MULAN: MULTIMODAL-LLM AGENT FOR PROGRES-SIVE AND INTERACTIVE MULTI-OBJECT DIFFUSION

Anonymous authors

Paper under double-blind review

ABSTRACT

Existing text-to-image models still struggle to generate images of multiple objects, especially in handling their spatial positions, relative sizes, overlapping, and attribute bindings. To efficiently address these challenges, we develop a trainingfree Multimodal-LLM agent (MuLan), as a human painter, that can progressively generate multi-object with intricate planning and feedback control. MuLan harnesses a large language model (LLM) to decompose a prompt to a sequence of sub-tasks, each generating only one object by stable diffusion, conditioned on previously generated objects. Unlike existing LLM-grounded methods, MuLan only produces a high-level plan at the beginning while the exact size and location of each object are determined upon each sub-task by an LLM and attention guidance. Moreover, MuLan adopts a vision-language model (VLM) to provide feedback to the image generated in each sub-task and control the diffusion model to re-generate the image if it violates the original prompt. Hence, each model in every step of MuLan only needs to address an easy sub-task it is specialized for. The multi-step process also allows human users to monitor the generation process and make preferred changes at any intermediate step via text prompts, thereby improving the human-AI collaboration experience. We collect 200 prompts containing multi-objects with spatial relationships and attribute bindings from different benchmarks to evaluate MuLan. The results demonstrate the superiority of MuLan in generating multiple objects over baselines and its creativity when collaborating with human users.

031 032

033 034

043

004

010 011

012

013

014

015

016

017

018

019

021

024

025

026

027

028

029

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020) have shown growing potential in generative AI tasks, especially in creating diverse and high-quality images with text prompts (Saharia et al., 2022; Rombach et al., 2022). However, current state-of-the-art text-to-image (T2I) models such as Stable Diffusion (Rombach et al., 2022) and DALL-E 3 (Betker et al., 2023) still struggle to deal with complicated prompts involving multiple objects and lack precise control of their spatial relations, potential occlusions, relative sizes, etc. As shown in Figure 2, to generate a sketch of "The orange pumpkin is on the right side of the black door", even the SOTA open-source T2I model, Stable Diffusion XL (Podell et al., 2023), still generates wrong attribute-binding as well as incorrect spatial positions of several objects.

Among works that aim to improve the controllability of T2I models on complicated prompts, a 044 recent promising line of research seeks to utilize large language models (LLMs), e.g., ChatGPT, GPT-4 (Achiam et al., 2023), to guide the generation process (Lian et al., 2023; Feng et al., 2023). 046 Specifically, an LLM is prompted to generate a layout for the given prompt, i.e., a bounding box 047 for each object in the image, given detailed instructions or demonstrations if necessary. However, 048 due to the limited spatial reasoning capability of LLMs as well as their lack of alignment with the diffusion models, it is still challenging for LLMs to directly generate a complete and precise layout for multiple objects. Without a feedback loop interacting with the generative process, the layout's 051 possible mistakes cannot be effectively detected and corrected. Moreover, the layout is often applied as an extra condition in addition to the original prompt (e.g., bounding boxes combined 052 with GLIGEN (Li et al., 2023)), so the diffusion models may still generate an incorrect image due to its misunderstanding of the complicated prompt.

Figure 1: The proposed training-free Multimodal-LLM Agent (MuLan) for Progressive Multi-Object Diffusion. MuLan consists of three main components: (1) LLM planning; (2) Single-object diffusion with attention guidance; and (3) VLM-feedback control. MuLan first decomposes a complicated prompt into a sequence of sub-prompts each for one object, and then generates one object per step conditioned on a sub-prompt and previously generated objects, where LLM plans the rough layout of the object and attention guidance provides an accurate mask for it. The VLM-feedback control allows MuLan to correct mistakes in each step by adjusting hyperparameters in (2).

082 To address the limitations and challenges of previous methods, we develop a training-free and con-083 trollable T2I generation paradigm that does not require demonstrations but mainly focuses on im-084 proving the tool usage of existing models. Our paradigm is built upon a progressive multi-object 085 generation by a Multimodal-LLM agent (MuLan), which generates only one object per stage, conditioned on generated objects in the image and attention masks of the most plausible positions to 087 place the new object. Unlike previous methods that add conditions to each model and make the task even more challenging, MuLan uses an LLM as a planner decomposing the original T2I task into a sequence of easier subtasks. Each subtask generates one single object, which can be easily handled by diffusion models. To be noted, the LLM applied at the beginning of MuLan only focuses on 090 high-level planning rather than a precise layout of bounding boxes, while the exact size and position 091 of each object are determined later in each stage by LLM and attention guidance based on the gen-092 erated objects in the image. Hence, we can avoid mistakes in the planning stage and find a better placement for each object adaptive to the generated content and adhering to the original prompt. In 094 addition, MuLan builds a feedback loop monitoring the generation process, which assesses the gen-095 erated image per stage using a vision-language model (VLM). When the generated image violates 096 the prompt, the VLM will adjust the diffusion model to re-generate the image so any mistake can be corrected before moving to the next stage. Furthermore, we develop a strategy applied in each stage 098 to handle the overlapping between objects, which is commonly ignored by previous work (Lian 099 et al., 2023).

100 Therefore, MuLan obtains better controllability of the multi-object composition. An illustration 101 of the progressive generation process is shown in Figure 1. Note that there is a concurrent work 102 called RPG (Yang et al., 2024) sharing a similar high-level idea (i.e., decomposing the prompt into 103 sub-tasks) with MuLan. However, there still exist substantial differences between ours and RPG. 104 MuLan generates each object conditioned on previously generated objects while RPG generates 105 all objects independently. MuLan does not require any manually designed demonstrations for in-context learning. In addition, as shown in Section 4.1, MuLan can be directly applied to 106 human-agent interaction during generation, which greatly boosts the flexibility and effectiveness of 107 the generation. To evaluate MuLan, we curate a dataset of intricate and challenging prompts from different benchmarks. To compare MuLan with existing approaches, we prompt GPT-4V (OpenAI, 2023) several questions based on the input texts to comprehensively evaluate the alignment of the generated images with the prompts from three aspects. We further conduct human evaluations of the generated images. Extensive experimental results show that MuLan can achieve better controllability over the generation process and generate high-quality images aligning better with the prompts than the baselines. Example images generated by different methods are shown in Figure 2. Our main contributions are summarized as follows:

Figure 2: Examples of MuLan-generated images, compared to the original SD-v1.4 (Rombach et al., 2022), the original SDXL (Podell et al., 2023), Structure diffusion (Feng et al., 2022), Promptist (Hao et al., 2022), and PixArt- α (Chen et al., 2023).

