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ABSTRACT

Existing text-to-image models still struggle to generate images of multiple ob-
jects, especially in handling their spatial positions, relative sizes, overlapping, and
attribute bindings. To efficiently address these challenges, we develop a training-
free Multimodal-LLM agent (MuLan), as a human painter, that can progressively
generate multi-object with intricate planning and feedback control. MuLan har-
nesses a large language model (LLM) to decompose a prompt to a sequence of
sub-tasks, each generating only one object by stable diffusion, conditioned on
previously generated objects. Unlike existing LLM-grounded methods, MuLan
only produces a high-level plan at the beginning while the exact size and loca-
tion of each object are determined upon each sub-task by an LLM and attention
guidance. Moreover, MuLan adopts a vision-language model (VLM) to provide
feedback to the image generated in each sub-task and control the diffusion model
to re-generate the image if it violates the original prompt. Hence, each model in
every step of MuLan only needs to address an easy sub-task it is specialized for.
The multi-step process also allows human users to monitor the generation process
and make preferred changes at any intermediate step via text prompts, thereby
improving the human-AI collaboration experience. We collect 200 prompts con-
taining multi-objects with spatial relationships and attribute bindings from dif-
ferent benchmarks to evaluate MuLan. The results demonstrate the superiority
of MuLan in generating multiple objects over baselines and its creativity when
collaborating with human users.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020) have shown
growing potential in generative AI tasks, especially in creating diverse and high-quality images
with text prompts (Saharia et al., 2022; Rombach et al., 2022). However, current state-of-the-art
text-to-image (T2I) models such as Stable Diffusion (Rombach et al., 2022) and DALL-E 3 (Betker
et al., 2023) still struggle to deal with complicated prompts involving multiple objects and lack
precise control of their spatial relations, potential occlusions, relative sizes, etc. As shown in
Figure 2, to generate a sketch of “The orange pumpkin is on the right side of the black door”, even
the SOTA open-source T2I model, Stable Diffusion XL (Podell et al., 2023), still generates wrong
attribute-binding as well as incorrect spatial positions of several objects.

Among works that aim to improve the controllability of T2I models on complicated prompts, a
recent promising line of research seeks to utilize large language models (LLMs), e.g., ChatGPT,
GPT-4 (Achiam et al., 2023), to guide the generation process (Lian et al., 2023; Feng et al., 2023).
Specifically, an LLM is prompted to generate a layout for the given prompt, i.e., a bounding box
for each object in the image, given detailed instructions or demonstrations if necessary. However,
due to the limited spatial reasoning capability of LLMs as well as their lack of alignment with the
diffusion models, it is still challenging for LLMs to directly generate a complete and precise layout
for multiple objects. Without a feedback loop interacting with the generative process, the layout’s
possible mistakes cannot be effectively detected and corrected. Moreover, the layout is often
applied as an extra condition in addition to the original prompt (e.g., bounding boxes combined
with GLIGEN (Li et al., 2023)), so the diffusion models may still generate an incorrect image due
to its misunderstanding of the complicated prompt.
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Figure 1: The proposed training-free Multimodal-LLM Agent (MuLan) for Progressive Multi-
Object Diffusion. MuLan consists of three main components: (1) LLM planning; (2) Single-object
diffusion with attention guidance; and (3) VLM-feedback control. MuLan first decomposes a com-
plicated prompt into a sequence of sub-prompts each for one object, and then generates one object
per step conditioned on a sub-prompt and previously generated objects, where LLM plans the rough
layout of the object and attention guidance provides an accurate mask for it. The VLM-feedback
control allows MuLan to correct mistakes in each step by adjusting hyperparameters in (2).

To address the limitations and challenges of previous methods, we develop a training-free and con-
trollable T2I generation paradigm that does not require demonstrations but mainly focuses on im-
proving the tool usage of existing models. Our paradigm is built upon a progressive multi-object
generation by a Multimodal-LLM agent (MuLan), which generates only one object per stage, con-
ditioned on generated objects in the image and attention masks of the most plausible positions to
place the new object. Unlike previous methods that add conditions to each model and make the task
even more challenging, MuLan uses an LLM as a planner decomposing the original T2I task into a
sequence of easier subtasks. Each subtask generates one single object, which can be easily handled
by diffusion models. To be noted, the LLM applied at the beginning of MuLan only focuses on
high-level planning rather than a precise layout of bounding boxes, while the exact size and position
of each object are determined later in each stage by LLM and attention guidance based on the gen-
erated objects in the image. Hence, we can avoid mistakes in the planning stage and find a better
placement for each object adaptive to the generated content and adhering to the original prompt. In
addition, MuLan builds a feedback loop monitoring the generation process, which assesses the gen-
erated image per stage using a vision-language model (VLM). When the generated image violates
the prompt, the VLM will adjust the diffusion model to re-generate the image so any mistake can be
corrected before moving to the next stage. Furthermore, we develop a strategy applied in each stage
to handle the overlapping between objects, which is commonly ignored by previous work (Lian
et al., 2023).

Therefore, MuLan obtains better controllability of the multi-object composition. An illustration
of the progressive generation process is shown in Figure 1. Note that there is a concurrent work
called RPG (Yang et al., 2024) sharing a similar high-level idea (i.e., decomposing the prompt into
sub-tasks) with MuLan. However, there still exist substantial differences between ours and RPG.
MuLan generates each object conditioned on previously generated objects while RPG generates
all objects independently. MuLan does not require any manually designed demonstrations for
in-context learning. In addition, as shown in Section 4.1, MuLan can be directly applied to
human-agent interaction during generation, which greatly boosts the flexibility and effectiveness of
the generation. To evaluate MuLan, we curate a dataset of intricate and challenging prompts from
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different benchmarks. To compare MuLan with existing approaches, we prompt GPT-4V (OpenAI,
2023) several questions based on the input texts to comprehensively evaluate the alignment of the
generated images with the prompts from three aspects. We further conduct human evaluations
of the generated images. Extensive experimental results show that MuLan can achieve better
controllability over the generation process and generate high-quality images aligning better with the
prompts than the baselines. Example images generated by different methods are shown in Figure 2.
Our main contributions are summarized as follows:

Figure 2: Examples of MuLan-generated images, compared to the original SD-v1.4 (Rombach et al.,
2022), the original SDXL (Podell et al., 2023), Structure diffusion (Feng et al., 2022), Promp-
tist (Hao et al., 2022), and PixArt-α (Chen et al., 2023).

