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Abstract

Despite the advancements made in Visual
Large Language Models (VLLMs), like text
Large Language Models (LLMs), they have
limitations in addressing questions that re-
quire real-time information or are knowledge-
intensive. Indiscriminately adopting Retrieval
Augmented Generation (RAG) techniques is
an effective yet expensive way to enable mod-
els to answer queries beyond their knowledge
scopes. To mitigate the dependence on retrieval
and simultaneously maintain, or even improve,
the performance benefits provided by retrieval,
we propose a method to detect the knowledge
boundary of VLLMs, allowing for more effi-
cient use of techniques like RAG. Specifically,
we propose a method with two variants that fine-
tunes a VLLM on an automatically constructed
dataset for boundary identification. Experimen-
tal results on various types of Visual Question
Answering datasets show that our method suc-
cessfully depicts a VLLM’s knowledge bound-
ary based on which we are able to reduce in-
discriminate retrieval while maintaining or im-
proving the performance. In addition, we show
that the knowledge boundary identified by our
method for one VLLM can be used as a surro-
gate boundary for other VLLMs. Code will be
released at https://code.github.com

1 Introduction

The great advancements in language models have
led to the integration of image encoding and un-
derstanding capabilities (Achiam et al., 2023; Lu
et al., 2024; Wang et al., 2024), significantly en-
hancing the performance of a series of pre-trained
Visual Large Language Models (VLLMs) in tasks
involving Visual Question Answering (VQA). De-
spite these advancements, akin to text Large Lan-
guage Models (LLMs) (Touvron et al., 2023; Work-
shop et al., 2022; Brown et al., 2020; Zhang et al.,
2024b), VLLMs remain constrained by the bound-
aries of their knowledge (Lin and Byrne, 2022).
As a result, their ability to accurately respond to
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Figure 1: VLLMs Knowledge Boundary concept. The
black part represents all the knowledge humans have ex-
plored, and the orange and green parts represent knowl-
edge possessed by VLLMs and knowledge that can
be retrieved from external sources respectively. They
overlap in some areas and the boundary between them
remains unclear. The overall knowledge boundary of
VLLMs can be differentiated into two parts that overlap
with knowledge between RAG and world knowledge.
Our method aims to identify both, and we conduct ex-
periments to validate the potential VQA performance
improvements using RAG.

content outside the model’s knowledge scope, such
as knowledge-intensive questions, real-time news,
and queries with dynamic answers, is considerably
limited.

Some works study the knowledge boundary of
text LLMs (Li et al., 2025; Cheng et al., 2024;
Zhang et al., 2024b; Ren et al., 2023) via prompt-
based or SFT-based methods. As of yet, there has
been little research on the methodology for de-
termining the knowledge boundaries of VLLMs.
In practical applications, to answer VQA queries
outside its knowledge scope, indiscriminately em-
ploying Retrieval Augmented Generation (RAG)
techniques is often a viable solution. Although this
approach has been proven to enhance the (V)LLMs’
performance (Wang et al., 2021; Lewis et al., 2020;
Chen et al., 2017), the comprehensive reliance on
retrieval methods incurs significant latency due to
the retrieval steps and the introduction of exces-
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sively long inputs (Chevalier et al., 2023; Zhang
et al., 2024a; Chen et al., 2024).

To mitigate the dependence on retrieval for an-
swering questions and simultaneously maintain,
or improve, the performance benefits provided by
retrieval, we aim to develop a method that can de-
pict the knowledge boundary of a VLLM. In this
paper, we employ a method with two variants to
delineate the knowledge boundaries of a VLLM by
fine-tuning a VLLM on data constructed based on
sampling the responses of the VLLM.

With the ability to depict the knowledge bound-
ary of a VLLM, we then adopt RAG techniques
to validate the accuracy of the identified bound-
ary in various held-out datasets. We conduct ex-
periments using a variety of VQA datasets, in-
cluding three knowledge-intensive datasets, two
non-knowledge-intensive datasets, and one mixed
dataset. After determining whether a query falls
within the knowledge boundary, we use RAG to
assess the potential improvements the retrieved in-
formation provides to the queries falling out of the
knowledge boundary. Our experimental results re-
veal that on a mixed dataset, which contains both
non-knowledge-intensive and knowledge-intensive
queries simulating real situations, our method out-
performs the indiscriminative use of RAG (de-
noted “All RAG”) and prompt-based baseline with
50.67% retrieval reduction. The fine-tuned knowl-
edge boundary model lowers the retrieving ratio
on less knowledge-intensive data and obtains close
or even better performance compared to the “All
RAG?” setting. Besides, we show that the fine-tuned
VLLM for boundary identification for one VLLM
can be used as a surrogate boundary identifier for
other VLLMs.

To sum up, our contributions are as follows:

1. We propose a method with two variants that
detects the knowledge boundary of a VLLM.

2. Experimental results show that we maintain, or
even improve, the performance of the VLLM
on various types of data while lowering the ra-
tio of using RAG, and our method outperforms
the “All RAG” setting and other baselines on a
dataset simulating real situations.

3. We show that the knowledge boundary for one
VLLM can be used as a surrogate boundary for
other VLLMSs, to reduce retrieval while main-
taining or improving the performance.

2 Method

We propose a method with two variants that fine-
tunes a VLLM, which can depict the hard or soft
knowledge boundary of VLLMs. The proposed
method relies only on (V)LLMs and does not re-
quire manual annotation. In the following sections,
we first introduce the background and necessary
notations. Then we give details on constructing
two types of datasets for fine-tuning a VLLM for
knowledge boundary approximation.

2.1 Background

Consider a Visual Question Answering query q
with gold text answer a, where g contains image(s)
q; and a text query gq¢. Also, contexts k related to
q can be retrieved from a given corpus, where k
can refer to the collection of both texts and images.
Given a VL model, parameterized by 6, we can
answer the query with or without RAG by running
decoding (Dec) on the model:

Yn = Deco(y|q)

1
yr = Decy(ylq, k) M

where k might also contain prompts connecting
related content and it is omitted here for simplicity.
It is acknowledged that VLLMs have a limited
knowledge scope (Lin and Byrne, 2022; Wu et al.,
2022), denoted as .5, and the boundary is a rather
vague concept and is hard to depict accurately.

2.2 Sampling

To approximate whether a query g should lie in
VLLMs’ knowledge scope .S, we run repeated sam-
pling of a VLLM and collect its outputs. The sam-
pling methods include but are not limited to, top-p
sampling and top-k sampling. These sampling-
based methods are widely adopted to study the
model’s knowledge boundary problems (Li et al.,
2025; Zhang et al., 2024b; Cheng et al., 2024). By
running R times sampling, we obtain 12 outputs
given query q:

y® = Decy(ylq),i € {1,2,....R} (2

After obtaining the R predictions, a text LLM is
prompted! to evaluate each prediction (") where
the gold answer is also given. Subsequently a score
Si € [Sw,Sc| is provided by this text LLM. We
define the score range within s,, and s., where

'The prompt is referenced from Liu (2022). Please refer
to our code for a detailed definition.
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Figure 2: Method illustration of training a Knowledge Boundary model.

sc indicates a perfectly correct answer and s,, in-
dicates a wrong answer. Then an average score
is calculated over R scores, indicating the overall
performance of this query:

s =mean(s;),t € {1,2,..., R} 3)
and we note that s is also € [sy,, Sc].

2.3 Training

The score s is used to construct the knowledge
boundary training data. We differentiate our
method into two variants. A VLLM is adopted
to train on the knowledge boundary training data.
We denote the parameters by ¢.