- We propose a novel training-free paradigm for text-to-image generation and a Multimodal-LLM agent. It achieves better control in generating images for complicated prompts consisting of multiple objects with specified spatial relationships and attribute bindings.
- We propose an effective strategy to handle multi-object occlusion in T2I generation, which improves the image quality and makes them more realistic.
- We curate a dataset of prompts to evaluate multi-object composition with spatial relationships and attribute bindings in T2I tasks. The quantitative results and human evaluation results show that our method can achieve better results compared to different controllable generation methods and general T2I generation methods.
- We show that the proposed framework can be applied to human-agent interaction during generation. This enables users to effectively monitor and change/adjust the generation process during generation instead of waiting until all the generation is finished.
- 140 141 142

143

125

126

127 128

129

130

131

132

133

134

135

136

137

138

139

2 RELATED WORK

144 **Diffusion models** As a new family of generative models, diffusion models have attracting more 145 and more attention due to its powerful creative capability. Text-to-image generation, which aims to generate the high-quality image aligning with given text prompts, is one of the most popular appli-146 cations (Nichol et al., 2021; Saharia et al., 2022; Rombach et al., 2022; Betker et al., 2023). Among 147 different powerful diffusion models, the latent diffusion model (Rombach et al., 2022) has shown 148 amazing capability and has been widely used in practice due to the efficiency and superior perfor-149 mance, which is also the backbone of the current SOTA stable diffusion models. Different from 150 the typical diffusion models which directly perform the diffusion and denoising process in the pixel 151 space, the latent diffusion model perform the whole process in the encoded latent space (Rombach 152 et al., 2022), which can greatly reduce the training and inference time. Recently, empowered by a 153 significantly expanded model capacity, Stable Diffusion XL has demonstrated performance levels 154 approaching commercial application standards (Podell et al., 2023). Detailed background on the 155 procedure of diffusion models is provided in Appendix G.

156

157 Composed generation in diffusion models Although Stable Diffusion model has shown unprece-158 dented performance on the T2I generation task, it still struggles with text prompts with multi-object, 159 especially when there are several spatial relationships and attribute bindings in the prompts. To 160 achieve more controllable and accurate image compositions, many compositional generation meth-161 ods have been proposed. StructureDiffusion (Feng et al., 2022) proposed a training-free method to parse the input prompt and combine it with the cross-attention to achieve better control over attribute 162 bindings and compositional generation. On the other hand, Promptist (Hao et al., 2022) aimed to 163 train a language model with the objective of optimizing input prompts, rendering them more com-164 prehensible and facilitative for diffusion models. Recently, Ranni (Feng et al., 2024) finetunes an 165 LLM to generate bounding boxes and colors. Then they use these as conditions to finetune text-166 to-image models for image generation. In addition, AnyDoor (Chen et al., 2024b) also requires finetuning of diffusion models for better generation. Several works utilize the large language model 167 to directly generate the whole layout for the input prompt with in-context learning, and then generate 168 the image conditioned on the layout (Lian et al., 2023; Feng et al., 2023; Wu et al., 2024). While all the previous take the whole input prompt, we propose to turn the original complicated task into 170 several easier sub-tasks. A training-free multimodal-LLM agent is utilized to progressively generate 171 objects with feedback control so that the whole generation process would be better controlled. Very 172 recently, a concurrent work RPG (Yang et al., 2024) also proposed to utilize LLM agent to de-173 compose the prompt into different subtasks. However, MuLan generates each object step by 174 step and correct mistakes after each step rather than treating all subtasks independently and 175 does not need a well-designed in-context learning demonstrations. We defer a more thorough 176 discussion with RPG (Yang et al., 2024) in Appendix B.

177 178

179

187

188

196

197

199

200

201

3 MULTIMODAL-LLM AGENT (MULAN)

Existing diffusion models often struggle with complicated prompts but can handle simpler ones.
Recent approaches train a model or apply in-context learning given similar examples to produce a
detailed layout for the prompt in advance and the diffusion model can generate each part of the layout
with a simpler prompt separately. Rather than generating all objects at once or in parallel, MuLan
is inspired by many human painters, who start by making a high-level plan, painting objects one
after another as planned, and correcting mistakes after each step if needed. Thereby, the constraints
between objects can be naturally taken into account.

3.1 OVERVIEW

MuLan begins by strategically planning and decomposing an intricate input prompt into a manageable sequence of sub-prompts, each focusing on an easier sub-task generating one single object. MuLan then adopts a progressive strategy that generates one object in each stage conditioned on previously generated objects using a diffusion model. Simultaneously, a VLM offers insightful feedback and adaptively adjusts the generation process to guarantee precision in accomplishing each subtask. Compared to previous methods, MuLan is entirely training-free and does not require any in-context examples. As illustrated in Fig. 1, MuLan is composed of three components:

- **Prompt decomposition by LLM planning**, which produces a sequence of sub-prompts, each focusing on generating one object in the prompt.
- Conditional single-object diffusion with LLM planning and attention guidance, which generates a new object conditioned on the previous step's image using a stable diffusion model. While a sub-prompt from LLM planning provides text guidance, the object's size and position are controlled by an attention mask, which guides the object to be correctly positioned and generated.
- Feedback control by interacting with VLM, which inspects the image generated per stage and adjusts hyperparameters and attention guidance to re-generate the image if it violates the original prompt.
- 206 207 3.2 PROMPT DECOMPOSITION BY LLM PLANNING

208 Given a complex prompt p, MuLan first uses an LLM to automatically decompose p into N object-209 wise sub-prompts $p_{1:N}$. During decomposition, MuLan specifically asks the LLM to produce a 210 sequence of objects that will be created in the default order from left to right and bottom to top in 211 the image. The LLM can easily finish this task by leveraging its prior knowledge to fill all objects 212 of p to an empty list of the pre-defined order without in-context learning which requires manually 213 designed examples. Let $objs = \{obj_1, \dots, obj_N, \dots, obj_N\}$ be the LLM-planned N objects extracted from p. For the first object, the sub-prompt is simply $p_1 = (obj_1)^n$. For object-n with 214 n > 1, the subtask is to generate object-n conditioned on previous objects and the textual sub-215 prompt is defined as $p_n = \{obj_n\}$ and $\{obj_{n-1}\}$ ". MuLan conducts the above global planning

by an LLM at the very beginning before generating any image. The detailed prompts and template for LLM planning can be found in Appendix I.

When generating each object in Section 3.3, we will use the LLM again as a local planner of the object's position and size, i.e., by generating a mask in the image and coordinating its overlap with previous objects. Then a diffusion model is used to generate the object under the attention guidance of the mask. These will be further elaborated in Section 3.3.

3.3 CONDITIONAL SINGLE-OBJECT DIFFUSION WITH LLM PLANNING AND ATTENTION GUIDANCE

At stage-*n*, the diffusion model only focuses on generating obj_n according to the sub-prompt p_n , ensuring that obj_n can be correctly positioned and generated. To this end, MuLan utilizes the LLM to plan the relative position and size of obj_n , allocating a rough mask (i.e., a bounding box) M_n for obj_n . Then, cross-attention guidance is applied during the generation of obj_n to ensure obj_n is appropriately positioned within M_n . The pipeline is given in Figure 3 with the complete procedure listed in Algorithm 1 in Appendix H. We will introduce it step by step in the following.

232

255

267

268 269

223

224

225

LLM Planning of a Rough Mask for obj_n .

234 At stage-n, MuLan first allocates a rough mask 235 as a bounding box $M_n \triangleq (x_n, y_n, w_n, h_n)$ (x/y coordinates of the top-left corner, width, 236 and height) to guide the generation of obj_n in 237 the image. As shown in Figure 3, M_n can be 238 derived from obj_n 's relative position $opt_n \in$ 239 Opts={left, right, top, bottom}, the 240 total number of objects Num_n in the same 241 position/region as obj_n , and current available 242 space in the image. Num_n and current available 243 space, combined together, determines the size 244 of obj_n . MuLan utilizes the LLM planner to 245 reason opt_n and Num_n given the sub-prompt 246 p_n^{-1} , while the current available space can be 247 determined by the precise mask M_{n-1} which 248 describes the exact position of previously generated obj_{n-1} and can be easily extracted 249 from the cross-attention maps. It is worth 250

Figure 3: Single object diffusion with LLM planning and attention guidance for obj_n (detailed procedure in Algorithm 1 in Appendix H).

noting that since there is no previously generated objects for the first object, the available space for bj_1 is the whole image. For detailed computation of M_n , please refer to Appendix K.