• We propose a novel training-free paradigm for text-to-image generation and a Multimodal-LLM
agent. It achieves better control in generating images for complicated prompts consisting of
multiple objects with specified spatial relationships and attribute bindings.

• We propose an effective strategy to handle multi-object occlusion in T2I generation, which
improves the image quality and makes them more realistic.

• We curate a dataset of prompts to evaluate multi-object composition with spatial relationships
and attribute bindings in T2I tasks. The quantitative results and human evaluation results show
that our method can achieve better results compared to different controllable generation methods
and general T2I generation methods.

• We show that the proposed framework can be applied to human-agent interaction during gener-
ation. This enables users to effectively monitor and change/adjust the generation process during
generation instead of waiting until all the generation is finished.

2 RELATED WORK

Diffusion models As a new family of generative models, diffusion models have attracting more
and more attention due to its powerful creative capability. Text-to-image generation, which aims to
generate the high-quality image aligning with given text prompts, is one of the most popular appli-
cations (Nichol et al., 2021; Saharia et al., 2022; Rombach et al., 2022; Betker et al., 2023). Among
different powerful diffusion models, the latent diffusion model (Rombach et al., 2022) has shown
amazing capability and has been widely used in practice due to the efficiency and superior perfor-
mance, which is also the backbone of the current SOTA stable diffusion models. Different from
the typical diffusion models which directly perform the diffusion and denoising process in the pixel
space, the latent diffusion model perform the whole process in the encoded latent space (Rombach
et al., 2022), which can greatly reduce the training and inference time. Recently, empowered by a
significantly expanded model capacity, Stable Diffusion XL has demonstrated performance levels
approaching commercial application standards (Podell et al., 2023). Detailed background on the
procedure of diffusion models is provided in Appendix G.

Composed generation in diffusion models Although Stable Diffusion model has shown unprece-
dented performance on the T2I generation task, it still struggles with text prompts with multi-object,
especially when there are several spatial relationships and attribute bindings in the prompts. To
achieve more controllable and accurate image compositions, many compositional generation meth-
ods have been proposed. StructureDiffusion (Feng et al., 2022) proposed a training-free method to
parse the input prompt and combine it with the cross-attention to achieve better control over attribute
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bindings and compositional generation. On the other hand, Promptist (Hao et al., 2022) aimed to
train a language model with the objective of optimizing input prompts, rendering them more com-
prehensible and facilitative for diffusion models. Recently, Ranni (Feng et al., 2024) finetunes an
LLM to generate bounding boxes and colors. Then they use these as conditions to finetune text-
to-image models for image generation. In addition, AnyDoor (Chen et al., 2024b) also requires
finetuning of diffusion models for better generation. Several works utilize the large language model
to directly generate the whole layout for the input prompt with in-context learning, and then generate
the image conditioned on the layout (Lian et al., 2023; Feng et al., 2023; Wu et al., 2024). While
all the previous take the whole input prompt, we propose to turn the original complicated task into
several easier sub-tasks. A training-free multimodal-LLM agent is utilized to progressively generate
objects with feedback control so that the whole generation process would be better controlled. Very
recently, a concurrent work RPG (Yang et al., 2024) also proposed to utilize LLM agent to de-
compose the prompt into different subtasks. However, MuLan generates each object step by
step and correct mistakes after each step rather than treating all subtasks independently and
does not need a well-designed in-context learning demonstrations. We defer a more thorough
discussion with RPG (Yang et al., 2024) in Appendix B.

3 MULTIMODAL-LLM AGENT (MULAN)

Existing diffusion models often struggle with complicated prompts but can handle simpler ones.
Recent approaches train a model or apply in-context learning given similar examples to produce a
detailed layout for the prompt in advance and the diffusion model can generate each part of the layout
with a simpler prompt separately. Rather than generating all objects at once or in parallel, MuLan
is inspired by many human painters, who start by making a high-level plan, painting objects one
after another as planned, and correcting mistakes after each step if needed. Thereby, the constraints
between objects can be naturally taken into account.

3.1 OVERVIEW

MuLan begins by strategically planning and decomposing an intricate input prompt into a man-
ageable sequence of sub-prompts, each focusing on an easier sub-task generating one single ob-
ject. MuLan then adopts a progressive strategy that generates one object in each stage conditioned
on previously generated objects using a diffusion model. Simultaneously, a VLM offers insightful
feedback and adaptively adjusts the generation process to guarantee precision in accomplishing each
subtask. Compared to previous methods, MuLan is entirely training-free and does not require any
in-context examples. As illustrated in Fig. 1, MuLan is composed of three components:

• Prompt decomposition by LLM planning, which produces a sequence of sub-prompts, each
focusing on generating one object in the prompt.

• Conditional single-object diffusion with LLM planning and attention guidance, which gener-
ates a new object conditioned on the previous step’s image using a stable diffusion model. While
a sub-prompt from LLM planning provides text guidance, the object’s size and position are con-
trolled by an attention mask, which guides the object to be correctly positioned and generated.

• Feedback control by interacting with VLM, which inspects the image generated per stage and
adjusts hyperparameters and attention guidance to re-generate the image if it violates the original
prompt.

