al. work to extract the subgraphs from KG for240

each example. The approach is to extract a sub-241

graph from KG that contains the entities mentioned242

in the question and answer choices. The entities243

are selected with the exact match between n-gram244

tokens and ConceptNet concepts using some nor-245

malization rules. Then another set of entities is246

added to the subgraph by following the KG paths247

of two hops of reasoning based on the current enti-248

ties in the subgraph.249

Furthermore, we add the question as a separate250

node to the subgraph. This node provides an ad-251

ditional question information to the KG subgraph,252

G

sub

, as suggested by Yasunaga et al.. We link253

the question node to entity nodes mentioned in the254

question. The question node is initialized by the255

[CLS] representation described in Section 3.3. The256

initial representation of the other entities is derived257

from applying RoBERTa and pooling over their258

contained tokens (Feng et al., 2020).259

3.5 Graph Neural Network Module260

The basis of our learning representation is261

Multi-relational Graph Convolutional Network (R-262

GCN) (Schlichtkrull et al., 2018). R-GCN is an263

extension of GCN that operates on a graph with264

multi-relational edges between nodes. In our case,265

the relation types between entities are taken from266

the 17 semantic relations from ConceptNet. Mean-267

while, an additional type is added to represent the268

relations between the question node and the enti-269

ties, which the graph structure is different from270

previous works. We denote the set of relations as271

R. N r

i

denotes the neighbor nodes of node i under272

relation r, where r 2 R.273

We use h

(l) to represent node representations in 274

the l-th layer. In R-GCN, node representations are 275

computed as follows: 276

h

(l+1)
i

= �

0

@
W

(l)
0 h

(l)
i

+
X

r2R

X

j2N r
i

1

d

i,r

W

(l)
r

h

(l)
j

1

A 2 Rd

,

(2)

277

h

(l+1) = [h(l+1)
0 ;h(l+1)

1 ; · · · ;h(l+1)
|V | ] 2 R|V |⇤d

,

(3)
278

where d
i,r

is the normalization factor (Schlichtkrull 279

et al., 2018). W (l)
r

is the learned relational weight, 280

and W0 is the learned self-loop weight, and |V | is 281

the number of nodes in the subgraph. 282

Our dynamic relevance graph network (DRGN) 283

architecture is the variation of the R-GCN model. 284

To consider the direct relevance between the nodes 285

in learning node representations, we compute the 286

similarity between the nodes in the subgraph dy- 287

namically based on their current representations. 288

Then we build the neighborhoods based on this rel- 289

evance and form a dynamic relevance matrix, M
rel

, 290

accordingly. This can be seen as a way to learn 291

new edges based on the relevance of the nodes as 292

the training goes forward in each layer. We use 293

inner product to compute the relevance matrix as 294

follows: 295

M

(l+1)
rel

= h

(l+1)>
h

(l+1) 2 R(|V |+1)·(|V |+1)
, (4) 296

where |V | is the graph entity nodes sizes, and the 297

other 1 represents the question node. The relevance 298

matrix re-scales the way that the neighborhood 299

nodes’ representations are aggregated in the R- 300

GCN base model. M
rel

is computed dynamically, 301

and the neighborhood scores change while the rep- 302

resentations are further trained. This makes the 303

neighborhood computations dynamic. The forward- 304

pass message passing updates of the nodes denoted 305

by v

i

in our proposed relational graph are calcu- 306

lated as follows: 307

h

(l+1)
i

= �

0

@
X

r2R

X

j2N r
i

1

d

i,r

W

(l)
r

· h(l)
j

+W

(l)
0 · h(l)

i

1

A
,

(5)

308

h

(l+1)
q

= �

0

@
X

j2N q

W

(l)
q

· F
c

([h(l)
q

;h(l)
j

]) +W

(l)
0 · h(l)

q

1

A
,

(6)

309

h

0(l+1) = [h(l+1)
0 ;h(l+1)

1 ; · · · ;h(l+1)
|V | ;h(l+1)

q

] 2 R(|V |+1)⇤d
,

(7)
310
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h

(l+1) = �

⇣
M

(l+1)
rel

· h0(l+1) ·W
g

⌘
2 R(|V |+1)⇤d

,

(8)