Once M_n is determined, the cross-attention guidance is utilized during generation of obj_n to ensure obj_n is correctly generated within M_n , as elaborated in the following.

256 Single-Object Generation with Attention Guidance. Given the rough mask M_n of obj_n , the 257 next is to ensure the generated obj_n will be correctly located within M_n . A natural and intuitive 258 way to achieve this in diffusion models is to guide the generation of the cross-attention map of obj_n , 259 which builds the relevance between the text prompt and the location of generated object.

To this end, MuLan manipulates the cross-attention map of obj_n under the guidance of M_n , using the backward guidance method (Chen et al., 2024a), to maximize the relevance inside M_n . Specifically, let A be the cross-attention map, $A_{m,k}$ represents the relevance between the spatial location m and token-k that describes obj_n in the prompt. Larger value in $A_{m,k}$ indicates that obj_n is more likely located at the spatial location of m. The goal is to maximize the relevance $A_{m,k}$ inside the mask M_n while minimizing the relevance outside the mask M_n . Hence the following energy function is utilized:

$$E(\mathbf{A}, \mathbf{M}_n, k) = \left(1 - \frac{\sum_{m \in \mathbf{M}_n} \mathbf{A}_{m,k}}{\sum_{m} \mathbf{A}_{m,k}}\right)^2,$$
(1)

¹The detailed prompt template can be found in Appendix J.

where $\sum_{m \in M_n}$ denotes the summation over the spatial locations included in M_n , and \sum_m denotes the summation over all the spatial locations in the attention map. In every step-t of the earlier generation process, MuLan applies gradient descent to minimize the energy by updating the input latent $z_{n,t}$ for object obj_n . In this way, the cross-attention map corresponding to obj_n will achieve the largest relevance inside M_n , meaning obj_n can be correctly positioned inside the rough mask.

On the other hand, to take the previous objects and their constraints into account when generating obj_n, we further combine the latent of obj_n and obj_{n-1}. Specifically, after step-t of reverse process (t varies from T to 0), we update the latent $z_{n,(t-1)}$ by

278 279

299

300

$$\boldsymbol{z}_{n,(t-1)} = \boldsymbol{M}'_n \odot \boldsymbol{z}_{n,(t-1)} + (1 - \boldsymbol{M}'_n) \odot \boldsymbol{z}_{(n-1),(t-1)},$$
(2)

where \odot computes element-wise product and $[M'_n]_{uv} = \mathbb{1}_{u \in [x_n, x_n + w_n], v \in [y_n, y_n + h_n]}$ is the 0-1 indicator of whether coordinates (u, v) is included in the bounding box of M_n .

MuLan applies the above single-object diffusion to each object one after another from obj_1 to obj_N, as planned by the LLM at the very beginning. The procedure of generating obj_n is detailed in Algorithm 1.

Objects Overlapping. Overlapping between objects is a key challenge in text-to-image diffusion models. However, it lacks attention in previous methods (Lian et al., 2023; Feng et al., 2023). Instead, we propose an effective strategy that can be merged into the procedure above. Specifically, at the generation of object obj_n , we prompt the LLM to judge if there is overlapping between obj_n and obj_{n-1} . If there is overlapping, we first compute three candidates for the rough mask $\{M_{n,i}\}_{i=1}^{3}$, associated with three overlapping ratios $\{r_i\}_{i=1}^{3} = \{10\%, 30\%, 50\%\}$ between obj_{n-1} and obj_n .

Given the three masks $M_{n,i}$, MuLan generates three candidate images using Algorithm 1. Then the CLIP scores (Hessel et al., 2021) between the generated images and the input prompt p_n are computed and the image with the maximal CLIP score is selected as the generated image for obj_n . An illustration is given in Figure 11 with more details of candidate masks in Appendix L.

3.4 INTERACTION WITH VLM AND HUMAN USERS DURING GENERATION

301 To correct the possible mistakes made in the sequential generation process, MuLan builds an adap-302 tive feedback-loop control by interacting with a vision-language model (VLM). After each gener-303 ation stage, MuLan queries the VLM to inspect the generated object(s) and its consistency with 304 the input prompt. If they do not align well, MuLan will adjust the backward guidance of the current stage to re-generate the object. More specifically, MuLan will modify the hyperparameters of 305 backward guidance to control the strength of the guidance. We empirically found that the errors 306 are typically the size or the position of the generated object. For example, the object may be too 307 large and outside the rough mask. Hence the guidance strength needs to be larger to make the ob-308 ject smaller. In the whole generation process, if MuLan needs to regenerate an object, it will try 309 different guidance strength, i.e., the weight of the gradient of the energy function (Eq. 1), and the 310 loss threshold that is used for stopping criteria of guidance. In cases with incorrect positions, it 311 will also re-plan the spatial location and regenerate the object. Such a close-loop control involves 312 LLM, diffusion, and VLM and significantly automates the T2I generation for complicated prompts, 313 leading to a more accurate generation in practice.

314 In addition, the multi-step process naturally allows human-agent interaction/collaboration during 315 generation in practice. Users can timely monitor the generation process. In this way, the interaction 316 enables users to make preferred changes and adjustments to the generated images easily and effec-317 tively by providing adjusting prompts to MuLan at any intermediate step, such as attribute adjust-318 ment, object adjustment, and spatial relationship adjustment. With the adjusting prompts, MuLan 319 will utilize the LLM to modify the original prompt accordingly and change the generation process to 320 the preferred one. An illustration for different changes or adjustments during generation is shown in 321 Figure 4, which indicates MuLan can achieve both simple and composed complex adjustments with interaction. In contrast, for other existing generation and editing methods, users have to wait until 322 the whole generation process is finished. Therefore, the proposed framework is more user-friendly 323 and flexible in terms of human-agent interaction and collaboration.

Figure 4: An illustration tree for difference cases of **human-agent interaction during generation**. The middle branch (connected by blue arrows) shows the original generation process without human-agent interaction. The top and bottom branches show different complex composed humanagent interaction during generation for various adjustments, involving object adjustments, attribute adjustments, and spatial relationship adjustments, which demonstrate the flexibility and effectiveness of MuLan for human-agent interaction during generation.

4 EXPERIMENTS

347 **Dataset** To evaluate our framework, we construct a prompt dataset from different benchmarks. 348 Specifically, since our focus is to achieve better generation for complex prompts containing multi-349 objects with both spatial relationships and attribute bindings, we first collect all complex spatial 350 prompts from T2I-CompBench (Huang et al., 2023). To make the experiments more comprehen-351 sive, we let ChatGPT generate about 400 prompts with different objects, spatial relationships, and 352 attribute bindings so that the prompt sets consists of about 600 prompts. To further evaluate the 353 capability of our framework on extremely complex and hard prompts, we manually add prompts 354 that SDXL fails to generate, leading to a hard prompt dataset containing 200 prompts. Similar to 355 the complex spatial prompts in T2I-CompBench (Huang et al., 2023), each prompt in our curated dataset typically contains two objects with various spatial relationships, with each object containing 356 attribute bindings randomly selected from {color, shape, texture}. 357

Models & Baseline As a training-free framework, MuLan can be incorporated into any existing diffusion models. We evaluate two stable diffusion models with our framework, Stable Diffusion v1.4 (Rombach et al., 2022) and the SOTA Stable Diffusion XL (Podell et al., 2023). To verify the superiority of MuLan, we compare it with previous controllable generation methods and general T2I generation methods. Specifically, we evaluate Structure Diffusion (Feng et al., 2022), Promptist (Hao et al., 2022), the original Stable Diffusion v1.4, the original SDXL, and the recent SOTA diffusion model PixArt- α (Chen et al., 2023).