3.2 PROMPT DECOMPOSITION BY LLM PLANNING

Given a complex prompt p, MuLan first uses an LLM to automatically decompose p into N object-
wise sub-prompts p1:N . During decompostion, MuLan specifically asks the LLM to produce a
sequence of objects that will be created in the default order from left to right and bottom to top in
the image. The LLM can easily finish this task by leveraging its prior knowledge to fill all objects
of p to an empty list of the pre-defined order without in-context learning which requires manually
designed examples. Let objs = {obj1, · · · ,objn, · · · ,objN} be the LLM-planned N objects
extracted from p. For the first object, the sub-prompt is simply p1 =“{obj1}”. For object-n with
n > 1, the subtask is to generate object-n conditioned on previous objects and the textual sub-
prompt is defined as pn =“{objn} and {objn−1}”. MuLan conducts the above global planning
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by an LLM at the very beginning before generating any image. The detailed prompts and template
for LLM planning can be found in Appendix I.

When generating each object in Section 3.3, we will use the LLM again as a local planner of the
object’s position and size, i.e., by generating a mask in the image and coordinating its overlap with
previous objects. Then a diffusion model is used to generate the object under the attention guidance
of the mask. These will be further elaborated in Section 3.3.

3.3 CONDITIONAL SINGLE-OBJECT DIFFUSION WITH LLM PLANNING AND ATTENTION
GUIDANCE

At stage-n, the diffusion model only focuses on generating objn according to the sub-prompt pn,
ensuring that objn can be correctly positioned and generated. To this end, MuLan utilizes the
LLM to plan the relative position and size of objn, allocating a rough mask (i.e., a bounding box)
Mn for objn. Then, cross-attention guidance is applied during the generation of objn to ensure
objn is appropriately positioned within Mn. The pipeline is given in Figure 3 with the complete
procedure listed in Algorithm 1 in Appendix H. We will introduce it step by step in the following.
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Figure 3: Single object diffusion with LLM plan-
ning and attention guidance for objn (detailed
procedure in Algorithm 1 in Appendix H).

LLM Planning of a Rough Mask for objn.
At stage-n, MuLan first allocates a rough mask
as a bounding box Mn ≜ (xn, yn, wn, hn)
(x/y coordinates of the top-left corner, width,
and height) to guide the generation of objn in
the image. As shown in Figure 3, Mn can be
derived from objn’s relative position optn ∈
Opts={left,right,top,bottom}, the
total number of objects Numn in the same
position/region as objn, and current available
space in the image. Numn and current available
space, combined together, determines the size
of objn. MuLan utilizes the LLM planner to
reason optn and Numn given the sub-prompt
pn

1, while the current available space can be
determined by the precise mask M̃n−1 which
describes the exact position of previously
generated objn−1 and can be easily extracted
from the cross-attention maps. It is worth
noting that since there is no previously generated objects for the first object, the available space for
obj1 is the whole image. For detailed computation of Mn, please refer to Appendix K.

Once Mn is determined, the cross-attention guidance is utilized during generation of objn to ensure
objn is correctly generated within Mn, as elaborated in the following.

Single-Object Generation with Attention Guidance. Given the rough mask Mn of objn, the
next is to ensure the generated objn will be correctly located within Mn. A natural and intuitive
way to achieve this in diffusion models is to guide the generation of the cross-attention map of objn,
which builds the relevance between the text prompt and the location of generated object.

To this end, MuLan manipulates the cross-attention map of objn under the guidance of Mn, using
the backward guidance method (Chen et al., 2024a), to maximize the relevance inside Mn. Specif-
ically, let A be the cross-attention map, Am,k represents the relevance between the spatial location
m and token-k that describes objn in the prompt. Larger value in Am,k indicates that objn is
more likely located at the spatial location of m. The goal is to maximize the relevance Am,k inside
the mask Mn while minimizing the relevance outside the mask Mn. Hence the following energy
function is utilized:

E(A,Mn,k)=

(
1−

∑
m∈Mn

Am,k∑
m Am,k

)2

, (1)

1The detailed prompt template can be found in Appendix J.
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where
∑

m∈Mn
denotes the summation over the spatial locations included in Mn, and

∑
m denotes

the summation over all the spatial locations in the attention map. In every step-t of the earlier
generation process, MuLan applies gradient descent to minimize the energy by updating the input
latent zn,t for object objn. In this way, the cross-attention map corresponding to objn will achieve
the largest relevance inside Mn, meaning objn can be correctly positioned inside the rough mask.

On the other hand, to take the previous objects and their constraints into account when generating
objn, we further combine the latent of objn and objn−1. Specifically, after step-t of reverse
process (t varies from T to 0), we update the latent zn,(t−1) by

zn,(t−1) = M ′
n ⊙ zn,(t−1) + (1−M ′

n)⊙ z(n−1),(t−1), (2)

where ⊙ computes element-wise product and [M ′
n]uv = 1u∈[xn,xn+wn],v∈[yn,yn+hn] is the 0-1

indicator of whether coordinates (u, v) is included in the bounding box of Mn.

MuLan applies the above single-object diffusion to each object one after another from obj1 to
objN , as planned by the LLM at the very beginning. The procedure of generating objn is detailed
in Algorithm 1.

Objects Overlapping. Overlapping between objects is a key challenge in text-to-image diffusion
models. However, it lacks attention in previous methods (Lian et al., 2023; Feng et al., 2023).
Instead, we propose an effective strategy that can be merged into the procedure above. Specifically,
at the generation of object objn, we prompt the LLM to judge if there is overlapping between
objn and objn−1. If there is overlapping, we first compute three candidates for the rough mask
{Mn,i}3i=1, associated with three overlapping ratios {ri}3i=1 = {10%, 30%, 50%} between objn−1

and objn.

Given the three masks Mn,i, MuLan generates three candidate images using Algorithm 1. Then
the CLIP scores (Hessel et al., 2021) between the generated images and the input prompt pn are
computed and the image with the maximal CLIP score is selected as the generated image for objn.
An illustration is given in Figure 11 with more details of candidate masks in Appendix L.