311

where � is the activation function, W
g

is the learn-312

ing weight, F
c

is a two-layer MLP, h
q

is the ques-313

tion node representation. We then use the dynamic314

dynamic relevance matrix computed from the (l+1)315

graph layer to multiply the node representation ma-316

trix h

0(l+1) that helps the node representation to317

learn the direct relevance between the nodes during318

the massage passing, which is shown in Formula 8.319

3.6 Answer Prediction320

Given a question q and an answer choice, we use
the information from both the language represen-
tation h[cls], question node representation h

q

learn-
ing from the KG subgraph, and the representation
pooled from the KG subgraph, G

sub

, to calculate
the scores of the answers. The probability is com-
puted as follow:

p(a|Q,G

sub

) = f

out

([h[cls];hq; pool(hGsub)]),

where f

out

is a two-layer MLP. Finally, we choose321

the highest scored answer from N candidate an-322

swers as the prediction output. We use the cross323

entropy loss to optimize the End-to-End model.324

4 Experiments and Results325

4.1 Datasets326

We evaluate our model on two different QA bench-327

marks, CommonsenseQA and OpenbookQA. Both328

benchmarks come with an external knowledge329

graph. We apply ConceptNet to the external knowl-330

edge graph on these two benchmarks.331

CommonsenseQA is a QA dataset that requires332

human commonsense reasoning capacity to answer333

the questions. Each question in CommonsenseQA334

has five candidate answers without any extra infor-335

mation. The dataset consists of 12, 102 questions.336

OpenbookQA is a multiple-choice QA dataset that337

requires reasoning with commonsense knowledge.338

The OpenbookQA benchmark is a well-defined339

subset of science QA (Clark et al., 2018), requiring340

to find the chain from the open book and commonly341

known supporting facts. The dataset contains about342

6,000 questions.343

4.2 Implementation Details344

We implemented our DRGN architecture using345

PyTorch 1. We use the pre-trained RoBERTa-346

1Our code will be available after the paper is accepted.

Models Dev ACC% Test ACC%
RoBERTa-no KG 69.68% 67.81%

R-GCN 72.69% 68.41%
GconAttn 72.61% 68.59%
KagNet 73.35% 69.22%

RN 73.65% 69.59%
MHGRN 74.45% 71.11%
QA-GNN 76.54% 73.41%
DRGN 78.10% 75.26%

Table 1: Dev accuracy and Test accuracy of various
models on the CommonsenseQA benchmark.

large (Liu et al., 2019) to encode the question. We 347

use cross-entropy loss and RAdam optimizer (Liu 348

et al., 2020) to train our End-to-End architecture. 349

Moreover, we set the batch size to 16, the maxi- 350

mum text input sequence length to 128. Our model 351

use early stopping strategy during the training. Fur- 352

thermore, we use 3-layer graph neural module in 353

our experiments. Section 5.3 describes the effect 354

of different number of layers. The learning rate for 355

the LMs is 1e� 5, while the learning rate for the 356

graph module is 1e� 3. 357

4.3 Baseline Description 358

KagNET (Lin et al., 2019) is a path-based model 359

that models the multi-hop relations by extracting 360

relational paths from Knowledge Graph and then 361

encoding paths with an LSTM sequence model. 362

MHGRN (Feng et al., 2020): Multi-hop Graph 363

Relation Network (MHGRN) is a strong baseline. 364

MHGRN model applies LMs to the question and 365

answer context encoder, uses GNN encoder to learn 366

graph representations, and chooses the candidate 367

answer by these two encoders. 368

QA-GNN (Yasunaga et al., 2021) is the most re- 369

cent SOTA model that uses a working graph to train 370

language and KG subgraph. The model jointly rea- 371

sons over the question and KG and jointly updates 372

the representations. QA-GNN uses GAT as the 373

backbone to do message passing on the graph. To 374

learn the semantic edge information, QA-GNN di- 375

rectly adds the edge feature to the local node feature 376

and cannot learn the global structure of the edges, 377

which is inefficient. However, our model uses the 378

global multi-relational adjacency matrices to learn 379

the edge information. Our model uses the same 380

subgraphs as QA-GNN. 381

4.4 Result Comparison 382

Table 1 shows the performance of different mod- 383

els on the CommonsenseQA benchmark. KagNet 384

and MHGRN are two strong baselines. Our model 385
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Models Dev ACC% Test ACC%
RoBERTa-large 66.7% 64.8%