365 366

358

339

340

341

342

343

344 345

346

Implementation Details MuLan use GPT-4 (Achiam et al., 2023) as the LLM planner, and LLaVA-1.5 (Liu et al., 2023) as the VLM checker to provide the feedback. We also conducted an ablation study to show the importance of the feedback control provided by the VLM and the effect of different VLMs. Moreover, we found the attention blocks utilized during the attention guidance are vital, which can be classified as near-input blocks, near-middle blocks, and near-output blocks. We utilize the near-middle blocks in our main experiments and also show the ablation results of different block. Our codes (including the prompt dataset) are available in the supplementary material. All the experiments are conducted on a single NVIDIA RTX A6000 GPU.

374

Evaluation Since the prompt dataset contains texts with complex compositions, we design a questionnaire to comprehensively investigate the alignment between the generated image and the corresponding input text. The questionnaire is composed of three aspects - object completeness, correctness of attribute bindings, and correctness of spatial relationships. We only set two options for each

question (Yes or No), without any ambiguity. For detailed questions and examples of the evaluation,
please refer to Appendix M. For each aspect of the evaluation, we compute the percentage of answers with "Yes". Given the generated image, we assess the image's quality using a questionnaire
asking both the state-of-the-art multi-modal large language model (GPT-4V (OpenAI, 2023)) and
the human evaluator.

4.1 MAIN RESULTS AND ANALYSIS

Results on GPT Evaluation Given the generated image, we prompt GPT-4V to answer the questions about the image in the questionnaire, where each only focuses on one of the three aspects.
 The results for different methods and different base models are shown in Table 1. The results show that our framework can achieve the best performance compared to different controllable generation methods and T2I generation methods. In particular, in the two 'harder' aspects - attribute bindings and spatial relationships, MuLan can surpass other methods by a large margin. More results can be found in Figure 5 and Appendix O.

Table 1: **GPT-4V evaluation/human evaluation** of images generated by different methods for complicated prompts.

395	Method		Object completenes	s Attribute bindings	Spatial relationships	Overall
396	Structure Diffusion	(Feng et al., 2022)	88.97%/87.37%	54.62%/62.63%	34.36%/24.24%	64.31%/64.85%
397	Promptist-SD v1.4	(Hao et al., 2022)	80.36%/70.71%	49.23%/52.02%	24.49%/13.13%	56.73%/51.72%
398	Promptist-SDXL (H	Hao et al., 2022)	94.36%/ 93.94%	70.00%/78.28%	35.89%/33.33%	72.92%/75.56%
399	SD v1.4 (Rombach	et al., 2022)	90.31%/74.49%	57.14%/51.02%	37.24%/32.65%	66.43%/56.73%
400	SDXL (Podell et al	., 2023)	94.64%/78.57%	66.07%/53.06%	41.14%/24.49%	72.34%/57.55%
400	PixArt- α (Chen et a	al., 2023)	92.09%/76.53%	66.58%/61.22%	34.69%/32.65%	70.41%/61.63%
401	MuLan-SD v1.4 (0	Durs)	93.11%/86.36%	74.23%/74.24%	51.53%/54.54%	77.24% /75.15%
402	MuLan-SDXL (Ou	urs)	96.17% /90.40%	75.00%/79.29%	39.29%/49.49%	76.33% / 77.78%
403						
404		SD-v1.4	SDXL	Structure Pro	mptist PixArt-a	MuLan (Ours)
405						
406	"The white book is on					
407	top of the blue shelf"					
408						
409						
410	"The vellow pencil is next					
411	to the blue pen"					
412			11111			
413						
414						
415	"The black headphone is next to the green phone"					
416						

Figure 5: More qualitative examples of images generated by different methods on intricate prompts.

Results on Human Evaluation To further accurately evaluate the generated images about the alignments with human preferences, we further conduct a human evaluation by randomly sampling 100 prompts from the prompt dataset. Similarly, we ask human evaluators to finish the questionnaire used in GPT evaluation. The results are shown in Table 1, which indicates that our method can still achieve the best performance and is consistent with the GPT-4V evaluation results.

Results on Human-Agent Interaction To show MuLan is still very effective if users want to modify the input prompt or edit the generated images during the generation, i.e., the human-agent

interaction, we use ChatGPT to mimic the user to generate various adjusting prompts for the interinteraction with MuLan on randomly sampled 50 prompts. SD v1.4 (Rombach et al., 2022) is utilized as
the base model. The generated adjusting prompts focus on several aspect, i.e., attribute adjustment,
object adjustment, and spatial relationship adjustment. We use GPT-4V (OpenAI, 2023) to quantitatively evaluate the performance of MuLan given the final generated images and final text prompts, as
shown in Table 2. The results indicate that MuLan can still achieve high accuracy even with various
adjustments/changes during generation.

Table 2: GPT-4V evaluation of final generated images and final prompts after adjustments/changes.
 The results show that MuLan is still very effective with various adjustment of prompts during generation.

	Objects	Attributes	Spatial	Overall
MuLan-SD v1.4	95.92%	72.45%	28.57%	73.06%

444 445 446

447

448

449

442 443

4.2 ABLATION STUDY

In this section, we show ablation results on the effect of the attention blocks during diffusion generation and the importance of the VLM feedback control in the proposed framework. 50 prompts are randomly sampled from the prompt dataset for all experiments in the ablation study.

450 451

452 Ablation on the attention blocks As we mentioned at the beginning of Section 4, there are three options for the attention blocks used for backward guidance, i.e., near-input blocks, near-middle 453 blocks, and near-output blocks. We empirically found the near-middle blocks can achieve the 454 best control and performance for the generation, which generally contains the richest semantics. 455 Hence here we show the ablation results on different choices of the attention blocks. We utilize 456 SD-v1.4 as the base model, and evaluate the performance of different attention blocks under our 457 framework by GPT-4V. The results are shown in Table 3, which indicates the diffusion generation 458 with near-middle blocks can achieve much better results compared to the other two options. 459

Table 3: Ablation study on attention blocks with SD-v1.4 as the base model. "Objects", "Attributes", and "Spatial" denote Object completeness, Attribute bindings, and Spatial relationships. The results (evaluated by GPT-4V (OpenAI, 2023)) show that near-middle attention blocks perform the best for attention guidance.

Guidance	Objects	Attributes	Spatial	Overall
near-input	83.67%	55.10%	14.29%	58.37%
near-middle	97.96%	80.61%	30.61%	77.55%
near-output	72.45%	45.92%	22.45%	51.84%

Ablation on the VLM feedback control The VLM feedback control is a key component in 470 MuLan to provide feedback and adjust the generation process to ensure the every stage's correct 471 generation. Here, we show the importance of the feedback by removing feedback control from 472 the whole framework. As shown in Table 4, after removing the VLM, the results would be much 473 worse. It is because there is no guarantee or adaptive adjustment for each generation stage, which 474 verifies that the feedback control provided by the VLM is essential to handle complex prompts. 475 Moreover, we also test MuLan's compatibility with different VLMs. As shown in Table 5, we 476 compare the Mulan's performance using different VLMs including LLaVA-1.5 (Liu et al., 2023), 477 GPT-4V (OpenAI, 2023), and Gemini-Pro (Team et al., 2023). The results show that MuLan could 478 still maintain a good performance with different choices of the VLM and achieve good compatibility.