3.4 INTERACTION WITH VLM AND HUMAN USERS DURING GENERATION

To correct the possible mistakes made in the sequential generation process, MuLan builds an adap-
tive feedback-loop control by interacting with a vision-language model (VLM). After each gener-
ation stage, MuLan queries the VLM to inspect the generated object(s) and its consistency with
the input prompt. If they do not align well, MuLan will adjust the backward guidance of the cur-
rent stage to re-generate the object. More specifically, MuLan will modify the hyperparameters of
backward guidance to control the strength of the guidance. We empirically found that the errors
are typically the size or the position of the generated object. For example, the object may be too
large and outside the rough mask. Hence the guidance strength needs to be larger to make the ob-
ject smaller. In the whole generation process, if MuLan needs to regenerate an object, it will try
different guidance strength, i.e., the weight of the gradient of the energy function (Eq. 1), and the
loss threshold that is used for stopping criteria of guidance. In cases with incorrect positions, it
will also re-plan the spatial location and regenerate the object. Such a close-loop control involves
LLM, diffusion, and VLM and significantly automates the T2I generation for complicated prompts,
leading to a more accurate generation in practice.

In addition, the multi-step process naturally allows human-agent interaction/collaboration during
generation in practice. Users can timely monitor the generation process. In this way, the interaction
enables users to make preferred changes and adjustments to the generated images easily and effec-
tively by providing adjusting prompts to MuLan at any intermediate step, such as attribute adjust-
ment, object adjustment, and spatial relationship adjustment. With the adjusting prompts, MuLan
will utilize the LLM to modify the original prompt accordingly and change the generation process to
the preferred one. An illustration for different changes or adjustments during generation is shown in
Figure 4, which indicates MuLan can achieve both simple and composed complex adjustments with
interaction. In contrast, for other existing generation and editing methods, users have to wait until
the whole generation process is finished. Therefore, the proposed framework is more user-friendly
and flexible in terms of human-agent interaction and collaboration.
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Figure 4: An illustration tree for difference cases of human-agent interaction during genera-
tion. The middle branch (connected by blue arrows) shows the original generation process without
human-agent interaction. The top and bottom branches show different complex composed human-
agent interaction during generation for various adjustments, involving object adjustments, attribute
adjustments, and spatial relationship adjustments, which demonstrate the flexibility and effective-
ness of MuLan for human-agent interaction during generation.

4 EXPERIMENTS

Dataset To evaluate our framework, we construct a prompt dataset from different benchmarks.
Specifically, since our focus is to achieve better generation for complex prompts containing multi-
objects with both spatial relationships and attribute bindings, we first collect all complex spatial
prompts from T2I-CompBench (Huang et al., 2023). To make the experiments more comprehen-
sive, we let ChatGPT generate about 400 prompts with different objects, spatial relationships, and
attribute bindings so that the prompt sets consists of about 600 prompts. To further evaluate the
capability of our framework on extremely complex and hard prompts, we manually add prompts
that SDXL fails to generate, leading to a hard prompt dataset containing 200 prompts. Similar to
the complex spatial prompts in T2I-CompBench (Huang et al., 2023), each prompt in our curated
dataset typically contains two objects with various spatial relationships, with each object containing
attribute bindings randomly selected from {color,shape,texture}.

Models & Baseline As a training-free framework, MuLan can be incorporated into any existing
diffusion models. We evaluate two stable diffusion models with our framework, Stable Diffusion
v1.4 (Rombach et al., 2022) and the SOTA Stable Diffusion XL (Podell et al., 2023). To verify the
superiority of MuLan, we compare it with previous controllable generation methods and general
T2I generation methods. Specifically, we evaluate Structure Diffusion (Feng et al., 2022), Promp-
tist (Hao et al., 2022), the original Stable Diffusion v1.4, the original SDXL, and the recent SOTA
diffusion model PixArt-α (Chen et al., 2023).

Implementation Details MuLan use GPT-4 (Achiam et al., 2023) as the LLM planner, and
LLaVA-1.5 (Liu et al., 2023) as the VLM checker to provide the feedback. We also conducted
an ablation study to show the importance of the feedback control provided by the VLM and the
effect of different VLMs. Moreover, we found the attention blocks utilized during the attention
guidance are vital, which can be classified as near-input blocks, near-middle blocks, and near-output
blocks. We utilize the near-middle blocks in our main experiments and also show the ablation re-
sults of different block. Our codes (including the prompt dataset) are available in the supplementary
material. All the experiments are conducted on a single NVIDIA RTX A6000 GPU.

Evaluation Since the prompt dataset contains texts with complex compositions, we design a ques-
tionnaire to comprehensively investigate the alignment between the generated image and the corre-
sponding input text. The questionnaire is composed of three aspects - object completeness, correct-
ness of attribute bindings, and correctness of spatial relationships. We only set two options for each
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question (Yes or No), without any ambiguity. For detailed questions and examples of the evaluation,
please refer to Appendix M. For each aspect of the evaluation, we compute the percentage of an-
swers with “Yes”. Given the generated image, we assess the image’s quality using a questionnaire
asking both the state-of-the-art multi-modal large language model (GPT-4V (OpenAI, 2023)) and
the human evaluator.

4.1 MAIN RESULTS AND ANALYSIS

Results on GPT Evaluation Given the generated image, we prompt GPT-4V to answer the ques-
tions about the image in the questionnaire, where each only focuses on one of the three aspects.
The results for different methods and different base models are shown in Table 1. The results show
that our framework can achieve the best performance compared to different controllable generation
methods and T2I generation methods. In particular, in the two ‘harder’ aspects - attribute bindings
and spatial relationships, MuLan can surpass other methods by a large margin. More results can be
found in Figure 5 and Appendix O.
Table 1: GPT-4V evaluation

/
human evaluation of images generated by different methods for

complicated prompts.

