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Abstract. Accurate assessment of fetal head progression during labor is
essential for guiding timely clinical interventions and improving maternal-
fetal outcomes. The World Health Organization’s Labour Care Guide
emphasizes standardized, evidence-based monitoring tools such as the
Angle of Progression (AoP), derived from intrapartum ultrasound. How-
ever, current clinical practice relies on manual landmark annotation,
which is labor-intensive and subject to variability. To address this lim-
itation, we present a fully automated pipeline for anatomical landmark
detection in intrapartum ultrasound as part of the Intrapartum Ultra-
sound Grand Challenge (IUGC) 2025. Our method combines (i) self-
supervised pretraining on unlabeled standard plane ultrasound images
to establish strong anatomical priors, (ii) an attention-enhanced de-
coder architecture for effective spatial localization, and (iii) adversarial
fine-tuning using a PatchGAN-style discriminator to ensure anatomi-
cal plausibility and spatial precision. The model detects three key land-
marks—two on the pubic symphysis and one on the fetal head—enabling
robust AoP estimation. Our approach achieves a Mean Radial Error
(MRE) of 25.66 pixels and an AoP Mean Absolute Error (MAE) of 8.54
degrees. These results highlight the potential of self-supervised learn-
ing and adversarially guided strategies to reduce observer variability,
standardize labor monitoring, and support global initiatives for safer,
more equitable intrapartum care. Source code is available at https:
//github.com/VectorPoint-Analytics/IUGC2025.
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1 Introduction

Effective intrapartum monitoring is critical for maternal and fetal outcomes. In
2018, the World Health Organization (WHO) issued 56 evidence-based recom-
mendations for labor management, emphasizing timely and respectful care [1].
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To implement these, the WHO introduced the Labour Care Guide (LCG) in 2020
to support real-time clinical decision-making [2]. A key element of the LCG is
assessing fetal head progression, which influences decisions on operative deliv-
ery. Intrapartum ultrasound (US) has emerged as a valuable tool for this task,
offering an objective and reproducible alternative to digital examinations. The
International Society of Ultrasound in Obstetrics and Gynecology (ISUOG) now
recommends ultrasound for labor monitoring [3/4]. Among quantitative ultra-
sound metrics, the Angle of Progression (AoP)—defined by three anatomical
landmarks on standard plane (SP) intrapartum US (Fig. , namely the ante-
rior endpoint of the pubic symphysis (PS1), the posterior endpoint of the pubic
symphysis (PS2), and the fetal head (FH) |5]—is a widely adopted measure for
assessing fetal descent. AoP correlates with delivery outcomes [6}/7], but manual
landmark annotation requires expert knowledge and suffers from inter-observer
variability.

Angle of progression (AoP)

Fetal head

(b) AoP definition in Intrapartum Ul-
(a) Diagram of the fetus |[§] trasound [9]

Fig. 1: Description of Angle of Progression (AoP) defined using landmarks in
transperineal intrapartum ultrasound on Pubic Symphysis (PS) and Fetal Head
(FH)

Deep learning has demonstrated substantial potential in medical image anal-
ysis, including fetal biometry, placental assessment, and multi-organ segmenta-
tion [10H17]. While numerous studies have used ultrasound for fetal evaluation
and anatomical measurements, its application to intrapartum ultrasound re-
mains relatively underexplored. Existing works on Angle of Progression (AoP) es-
timation [12H17] predominantly rely on segmentation-based pipelines, which de-
mand dense pixel-level annotations. Such annotations are costly, time-consuming,
and challenging to scale, thereby limiting their utility in real-world labor ward
settings. This gap highlights the need for scalable, label-efficient, and robust
methods for AoP measurement.
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To address the limitations of segmentation-based AoP estimation, our ap-
proach predicts anatomical landmarks directly from intrapartum ultrasound
images, eliminating the need for dense manual annotations. This shift greatly
reduces the annotation burden, enables more scalable deployment in diverse
clinical settings, and maintains the spatial precision necessary for reliable AoP
measurement. By leveraging unlabeled data and adopting adversarial learning
strategies t enhance generalization in low-data regimes, our method offers a label-
efficient and clinically aligned solution that supports standardized, evidence-
based intrapartum monitoring in line with WHQO’s vision for improving maternal
and fetal outcomes.