479

483

484

485

Table 4: Ablation study comparing MuLan with vs. without VLM feedback control, using SDv1.4 as the diffusion model and GPT-4 as the judge in evaluations. It indicates that feedback control can significantly improve the performance.

MuLanObjectsAttributesSpatialOverallw/ Feedback97.96%80.61%30.61%77.55%w/o Feedback81.63%59.18%18.37%60.00%

Table 5: Ablation study of the VLM used in MuLan, using SD-v1.4 as the diffusion model and
GPT-4 as the judge in evaluations. The results show that the choice of the VLM would not affect the
overall performance too much.

489 490

491

VLM in MuLan Objects Attributes Spatial Overall LLaVA-1.5 (Liu et al., 2023) 97.96% 80.61% 30.61% 77.55% GPT-4V (OpenAI, 2023) 95.92% 80.61% 28.57% 76.33% Gemini-Pro (Team et al., 2023) 95.92% 83.67% 38.78% 79.59%

492 493 494

495

5 CONCLUSIONS AND LIMITATIONS

In this paper, we propose a training-free multimodal-LLM agent (MuLan) to progressively gener-496 ate objects contained in the complicated input prompt with closed-loop feedback control, achieving 497 better and more precise control on the whole generation process. By first decomposing the compli-498 cated prompt into easier sub-tasks, our method takes turns to deal with each object, conditioned on 499 the previous one. The VLM checker further provides a guarantee with feedback control and adap-500 tive adjustment for correct generation at each stage. Moreover, the application to the human-agent interaction further enhances the significance of MuLan, making the generation more flexible and ef-502 fective to align with the preferences of users. Extensive experiments demonstrate the superiority of 503 MuLan over previous methods, showing the potential of MuLan as a new paradigm of controllable 504 diffusion generation. However, there are still limitations to be further addressed in the future work. Since the whole generation contains multiple stages, depending on the number of objects, it will 505 take a longer time than a one-stage generation approach. On the other hand, MuLan may also fail to 506 generate correct objects in some non-common corner cases of image composition. We defer more 507 detailed discussion and illustrations of the limitations to Appendix N. 508

509 510

511

518

522

523

524

525 526

527

528

529

537

References

- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023.
- James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. *Computer Science. https://cdn. openai. com/papers/dall-e-3. pdf*, 2(3), 2023.
- Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
 Kwok, Ping Luo, Huchuan Lu, et al. Pixart-α: Fast training of diffusion transformer for photorealistic text-to-image synthesis. *arXiv preprint arXiv:2310.00426*, 2023.
 - Minghao Chen, Iro Laina, and Andrea Vedaldi. Training-free layout control with cross-attention guidance. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 5343–5353, 2024a.
 - Xi Chen, Lianghua Huang, Yu Liu, Yujun Shen, Deli Zhao, and Hengshuang Zhao. Anydoor: Zeroshot object-level image customization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 6593–6602, 2024b.
- Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution image synthesis. In *Forty-first International Conference on Machine Learning*, 2024.
- Weixi Feng, Xuehai He, Tsu-Jui Fu, Varun Jampani, Arjun Akula, Pradyumna Narayana, Sugato Basu, Xin Eric Wang, and William Yang Wang. Training-free structured diffusion guidance for compositional text-to-image synthesis. *arXiv preprint arXiv:2212.05032*, 2022.
- Weixi Feng, Wanrong Zhu, Tsu-jui Fu, Varun Jampani, Arjun Akula, Xuehai He, Sugato Basu,
 Xin Eric Wang, and William Yang Wang. Layoutgpt: Compositional visual planning and generation with large language models. *arXiv preprint arXiv:2305.15393*, 2023.

540 Yutong Feng, Biao Gong, Di Chen, Yujun Shen, Yu Liu, and Jingren Zhou. Ranni: Taming text-to-541 image diffusion for accurate instruction following. In Proceedings of the IEEE/CVF Conference 542 on Computer Vision and Pattern Recognition, pp. 4744–4753, 2024. 543 Yaru Hao, Zewen Chi, Li Dong, and Furu Wei. Optimizing prompts for text-to-image generation. 544 arXiv preprint arXiv:2212.09611, 2022. 546 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A 547 reference-free evaluation metric for image captioning. arXiv preprint arXiv:2104.08718, 2021. 548 549 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural information processing systems, 33:6840–6851, 2020. 550 551 Kaiyi Huang, Kaiyue Sun, Enze Xie, Zhenguo Li, and Xihui Liu. T2i-compbench: A com-552 prehensive benchmark for open-world compositional text-to-image generation. arXiv preprint 553 arXiv:2307.06350, 2023. 554 555 Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei Yang, Jianfeng Gao, Chunyuan Li, 556 and Yong Jae Lee. Gligen: Open-set grounded text-to-image generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22511–22521, 2023. 558 Long Lian, Boyi Li, Adam Yala, and Trevor Darrell. Llm-grounded diffusion: Enhancing prompt 559 understanding of text-to-image diffusion models with large language models. arXiv preprint 560 arXiv:2305.13655, 2023. 561 562 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction 563 tuning. arXiv preprint arXiv:2310.03744, 2023. Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and Joshua B Tenenbaum. Compositional visual 565 generation with composable diffusion models. In European Conference on Computer Vision, pp. 566 423-439. Springer, 2022. 567 568 Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew, 569 Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with 570 text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021. 571 OpenAI. Gpt-4v(ision) system card. 2023. 572 573 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe 574 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image 575 synthesis. arXiv preprint arXiv:2307.01952, 2023. 576 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-577 resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-578 ence on computer vision and pattern recognition, pp. 10684–10695, 2022. 579 580 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar 581 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic 582 text-to-image diffusion models with deep language understanding. Advances in Neural Informa-583 tion Processing Systems, 35:36479–36494, 2022. 584 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised 585 learning using nonequilibrium thermodynamics. In International conference on machine learn-586 ing, pp. 2256–2265. PMLR, 2015. 588 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben 589 Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint 590 arXiv:2011.13456, 2020. Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, 592 Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

594 595 596	Tsung-Han Wu, Long Lian, Joseph E Gonzalez, Boyi Li, and Trevor Darrell. Self-correcting llm- controlled diffusion models. In <i>Proceedings of the IEEE/CVF Conference on Computer Vision</i> <i>and Pattern Recognition</i> , pp. 6327–6336, 2024.
597 598	Ling Yang, Zhaochen Yu, Chenlin Meng, Minkai Xu, Stefano Ermon, and Bin Cui. Mastering text-
599	to-image diffusion: Recaptioning, planning, and generating with multimodal llms. arXiv preprint
600	arXiv:2401.11708, 2024.
601	
602	
603	
604	
605	
606	
607	
608	
609	
610	
611	
612	
613	
614	
615	
616	
617	
618	
619	
620	
621	
622	
623	
624	
625	
626	
627	
628	
629	
630	
630	
622	
634	
635	
636	
637	
638	
639	
640	
641	
642	
643	
644	
645	
646	
647	

648 A BROADER IMPACT 649

Our work will bring significant advantages to both the research community focused on diffusion
 models and the practical application of T2I generation.

In terms of the research community, we present a new and novel controllable image generation
paradigm that demonstrates exceptional controllability and produces remarkable results even when
tackling challenging tasks. This pioneering approach can offer valuable insights for future investigations into diffusion models.