Hard Knowledge Boundary By setting a thresh-
old e, we deem the queries with score s > ¢ inside
the knowledge boundary S and the rest outside S.
The query q, together with proper prompts Fj,, will
be constructed into a training sample x(q, P;,) as
shown in Sec. A.1. For any x(q, P,) in the training
dataset, we define the training objective J;, w.r.t. ¢
as follows:

@) =— Y
ﬂ!(q,Ph)Zq¢S

- Z log P4(“False”
x(q,Pn):q€S

log Py(“True”|ax(q, 1))

x(q, Pr))

4)
where Py (a|b) stands for the probability model ¢
predicts on a given input b. ¢ is optimized by
minimizing Jj, (o).

Soft Knowledge Boundary Setting a threshold
to binarily classify the queries might be an overly
rigid method and there is no room for adjustment
when the knowledge boundary model performs
poorly in possibly unseen scenarios unless we ad-
just € and retrain the model. Thus, we also propose

a method that can depict a softer boundary. Recall
that for query q, the average score s over R model
predictions ranges in [s,, S¢|, where s,, indicates a
wrong answer and s, indicates a correct one. We
linearly flip the score, for example, the new score
s = sy represents a strong tendency for external
knowledge while s = s, represents a refusal to
external knowledge.

The query g, together with prompts P, will
be constructed into a training sample x(q, Ps) as
shown in Sec. A.1. For any (q, Ps) in the training
dataset, we define the training objective as follows:

Jo(@) == Y log Py(s'|z(q, Py)) (5
z(q,Ps)
where ¢ is optimized by minimizing Js(¢).

By optimizing objective 4, we get a Hard Knowl-
edge Boundary model HK B, that can take a
VQA sample and predict a binary output “True”
or “False” indicating whether the RAG technique
can help solve this query. Similarly, a Soft Knowl-
edge Boundary model SK B that can predict a
soft score, ranging from s,, to s., is trained by
optimizing objective 5:

HK By(x(q, P,)) = True / False
SKBy(x(q, Ps)) € [Sw, Sc|
2.4 Application of RAG in Our Method

An indicator function is defined to map the predic-
tion of a Hard/Soft Knowledge Boundary model to
a real search decision:

k,if HK By(x(q, P,)) == true
or SKBy(xz(q, Ps)) > €

None,else

(6)

(g, k) =

(N
Then we can combine the decoding with or with-
out RAG stated in equation 1 into:

Yrb = Decg ¢(ylq,1(q, k)) (®)



Source # Samples Model Avg. Score + std.
Qw 1.82+ 1.17
InfoSeek 216000 DS 186+ 1.98
Qw 3.70+ 1.48
OK-VQA 9009 DS 4.924 0.47
QW 4.27+ 1.36
VQAv2.0 108000 DS 450+ 199
MMBench 4399 Qw 3.924 1.72
(en) DS 4.08+ 1.65
Qw 4.15+ 1.63
MME 2374 DS 4.15% 1.64

Table 1: Training set sources and statistics. Answers
are sampled from Qwen-VL-7B-Chat (QW) (Bai et al.,
2023) DeepSeek-VL-7B-Chat (DS) (Lu et al., 2024)
respectively. Scores are evaluated by Qwen-Max (Team,
2024)

3 Experiment

3.1 Setup

3.1.1 Training Data

With method stated in Sec. 2.2 and 2.3, we adopt In-
foSeek (Chen et al., 2023), OK-VQA (Marino et al.,
2019), VQAv2.0 (Goyal et al., 2017), MMBench
(Liu et al., 2025), and MME (Fu et al., 2023) to con-
struct the training set where we randomly sample
two subsets from InfoSeek and VQAvV2.0 respec-
tively due to their large sizes. Table 1 presents the
detailed sizes for each dataset we use along with the
average scores s. In our experiments s,, = 1 and
sc = 5. We adopt all these datasets to increase the
diversity of queries as much as possible. A detailed
description of each dataset is stated in Sec. A.2.

3.1.2 Test Data

As we aim to construct a model that can take vari-
ous input queries and make good judgments about
the knowledge boundary, we adopt held-out data to
evaluate the final VQA performance. We summa-
rize the overall RAG Effect on each data in Table 2
and a brief introduction as follows.

Life VQA We collect a set of VQA data from
people’s daily lives and extract the ones current
VLLMs do not perform well, which is used to ver-
ify whether our model decides to resort to RAG for
help. We will release this data along with the code
and name it Life VQA.

Private VQA is an internal dataset spanning
broad categories, including animals, plants, archi-
tecture, geographic locations, etc. Due to the com-
plexity of the backgrounds and the presence of

Test Data RAG Effect
Life VQA High
Private VQA Medium
Dyn-VQA High
NoCaps Low
Visual7W Low
Mix ?

Table 2: Test data property illustration that whether
RAG is helpful in answering the queries.

multiple objects, this collection poses a notable
challenge for advanced visual reasoning and un-
derstanding. This dataset will not be released for
now.

Dyn-VQA s released by Li et al. (2024) and
contains three types of questions: questions with
rapidly changing answers, questions requiring
multi-modal knowledge and multi-hop questions.
This dataset is a challenging one in our evaluation.
Gold query is annotated by Li et al. (2024) that
combines the text query and image to be used to
retrieve useful information.

NoCaps (Agrawal et al., 2019) is an open-
domain image captioning dataset derived from
Open Images (Krasin et al., 2017), focusing on
generating captions for a diverse array of objects
and scenes. We sample a subset of size 500.

Visual7W (Zhu et al., 2016) is a VQA dataset
containing images from COCO (Lin et al., 2014),
paired with seven types of questions (who, what,
when, where, how, why and which). It aims to
evaluate models’ abilities in object recognition and
deeper reasoning within visual contexts.

Mix is a composite dataset consisting of 100 sam-
ples from each of the aforementioned datasets. It
is designed to integrate the characteristics of each
dataset and simulate real-world scenarios. Thus the
effect of RAG on this dataset is mixed and hard to
predict intuitively.

3.1.3 Use of RAG

We aim not only to locate the queries that need
RAG to answer better but also adopt retrieval tech-
niques to verify the final VQA performance with
the search decision H K B, and SK B defined in
equations 6. We note that although there are var-
ious options for retrieval, such as text search and
image search, we do not design detailed methods



. No All  Prompt-

Dataset Metric RAG RAG based % HKB % SKB %0 Human %o
Life VQA LLM  30.00 40.70 33.89 12.75% 40.64 96.64% 36.78 61.74% | 39.33 71.14%
Acc. 17.80 36.11 21.38 12.75% 36.11 96.64% 29.44 61.74% | 33.36 71.14%
Private VQA LLM 2290 2435 24.95 14.80% 24.50 99.20% 22.89 67.80% | 2420 72.00%
v Acc. 16.26 18.40 17.26 14.80% 18.40 99.20% 17.35 67.80% 18.55  72.00%
Dyn-VQA ch LLM 19.16 38.95 19.70 6.38% 3794 95.66% 36.53 84.26% | 28.89 46.95%
y Acc. 23.41 43.06 24.37 6.38% 42771 95.66% 4097 84.26% | 33.13 46.95%
Dyn-VQA en LLM  21.60 34.93 23.51 14.13% 33.30 89.79% 32.06 76.08% | 2573 29.51%
y Acc. 25.64 41.87 27.58 14.13% 40.66 89.79% 38.51 76.08% | 30.83 29.51%
NoCaps LLM  50.13 30.37 50.13 0.00% 42.50 38.40% 50.13 0.00% 50.13 0.00%
P Acc. 40.50 30.72  40.50 0.00% 36.95 38.40% 40.50 0.00% 40.50 0.00%
Visual7TW LLM 5448 52.04 55.32 31.36% 52.95 3537% 5427 2.96% 54.53 0.52%
Acc. 4434 4494 4418 31.36% 4432 3537% 44.68 2.96% 44.34 0.52%
Mix LLM 3444 38.60 34.98 12.67% 39.59 76.83% 3993 49.33% | 38.29 38.33%
Acc. 26.13  32.39 27.23 12.67% 3273 76.83% 30.98 49.33% | 31.02 38.33%