2 Methodology

Our proposed framework for automated landmark detection is composed of two
primary stages: (1) self-supervised contrastive pretraining of a high-resolution
encoder using the Momentum Contrast v2 (MoCoV2) framework, and (2) super-
vised fine-tuning of the encoder for heatmap-based landmark localization using
adversarial guidance. An overview of the complete methodology is illustrated in
Fig.[2| highlighting both the unsupervised representation learning phase and the
subsequent supervised adaptation for landmark detection.

Stage-1: Encoder Pretraining

Pretrained
Encoder

Unlabeled SP-US

Contrastive
Images Pretraining
Backbone Model
(HRNet-w48)
v

Stage-2: Adversarial Finetuning
Pretrained |[*77~ Predicted Predicted
Encoder Becoey Heatmaps SeliAgEs Coordinates]
PatchGAN-style
Discriminator

Multi-Objective
Loss

Labelled
SP-US Images

—_———

Transferring ___, Gradient Loss
Encoder Weights Update Calculation

— Data Flow = >

Fig.2: Overview of the proposed framework. Stage 1: contrastive pretraining
with MoCoV2 on unlabeled ultrasound images. Stage 2: supervised fine-tuning
of the pretrained encoder for heatmap-based landmark detection with adversarial
regularization.
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2.1 Contrastive Pretraining for Encoder

We employ the MoCoV2 framework [18] for self-supervised pretraining of a high-
resolution encoder on unlabeled standard plane ultrasound images. An overview
of the pretraining pipeline is shown in Fig. [3] In our setup, the backbone en-
coder is the High-Resolution Network (HRNet-W48) [19], chosen for its ability
to preserve spatial resolution throughout feature extraction. The encoder de-
scribed here is instantiated twice within MoCoV2: as a query encoder f, and as
a momentum-updated key encoder fi. Both share the same HRNet-W48 archi-
tecture and initialization, but differ in their parameter update mechanism: f,
is updated via gradient descent, whereas fj, is updated via momentum tracking
from f,.

Bx512x512
Xq €ER

Query Encoder (f ) Projection Head Zq H
R3x1024f<i16x16 RE-16:16x256 InfoNCE Loss
Unlabelled SP-US Key Encoder (f) = Projection Head Zy
Images € R1X512X512

Xy € ]RB><512><512

—————
t————

Negative Pairs
Memory Bank (Q)

—— DataFlow " Pointer --- (ﬂ'sjir;t == M‘S;j;]tt:m
Fig. 3: Overview of the contrastive pretraining stage using MoCoV2. Each un-
labeled ultrasound image is augmented into query (x,) and key (xj) views, en-
coded by f, and a momentum-updated f;, with shared backbone. Feature maps
are projected to embeddings (z,, z) via a two-layer head. A queue of negatives
with positive query—key pairs defines the InfoNCE loss E} Only f, receives gra-

dients, while fj is updated by momentum for stable training.

To generate positive pairs for contrastive learning, each grayscale ultrasound
image x € R1*?12x512 ig transformed into two distinct but semantically consis-
tent views, x, and xj, through a stochastic augmentation pipeline (Table 1)) de-
signed to emulate variations in ultrasound acquisition while preserving anatom-

ical content. The query view x, is fed into f;, and the key view x; into f.

Each grayscale ultrasound input x € R'*?12X512 ig first processed by either

fq or fi, yielding a spatial feature map f € R1024x16x16 Thjg feature map is then
passed through a projection head, denoted as ProjHead(-), which is configured
as follows:

ProjHead(-) : Conv2D(256c1wOpls) — ReLU
— Conv2D(128c1wOpls).