Method Object completeness Attribute bindings Spatial relationships Overall

Structure Diffusion (Feng et al., 2022) 88.97%
/

87.37% 54.62%
/

62.63% 34.36%
/

24.24% 64.31%
/

64.85%
Promptist-SD v1.4 (Hao et al., 2022) 80.36%

/
70.71% 49.23%

/
52.02% 24.49%

/
13.13% 56.73%

/
51.72%

Promptist-SDXL (Hao et al., 2022) 94.36%
/

93.94% 70.00%
/

78.28% 35.89%
/

33.33% 72.92%
/

75.56%
SD v1.4 (Rombach et al., 2022) 90.31%

/
74.49% 57.14%

/
51.02% 37.24%

/
32.65% 66.43%

/
56.73%

SDXL (Podell et al., 2023) 94.64%
/

78.57% 66.07%
/

53.06% 41.14%
/

24.49% 72.34%
/

57.55%
PixArt-α (Chen et al., 2023) 92.09%

/
76.53% 66.58%

/
61.22% 34.69%

/
32.65% 70.41%

/
61.63%

MuLan-SD v1.4 (Ours) 93.11%
/

86.36% 74.23%
/

74.24% 51.53%
/

54.54% 77.24%
/

75.15%
MuLan-SDXL (Ours) 96.17%

/
90.40% 75.00%

/
79.29% 39.29%

/
49.49% 76.33%

/
77.78%

Figure 5: More qualitative examples of images generated by different methods on intricate prompts.

Results on Human Evaluation To further accurately evaluate the generated images about the
alignments with human preferences, we further conduct a human evaluation by randomly sampling
100 prompts from the prompt dataset. Similarly, we ask human evaluators to finish the questionnaire
used in GPT evaluation. The results are shown in Table 1, which indicates that our method can still
achieve the best performance and is consistent with the GPT-4V evaluation results.

Results on Human-Agent Interaction To show MuLan is still very effective if users want to
modify the input prompt or edit the generated images during the generation, i.e., the human-agent
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interaction, we use ChatGPT to mimic the user to generate various adjusting prompts for the inter-
action with MuLan on randomly sampled 50 prompts. SD v1.4 (Rombach et al., 2022) is utilized as
the base model. The generated adjusting prompts focus on several aspect, i.e., attribute adjustment,
object adjustment, and spatial relationship adjustment. We use GPT-4V (OpenAI, 2023) to quantita-
tively evaluate the performance of MuLan given the final generated images and final text prompts, as
shown in Table 2. The results indicate that MuLan can still achieve high accuracy even with various
adjustments/changes during generation.

Table 2: GPT-4V evaluation of final generated images and final prompts after adjustments/changes.
The results show that MuLan is still very effective with various adjustment of prompts during gen-
eration.

Objects Attributes Spatial Overall
MuLan-SD v1.4 95.92% 72.45% 28.57% 73.06%

4.2 ABLATION STUDY

In this section, we show ablation results on the effect of the attention blocks during diffusion gener-
ation and the importance of the VLM feedback control in the proposed framework. 50 prompts are
randomly sampled from the prompt dataset for all experiments in the ablation study.

Ablation on the attention blocks As we mentioned at the beginning of Section 4, there are three
options for the attention blocks used for backward guidance, i.e., near-input blocks, near-middle
blocks, and near-output blocks. We empirically found the near-middle blocks can achieve the
best control and performance for the generation, which generally contains the richest semantics.
Hence here we show the ablation results on different choices of the attention blocks. We utilize
SD-v1.4 as the base model, and evaluate the performance of different attention blocks under our
framework by GPT-4V. The results are shown in Table 3, which indicates the diffusion generation
with near-middle blocks can achieve much better results compared to the other two options.

Table 3: Ablation study on attention blocks with SD-v1.4 as the base model. “Objects”, “At-
tributes”, and “Spatial” denote Object completeness, Attribute bindings, and Spatial relationships.
The results (evaluated by GPT-4V (OpenAI, 2023)) show that near-middle attention blocks perform
the best for attention guidance.

Guidance Objects Attributes Spatial Overall
near-input 83.67% 55.10% 14.29% 58.37%
near-middle 97.96% 80.61% 30.61% 77.55%
near-output 72.45% 45.92% 22.45% 51.84%

Ablation on the VLM feedback control The VLM feedback control is a key componenet in
MuLan to provide feedback and adjust the generation process to ensure the every stage’s correct
generation. Here, we show the importance of the feedback by removing feedback control from
the whole framework. As shown in Table 4, after removing the VLM, the results would be much
worse. It is because there is no guarantee or adaptive adjustment for each generation stage, which
verifies that the feedback control provided by the VLM is essential to handle complex prompts.
Moreover, we also test MuLan’s compatibility with different VLMs. As shown in Table 5, we
compare the Mulan’s performance using different VLMs including LLaVA-1.5 (Liu et al., 2023),
GPT-4V (OpenAI, 2023), and Gemini-Pro (Team et al., 2023). The results show that MuLan could
still maintain a good performance with different choices of the VLM and achieve good compatibility.

Table 4: Ablation study comparing MuLan with vs. without VLM feedback control, using SD-
v1.4 as the diffusion model and GPT-4 as the judge in evaluations. It indicates that feedback control
can significantly improve the performance.

MuLan Objects Attributes Spatial Overall
w/ Feedback 97.96% 80.61% 30.61% 77.55%
w/o Feedback 81.63% 59.18% 18.37% 60.00%
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Table 5: Ablation study of the VLM used in MuLan, using SD-v1.4 as the diffusion model and
GPT-4 as the judge in evaluations. The results show that the choice of the VLM would not affect the
overall performance too much.