Table 3: Main results of Qwen-VL-Chat. Scores are shown in columns except for the % ones. Metrics are evaluated
by Qwen-Max (LLM) and Token Accuracy (Acc.). Underlines mark the results that outperform three baseline “No
RAG”, “All RAG” and “Prompt-based” settings. Boldface marks the best results.

to determine the best option in this paper. Instead,
we directly use text search (Google) for Dyn-VQA
and image search (Bing) for the rest for better re-
trieval information quality towards answering the
question. We note that Dyn-VQA is a challenging
dataset that includes many samples of multi-hop
property, therefore we use the golden query Li et al.
(2024) have summarized for retrieving useful infor-
mation.

In the following sections, the “No RAG” set-
ting refers to the performance of only VLLMs and
no retrieval information is given, and “All RAG”
refers to always incorporating RAG. “Prompt-
based” refers to prompting the model that is sam-
pled to adopt RAG or not.

3.1.4 Base Models

When constructing the training set according to
the method stated in Sec. 2.2, we experiment with
Qwen-VL-7B-Chat and DeepSeek-VL-7B-Chat
that are used to be sampled 2 = 30 times and fine-
tuned according to Sec. 2.3 respectively. Refer to
Sec. A.3 for detailed training settings. Qwen-Max
is prompted to score the R predictions to get scores
s; where we adopt s, = 1 and s, = 5 referenced
from Liu (2022).

For Visual Question Answering, we first evalu-
ate the performance of the original models to be
sampled. In addition, we seek to validate whether
the identified knowledge boundary can function
as a surrogate boundary for other VLLMs since

constructing training datasets through sampling
(Sec. 2.3) on (larger) models can be prohibitively
expensive. We further validate the surrogate knowl-
edge boundary on the following VLLMs, Qwen-
VL-Max (Bai et al., 2023), Qwen-VL-2 (Wang
et al., 2024) and GPT4-o (Hurst et al., 2024), to
evaluate its potential for generalizing across differ-
ent VLLMs.

3.2 Main Results

We present our main results of Qwen-VL-7B-Chat
in Table 3 and result of DeepSeek-VL-7B-Chat in
Appendix A.4. In this section, we focus on the
results of Qwen.

Metrics LLM represents that the score is evalu-
ated by a text LLM, Qwen-Max, given the model
prediction and gold answer. Metrics Ace. refers
to token accuracy which involves determining the
proportion of tokens in the model’s predictions
that match the tokens in the gold answer. Both
Scores range from O to 100 and a higher score indi-
cates a higher performance. The % columns refer
to the ratio of data that our knowledge boundary
model predicts to lie beyond the VLLM’s knowl-
edge boundaries. The “Human” column represents
the corresponding statistics where the Knowledge
Boundary model is trained on the human-labeled
data mentioned in Sec. 3.1.1 and we deem it a ref-
erence result.

First, the results in the Mix row, which considers
all kinds of VQA queries in our setting and simu-



Metric: No All  Prompt-

LLM RAG RAG  based % HKB % SKB % Human %
Ds.-VL-Chat 25.54 4738  27.68 1275% 4691 96.64% 4121 61.74% | 41.61 71.14%
Life VOA Qwen-VL-Max 4326 56.38  45.97 12.75% 56.85 96.64% 53.86 61.74% | 5523 71.14%
Qwen-VL-2 4255 5443  46.28 12.75% 54.03 96.64% 52.28 61.74% | 5396 71.14%
GPT4-0 47.52 5547  48.26 12.75% 56.14 96.64% 54.83 61.74% | 5490 71.14%
Ds.-VL-Chat 23.01 27.06  23.89 14.80% 2694 99.20% 26.19 67.80% | 25.83  72.00%
Private VQA Qwen-VL-Max 3520 4190  38.30 14.80% 41.68 99.20% 40.45 67.80% | 43.18  72.00%
Qwen-VL-2 35.16 38.02  36.57 14.80% 37.84 99.20% 35.85 67.80% | 38.25  72.00%
GPT4-0 39.70 38.21 40.06 14.80% 37.85 99.20% 38.83 67.80% | 40.21  72.00%
Ds.-VL-Chat 21.62 44.10 2298 6.38% 4292 95.66% 40.99 84.26% | 34.24  46.95%
Dyn-VOA ch Qwen-VL-Max 3297 5124 3423 6.38% 50.86 95.66% 48.24 84.26% | 43.33  46.95%
¥ Qwen-VL-2 3278 50.74  34.02 6.38% 5048 95.66% 48.19 84.26% | 43.05 46.95%
GPT4-0 4191 56.31 42.53 6.38% 5631 95.66% 5449 84.26% | 48.95  46.95%
Ds.-VL-Chat 25.58 38.10  27.19 14.13% 36.86 89.79% 3632 76.08% | 29.44 29.51%
Dyn-VQA en Qwen-VL-Max 37.19 4398  38.32 14.13% 43.09 89.79% 42.78 76.08% | 39.48  29.51%
4 Qwen-VL-2 37.12 4420  37.17 14.13% 4247 89.79% 42.32 76.08% | 40.07 29.51%
GPT4-0 4541 5093 4524 14.13% 49.88 89.79% 48.75 76.08% | 47.14 29.51%
Ds.-VL-Chat 63.67 59.81 63.67 0.00% 6123 3840% 63.67 0.00% 63.67 0.00%
NoCaps Qwen-VL-Max 62.10 49.66  62.10 0.00% 57.09 38.40% 62.10 0.00% 62.10  0.00%
P Qwen-VL-2 62.10 4993  62.10 0.00% 5693 3840% 62.10 0.00% 62.10  0.00%
GPT4-0 6143 6398  61.43 0.00% 62.12 38.40% 6143 0.00% 61.43 0.00%
Ds.-VL-Chat 58.34 5729 5726  31.36% 57.85 3537% 58.13 2.96% 58.28 0.52%
Visual7TW Qwen-VL-Max 5837 55.51 62.11 31.36% 57.10 3537% 58.25 2.96% 5830  0.52%
Qwen-VL-2 58.16 54.41 62.19  31.36% 56.66 3537% 57.85 2.96% 58.02  0.52%
GPT4-0 5296 47.06 51.82  31.36% 50.87 3537% 52.89 2.96% 52.87 0.52%
Ds.-VL-Chat 3496 45.18 3571 12.67% 45.08 76.83% 4335 4933% | 4220 38.33%
Mix Qwen-VL-Max 46.54 4926  47.30 12.67% 50.64 76.83% 51.06 49.33% | 52.05 38.33%
Qwen-VL-2 46.36 47.89  47.46 12.67% 49.31 76.83% 49.29 49.33% | 51.41 38.33%
GPT4-0 5144 5290  50.57 12.67% 54.10 76.83% 52.97 4933% | 5527 38.33%

Table 4: Knowledge Boundary model (Qwen-VL-7B-Chat) as a surrogate boundary identifier for other VLLMs.

lates a real situation, show that our methods out-
perform all other baseline and reference settings.
Our H K B method lowers the retrieval demand
by 23.17%, and the SK B method lowers it by
50.67%.