(1)
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The resulting output is a projected representation
z = ProjHead(f) € R'28x16x16, (2)

Here, the shorthand notation XcYwZpWs specifies convolutional layer parame-
ters: ¢ denotes the number of output channels (X), w the kernel size (Y xY'), p the
padding size (Z pixels), and s the stride length (W). For instance, 256¢c1wOp1ls
indicates a convolutional layer with 256 output channels, a 1 x 1 kernel, zero
padding, and stride equal to 1.

Applying this projection head to the query encoder features produces z,,
while applying it to the key encoder features produces z;. Each is £5-normalized
across the channel dimension, after which the spatial dimensions are flattened
to obtain:

Zaar € RV¥128 N = B.16- 16, (3)

where B is the batch size.
MoCoV2 maintains a first-in-first-out (FIFO) memory bank Q € R128xK
of size K = 8192, which stores f>-normalized key features from previous mini-

batches. This provides a large and consistent set of negative examples for the
InfoNCE loss |20] defined as:

exp (2, 21 /7)
exp (Z;Zk/T) + Zfil exp (Z;I—Z;/T) 7

(4)

‘CMOCO = - log

where 7 = 0.2 is the temperature parameter and {z; }X, are negative feature
vectors from Q.

The parameters 6, and 6, denote the weights of the query and key en-
coders, respectively. While 6, is trainable via backpropagation, ), is updated
by momentum-based weight tracking:

O — mOy + (1—m) 0, (5)

with momentum coefficient m = 0.999. This design stabilizes the contrastive
objective by preventing rapid drift between the two encoders.

This spatially dense contrastive learning approach enables the encoder to
learn rich local anatomical representations without requiring manual labels.

2.2 Heatmap Regression with Adversarial Supervision

Decoder Architecture. After pretraining, the HRNet-W48 encoder is fine-
tuned for landmark detection by attaching a decoder head that transforms com-
pact spatial features into high-resolution heatmaps. The decoder adopts a hier-
archical design, wherein the encoded representation f € R1024x16x16 j5 roores-
sively upsampled and refined through alternating convolutional and attention-
enhanced blocks.
The architecture consists of composite attention-enhanced blocks (ConvCBAM2D).

Specifically, each ConvCBAM2D unit comprises a 2D convolutional layer (Conv2D),
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batch normalization, ReLLU activation, and a Convolutional Block Attention
Module (CBAM) |21|, which jointly refines spatial and channel-wise feature rep-
resentations. Formally:

ConvCBAM2D(-) — (1: Conv2D) — (2: BatchNorm2D)
— (3: ReLU) — (4: CBAM)

(6)

. R1024><16><16 — R3><512><512

The complete decoder netgqc(-) is defined as:

netgec(:) — (1: ConvCBAM2D)512c3wipls — (2: Upsample)
— (3: ConvCBAM2D)256c3wlpls — (4: Upsample)
— (5: ConvCBAM2D)128c3wlpls — (6: Upsample)
— (7: ConvCBAM2D)64c3wlipls — (8: Upsample)
— (9: ConvCBAM2D)32c3wipls — (10: Upsample)
— (11: Conv2D)3c1wOpOs

(7)

Here, each Upsample operation performs bilinear interpolation with scale factor
2 to progressively recover spatial resolution. This attention-guided hierarchical
decoding ensures preservation of fine anatomical details, resulting in spatially
precise and anatomically consistent heatmaps essential for downstream localiza-
tion.

The final decoder output H € R3*512X512 contains a predicted heatmap for
each anatomical landmark. Here, the spatial coordinates are denoted by z €
{1,...,W} (horizontal axis) and y € {1,..., H} (vertical axis), where W and H
correspond to the heatmap width and height, respectively. Landmark coordinates
are estimated by applying the differentiable soft-argmax function |22] over each
heatmap:

W H
yz:ZZHz(xvy)[xay]’ fori=1,2,3, (8)

rz=1y=1

yielding final landmark predictions y € R3*2,

Discriminator Architecture. To enforce anatomical plausibility in predicted
landmark heatmaps, we incorporated a spectral-normalized PatchGAN discrim-
inator [23|, denoted D. It receives a predicted heatmap tensor H € R3*512x512
and outputs a patch-wise realism score map s € R1*62%62,