R-GCN 65.0% 62.4%
GconAttn 64.5% 61.9%

RN 66.8% 65.2%
MHGRN 68.1 % 66.8%
QA-GNN 68.6 % 67.8%
DRGN 69.4% 69.6%

AristoRoBERTaV7 79.2% 77.8%
UnifiedQA(T5-11B) - 87.2%

AristoRoBERTaV7+MHGRN 78.6% 80.6%
AristoRoBERTaV7+QA-GNN - 82.8%

AristoRoBERTaV7+DRGN 80.2% 84.6%

Table 2: Dev accuracy and Test accuracy of various
model performance on the OpenbookQA benchmark.

outperforms the KagNet by 6.04% and MHGRN386

by 4.15% on CommonsenseQA. Moreover, we ob-387

tain SOTA results that shows the effectiveness of388

our DRGN architecture. Table 2 shows the per-389

formance on OpenbookQA benchmark. There are390

a few recent papers that exploit larger LMs, such391

as T5 (Raffel et al., 2020) that contains 3 billion392

parameters (10x larger than our model,) and Uni-393

fiedQA (Khashabi et al., 2020) (32x larger). For394

a fair comparison, we use the same Roberta set-395

ting for the input representation when we evaluate396

OpenbookQA. Our model performance, potentially,397

will be improved after using these larger LMs. To398

demonstrate this point, we also use AristoRoBER-399

TaV7 (Clark et al., 2019) as a backbone to train our400

model. The results show that our model achieves401

the best performance when using the same larger402

LMs compared to other strong baseline models. In403

the same AristoRoBERTaV7 setting, DRGN model404

has 4% accuracy improvement compared to the405

MHGRN model and 2% improvement compared406

to QA-GNN on the OpenbookQA benchmark.407

5 Analysis408

5.1 Effects of Finding the Line of Reasoning409

In this subsection, we analyze the effectiveness of410

our DRGN that helps in recovering the missing411

links or establishing a shortcut connection based412

on the relevancy of the node representations in the413

KG. As we described in Section 3.4, to keep the414

graph size small, most of the models construct the415

KG subgraph via selecting the entities that appear416

in two-hop paths. Therefore, some intermediate417

concept nodes and links are missed in the extracted418

KG subgraph, and the complete reasoning chain419

from the question entity node to the candidate an-420

swer node can not be found.421

The black footed ferret is settling in large numbers in what 
geographic region?
A. north america B. rocky mountains C. own home D. work
E. out of doors
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Figure 3: A complete reasoning chain from the ques-
tion entity node to the candidate answer node. The blue
nodes are question entity nodes, and the red node is the
gold answer node. The darker orange edges indicate
the higher relevance score to the neighborhood node,
while the lighter orange edges indicate the lower score.
The grey edges are selected from the baseline model.

For example, as shown in Figure 3, the question 422

is “The black footed ferret is settling in large num- 423

bers in what geographic region?” and the answer 424

is “North America”. The long reasoning chain 425

includes 5 hops, that is, “black footed ferret ! 426

mammal ! animal ! region ! country ! North 427

America”. Since the constructed graph misses the 428

link between “animal” and “region”, MHGRN and 429

QA-GNN cannot obtain the complete chain and 430

predict the wrong answer “out of doors” by the 431

grey edges described in the Figure. However, the 432

DRGN model makes a correct prediction. The rea- 433

son is that we compute the similarity of the nodes 434

based on their learned representations and form 435

a relevance edge accordingly. As we describe in 436

Section 3.4, our model initializes the entity node 437

representation by RoBERTa. The implicit represen- 438

tations of LMs are learned from the huge corpora, 439

and the knowledge is implicitly learned. Therefore, 440

these two words, animal and region, start with an 441

implicit connection. By looking at the relevance 442

matrix, after several layers of graph encoding, we 443

found that the relevance score between “animal” 444

and “region” becomes stronger. This is the primary 445

reason why our DRGN model obtains the complete 446

reasoning chain. 447

Looking into another example, the question is 448

“Bob spent all of his time analyzing the works of 449

masters because he wanted to become what?” and 450

the answer is “intelligent”. The reasoning chain 451

is “analyze ! work ! master ! learn ! intelli- 452

gent”. Due to the missing link between “master ! 453

learn” in KG, the baseline model, MHGRN, can- 454
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Why do parents encourage their kids to play baseball? 
A. round B. cheap C. break window D. hard E. fun to play

Why don’t parents encourage their kids to play baseball? 
A. round B. cheap C. break window D. hard E. fun to play