Second, as shown by the % columns and the
RAG Effect we summarized in Table 2, our Knowl-
edge Boundary models succeed in predicting a high
ratio on test data when RAG can effectively aid in
answering the query, and it lowers the ratio for data
where the queries tend to fall within the knowledge
scope of a VLLM.

Third, on the first four datasets where RAG can
(greatly) enhance the VQA performance, we show
that with our H K B and S K B, the performance is
close to that achieved with the “All RAG” setting.
For example, with the SK B model, Qwen-VL-
Chat archives a 32.06 LLM score on the Dyn-VQA
(en) dataset with 76.08% RAG ratio, whereas the
“All RAG” setting achieves 34.93. With the H K B
model, Qwen-VL-Chat exceeds the “All RAG” set-
ting on Private VQA, even though we note that “All
RAG” is a strong setting on this data.

At last, on the NoCaps and Visual7W datasets
where VLLMs can perform well without RAG and
RAG tends to supply noise, our method can identify
a much lower search ratio. Specifically, the search
ratio from SK B is close to or equal to zero.

4 Analysis

In this section, we present three analytical exper-
iments. The first one shows the performance of
other VLLMs if we employ the identified knowl-
edge boundary as a surrogate. The second shows
how the RAG ratio and VQA performance are af-
fected by the threshold defined in the SK B vari-
ant. The third one presents the accuracy of VLLM
boundary identification on held-in data at training
time.

4.1 Surrogate Boundary for Other VLLMs

We assemble around 340 thousand VQA samples
from various domains discussed in Sec. 3.1.1. Sam-
pling each data thirty times is prohibitively expen-
sive for closed-source VLLMs. Although differ-
ent VLLMs intuitively possess varying scopes of
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Figure 3: Effect of €. The lighter dashed lines accordingly indicate the performance under each base model’s “No
RAG” setting. Knowledge Boundary model is Qwen-VL-7B-Chat.

knowledge, we believe that it is highly probable
that a significant portion of these scopes overlap.
For instance, queries regarding recently occurring
news events typically fall outside the knowledge
boundaries of any model. Thus, we conduct an
experiment that validates whether the identified
knowledge boundary can function as a surrogate
boundary for other VLLMs.

The experimental results with Qwen as a bound-
ary model are presented in Table 4 and Table 9.
The results with DeepSeek as a boundary model
are presented in Appendix A.5.

From Table 4 Mix row, Qwen-VL-Max, Qwen-
VL-2 and GPT4-o achieve better performance than
all three baseline settings. Deepseek-VL-7B-Chat
remains competitive to the “All RAG” setting with
LLM metric and outperforms all other settings in
Table 9 Mix row. For other datasets, we show
that the previously identified knowledge boundary
can help maintain the performance with a reduced
RAG ratio. For example, GPT4-o0 achieves 54.83
with only 61.74% RAG ratio while the “All RAG”
setting achieves 55.47 on the Life VQA dataset.
Deepseek-VL-7B-Chat maintains its performance
on the Dyn-VQA (en) dataset compared to the “All
RAG?” setting and keeps a clear margin compared
to the “No RAG” setting with a 23.92% retrieving
deduction.

4.2 Effect of ¢ for SK B

In Sec 3.2, we show the result of the S/ B method
with the least RAG ratio, i.e., € is set to maintain a
low tendency to resort to RAG. Here we show how
the overall VQA performance is affected by €. The
results of three datasets are illustrated in Fig. 3. The
leftmost point of the horizontal axis corresponds
to the “All RAG” setting (with € = s,,), while the
rightmost point represents the minimal search ratio.
Light-coloured dashed lines depict the “No RAG”
setting. For the left two data in Fig 3, where RAG
can greatly affect the performance, our methods
can maintain a clear margin between the “No RAG”
setting and obtain a relatively stable performance
with a decreased search ratio. For the Mix data
where all types of data are fused, our methods can
still lower the search ratio while maintaining, or
improving, the performance.

4.3 Efficiency

Our method incorporates an additional forward
pass for each VQA example for knowledge bound-
ary identification. We report the overall efficiency
in Table 5 on the Mix dataset, where the All RAG
setting always uses RAG (calls to search engine
included) and does not perform the forward pass,
and HK B/SK B refers to partially performing
RAG according to our model’s predictions with
forward-pass time included.



HKB  SKB

Model ANRAG oo (oo
. QW 598.13  427.85
Time (s) DS 61920 33661 32674
Improvement QW 3.40%  30.90%
(%) DS 37.56%  47.23%

Table 5: Efficiency illustration of Knowledge Boundary
model Qwen-VL-7B-Chat (QW) and DeepSeek-VL-
7B-Chat (DS). Time row shows the time spent before
generating the answer in the VQA task.

Model Fold Human-labeled Hard  Soft
Train 96.25 90.50 88.41
QW Val. - 91.16 88.96
DS Train 96.25 9391 92.10
Val - 93.76  92.11

Table 6: Training and validation results on the held-in
dataset. Metrics are shown in the accuracy defined in
swift package. We have a limited number of human-
labeled samples thus we do not set a validation set for
“Human-labeled” setting.

4.4 Performance of Knowledge Boundary
Identification on Held-In Data

The training results of the Knowledge Boundary
model are shown in Table 6. We show that by train-
ing Qwen-VL-7B-Chat (QW) and DeepSeek-VL-
7B-Chat (DS), they succeed in modeling the knowl-
edge boundary on held-in data we constructed ac-
cording to Sec. 2.3.

5 Related Work

5.1 Knowledge Boundary Study of Text LLM

As the LLMs are applied to a wider range of
fields, users expect them to perform well on any
query. However, inevitably, the knowledge embed-
ded within LLMs does not automatically update
over time, resulting in certain queries consistently
falling outside the model’s knowledge boundaries.
Some works study the Knowledge Boundaries of
text LLMs. A commonly used approach prompts
LLMs to output content like “I don’t know” (Li
et al., 2025; Cheng et al., 2024; Ren et al., 2023).
Alternatively, another approach is to construct a
dataset and perform Supervised Fine-Tuning (SFT)
(Zhang et al., 2024b; Cheng et al., 2024; Li et al.,
2025). Both aforementioned types of approaches
focus on making the models express “I know” or
“I don’t know”. Most aforementioned works find
that prompt-based methods are poorly performed.

We contend that this task is actually challenging
for two primary reasons. First, regarding whether
a model can itself articulate its own knowledge
boundaries, considerable debate persists in current
research. For example, Ren et al. (2023) states that
LLMs struggle to perceive their factual knowledge
boundary, and tend to be overconfident, however,
Cheng et al. (2024) conclude that the Al assistant
can, to a significant extent, identify what it does not
know. Second, it is difficult to verify the accuracy
of the predicted boundaries.

5.2 Retrieval-Augmented Generation

The RAG technique is widely adopted to help mod-
els answer certain queries needing external infor-
mation in both texts (Jeong et al., 2024; Chen et al.,
2024; Lewis et al., 2020) and image-text scenarios
(Lin and Byrne, 2022; Wu et al., 2022). However,
current RAG techniques are far from being per-
fect for enhancing (V)LLMs in all settings. For
example, Zhang et al. (2024b) finds that for math
reasoning and code questions, RAG usually brings
noise rather than useful information, and thus RAG
may even yield adverse effects. Therefore, more
effective utilization of RAG can not only result in
savings of time and computational resources but
also enhance performance in certain scenarios.