VLM in MuLan Objects Attributes Spatial Overall
LLaVA-1.5 (Liu et al., 2023) 97.96% 80.61% 30.61% 77.55%
GPT-4V (OpenAI, 2023) 95.92% 80.61% 28.57% 76.33%
Gemini-Pro (Team et al., 2023) 95.92% 83.67% 38.78% 79.59%

5 CONCLUSIONS AND LIMITATIONS

In this paper, we propose a training-free multimodal-LLM agent (MuLan) to progressively gener-
ate objects contained in the complicated input prompt with closed-loop feedback control, achieving
better and more precise control on the whole generation process. By first decomposing the compli-
cated prompt into easier sub-tasks, our method takes turns to deal with each object, conditioned on
the previous one. The VLM checker further provides a guarantee with feedback control and adap-
tive adjustment for correct generation at each stage. Moreover, the application to the human-agent
interaction further enhances the significance of MuLan, making the generation more flexible and ef-
fective to align with the preferences of users. Extensive experiments demonstrate the superiority of
MuLan over previous methods, showing the potential of MuLan as a new paradigm of controllable
diffusion generation. However, there are still limitations to be further addressed in the future work.
Since the whole generation contains multiple stages, depending on the number of objects, it will
take a longer time than a one-stage generation approach. On the other hand, MuLan may also fail to
generate correct objects in some non-common corner cases of image composition. We defer more
detailed discussion and illustrations of the limitations to Appendix N.
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A BROADER IMPACT

Our work will bring significant advantages to both the research community focused on diffusion
models and the practical application of T2I generation.

In terms of the research community, we present a new and novel controllable image generation
paradigm that demonstrates exceptional controllability and produces remarkable results even when
tackling challenging tasks. This pioneering approach can offer valuable insights for future investi-
gations into diffusion models.

Regarding industrial applications, our method can be readily employed by T2I generation service
providers to enhance the performance of their models. Moreover, the diffusion models operating
within our framework are less likely to generate harmful content due to the meticulous control
exerted at each generation stage.

B DIFFERENCES BETWEEN MULAN AND THE CONCURRENT WORK RPG

As stated in Introduction and Related work, although we acknowledge that our proposed framework
shares a similar high-level idea with RPG, we would like to emphasize that there are still substantial
differences between ours and RPG.

Firstly, our proposed MuLan aims to progressively generate each object given each subprompt. At
the same time, the objects are generated conditioned on previously generated objects. In RPG, on the
other hand, all objects are generated independently. In addition, different from RPG which requires
manually designed in-context examples for the CoT reasoning, ours does not have such requirement.
We directly utilize LLMs for the planning during generation, which is an easier task and can be done
by LLMs without in-context learning. What’s more, MuLan can adaptively control and correct the
generation results using feedback by the VLMs while RPG does not have the feedback for the
generation. Also, for the common overlapping problem between objects, we propose a strategy to
generate several candidates to deal with it. In contrast, in RPG, the overlapping parts are treated as
a whole for generation.

More importantly, as we show in Section 4.1, our proposed framework can be directly applied to
human-agent interaction during generation to facilitate flexible and effective changes/adjustments of
the process while RPG cannot achieve the interaction. To summarize, the main differences between
MuLan and RPG are as follows:

• Our proposed MuLan generates each object conditioned on previously generated objects
while RPG generates all objects in parallel independently.

• MuLan does not require any in-context learning during the whole generation; in RPG,
specifically designed in-context examples are needed for Chain-of-Thought reasoning.

• MuLan utilizes the VLM-based feedback control to ensure each object can be generated
correctly while RPG does NOT have such a feedback mechanism.

• We propose a strategy to deal with overlapping/interaction between objects whereas RPG
directly treats overlapping objects as a whole part to generate.

• MuLan can be directly applied to human-agent interaction during generation for flexible
and various adjustments of the generation process while RPG cannot achieve it.

C MORE COMPARISON RESULTS WITH CONTROLLABLE IMAGE
GENERATION METHODS

Here we present more quantitative results between MuLan and other state-of-the-art controllable
image generation methods, Ranni (Feng et al., 2024) and Composable Diffusion (Liu et al., 2022).
We randomly sample 50 prompts from the prompt dataset and use GPT-4V to evaluate the alignment
between generated images and prompts.

The results are shown in Table 6, indicating that MuLan is much better and even outperforms
training-based controllable generation mthods.
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Table 6: GPT-4V evaluation of MuLan and more controllable generation methods. The results show
that MuLan with SD-v1.4 performs better, even surpassing training-based methods.

Objects Attributes Spatial Overall
MuLan-SD v1.4 97.96% 80.61% 30.61% 77.55%
Ranni (Feng et al., 2024) 70.41% 38.78% 20.41% 47.76%
Composable Diffusion (Liu et al., 2022) 90.82% 63.27% 22.45% 66.12%

D COMPARISON WITH STABLE DIFFUSION 3

To further evaluate the effectiveness of the proposed training-free framework MuLan, we also qual-
itatively compare MuLan with the latest state-of-the-art text-to-image generation model, Stable Dif-
fusion 3 (Esser et al., 2024). As shown in Figure 6, even Stable Diffusion 3 cannot deal with
prompts with simple spatial relationships steadily, while MuLan with SD-v1.4 can achieve control-
lable generation and generate correct images that align with prompts, indicating the effectiveness of
the proposed framework.

Figure 6: Qualitative comparison between MuLan and Stable Diffusion 3.

E VISUAL QUALITY AND REALISM OF MULAN-GENERATED IMAGES

Please note that since MuLan is training-free, the visual quality and realism of generated images
highly depend on the utilized base models, e.g., SD v-1.4, SDXL, etc. MuLan does not degrade the
visual quality of generated images. To further show this, we present more visualization results of
MuLan and the base models. As shown in Figure 7, MuLan with SDXL and the original SDXL have
very similar performance in terms of visual quality and realism.
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Figure 7: Visual quality and realism comparison between MuLan and the original base model.
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F MORE RESULTS ON COMPLEX OVERLAPPING PROMPTS

To further verify the effectiveness of the proposed overlapping processing module, we show more
visualization results on complex overlapping prompts, including interaction between animals and
humans. As shown in Figure 11, MuLan can deal with complex overlapping prompts better and
show effectiveness for different overlapping cases.

Figure 8: Visualization results on complex overlapping prompts.