Each convolutional block (SpectralConv2D) comprises a spectral-normalized
4 x 4 convolution followed by a leaky ReLU activation:

SpectralConv2D(-) — (1: Conv2D) — (2: SpectralNorm)
— (3: LeakyReLU)

(9)
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The complete discriminator D(-) : R3*512x512 5 R1x62x62 g defined as:

D(-) — (1: SpectralConv2D)64cdw2pls — (2: SpectralConv2D)128c4w2pls
— (3: SpectralConv2D)256c4w2pls — (4: SpectralConv2D)512c4wlpls

— (5: Conv2D)1lc4wlpls
(10)
Spectral normalization is applied to layers (1)—(4) only, stabilizing adversarial
training as proposed by Miyato et al. [24].
The adversarial component of the training objective is based on the least
squares GAN (LSGAN) formulation [25], which stabilizes training and encour-
ages sharper outputs. The discriminator is trained to minimize:

ﬁD = 1IE‘Hreal [(D(Hreal) - 1)2] + %EHfake [(D(Hfake))2] ’ (11)

2
where H,e, and Hy,ye denote the ground truth and predicted heatmaps respec-
tively. The generator (i.e., the landmark detection network) is trained with the
adversarial loss:

Loan = %EHMO [(D(Hfake) — 1)%] - (12)

This architectural design — integrating spectral normalization, CBAM-based
attention, and a PatchGAN structure — enables the discriminator to capture
subtle anatomical inconsistencies, thereby providing fine-grained adversarial feed-
back that improves both the accuracy and realism of the predicted landmark
heatmaps.

The proposed model is trained under a multi-objective framework, where the
overall loss is a weighted sum of four complementary components: (1) a heatmap
regression 10ss Licatmap, (2) & coordinate regression loss Leoord, (3) an adversarial
loss Lgan, and (4) an entropy penalty Lentropy-

Heatmap Regression Loss. The heatmap regression term enforces spatial align-
ment between predicted heatmaps H € REXHXW and Gaussian ground-truth
heatmaps H* € REXH*W via mean squared error (MSE):

K W H

Ehcatmap = K]}IW Z Z g fE y H>‘< (x y)) . (13)

Where H; and H} are the ground truth and predicted heatmaps respectively.
This loss guides the network to learn pixel-wise probability distributions centered
on the correct landmark locations. By regressing to smooth Gaussian targets
rather than binary masks, the model benefits from stable gradients and improved
robustness to small spatial deviations.

Coordinate Regression Loss. While heatmap supervision captures spatial con-
text, it may not fully penalize small but clinically significant displacements of
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predicted peaks. Therefore, we introduce a coordinate-level MSE loss that di-
rectly measures Euclidean distance between predicted coordinates y; (obtained
as shown in Eq. [8) and their ground-truth y;:

K
1 . *
Ecoord = E Z ”)’i -y ||§ . (14)

i=1

This complementary term enforces precise localization at the point level, mit-
igating cases where heatmaps are visually plausible yet slightly shifted, which
could impact clinical measurements.

Adversarial Loss. To ensure anatomical plausibility of predicted heatmaps, we
integrate an adversarial loss based on the least-squares GAN (LSGAN) formu-
lation as mentioned in Eq. This term constrains the spatial configuration
of landmarks to resemble anatomically valid patterns observed in real data, re-
ducing the risk of unrealistic arrangements even when pixel- or coordinate-level
losses are minimized.

Entropy Penalty. Ambiguous or overly diffuse heatmaps hinder reliable land-
mark extraction. To promote confident and unimodal predictions, we compute
the Shannon entropy [26] over the spatial softmax of each heatmap:

eXp(Hi (Z‘, y))

P; = 1
i(z,y) Zm’,y’ exp(H; (2, "))’ (15)
1 K W H
Eentropy = _EZZZPZ(J:’:U) IOgPl(Z‘,y) (16)
i=1z=1y=1

Minimizing this term encourages sharp probability peaks at landmark locations
while suppressing irrelevant responses, thereby improving confidence and repro-
ducibility in landmark detection.