6 Conclusion

In this paper, we introduce a method with two
variants that fine-tunes VLLMs on automatically
constructed datasets for boundary identification.
This method mitigates the reliance on RAG tech-
niques, which introduce significant latency and
long input sequences. Our experiments across di-
verse held-out VQA datasets, including knowledge-
intensive, non-knowledge-intensive, and mixed
datasets, demonstrate that our method not only
maintains or enhances VLLM performance but also
lowers the RAG ratio. Additionally, the fine-tuned
knowledge boundary exhibits versatility by func-
tioning as a surrogate for other VLLM series, fa-
cilitating retrieval reduction without compromising
performance. These findings underscore the ef-
ficacy of our approach in optimizing the balance
between retrieval dependence and model perfor-
mance, paving the way for more efficient and ef-
fective deployment of VLLMs in practical applica-
tions.



7 Limitations

In this paper, we do not design detailed methods
to distinguish the search type, such as text search
and image search, towards answering a VQA sam-
ple. Experiments utilizing training data sampled
from larger VLLMs are currently lacking. Both
limitations will be addressed in our future work.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Harsh Agrawal, Karan Desai, Yufei Wang, Xinlei Chen,
Rishabh Jain, Mark Johnson, Dhruv Batra, Devi
Parikh, Stefan Lee, and Peter Anderson. 2019. No-
caps: Novel object captioning at scale. In Proceed-
ings of the IEEE/CVF international conference on
computer vision, pages 8948—-8957.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. 2023. Qwen-vl: A versatile
vision-language model for understanding, localiza-
tion, text reading, and beyond. arXiv preprint
arXiv:2308.12966.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading Wikipedia to answer open-
domain questions. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1870—1879,
Vancouver, Canada. Association for Computational
Linguistics.

Yang Chen, Hexiang Hu, Yi Luan, Haitian Sun, Soravit
Changpinyo, Alan Ritter, and Ming-Wei Chang. 2023.
Can pre-trained vision and language models answer
visual information-seeking questions? arXiv preprint
arXiv:2302.11713.

Zhuo Chen, Xinyu Wang, Yong Jiang, Pengjun Xie, Fei
Huang, and Kewei Tu. 2024. Improving retrieval aug-
mented open-domain question-answering with vec-
torized contexts. In Findings of the Association for
Computational Linguistics: ACL 2024, pages 7683—
7694, Bangkok, Thailand. Association for Computa-
tional Linguistics.

Qinyuan Cheng, Tianxiang Sun, Xiangyang Liu, Wen-
wei Zhang, Zhangyue Yin, Shimin Li, Linyang Li,
Zhengfu He, Kai Chen, and Xipeng Qiu. 2024. Can

ai assistants know what they don’t know? arXiv

preprint arXiv:2401.13275.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and
Dangi Chen. 2023. Adapting language models to
compress contexts. arXiv preprint 2305.14788.

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin,
Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu Zheng,
Ke Li, Xing Sun, et al. 2023. Mme: A comprehensive
evaluation benchmark for multimodal large language
models. arXiv preprint arXiv:2306.13394.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv
Batra, and Devi Parikh. 2017. Making the v in vqa
matter: Elevating the role of image understanding
in visual question answering. In Proceedings of the
IEEE conference on computer vision and pattern
recognition, pages 6904—6913.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. Gpt-4o0 system card. arXiv preprint
arXiv:2410.21276.

Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju
Hwang, and Jong C Park. 2024. Adaptive-rag: Learn-
ing to adapt retrieval-augmented large language mod-
els through question complexity. arXiv preprint
arXiv:2403.14403.

Ivan Krasin, Tom Duerig, Neil Alldrin, Vittorio Ferrari,
Sami Abu-El-Haija, Alina Kuznetsova, Hassan Rom,
Jasper Uijlings, Stefan Popov, Andreas Veit, Serge
Belongie, Victor Gomes, Abhinav Gupta, Chen Sun,
Gal Chechik, David Cai, Zheyun Feng, Dhyanesh
Narayanan, and Kevin Murphy. 2017. Openimages:
A public dataset for large-scale multi-label and multi-
class image classification. Dataset available from
https://github.com/openimages.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459-9474.

Yangning Li, Yinghui Li, Xinyu Wang, Yong Jiang,
Zhen Zhang, Xinran Zheng, Hui Wang, Hai-Tao
Zheng, Pengjun Xie, Philip S. Yu, Fei Huang, and
Jingren Zhou. 2024. Benchmarking multimodal
retrieval augmented generation with dynamic vqa
dataset and self-adaptive planning agent.

Yinghui Li, Haojing Huang, Jiayi Kuang, Yangning Li,
Shu-Yu Guo, Chao Qu, Xiaoyu Tan, Hai-Tao Zheng,
Ying Shen, and Philip S Yu. 2025. Refine knowledge
of large language models via adaptive contrastive
learning. arXiv preprint arXiv:2502.07184.


https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/2024.findings-acl.458
https://doi.org/10.18653/v1/2024.findings-acl.458
https://doi.org/10.18653/v1/2024.findings-acl.458
https://doi.org/10.18653/v1/2024.findings-acl.458
https://doi.org/10.18653/v1/2024.findings-acl.458
http://arxiv.org/abs/2411.02937
http://arxiv.org/abs/2411.02937
http://arxiv.org/abs/2411.02937
http://arxiv.org/abs/2411.02937
http://arxiv.org/abs/2411.02937

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollar,
and C Lawrence Zitnick. 2014. Microsoft coco:
Common objects in context. In Computer Vision—
ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pages 740-755. Springer.

Weizhe Lin and Bill Byrne. 2022. Retrieval augmented
visual question answering with outside knowledge.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
11238-11254, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Jerry Liu. 2022. Llamalndex.

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li,
Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi
Wang, Conghui He, Ziwei Liu, et al. 2025. Mm-
bench: Is your multi-modal model an all-around
player? In European Conference on Computer Vi-
sion, pages 216-233. Springer.

Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai
Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren, Zhu-
oshu Li, Hao Yang, Yaofeng Sun, Chengqi Deng,
Hanwei Xu, Zhenda Xie, and Chong Ruan. 2024.
Deepseek-vl: Towards real-world vision-language
understanding.

Kenneth Marino, Mohammad Rastegari, Ali Farhadi,
and Roozbeh Mottaghi. 2019. Ok-vqa: A visual ques-
tion answering benchmark requiring external knowl-
edge. In Proceedings of the IEEE/cvf conference
on computer vision and pattern recognition, pages

3195-3204.

Ruiyang Ren, Yuhao Wang, Yingqi Qu, Wayne Xin
Zhao, Jing Liu, Hao Tian, Hua Wu, Ji-Rong Wen,
and Haifeng Wang. 2023. Investigating the fac-
tual knowledge boundary of large language mod-
els with retrieval augmentation. arXiv preprint
arXiv:2307.11019.

Qwen Team. 2024. Introducing qwen1.5.

Hugo Touvron, Thibaut Lavril, Gautier [zacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei
Du, Xuancheng Ren, Rui Men, Dayiheng Liu, Chang
Zhou, Jingren Zhou, and Junyang Lin. 2024. Qwen2-
vl: Enhancing vision-language model’s perception
of the world at any resolution. arXiv preprint
arXiv:2409.12191.