G BACKGROUND ON (LATENT) DIFFUSION MODELS

Consisting of the diffusion process and the reverse process, diffusion models have shown impressive
capability for high-quality image generation by iteratively adding noise and denoising (Ho et al.,
2020). Let x0 ∼ q(x0) be the true data distribution. Starting from x0, the diffusion process adds
different levels of noise pre-defined by the schedule {βt}T1 , producing x1, · · · ,xT . As T → ∞,
xT will become the standard Gaussian distribution N (0, I). Accordingly, the reverse process aims
to reverse the above process and reconstruct the true data distribution from p(xT ) = N (0, I) by a
parameterized noise model ϵθ(·). With ϵ ∼ N (0, I), the training loss of the model can be simplified
as

L(θ) = Et,x0,ϵ∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)∥2. (3)

Latent diffusion models (Rombach et al., 2022) have recently attracted growing attention due to
their efficiency and superior performance. Instead of performing diffusion and its reverse process in
the pixel space, they add noise and denoise in a latent space of z encoded by a pre-trained encoder
E . Thereby, the diffusion process starts from z0 = E(x0) and subsequently produces latent states
z1, · · · , zt, · · · , zT . Accordingly, the training loss becomes

LLDM = Ez0,ϵ,t∥ϵ− ϵθ(zt, t)∥2. (4)

H ALGORITHM PROCEDURE OF SINGLE-OBJECT DIFFUSION IN MULAN

The complete and detailed procedure of single object diffusion described in Section 3.3 is shown in
Algorithm 1.
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Algorithm 1 Single Object Diffusion in MuLan

1: Input: Object number n, sub-prompt pn, LLM planner Planner, precise mask M̃n−1 (only for n >
1), latents {z(n−1),(t−1)}Tt=1 (only for n > 1), attention guidance timestep threshold T ′, combination
timestep threshold T ∗ (only for n > 1), learning rate η, diffusion model D.

2: Output: Image with objn and its precise mask M̃n.
3: if n = 1 then
4: opt1,Num1 = Planner(p1)
5: Apply Eq. equation 5 to compute M1

6: for t = T, · · · , 1 do
7: if t > T ′ then
8: z1,t = z1,t − η · ∇z1,tE(A,M1, k)
9: end if

10: z1,(t−1) = D(z1,t, t,p1) {Single denoising step}
11: end for
12: else
13: optn,Numn = Planner(pn, {obji}n−1

i=1 )
14: Apply Eq. equation 6 to compute Mn

15: for t = T, · · · , 1 do
16: if t > T ′ then
17: zn,t = zn,t − η · ∇zn,tE(A,Mn, k)
18: end if
19: zn,(t−1) = D(zn,t, t,pn)
20: if t > T ∗ then
21: Apply Eq. equation 2 to combine latent of objn and objn−1

22: end if
23: end for
24: end if
25: objn = zn,0

26: M̃n = (x̃n, ỹn, w̃n, h̃n), a bounding box based on thresholding of 1
|B|

∑
j∈B A

(j)

(:,k){Token-k corre-
sponds to objn}

I DETAILED PROMPT TEMPLATE OF THE GLOBAL PLANNING BY THE LLM

As stated in Section 3.2, MuLan first conduct the global planning to decompose the input prompts
into N objects before the whole generation process. To this end, given the input prompt p, we
prompt the LLM using the following template:

You are an excellent painter. I will give you some descriptions. Your task is to turn the description
into a painting. You only need to list the objects in the description by painting order, from left to
right, from down to top. Do not list additional information other than the objects mentioned in the
description. Description: {p}.

In this way, the LLM will decompose the input prompt p following the pre-defined order.

J DETAILED PROMPT TEMPLATE OF THE LOCAL PLANNING BY THE LLM

As stated in Section 3.3, the LLM is also utilized during the generation stage for local planning of
the object’s rough position and the object counting.

For the rough position opt1 planning of the first object, we utilize the following template:

You are an excellent painter. I will give you some descriptions. Your task is to turn the description
into a painting. Now given the description: {p}. If I want to paint the {obj1} in the painting firstly,
where to put the {obj1}? Choose from left, right, top, and bottom. You can make reasonable
guesses. Give one answer.

Then the LLM is prompted to figure out the object number based on opt1.

If opt1 = left, the prompt template for obj1 is:
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You are an excellent painter. I will give you some descriptions. Your task is to turn the description
into a painting. Now given the description: {p}. How many non-overlapping objects are there in
the horizontal direction? ONLY give the final number.

If opt1 = bottom, the prompt template would be:

You are an excellent painter. I will give you some descriptions. Your task is to turn the description
into a painting. Now given the description: {p}. How many non-overlapping objects are there in
the vertical direction? ONLY give the final number.

For the rough position optn(n ≥ 2), we utilize the following template:

You are an excellent painter. I will give you some descriptions. Your task is to turn the descrip-
tion into a painting. Now given the description: {p}. If I already have a painting that contains
{{obji}n−1

i=1 }, what is the position of the {objn} relative to the {objn−1}? Choose from left,
right, above, bottom, and none of above. You can make reasonable guesses. Give one answer.

Then we prompt the LLM to figure out the object number by:

You are an excellent painter. I will give you some descriptions. Your task is to turn the descrip-
tion into a painting. Now given the description: {p}. If I already have a painting that contains
{{obji}n−1

i=1 }, how many objects are there in/on the {optn} of {objn−1}? Only give the final
number.

K DETAILS FOR THE COMPUTATION OF ROUGH MASKS

When n = 1, since there is no object generated yet, both the position opt1 and Num1 are unre-
stricted and the LLM can be prompted to determine opt1 and Num1 given sub-prompt p1. Since
the object order starts from left to right and bottom to top, there will be only two position options
opt1 ∈ {left,bottom} for obj1. Once opt1 determined, MuLan evenly splits the whole im-
age’s width/height (W/H) to Num1 parts and assigns the very left (bottom) part to obj1, which
leads to the following bounding box (an illustration for the computation is shown in Figure 9):

M1 =

{
(0, 0, W

Num1
, H), if opt1 = left,

( (Num1−1)·H
Num1

, 0,W, H
Num1

), if opt1 = bottom.
(5)

Figure 9: Illustration of the rough mask M1 of obj1. There are only two options left,bottom
for the mask since the LLM is prompted to plan the object order from left to right, bottom to top.