Regarding industrial applications, our method can be readily employed by T2I generation service
providers to enhance the performance of their models. Moreover, the diffusion models operating
within our framework are less likely to generate harmful content due to the meticulous control
exerted at each generation stage.

- 661
- 662

B DIFFERENCES BETWEEN MULAN AND THE CONCURRENT WORK RPG

663

As stated in Introduction and Related work, although we acknowledge that our proposed framework shares a similar high-level idea with RPG, we would like to emphasize that there are still substantial differences between ours and RPG.

667 Firstly, our proposed MuLan aims to progressively generate each object given each subprompt. At 668 the same time, the objects are generated conditioned on previously generated objects. In RPG, on the 669 other hand, all objects are generated independently. In addition, different from RPG which requires 670 manually designed in-context examples for the CoT reasoning, ours does not have such requirement. 671 We directly utilize LLMs for the planning during generation, which is an easier task and can be done by LLMs without in-context learning. What's more, MuLan can adaptively control and correct the 672 generation results using feedback by the VLMs while RPG does not have the feedback for the 673 generation. Also, for the common overlapping problem between objects, we propose a strategy to 674 generate several candidates to deal with it. In contrast, in RPG, the overlapping parts are treated as 675 a whole for generation. 676

More importantly, as we show in Section 4.1, our proposed framework can be directly applied to
human-agent interaction during generation to facilitate flexible and effective changes/adjustments of
the process while RPG cannot achieve the interaction. To summarize, the main differences between
MuLan and RPG are as follows:

- Our proposed MuLan generates each object conditioned on previously generated objects while RPG generates all objects in parallel independently.
- MuLan does not require any in-context learning during the whole generation; in RPG, specifically designed in-context examples are needed for Chain-of-Thought reasoning.
- MuLan utilizes the VLM-based feedback control to ensure each object can be generated correctly while RPG does NOT have such a feedback mechanism.
- We propose a strategy to deal with overlapping/interaction between objects whereas RPG directly treats overlapping objects as a whole part to generate.
- MuLan can be directly applied to human-agent interaction during generation for flexible and various adjustments of the generation process while RPG cannot achieve it.
- 691 692

681

682

683

684

685

686

687

688

689 690

693 694

695

C MORE COMPARISON RESULTS WITH CONTROLLABLE IMAGE GENERATION METHODS

Here we present more quantitative results between MuLan and other state-of-the-art controllable
image generation methods, Ranni (Feng et al., 2024) and Composable Diffusion (Liu et al., 2022).
We randomly sample 50 prompts from the prompt dataset and use GPT-4V to evaluate the alignment
between generated images and prompts.

701 The results are shown in Table 6, indicating that MuLan is much better and even outperforms training-based controllable generation mthods.

Table 6: GPT-4V evaluation of MuLan and more controllable generation methods. The results show that MuLan with SD-v1.4 performs better, even surpassing training-based methods.

	Objects	Attributes	Spatial	Overall
MuLan-SD v1.4	97.96%	80.61%	30.61%	77.55%
Ranni (Feng et al., 2024)	70.41%	38.78%	20.41%	47.76%
Composable Diffusion (Liu et al., 2022)	90.82%	63.27%	22.45%	66.12%

D COMPARISON WITH STABLE DIFFUSION 3

To further evaluate the effectiveness of the proposed training-free framework MuLan, we also qualitatively compare MuLan with the latest state-of-the-art text-to-image generation model, Stable Diffusion 3 (Esser et al., 2024). As shown in Figure 6, even Stable Diffusion 3 cannot deal with prompts with simple spatial relationships steadily, while MuLan with SD-v1.4 can achieve controllable generation and generate correct images that align with prompts, indicating the effectiveness of the proposed framework.

719		Mul an (SD-v1 4)	Stable Diffusion 3
720			
721			
722			
723	"The orange pumpkin is		
724	on the right side of the		
725	black door"	ALCEN STOLL	
726			
727			
728		and the second	
729			
730			
731	" - "		
732	"The black chair is on		
733	the right of the blue table"		
734			
735			
736			A A A A A A A A A A A A A A A A A A A
737			
738		N.S.	
739			
740	"The blue car is on the		
741	left of the green house"		
742	ient of the green house		
743			and the second
744			a second s
745			The second s
746	Figure 6: Qualitative of	omparison between MuLa	n and Stable Diffusion 3
747	i igure o. Quantative e		in and Suble Diffusion 5.
748			

E VISUAL QUALITY AND REALISM OF MULAN-GENERATED IMAGES

Please note that since MuLan is training-free, the visual quality and realism of generated images

highly depend on the utilized base models, e.g., SD v-1.4, SDXL, etc. MuLan does not degrade the visual quality of generated images. To further show this, we present more visualization results of MuLan and the base models. As shown in Figure 7, MuLan with SDXL and the original SDXL have very similar performance in terms of visual quality and realism.

756			
757			
758			
759			
760			
761			
762			
763			
764			
765			
766			
767			
768		MuLan with SDXL	Original SDXL
769			A
770			
771			
772	"The red umbrella is on		
773	top of the white coat		
774	rack"		
775			
776			
777		and the second	
778			
779			×
780			A CONTRACTOR OF THE OFFICE
781			
782	1		N. C. S.
783	"The green plant is next		
784	to the blue vase		
785			
786			
787			
788			
789			
790			
791			
792			
793	"The orange balloon is	Sec	des entre
794	on top of the yellow box"		
795			
790			
709			
790			
1 33	Eigung 7. Viewal quality	and realism commonicon hatrus	Mul on and the aniginal base model

Figure 7: Visual quality and realism comparison between MuLan and the original base model.

F MORE RESULTS ON COMPLEX OVERLAPPING PROMPTS

To further verify the effectiveness of the proposed overlapping processing module, we show more visualization results on complex overlapping prompts, including interaction between animals and humans. As shown in Figure 11, MuLan can deal with complex overlapping prompts better and show effectiveness for different overlapping cases.

Figure 8: Visualization results on complex overlapping prompts.

G BACKGROUND ON (LATENT) DIFFUSION MODELS

Consisting of the diffusion process and the reverse process, diffusion models have shown impressive capability for high-quality image generation by iteratively adding noise and denoising (Ho et al., 2020). Let $\boldsymbol{x}_0 \sim q(\boldsymbol{x}_0)$ be the true data distribution. Starting from \boldsymbol{x}_0 , the diffusion process adds different levels of noise pre-defined by the schedule $\{\beta_t\}_1^T$, producing $\boldsymbol{x}_1, \dots, \boldsymbol{x}_T$. As $T \to \infty$, \boldsymbol{x}_T will become the standard Gaussian distribution $\mathcal{N}(\mathbf{0}, \boldsymbol{I})$. Accordingly, the reverse process aims to reverse the above process and reconstruct the true data distribution from $p(\boldsymbol{x}_T) = \mathcal{N}(\mathbf{0}, \boldsymbol{I})$ by a parameterized noise model $\epsilon_{\theta}(\cdot)$. With $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})$, the training loss of the model can be simplified as

$$L(\theta) = \mathbb{E}_{t,\boldsymbol{x}_0,\boldsymbol{\epsilon}} \|\boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \boldsymbol{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \|^2.$$
(3)

Latent diffusion models (Rombach et al., 2022) have recently attracted growing attention due to their efficiency and superior performance. Instead of performing diffusion and its reverse process in the pixel space, they add noise and denoise in a latent space of z encoded by a pre-trained encoder \mathcal{E} . Thereby, the diffusion process starts from $z_0 = \mathcal{E}(x_0)$ and subsequently produces latent states $z_1, \dots, z_t, \dots, z_T$. Accordingly, the training loss becomes

$$L_{LDM} = \mathbb{E}_{\boldsymbol{z}_0, \boldsymbol{\epsilon}, t} \| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\boldsymbol{z}_t, t) \|^2.$$
(4)

H ALGORITHM PROCEDURE OF SINGLE-OBJECT DIFFUSION IN MULAN

The complete and detailed procedure of single object diffusion described in Section 3.3 is shown in Algorithm 1.