Xinyu Wang, Yong Jiang, Nguyen Bach, Tao Wang,
Zhongqgiang Huang, Fei Huang, and Kewei Tu. 2021.
Improving Named Entity Recognition by External

10

Context Retrieving and Cooperative Learning. In the
Joint Conference of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (ACL-IJCNLP 2021). Association
for Computational Linguistics.

BigScience Workshop, Teven Le Scao, Angela Fan,
Christopher Akiki, Ellie Pavlick, Suzana Ili¢, Daniel
Hesslow, Roman Castagné, Alexandra Sasha Luc-
cioni, Francgois Yvon, et al. 2022. Bloom: A 176b-
parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100.

Jialin Wu, Jiasen Lu, Ashish Sabharwal, and Roozbeh
Mottaghi. 2022. Multi-modal answer validation
for knowledge-based vqa. In Proceedings of the
AAAI conference on artificial intelligence, volume 36,
pages 2712-2721.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng,
Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu
Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao
Yu, Ruibin Yuan, Renliang Sun, Ming Yin, Boyuan
Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang,
Huan Sun, Yu Su, and Wenhu Chen. 2024. Mmmu:
A massive multi-discipline multimodal understand-
ing and reasoning benchmark for expert agi. In Pro-
ceedings of CVPR.

Peitian Zhang, Zheng Liu, Shitao Xiao, Ninglu Shao,
Qiwei Ye, and Zhicheng Dou. 2024a. Long context
compression with activation beacon.

Zhen Zhang, Xinyu Wang, Yong Jiang, Zhuo Chen,
Feiteng Mu, Mengting Hu, Pengjun Xie, and Fei
Huang. 2024b. Exploring knowledge boundaries in
large language models for retrieval judgment. arXiv
preprint arXiv:2411.06207.

Yuke Zhu, Oliver Groth, Michael Bernstein, and Li Fei-
Fei. 2016. Visual7w: Grounded question answering
in images. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages
4995-5004.


https://doi.org/10.18653/v1/2022.emnlp-main.772
https://doi.org/10.18653/v1/2022.emnlp-main.772
https://doi.org/10.18653/v1/2022.emnlp-main.772
https://doi.org/10.5281/zenodo.1234
http://arxiv.org/abs/2403.05525
http://arxiv.org/abs/2403.05525
http://arxiv.org/abs/2403.05525
https://qwenlm.github.io/blog/qwen1.5/
http://arxiv.org/abs/2401.03462
http://arxiv.org/abs/2401.03462
http://arxiv.org/abs/2401.03462

A Appendix

A.1 Training Examples

Hard Knowledge Boundary Query q, together
with prompts P, (in blue)?, will be constructed into
a training sample x(q, P,) as follows:

You are an assistant capable of deciding
whether a search is needed in a multimodal
question-answering scenario. Below, I will
provide you with a multimodal question that
includes a text question and an image link.
Please respond with "true" or "false," indi-
cating whether a search is necessary (true) or
not (false) to answer this multimodal question.
<ST 1>

Text question: gy

<Image>: g;

<ST_2>

Soft Knowledge Boundary Query g, together
with prompts P (in blue), will be constructed into
a training sample x(q, Ps) as follows:

You are an assistant capable of deciding
whether a search is needed in a multimodal
question-answering scenario. Below, I will
provide you with a multimodal question that
includes a text question and an image link.
Please respond with a score ranging from 1.0
to 5.0 indicating whether a search is necessary
or not to answer this multimodal question.

Follow these guidelines for scoring:

- Your score has to be between 1.0 and 5.0,
where 1.0 stands for an unnecessary search
and 5.0 stands for a necessary search.

- The score does not have to be integer.
Example Response:

4.0

<ST 1>

Text question: g
<Image>: g;
<ST_2>

Your score:

“where <ST_*> means optional special tokens to specify
the position of g and indicate the output starting position after
<ST_2>. The detailed format of <ST_*> and <Image> tokens
might need to be modified according to different VL model
input formats.
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Base Model Qwen- & DeepSeek-VL-7B-Chat
LoRA QK V

LoRA Rank 8

LoRA Alpha 32

Learning Rate  le-4

Optimizer AdamW

LR Scheduler  Linear

Precision bf16

Batch Size 1

GPU NVIDIA A100-SXM4-80GB

Table 7: Detailed hyperparameters.

A.2 Training Dataset Description

Below is a brief description of each dataset (for
training).

InfoSeek is designed to assess the capability of
models to seek and incorporate external informa-
tion for question answering. It features a variety of
queries that necessitate fact retrieval and reasoning
that go beyond the provided context.

OK-VQA is a dataset where images are paired
with open-ended questions that require answers
stemming from general knowledge that extends
beyond the image alone.

VQAv2.0 is acomprehensive VQA dataset that
requires interpretation or understanding of the vi-
sual content. It features a diverse and balanced
range of answers.

MMBench is a benchmarking suite for evaluat-
ing multi-modal understanding, ensuring that multi-
modal machine learning systems can effectively
process and synthesize data from different sources.

MME is focused on tasks related to multi-modal
entity recognition and extraction. The dataset con-
tains annotations of text and images with multi-
modal entities that need to be identified or linked.

Human-Labeled A group of annotators is asked
to annotate whether RAG can help solve a VQA
sample. We construct this data to form a reference
setting.

A.3 Training Details and Hyperparameters

Recall that our methods need to train a VLLM,
parameterized by ¢, as a Knowledge Boundary
model discussed in Sec. 2.3. In experiments, we



. No All  Prompt-

Dataset Metric RAG RAG based % HKB % SKB %0 Human %o
Life VQA LLM 2581 47.35 33.36 30.20% 35.81 4631% 42.18 73.83% | 4721 96.64%
Acc. 10.82 36.79 20.84 30.20% 24.81 4631% 3193 73.83% | 36.79  96.64%
Private VOA LLM 2280 27.28 23.93 21.20% 2545 27.60% 26.03 56.40% | 27.08 88.20%
Acc. 15.51 19.75 16.38 21.20% 17.70 27.60% 17.75 56.40% 19.57  88.20%
Dyn-VQA ch LLM 2132 4420 25.63 12.48% 28.29 27.00% 37.81 79.10% | 43.54 97.42%
yn- M Ace. 20.74 4691 24.15 12.48% 28.07 27.00% 41.18 79.10% | 4623 97.42%
Dyn-VQA en LLM 2490 38.36 25.63 1273% 29.41 3357% 3231 60.56% | 37.77 96.78%
y Acc. 2437 43.28 26.51 12.73% 30.22 3357% 3549 60.56% | 43.01 96.78%
NoCaps LLM  63.10 59.39 62.95 2.00% 63.12 0.20% 61.40 3240% | 62.50 6.20%
P Acc. 43.89 40.45 43.62 2.00% 43.88 0.20% 4250 32.40% | 43.48 6.20%
Visual7TW LLM 5854 57.68 58.17 2.44% 5824 7.67% 58.16 10.98% | 56.98  54.70%
Acc. 46.55 46.62  46.40 2.44% 4627 7.67% 4655 10.98% | 46.18 54.70%
Mix LLM  35.07 4537 37.17 13.50% 39.38 25.00% 42.46 54.83% | 45.63 74.50%
Acc. 2581 35.23 28.11 13.50% 29.08 25.00% 33.23 54.83% | 35.83 74.50%

Table 8: Main results of DeepSeek-VL-7B-Chat.

adopt LoRA (Hu et al., 2021) to optimize ¢ and
the related hyperparameters are shown in Table 7.
We note that our method does not rely heavily on
tuning hyperparameters. We just choose intuitive
values and it works fairly well.