MHGRN:
QA-GNN:
DRGN: play baseball baseball fun to playused for has property

MHGRN:
QA-GNN:
DRGN:

play baseball baseball fun to playused for has property

play baseball play ball break windowused for has subevent
play baseball baseball A ballused for type of used for break window

play baseball baseball fun to playused for has property
play baseball baseball fun to playused for has property

Figure 4: The case study of the negation examples.
The question in the bottom box includes the negative
words. The red color text represents the gold answer,
and the purple color represents the wrong answer. In
the blue box, each line represents a commonsense rea-
soning chain from a model.

not obtain the complete reasoning chain. However,455

our DRGN captures the strong relevance between456

“master” and “learn” and finds out the complete457

reasoning chain to predict the correct answer.458

5.2 Effects of Handling Negative Questions459

While the graph has a broad coverage of knowl-460

edge, it can not perform well on handling nega-461

tion (Yasunaga et al., 2021). Since our dynamic462

relevance matrix includes the question information,463

the relevance between the question and graph enti-464

ties is computed at every graph neural layer while465

considering the negation in the node representa-466

tions. Intuitively, this should improve handling the467

negative question in our model.468

To analyze this hypothesis for DRGN architec-469

ture, we randomly choose 50 samples from the470

CommonsenseQA development data. If the ques-471

tion is positive, we add the negation words to gener-472

ate a negative counterpart question. If the question473

includes the negation words, we remove them to474

generate a positive counterpart question. We anno-475

tate the answer to the new questions manually. This476

result is 50 positive samples and their additional477

50 negative counterparts of the exact questions (to-478

tal 100 samples). We compare the performance479

of various models on questions containing nega-480

tive words (e.g., no, not, nothing, unlikely). The481

result is shown in Table 3. We observe that base-482

line models, KagNet and MHGRN, provide limited483

improvements over RoBERTa on questions with484

negation words (+0.2%). However, our DRGN485

model exhibits a huge boost (+7.8%). Moreover,486

the DRGN model has a 3.5% accuracy improve-487

Models Dev ACC % Dev ACC%
w/o negative negative

RoBERTa-large 69.1% 52.7%
MHGRN 72.5 % 52.9%
QA-GNN 74.3 % 58.0%

DRGN 76.6% 61.5%

Table 3: Accuracy of the positive questions and nega-
tive questions on 100 samples from CommonsenseQA.

CommonsenseQA Dev Accuracy 

K Selection DRGN MHGRN QA-GNN

L=1 0.759 0.7324 0.75

L=2 0.776 0.7394 0.757

L=3 0.783 0.7465 0.762

L=4 0.779 0.7365 0.765

L=5 0.778 0.7416 0.762

 

0.7 0.72 0.74 0.76 0.78 0.8

L=1

L=2

L=3

L=4

L=5

CommonsenseQA Dev Accuracy 

QA-GNN MHGRN DRGN

Figure 5: The Effect of different number of layers in
QA-GNN, MHGRN, and DRGN models.

ment compared to the QA-GNN model, demon- 488

strating the effectiveness of handling negative ques- 489

tions that experimentally confirm our hypothesis. 490

An additional ablation study in Table 5 confirms 491

this idea further. When removing the question in- 492

formation from DRGN, we observe that the perfor- 493

mance on negation becomes close to the MHGRN. 494

Figure 4 shows case studies about the common- 495

sense question and negative question. As is shown 496

in the figure, all the models obtain the same rea- 497

soning chain “play baseball-(used for)! baseball- 498

(has property)! fun to play”, including MHGRN, 499

QAGNN, and our architecture. However, when 500

adding the negative words, MHGRN obtains the 501

same reasoning chain as the positive situation, 502

while QAGNN and our DRGN find the correct 503

reasoning chain. One interesting finding is that our 504

DRGN finds out the shortcut connection and uses 505

fewer hops to establish the reasoning chain, which 506

is shown in Figure 4. The chain of reasoning is 507

found by looking at the neighborhood matrices in 508

the model. For DRGN, this neighborhood is the 509

outcome of multiplication by relevance matrix. 510

5.3 Effects of Number of Graph Layers 511

We evaluate the effects of multiple layers l for 512

the baseline models and our DRGN by evaluating 513

its performance on the CommonsenseQA develop- 514

ment dataset. As shown in Figure 5, the increase 515
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Models Time Space
l-layer KagNet O(|R|l|V |l+1l) O(|R|l|V |l+1l)
l-layer MHGRN O(|R|2|V |2l) O(|R||V |l)
l-layer QA-GNN O(|V |2l) O(|R||V |l)
l-layer DRGN O(|R|2|V |2l) O(|R||V |2l)