When n > 1, the position optn denotes {obj}n’s relational position to the previous object
{obj}n−1. Since MuLan generates objects from left to right and from bottom to top, optn ∈
{right,top}. Given sub-prompt pn, an LLM is prompted to select optn and determine Numn.
Meanwhile, the precise mask M̃n−1 = (x̃n−1, ỹn−1, w̃n−1, h̃n−1) of optn−1 can be extracted
from the image with {obj}n−1 generated (e.g., by text-image cross-attention maps in the diffusion
model), which is utilized as the condition for the computation of bounding box boundary of the
rough mask Mn. Hence, the rough mask Mn for objn can be derived from optn, Numn, and
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M̃n−1 as followings.

Mn =


(x̃n−1 + w̃n−1, 0,

W−x̃n−1+w̃n−1

Numn
, H), if optn = right,

(0, ỹn−1·(Numn−1)
Numn

,W, ỹn−1

Numn
), if optn = top.

(6)

Figure 10 illustrates how the rough mask can be computed based on the precise mask of previous
objects.

Figure 10: The rough mask Mn of objn(n > 1) is derived from the precise mask M̃n−1 of the
previously generated object objn−1.

L MORE DETAILS ON THE OVERLAPPING PROCESSING

Given optn and M̃n−1, the rough mask Mn,i can be computed as

Mn,i =



(
x̃n−1 · ri + (x̃n−1 + w̃n−1) · (1− ri), ỹn−1, w̃n−1 · ri + W−x̃n−1−w̃n−1

Numn
, h̃n−1

)
,

if optn = right,(
x̃n−1,

(Numn−1)·ỹn−1

Numn
, w̃n−1, h̃n−1 · ri + ỹn−1

Numn

)
,

if optn = top.
(7)

The illustration for different overlapping ratios is shown in Figure 11.

Figure 11: Three candidate masks Mn,i of objn at position optn = top. They correspond to
objn overlapping with 10%, 30%, and 50% of objn−1.

M MORE DETAILS ON THE EVALUATION QUESTIONNAIRE

As shown in Section 4, we design a questionnaire to comprehensively evaluate the alignment be-
tween the generated image and the text by GPT-4V (OpenAI, 2023) and human, from three aspects
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- object completeness, correctness of attribute bindings, and correctness of spatial relationships.
Specifically, given an image and a text prompt, for object completeness, we will evaluate if the im-
age contains each single object in the prompt. If the object appears in the image, we will then judge
if the attribute bindings of the object in the image align with the corresponding attribute bindings in
the text prompt, to evaluate the correctness of attribute bindings. We will also ask GPT-4V or human
to judge if the spatial relationships are correct and match the text, as the evaluation of the spatial
relationships.

Examples of the questionnaire for different images and text prompts are shown in Figure 12.

(a)

(b)

Figure 12: Illustration of the questionnaire for the evaluation of generated images

N LIMITATIONS

Inference time of MuLan Since MuLan generates objects in a progressive manner, it will take
longer time than one-stage methods. However, there is a tradeoff between accuracy and efficiency.
Most existing one-stage methods generally fail on the complex prompts we focus on. We aim to
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accurately and precisely control the generation process by the proposed progressive pipeline. To
show the tradeoff more clearly, we conducted experimental comparisons on how the image-prompt
alignment and inference time would vary with the increasing number of objects. As shown in the
visualization results of Figure 13, although the inference time of MuLan increases with more objects,
the image-prompt alignment can be maintained. In one stage methods (e.g., SDXL (Podell et al.,
2023), PixArt-α (Chen et al., 2023)), however, the alignment with prompt becomes worse and worse
with more objects.

Figure 13: The inference time of MuLan and one-stage methods. The prompts are ‘a cute kitten’,
‘the orange pumpkin is on the right of the black door’, ‘A blue refrigerator on the left, a
green chair on the middle, and a yellow table on the right’, and ‘From left to right, an indoor
room with a cute kitten sitting on top of a blue fridge, a black dog sitting on top of a green
chair, and a cute kid’, respectively. For one object, MuLan reduces to the utilized base diffusion
model(e.g., SDXL (Podell et al., 2023)). For two or more objects, although MuLan requires more
inference time, the image-prompt alignment can be maintained and controlled. This is a tradeoff
between accuracy and efficiency. One-stage methods, however, generate worse and worse results
with increasing objects.

Also, the inference time of MuLan is not linearly increasing with the number of objects.

Figure 14: Possible failure case. In some non-
common corner cases of image composition, like
‘in a bathroom, a dinosaur is sitting in a sink’,
base diffusion models may fail to figure out rel-
ative size and practical scenes of objects, making
generated images unnatural, as shown in the fig-
ure.

If the base model used in MuLan is powerful
enough, several objects can be generated simul-
taneously in one stage, further reducing the in-
ference time.

Possible failure cases Note that since Mu-
Lan is totally training-free, the generation capa-
bility highly depends on the off-the-shelf base
model such as stable diffusion in MuLan. We
discuss two more cases here. First, for those
non-common single object that base model it-
self cannot generate, it is hard for base mod-
els to generate even a single object. In this
case, MuLan also cannot generate correct ob-
jects. Secondly, for those non-common corner
cases of image composition, such as the prompt
‘in a bathroom, a huge dinosaur is sitting in a
sink’, MuLan may also fail to correctly gener-
ate them, as shown in Figure 14. The reason
may be that for these cases, diffusion models
cannot figure out reasonable relative size and
practical scenes for them.
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O MORE QUALITATIVE RESULTS

We show more examples of different methods
in Figure 15.

Figure 15: More qualitative examples of images generated by different methods on intricate prompts.
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