Algorithm 1 Single Object Diffusion in MuLan
1: Input: Object number n , sub-prompt p_n , LLM planner Planner, precise mask \tilde{M}_{n-1} (only for $n > 1$), latents $\{\boldsymbol{z}_{(n-1)} t_{-1} \}_{t=1}^{T}$ (only for $n > 1$), attention guidance timestep threshold T' , combination
timestep threshold T^* (only for $n > 1$), learning rate η , diffusion model \mathcal{D} .
2: Output: Image with obj_n and its precise mask \tilde{M}_n .
3: if $n = 1$ then
4: opt_1 , Num ₁ = Planner(p ₁)
5: Apply Eq. equation 5 to compute M_1 6: for $t = T$ and 1 do
7. if $t > T'$ then
8: $\mathbf{z}_{1,t} = \mathbf{z}_{1,t} - \eta \cdot \nabla_{\mathbf{z}_{1,t}} E(\mathbf{A}, \mathbf{M}_{1}, k)$
9: end if
10: $\boldsymbol{z}_{1,(t-1)} = \mathcal{D}(\boldsymbol{z}_{1,t}, t, p_1)$ {Single denoising step}
11: end for
12: else
15: OpL_n , $\operatorname{Num}_n = \operatorname{Planner}(\operatorname{P}_n, \{\operatorname{OD}_{j_i}\}_{i=1})$ 14: Apply Eq. equation 6 to compute M
15: for $t = T \cdots 1$ do
16: if $t > T'$ then
17: $\boldsymbol{z}_{n,t} = \boldsymbol{z}_{n,t} - \eta \cdot \nabla_{\boldsymbol{z}_{n,t}} E(\boldsymbol{A}, \boldsymbol{M}_n, k)$
18: end if
19: $\boldsymbol{z}_{n,(t-1)} = \mathcal{D}(\boldsymbol{z}_{n,t},t,\boldsymbol{p}_n)$
20: If $t > 1^{-t}$ then 21. Apply Eq. equation 2 to combine latent of the interval of the
21: Apply Eq. equation 2 to combine fatent of OD_{n} and OD_{n-1} 22: end if
22: end for
24: end if
25: obj $_n=oldsymbol{z}_{n,0}$
26: $\tilde{M}_n = (\tilde{x}_n, \tilde{y}_n, \tilde{w}_n, \tilde{h}_n)$, a bounding box based on thresholding of $\frac{1}{ B } \sum_{i \in B} A_{(\cdot,k)}^{(j)}$ {Token-k corre-
sponds to obj_n }
I Detailed prompt template of the global planning by the LLM
I DETAILED FROM I TEMPEATE OF THE GEODAE FEATMING DT THE EEM
As stated in Section 3.2, MuLan first conduct the global planning to decompose the input prompts
into N objects before the whole generation process. To this end, given the input prompt p, we
prompt the LLM using the following template:
You are an excellent painter. I will give you some descriptions. Your task is to turn the description
into a painting. You only need to list the objects in the description by painting order, from left to
right, from down to top. Do not list additional information other than the objects mentioned in the
description. Description: {p}.
In this way, the LIM will decompose the input prompt p following the pre-defined order
in and way, the LEW with decompose the input prompt pronowing the pre-defined order.

- J DETAILED PROMPT TEMPLATE OF THE LOCAL PLANNING BY THE LLM
- 906 907 908

909

904 905

> As stated in Section 3.3, the LLM is also utilized during the generation stage for local planning of the object's rough position and the object counting.

910 For the rough position opt_1 planning of the first object, we utilize the following template: 911

You are an excellent painter. I will give you some descriptions. Your task is to turn the description 912 into a painting. Now given the description: $\{p\}$. If I want to paint the $\{obj_1\}$ in the painting firstly, 913 where to put the $\{obj_1\}$? Choose from left, right, top, and bottom. You can make reasonable 914 guesses. Give one answer. 915

916 Then the LLM is prompted to figure out the object number based on opt₁. 917

If $opt_1 = left$, the prompt template for obj_1 is:

 You are an excellent painter. I will give you some descriptions. Your task is to turn the description into a painting. Now given the description: {p}. How many non-overlapping objects are there in the horizontal direction? ONLY give the final number.
If opt₁ = bottom, the prompt template would be:

You are an excellent painter. I will give you some descriptions. Your task is to turn the description into a painting. Now given the description: {p}. How many non-overlapping objects are there in the vertical direction? ONLY give the final number.

For the rough position $opt_n (n \ge 2)$, we utilize the following template:

You are an excellent painter. I will give you some descriptions. Your task is to turn the description into a painting. Now given the description: $\{p\}$. If I already have a painting that contains $\{\{obj_i\}_{i=1}^{n-1}\}$, what is the position of the $\{obj_n\}$ relative to the $\{obj_{n-1}\}$? Choose from left, right, above, bottom, and none of above. You can make reasonable guesses. Give one answer.

Then we prompt the LLM to figure out the object number by:

You are an excellent painter. I will give you some descriptions. Your task is to turn the description into a painting. Now given the description: $\{p\}$. If I already have a painting that contains $\{\{obj_i\}_{i=1}^{n-1}\}$, how many objects are there in/on the $\{opt_n\}$ of $\{obj_{n-1}\}$? Only give the final number.

K DETAILS FOR THE COMPUTATION OF ROUGH MASKS

When n = 1, since there is no object generated yet, both the position opt_1 and Num_1 are unrestricted and the LLM can be prompted to determine opt_1 and Num_1 given sub-prompt p_1 . Since the object order starts from left to right and bottom to top, there will be only two position options $opt_1 \in \{left, bottom\}$ for obj_1 . Once opt_1 determined, MuLan evenly splits the whole image's width/height (W/H) to Num_1 parts and assigns the very left (bottom) part to obj_1 , which leads to the following bounding box (an illustration for the computation is shown in Figure 9):

$$\boldsymbol{M}_{1} = \begin{cases} (0, 0, \frac{W}{\operatorname{Num}_{1}}, H), & \text{if opt}_{1} = \operatorname{left}, \\ (\frac{(\operatorname{Num}_{1}-1) \cdot H}{\operatorname{Num}_{1}}, 0, W, \frac{H}{\operatorname{Num}_{1}}), & \text{if opt}_{1} = \operatorname{bottom}. \end{cases}$$
(5)

Figure 9: Illustration of the rough mask M_1 of obj_1 . There are only two options left, bottom for the mask since the LLM is prompted to plan the object order from left to right, bottom to top.