Each component addresses a distinct aspect of the landmark detection task,
thereby ensuring that the learned representations are spatially accurate, anatom-
ically consistent, and confidently localized. The total objective is defined as:

»Ctotal = )\h : Eheatmap + Ac : Ecoord + )\adv : EGAN + )\e . Eentropy (17)

where Ap, Ac, Aadv, and Ao are scalar hyperparameters controlling the contribu-
tion of each term.

3 Experiments

3.1 Dataset Description

We employed the official dataset from the Intrapartum Ultrasound Grand Chal-
lenge (TUGC) 2025 |27|, which is designed to support research on automated An-
gle of Progression (AoP) estimation from Transperineal Intrapartum Ultrasound
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Table 1: Data augmentation parameters and application probabilities

Augmentation Parameters / Range Probability

Elastic Transform a =25, 0 =10, aaffine = 10 0.8

Random Brightness/Contrast brightness limit: 0.2, 0.5
contrast limit: 0.2

Gaussian Blur Kernel size € [3, 5] 0.5

Speckle Noise uw=0.0,0c =0.01 0.5

Normalization pn=0.0, 0= 2550 1.0

(TUS) images. The dataset consists of 31,421 training images, 100 validation im-
ages, and 501 test images. Among the training images, 300 are fully annotated
standard-plane images containing landmark coordinates and AoP measurements,
while the remainder are unlabeled. Within the unlabeled set, 2045 images are
identified as standard-plane images. All images are stored in RGB format with
a spatial resolution of 512 x 512 pixels. The validation and test sets are withheld
from participants, with performance evaluation carried out exclusively via the
challenge server.

For the self-supervised pretraining stage, we used the 2045 unlabeled standard-
plane images to train the encoder backbone with the aim of capturing domain-
specific features of TUS, in accordance with the ISUOG guidelines [28] which
state that accurate AoP measurement requires simultaneous visualization of the
longitudinal sagittal plane of the pubic symphysis and the fetal head. To en-
hance robustness to variations in acquisition conditions and to simulate real-
istic ultrasound noise patterns, each image underwent a series of spatial and
intensity-based augmentations, carefully picked to mimic the natural variations
in ultrasound images. Spatial augmentation included elastic deformation with
parameters a = 5, ¢ = 10, and a,mne = 10. Intensity-based transformations
included random brightness/contrast adjustment, Gaussian blurring with kernel
sizes in the range [3,5], and multiplicative Gaussian speckle noise with mean
0.0 and standard deviation 0.01. Augmentations were applied with probabilities
as detailed in Table [I] Following augmentation, images were normalized to zero
mean and unit variance with respect to the original intensity range (mean = 0.0,
standard deviation = 255.0) and converted into tensors.

In the supervised fine-tuning stage, we used the 300 labeled standard-plane
images, each containing annotations for three anatomical landmarks: the distal
edge of the pubic symphysis (PS1), the proximal edge of the pubic symphysis
(PS2), and the most distal point of the fetal head (FH). Each image was also ac-
companied by a scalar AoP value. For heatmap-based regression, each landmark
coordinate (x;,y;) was converted into a Gaussian heatmap centered at its loca-
tion, with a fixed standard deviation o = 5 pixels. The ground-truth heatmap
for the i-th landmark is defined as

(x—a:)* + (y - yi)2) 7 (18)

Hi(z,y) = exp (— 572
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where (x,y) denotes a pixel coordinate in the image plane. The same augmen-
tations listed in Table [1| were applied to both the images and the corresponding
landmark coordinates to ensure spatial consistency between the inputs and the
labels. This approach promotes generalization to unseen ultrasound acquisitions
while preserving clinically relevant spatial relationships, which might be lost in
the deeper layers of the network in an end-to-end regression pipeline.