Table 4: The time complexity and space complexity
comparison between DRGN and baseline models.

of l continues to bring benefits until l = 3 for516

our DRGN. However, performance begins to drop517

when l > 3. This might be because of the noise in518

the long reasoning chains in the KG. We compare519

the performance after adding each layer for MH-520

GRN, QA-GNN, and our DRGN. We observe that521

DRGN consistently achieves the best performance522

with the same number of layers as the baselines.523

Table 4 shows the time complexity and the space524

complexity comparison between our DRGN model525

and baseline model. We compare the computa-526

tional complexity based on the number of layers527

l, the number of nodes V , and the number of re-528

lations R. We report this for the baseline models529

based on their papers (Yasunaga et al., 2021). Our530

model and MHGRN have the same time complex-531

ity because both models use the R-GCN model as532

the backbone. Besides, QA-GNN utilizes graph533

attention Transformer (GAT) (Vaswani et al., 2017)534

to learn the graph node representation. QA-GNN535

directly adds the edge feature to the local node536

feature without the global semantic relational ad-537

jacency matrices. The scope of the GAT attention538

is still in the predefined neighborhood area in the539

KG subgraph. However, in our DRGN model, we540

consider all nodes in the subgraph. It is hard to eval-541

uate which of the two models, R-GCN and GAT, is542

more effective. However, after adding the dynamic543

relevance information, our R-GCN based DRGN544

model achieves better performance compared to545

GAT based QA-GNN baseline.546

For the space complexity, our model’s space547

complexity is larger than MHGRN because DRGN548

introduces the extra dynamic relevance matrix.549

However, this cost depends on the size of the sub-550

graph which is usually small and meanwhile it551

leads to 5% performance improvement.552

5.4 Ablation Study553

To evaluate the effectiveness of various compo-554

nents of our DRGN, we perform an ablation study555

on the CommonsenseQA development dataset. Ta-556

ble 5 shows the results of ablation study. First,557

Models Dev ACC
DRGN w/o KG subgraph 69.6%

w/o relational edges in graph 71.3%
w/o question node in graph 74.7%

DRGN 78.1%

Table 5: Ablation Study on CommonsenseQA dataset.

we removed the whole commonsense subgraph. 558

We observe that our model without the subgraph 559

obtains 69.6% on the CommonsenseQA dataset. 560

This shows how the language model can answer 561

the question without the external KG, which is not 562

high-performing but still impressive. Second, we 563

kept the KG subgraph but removed all the relational 564

edge information from the subgraph (described in 565

section 3.5). Without the relational edges, the accu- 566

racy is 71.3% on the CommonsenseQA benchmark 567

with a 6.8% gap compared to the DRGN model. 568

This result shows that the multiple relational edges 569

helps the DRGN learn better representations and 570

obtain higher performance. Third, we keep the 571

subgraph and remove the question node. In other 572

words, we lose an additional type of relationship 573

between the question node and the graph entities. 574

More importantly, we cannot obtain the relevance 575

between question information and entity node in 576

the dynamic relevance matrix. The accuracy of the 577

DRGN decreases from 78.1% to 74.7%. It demon- 578

strates the importance of the relevance between the 579

question information and the KG subgraph. 580

6 Conclusion 581

In this paper, we propose a novel dynamic rel- 582

evance graph neural network (DRGN) model to 583

learn commonsense question answering given an 584

external source of knowledge in the form of a KG. 585

Our model learns the graph node representation that 586

exploits the existing relations in KG and recovers 587

the missing connections or establishes the short- 588

cut connections based on measuring the relevance 589

scores of the nodes dynamically during training. 590

Our quantitative and qualitative analysis shows that 591

the proposed approach facilitates finding the chain 592

of reasoning for answering the questions that need 593

multiple hops of reasoning. Furthermore, since 594

DRGN considers the relevance between the ques- 595

tion and graph entities, our model improves the 596

performance on the negative questions. Our pro- 597

posed approach shows SOTA performance on two 598

QA benchmarks, including CommonsenseQA and 599

OpenbookQA. 600
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