966 When n > 1, the position opt_n denotes $\{\operatorname{obj}\}_n$'s relational position to the previous object 967 $\{\operatorname{obj}\}_{n-1}$. Since MuLan generates objects from left to right and from bottom to top, $\operatorname{opt}_n \in \{\operatorname{right}, \operatorname{top}\}$. Given sub-prompt p_n , an LLM is prompted to select opt_n and determine Num_n. 968 Meanwhile, the precise mask $\tilde{M}_{n-1} = (\tilde{x}_{n-1}, \tilde{y}_{n-1}, \tilde{w}_{n-1}, \tilde{h}_{n-1})$ of opt_{n-1} can be extracted 970 from the image with $\{\operatorname{obj}\}_{n-1}$ generated (e.g., by text-image cross-attention maps in the diffusion 971 model), which is utilized as the condition for the computation of bounding box boundary of the 972 rough mask M_n . Hence, the rough mask M_n for obj_n can be derived from opt_n , Num_n, and \tilde{M}_{n-1} as followings.

 $\boldsymbol{M}_{n} = \begin{cases} (\tilde{x}_{n-1} + \tilde{w}_{n-1}, 0, \frac{W - \tilde{x}_{n-1} + \tilde{w}_{n-1}}{\operatorname{Num}_{n}}, H), & \text{if } \operatorname{opt}_{n} = \operatorname{right}, \\ \\ (0, \frac{\tilde{y}_{n-1} \cdot (\operatorname{Num}_{n} - 1)}{\operatorname{Num}_{n}}, W, \frac{\tilde{y}_{n-1}}{\operatorname{Num}_{n}}), & \text{if } \operatorname{opt}_{n} = \operatorname{top}. \end{cases}$ (6)

Figure 10 illustrates how the rough mask can be computed based on the precise mask of previous objects.

Figure 10: The rough mask M_n of $obj_n(n > 1)$ is derived from the precise mask M_{n-1} of the previously generated object obj_{n-1} .

L MORE DETAILS ON THE OVERLAPPING PROCESSING

The illustration for different overlapping ratios is shown in Figure 11.

Given opt_n and $ilde{M}_{n-1}$, the rough mask $M_{n,i}$ can be computed as

$$M_{n,i} = \begin{cases} \left(\tilde{x}_{n-1} \cdot r_i + (\tilde{x}_{n-1} + \tilde{w}_{n-1}) \cdot (1 - r_i), \tilde{y}_{n-1}, \tilde{w}_{n-1} \cdot r_i + \frac{W - \tilde{x}_{n-1} - \tilde{w}_{n-1}}{Num_n}, \tilde{h}_{n-1} \right), \\ \text{if opt}_n = \texttt{right}, \\ \left(\tilde{x}_{n-1}, \frac{(Num_n - 1) \cdot \tilde{y}_{n-1}}{Num_n}, \tilde{w}_{n-1}, \tilde{h}_{n-1} \cdot r_i + \frac{\tilde{y}_{n-1}}{Num_n} \right), \\ \text{if opt}_n = \texttt{top}. \end{cases}$$
(7)

Figure 11: Three candidate masks $M_{n,i}$ of obj_n at position $opt_n = top$. They correspond to obj_n overlapping with 10%, 30%, and 50% of obj_{n-1} .

M MORE DETAILS ON THE EVALUATION QUESTIONNAIRE

As shown in Section 4, we design a questionnaire to comprehensively evaluate the alignment between the generated image and the text by GPT-4V (OpenAI, 2023) and human, from three aspects

1026 - object completeness, correctness of attribute bindings, and correctness of spatial relationships. 1027 Specifically, given an image and a text prompt, for object completeness, we will evaluate if the im-1028 age contains each single object in the prompt. If the object appears in the image, we will then judge 1029 if the attribute bindings of the object in the image align with the corresponding attribute bindings in 1030 the text prompt, to evaluate the correctness of attribute bindings. We will also ask GPT-4V or human to judge if the spatial relationships are correct and match the text, as the evaluation of the spatial 1031 relationships. 1032

1034 1035 Text: The black chair was on the left of the white table 1036 1037 **Ouestions:** 1. Does the image contain the chair? (1 point) 1038 1039 2. Does the image contain the table ? (1 point) 1040 3. If 1 is correct. 1041 is the chair black? (1 point) 1042 4. If 2 is correct. 1043 is the table white? (1 point) 1044 . If both 1 and 2 are correct, 1045 s the chair on the left of the table ? (1 point.) 1046 1047 1048 1049 1050 1051 1052 (a) 1053 Γext: 1054 The green plant was on the right of the white window 1055 Duestions: 1056 I. Does the image contain the plant? (1 point) 1057 2. Does the image contain the window ? (1 point) 1058 3. If 1 is correct. is the plant green? (1 point) 1061 4. If 2 is correct, is the window white? (1 point) 1062 5. If both 1 and 2 are correct, 1063 is the plant on the right of the window ? (1 point.) 1064 1065 1067 1068 1069 1070 (b) 1071 1072 1073

1033 Examples of the questionnaire for different images and text prompts are shown in Figure 12.

Figure 12: Illustration of the questionnaire for the evaluation of generated images

Ν LIMITATIONS 1076

1077

1074 1075

Inference time of MuLan Since MuLan generates objects in a progressive manner, it will take 1078 longer time than one-stage methods. However, there is a tradeoff between accuracy and efficiency. 1079 Most existing one-stage methods generally fail on the complex prompts we focus on. We aim to accurately and precisely control the generation process by the proposed progressive pipeline. To show the tradeoff more clearly, we conducted experimental comparisons on how the image-prompt alignment and inference time would vary with the increasing number of objects. As shown in the visualization results of Figure 13, although the inference time of MuLan increases with more objects, the image-prompt alignment can be maintained. In one stage methods (e.g., SDXL (Podell et al., 2023), PixArt- α (Chen et al., 2023)), however, the alignment with prompt becomes worse and worse with more objects.

1104 Figure 13: The inference time of MuLan and one-stage methods. The prompts are 'a cute kitten', 1105 'the orange pumpkin is on the right of the black door', 'A blue refrigerator on the left, a green chair on the middle, and a yellow table on the right', and 'From left to right, an indoor 1106 room with a cute kitten sitting on top of a blue fridge, a black dog sitting on top of a green 1107 chair, and a cute kid', respectively. For one object, MuLan reduces to the utilized base diffusion 1108 model(e.g., SDXL (Podell et al., 2023)). For two or more objects, although MuLan requires more 1109 inference time, the image-prompt alignment can be maintained and controlled. This is a tradeoff 1110 between accuracy and efficiency. One-stage methods, however, generate worse and worse results 1111 with increasing objects.

1112

Also, the inference time of MuLan is not linearly increasing with the number of objects.

1114 If the base model used in MuLan is not 1115 If the base model used in MuLan is powerful 1116 enough, several objects can be generated simul-1116 taneously in one stage, further reducing the in-1117 ference time.

1118

1119 Possible failure cases Note that since Mu-Lan is totally training-free, the generation capa-1120 bility highly depends on the off-the-shelf base 1121 model such as stable diffusion in MuLan. We 1122 discuss two more cases here. First, for those 1123 non-common single object that base model it-1124 self cannot generate, it is hard for base mod-1125 els to generate even a single object. In this 1126 case, MuLan also cannot generate correct ob-1127 jects. Secondly, for those non-common corner 1128 cases of image composition, such as the prompt 1129 'in a bathroom, a huge dinosaur is sitting in a 1130 sink', MuLan may also fail to correctly generate them, as shown in Figure 14. The reason 1131 may be that for these cases, diffusion models 1132 cannot figure out reasonable relative size and 1133 practical scenes for them.

Figure 14: Possible failure case. In some noncommon corner cases of image composition, like 'in a bathroom, a dinosaur is sitting in a sink', base diffusion models may fail to figure out relative size and practical scenes of objects, making generated images unnatural, as shown in the figure.

Ο MORE QUALITATIVE RESULTS

We show more examples of different methods