A.4 Main Results on DeepSeek

We present our main results of DeepSeek-VL-7B-
Chat in Table 8. For both the HK B and SK B
methods, DeepSeek performs more confidently
than Qwen, and it tends to predict a lower ratio of
resorting to RAG. On the Mix dataset, DeepSeek
also well maintains the performance with the SK B
method compared to the All RAG setting and
outperforms the Prompt-based method. In addi-
tion, compared to Qwen, DeepSeek better utilizes
human-labeled data to depict the knowledge bound-
ary and obtains the best result among all settings.

A.5 Supplementary Results of “Surrogate
Boundary” Experiments

We provide the supplementary experimental results
for Sec 4.1 where the token accuracy metrics are
shown in Table 9. It can be concluded that similar
conclusions can be drawn as in Sec 4.1. The exper-
iment where DeepSeek-VL-7B-Chat is trained for
surrogate boundary prediction is shown in Table 10
and 11.
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A.6 Supplementary Results on MMMU
Dataset

In this section, we show the experimental results
of our methods on a challenging dataset, MMMU?
(Yue et al., 2024) in Table 12. MMMU is a dataset
containing VQA samples demanding college-level
subject knowledge and deliberate reasoning, and it
is hard to verify the knowledge boundary that our
methods depict by simply adopting RAG.

The results in Table 12 show the Knowledge
Boundary model trained by human-labeled data
helps achieve the best performance. It verifies that
the aforementioned Human-labeled training data is
effective. In addition, we show that our methods
also exhibit substantial potential within this setting,
in which both the H K B and S K B models predict
a high search ratio over MMMU. We contend that
the suboptimal performance of this dataset arises
because it lies beyond the knowledge boundaries,
that are challenging to validate using RAG, as de-
lineated by the white dashed lines in Fig. 1. We
present the performance of each of the 30 subjects
in the MMMU validation set in Fig 4. The first row
shows the LLLM evaluation results and the second
shows the token accuracy metric. We can see that
in most subjects “Human” setting succeeds in ob-
taining a higher performance than both “All RAG”
and “No RAG” settings.

3We converted the dataset’s original multiple-choice for-
mat into a conventional VQA format to ensure consistency
with the aforementioned experimental settings.



Metric: No All Prompt-

Acc. RAG RAG  based % HKB % SKB % | Human %
Ds.-VL-Chat 10.82  36.79 14.12 12.75% 36.12 96.64% 30.97 61.74% | 30.50 71.14%
Life VQA Qwen-VL-Max 24.21 42.30 27.66 12.75% 41.96 96.64% 38.37 61.74% 38.20  71.14%
Qwen-VL-2 23.06 41.05 27.64 12.75% 40.71 96.64% 37.27 61.74% 37.05  71.14%
GPT4-0 31.72 4085  32.81 12.75% 40.85 96.64% 3847 61.74% | 41.88  71.14%
Ds.-VL-Chat 1551 19.75 16.65 14.80% 19.75 99.20% 1820 67.80% | 18.51  72.00%
Private VQA Qwen-VL-Max 2793 28.14 28.08 14.80% 2829 99.20% 27.68 67.80% 28.96  72.00%
Qwen-VL-2 27.69 30.72 2775 14.80% 30.87 99.20% 28.96 67.80% | 31.13  72.00%
GPT4-0 31.12 27.02  30.88 14.80% 26.87 99.20% 27.72 67.80% | 29.10  72.00%
Ds.-VL-Chat 20.74 4691 22.37 6.38% 46.05 95.66% 44.13 84.26% 33.60 46.95%
Dyn-VOA ch Qwen-VL-Max 31.53 46.73  33.53 6.38% 4638 95.66% 4482 84.26% | 39.79 46.95%
¥ Qwen-VL-2 31.52 46770  33.52 6.38% 4628 95.66% 44.69 84.26% | 39.85 46.95%
GPT4-0 36.46 51.27 37.32 6.38% 50.85 95.66% 494 84.26% | 42.45 46.95%
Ds.-VL-Chat 2437 43.28 26.80 14.13% 42.08 89.79% 40.61 76.08% 31.67 29.51%
Dyn-VOA en Qwen-VL-Max 37.54 4527  38.03 14.13% 4430 89.79% 43.55 76.08% | 39.40 29.51%
¥ Qwen-VL-2 37.37 45.16 37.25 14.13% 43.84 89.79% 43.48 76.08% | 40.66 29.51%
GPT4-0 43.33 49.71 42.40 14.13% 48.48 89.79% 47.66 76.08% | 45.07 29.51%
Ds.-VL-Chat 4389 4045  43.89 0.00% 42.76 38.40% 43.89 0.00% 4389  0.00%
NoCabs Qwen-VL-Max 37.47 3455 3747 0.00% 36.75 3840% 3747 0.00% 3747  0.00%
P Qwen-VL-2 37.26 34.61 37.26 0.00% 36.35 38.40% 37.26 0.00% 37.26 0.00%
GPT4-0 3212 3625 3212 0.00% 3322 3840% 32.12 0.00% 3212 0.00%
Ds.-VL-Chat 46.55 46.62  46.29  31.36% 46.03 3537% 46.58 2.96% 4655  0.52%
Visual7W Qwen-VL-Max 46.07 44.44 48.63 31.36% 45.16 3537% 46.13 2.96% 46.07 0.52%
Qwen-VL-2 4594 43.86 48.47 31.36% 45.06 3537% 4599 2.96% 45.94 0.52%
GPT4-0 4159 37.16  40.09 31.36% 3941 3537% 41.80 2.96% 4148  0.52%
Ds.-VL-Chat 2581 3523 2655 12.67% 35.38 76.83% 33.06 49.33% | 32.73 38.33%
Mix Qwen-VL-Max 32.35 34.78 33.00 12.67% 3548 76.83% 34.84 49.33% 35.51 38.33%
Qwen-VL-2 3259 3556 3327 12.67% 3629 76.83% 35.62 49.33% | 36.33 38.33%
GPT4-0 3452 3596  33.99 12.67% 3590 76.83% 35.86 49.33% | 3649 3833%

Table 9: Knowledge Boundary model (Qwen-VL-7B-Chat) as a surrogate boundary identifier for other VLLMs.

Results evaluated by token accuracy.
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Figure 4: Qwen-VL-Max and Qwen-VL-2 performance on MMMU validation set with Knowledge Boundary model

trained on Human-labeled data.
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Metric: No All  Prompt-