Ultrasound Image Heatmap: PS1 Heatmap: PS2 Heatmap: FH

Fig. 4: Representation of the Gaussian heatmaps generated corresponding to the
three landmarks present in standard plane intrapartum ultrasound image

3.2 Training Parameters

Self-supervised pretraining was performed for 25 epochs on unlabeled standard-
plane ultrasound images with a batch size of 4. Feature projections were 128-
dimensional, using a memory queue of 8,192, momentum coefficient 0.999, and
temperature 0.2. Adam optimization [29] applied stage-wise learning rates to
the HRNet-W48 backbone: 1 x 10~* for the deepest stage, 0.5 x 107 for the
intermediate stage, and 0.1 x 10~ for the shallowest stage, with 1 x 1073 for
the projection head. Weight decay was 1 x 107%, and cosine annealing schedul-
ing was applied over the total pretraining epochs. Mixed-precision training was
employed.

Supervised fine-tuning was conducted for 400 epochs with a batch size of 4.
AdamW optimization [30] was used for the generator (3 x 10~%) and discrimina-
tor (5x1079), each with cosine annealing and weight decay 1x10~%. The encoder
was frozen initially and unfrozen in stages at epochs 150 and 250. The multi-
objective loss (Eq. is defined with weights A\, = 1, A\, = 10, A\aqv = 0.01,
and A\, = 0.001. The choice of A, > )\, reflects the emphasis on precise land-
mark localization, while the small \.4, stabilizes adversarial training without
overpowering regression terms.

3.3 Evaluation

We systematically evaluated a range of encoder—decoder architectures, pretrain-
ing strategies, attention modules, and output representations for automated
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landmark detection and AoP estimation. Performance was assessed on the held-
out test set using Mean Radial Error (MRE, in pixels) and AoP Mean Absolute
Error (AOP MAE, in degrees) as evaluation metrics.

Mean Radial Error (MRE). The Mean Radial Error (MRE) is computed as the
average Euclidean distance between the ground truth and predicted landmark
coordinates:

3
MRE = 3l (19)

This metric directly quantifies the pixel-level localization accuracy of the pre-
dicted landmarks. Where (z;,y;) and (Z;, §;) denote the ground-truth and pre-
dicted coordinates for the ith landmark.

AoP Mean Absolute Error (AoP MAE). The Angle of Progression (AoP) is
geometrically derived from the three landmark coordinates (two endpoints of
the pubic symphysis and the fetal head point). Let 6(y),6(y) denote the AoP
values computed from the ground truth and predicted landmarks, respectively.
The AoP Mean Absolute Error is then defined as

AoP MAE = || 6(y) — 6(y) ||- (20)

This metric evaluates the clinical reliability of the method by measuring the
angular discrepancy in degrees between the ground truth and predicted AoP.

4 Results and Discussion

The quantitative results for all encoder—decoder configurations are presented in
Table [2l We systematically explored multiple combinations of (i) encoder ar-
chitectures (HRNet-w48, ResNet-50 [31], and Attention UNet [32]), (ii) fully
supervised vs self-supervised pretraining strategies (MoCoV2 and Masked Au-
toencoding), (iii) decoder designs with or without Convolutional Block Atten-
tion Module (CBAM), (iv) the use of adversarial regularization, and (v) output
formats (heatmap regression versus coordinate regression). All models were sub-
sequently fine-tuned on our dataset for landmark localization. Fig. [5] illustrates
the performance of the best model on representative training samples.

Baseline performance. A fully supervised HRNet-w48 trained directly on the
landmark detection task yielded an MRE of 43.88 px and an AoP MAE of 11.24°,
reflecting the difficulty of the problem given the limited training data and the
complex echogenic patterns in intrapartum ultrasound.

Effect of self-supervised pretraining and attention. Replacing the ran-
domly initialized encoder with a MoCoV2-pretrained HRNet-w48 and attaching
a CBAM-enhanced decoder significantly improved localization accuracy (MRE
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Predicted Landmarks for Patients

Patient 5
MRE: 4.08

Patient 1 Patient 2 Patient 3 Patient 4
MRE: 23.72 MRE: 5.62 MRE: 10.72

/

i
Patient 10
MRE: 4.78

Patient 6 i Patient 8 Patient 9
MRE: 2.97 : MRE: 4.16 .