LLM RAG RAG  based % HKB % SKB % Human %
Qwen-VL-Chat 31.14 4285 33.62 30.20% 37.08 4631% 41.78 73.83% | 43.05 96.64%
Life VOA Qwen-VL-Max 44.09 56.64  46.51 30.20% 48.59 4631% 54.16 73.83% | 56.51  96.64%
Qwen-VL-2 4295 5423 4500 30.20% 48.66 46.31% 53.36 73.83% | 5423  96.64%
GPT4-0 4745 5638  53.15  30.20% 54.16 4631% 5537 73.83% | 56.11  96.64%
Qwen-VL-Chat 2445 26.16 2521 21.20% 2535 27.60% 26.08 56.40% | 26.01 88.20%
Private VQA Qwen-VL-Max 36.84 4297 3645 21.20% 39.16 27.60% 4226 56.40% | 43.73  88.20%
Qwen-VL-2 36.76 3820  36.65 21.20% 3852 27.60% 39.37 56.40% | 39.03 88.20%
GPT4-0 40.13 3872  39.15  21.20% 40.59 27.60% 40.76 56.40% | 39.56  88.20%
Qwen-VL-Chat 37.73 44.68  38.44 1248% 4031 27.00% 39.63 79.10% | 43.85 97.42%
Dyn-VOA ch Qwen-VL-Max 32.67 50.85 35.11 12.48% 3720 27.00% 46.62 79.10% | 50.32 97.42%
¥ Qwen-VL-2 4595 5091 46.33 12.48% 48.03 27.00% 46.42 79.10% | 50.13  97.42%
GPT4-0 42.10 56.51 44.55 12.48% 44.80 27.00% 51.99 79.10% | 56.23 97.42%
Qwen-VL-Chat 22.07 3523  23.58 12.73% 2691 33.57% 30.06 60.56% | 3427 96.78%
Dyn-VOA en Qwen-VL-Max 1941 3990 2286 12.73% 2471 33.57% 36.01 60.56% | 39.44  96.78%
¥ Qwen-VL-2 3790 4429  38.58 12.73% 40.45 33.57% 40.11 60.56% | 43.58 96.78%
GPT4-0 3273 51.17 3525 12.73% 3736 33.57% 47.15 60.56% | 50.65 96.78%
Qwen-VL-Chat 50.46 30.41 50.00 2.00% 5048 0.20% 4443 32.40% | 49.48 6.20%
NoCaps Qwen-VL-Max 62.04 49.63  61.82 2.00% 6192 020% 57.63 3240% | 61.16 6.20%
P Qwen-VL-2 61.88 49.84  61.66 2.00% 61.78 0.20% 57.44 32.40% | 60.92 6.20%
GPT4-0 61.58 64.51 61.68 2.00% 6156 020% 62.00 32.40% | 61.68 6.20%
Qwen-VL-Chat 55.53 54.52 5545 244% 5576 7.67% 5531 10.98% | 55.01 54.70%
Visual7TW Qwen-VL-Max 61.72 58.16  61.59 244% 6127 7.67% 61.08 10.98% | 59.04 54.70%
Qwen-VL-2 61.81 58.07 61.58 244% 6125 7.67% 6123 1098% | 58.78  54.70%
GPT4-0 53.34 4744  53.30 244% 5271  7.67% 5270 10.98% | 49.97  54.70%
Qwen-VL-Chat 34.58 39.03 3554 13.50% 37.12 25.00% 39.76 54.83% | 42.61  74.50%
Mix Qwen-VL-Max 46.13 49.02  46.47 13.50% 47.43 25.00% 4898 54.83% | 5139  74.50%
Qwen-VL-2 4626 47.84  46.64 13.50% 48.17 25.00% 48.55 54.83% | 50.13  74.50%
GPT4-0 5121 5270 5181 13.50% 5228 25.00% 52.04 54.83% | 5342  74.50%

Table 10: Knowledge Boundary model (DeepSeek-VL-7B-Chat) as a surrogate boundary identifier for other VLLMs.
Results evaluated by LLM.

14



Metric: No All  Prompt-

Acc. RAG RAG based % HKB % SKB % Human %
Qwen-VL-Chat 17.80 36.11 23.68 30.20% 28.05 46.31% 3443 73.83% | 36.78 96.64%
Life VQA Qwen-VL-Max 2542 42.30 30.09 30.20% 32.83 46.31% 3838 73.83% | 42.07 96.64%
Qwen-VL-2 2529 41.05 29.77 30.20% 33.75 46.31% 3848 73.83% | 40.83 96.64%
GPT4-0 31.72 40.85 36.49 30.20% 38.53 46.31% 40.01 73.83% | 42.19 96.64%
Qwen-VL-Chat 16.26 18.40 17.28 21.20% 18.11 27.60% 18.34 56.40% | 18.90 88.20%
Private VQA Qwen-VL-Max 27.12 28.14  26.77 21.20% 27.94 27.60% 28.18 56.40% | 2831 88.20%
Qwen-VL-2 27.04 30.72 2789  21.20% 28.78 27.60% 29.94 56.40% | 3095 88.20%
GPT4-0 31.12 27.02  29.74  21.20% 30.78 27.60% 29.73 56.40% | 28.24  88.20%
Qwen-VL-Chat 37.37 45.16 38.25 12.48% 39.83 27.00% 39.37 79.10% | 44.84 97.42%
Dyn-VOA ch Qwen-VL-Max 31.66 46.70 34.29 12.48% 35.11 27.00% 42.80 79.10% | 4635 97.42%
y Qwen-VL-2 43.33  49.71 43.68 12.48% 4547 27.00% 45.17 79.10% | 49.28 97.42%
GPT4-0 3646 51.27 38.75 12.48% 39.78 27.00% 4696 79.10% | 51.13 97.42%
Qwen-VL-Chat 25.64 41.87 27.33 12.73% 31.66 33.57% 35.00 60.56% | 41.63  96.78%
Dyn-VOA en Qwen-VL-Max 23.41 43.06 26.81 12.73% 29.04 33.57% 39.36 60.56% | 42.57 96.78%
y Qwen-VL-2 37.54 4527 37.52 12.73% 40.05 33.57% 40.50 60.56% | 44.95 96.78%
GPT4-0 31.66 46.73 34.25 12.73% 34.93 33.57% 4296 60.56% | 46.39 96.78%
Qwen-VL-Chat 40.50 30.72  40.39 2.00% 4049 020% 37.88 32.40% | 39.92 6.20%
NoCans Qwen-VL-Max 37.47 34.55 37.44 2.00% 3742 020% 36.47 32.40% | 37.22 6.20%
P Qwen-VL-2 37.26 34.61 37.30 2.00% 3721 020% 36.21 32.40% | 37.04 6.20%
GPT4-0 32.12 36.25 32.23 2.00% 32.12 020% 3296 32.40% | 32.35 6.20%
Qwen-VL-Chat 44.34 4494  44.26 244% 44.64 7.67% 4486 10.98% | 45.11 54.70%
Visual7TW Qwen-VL-Max 49.41 45.13 49.39 244% 4928 7.67% 48.13 10.98% | 46.04 54.70%
Qwen-VL-2 49.71 44.19  49.48 244% 49.58 7.67% 48.43 10.98% | 4551 54.70%
GPT4-0 41.59 37.16 41.76 244% 4096 7.67% 4091 10.98% | 39.10 54.70%
Qwen-VL-Chat 26.13 3239  28.00 13.50% 29.55 25.00% 3246 54.83% | 34.06 74.50%
Mix Qwen-VL-Max 3235 34.78 3291 13.50% 33.17 25.00% 35.12 54.83% | 3596 74.50%
Qwen-VL-2 3245 35.56 33.51 13.50% 33.86 25.00% 35.88 54.83% | 36.63 74.50%
GPT4-0 3452 35.96 35.17 13.50% 35.77 25.00% 35.86 54.83% | 36.24  74.50%

Table 11: Knowledge Boundary model (DeepSeek-VL-7B-Chat) as a surrogate boundary identifier for other VLLMs.
Results evaluated by token accuracy.

No RAG All RAG Human % HKB % SKB %

Qwen-VL-Chat  20.12 20.28 2124 6.88% 2035 97.08% 20.18 61.26%
Qwen-VL-Max  51.33 41.37 52.67 6.88% 4146 97.08% 44.40 61.26%
Qwen-VL-2 51.45 42.39 5193 6.88% 4254 97.08% 45.61 61.26%
GPT4-0 56.60 56.64 5736 6.88% 5692 97.08% 5691 61.26%

MMMU

Table 12: Results evaluated by LLM on MMMU validation set.
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