Patient 11 Patient 12 Patient 13 Patient 14
MRE: 3.84 MRE: 6.83 MRE: 3.71 MRE: 2.87

Patient 15
MRE: 4.91

Patient 16 Patient 18 Patient 19
MRE: 2.58 MRE: 2.97 MRE: 2.94 MRE: 4.87

Patient 20
MRE: 3.49

Fig. 5: Representation of landmark detection performance on 20 US image sam-
ples from the training set. The Mean Radial Error (MRE) is indicated for each
of these images.

34.83 px), indicating that self-supervised pretraining effectively transfers domain-
relevant spatial features and that CBAM helps focus on discriminative anatom-
ical cues. Removing CBAM resulted in degraded accuracy (MRE 35.46 px),
confirming the contribution of attention mechanisms.

Role of adversarial learning. Introducing a PatchGAN discriminator into the
MoCoV2 + CBAM pipeline further reduced the error to 25.66 px (AoP MAE
8.54°%), the best performance across all settings. This suggests that adversar-
ial regularization encourages more anatomically consistent heatmaps, improving
both localization and downstream AoP estimation.

Coordinate regression vs. heatmap regression. To assess the relative mer-
its of coordinate prediction, we evaluated the same MoCoV2-pretrained HRNet-
w48 + CBAM backbone with a coordinate regression head. This achieved an
MRE of 29.64 px and AoP MAE of 10.68°, outperforming the fully supervised
baseline and the heatmap-based counterpart.
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Table 2: Performance of different encoder—-decoder configurations, pretraining,
attention, adversarial guidance, and output formats for landmark localization.
Here, Attn denotes the presence of attention in decoder block, Adv. denotes the
presence of adversarial guidance and AE stands for Autoencoder. The best scores
are in bold and the second best are underlined. Downward arrow (J) indicates
lower values are better.

Encoder Pretrain Attn Adv. Output MRE (|) AoP MAE (])
HRNet-w48 - - - Heatmaps 43.88 11.24
HRNet-w48 MoCoV2 v v Heatmaps 25.66 8.54
HRNet-w48 MoCoV2 v — Heatmaps 34.83 12.26
HRNet-w48 MoCoV2 - - Heatmaps 35.46 13.85
ResNet-50 MoCoV?2 - - Heatmaps 30.40 19.29
HRNet-w48 MoCoV2 v - Coordinates 29.64 10.68
Attention UNet Masked AE v — Coordinates 31.81 12.14

These findings justify our hybrid training objective: combining heatmap re-
gression with a differentiable coordinate extraction (soft-argmax) and an explicit
coordinate MRE term. Heatmaps provide dense spatial supervision, capture un-
certainty, and preserve contextual structure, while the coordinate term enforces
geometric precision. The synergy of both was critical to achieving the optimal
balance observed in our best-performing configuration in the adversarial setting.

Backbone variation. Substituting the HRNet-w48 encoder with a ResNet-
50 [31] (MoCoV2-pretrained) degraded AoP accuracy (MRE 30.40 px, AoP MAE
19.29°), highlighting the advantage of HRNet’s high-resolution feature represen-
tations for fine-grained anatomical localization.

Masked autoencoder pretraining. A Masked Autoencoder [33] (MAE)-
pretrained Attention U-Net [32] with a coordinate regression head achieved an
MRE of 31.81 px and AoP MAE of 12.14°, outperforming the fully supervised
baseline but not matching the MoCoV2-pretrained HRNet configurations. This
suggests that instance-discrimination-based self-supervised learning may trans-
fer more directly useful features for this task than masked image modeling in its
current form.

5 Conclusion

In this work, we introduced a robust pipeline for automated detection of key
anatomical landmarks—PS1, PS2, and FH—in intrapartum transperineal ultra-
sound images, enabling precise estimation of the Angle of Progression (AoP).
Our approach integrates carefully designed models and training strategies to
ensure strong generalization across diverse imaging conditions. By reducing re-
liance on manual measurement, the proposed method holds potential to enhance
clinical efficiency, support objective decision-making during labor, and improve
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maternal—fetal outcomes. This work lays the foundation for future advancements
in Al-driven intrapartum ultrasound analysis.
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