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Abstract

Despite the advancements made in Visual001
Large Language Models (VLLMs), like text002
Large Language Models (LLMs), they have003
limitations in addressing questions that re-004
quire real-time information or are knowledge-005
intensive. Indiscriminately adopting Retrieval006
Augmented Generation (RAG) techniques is007
an effective yet expensive way to enable mod-008
els to answer queries beyond their knowledge009
scopes. To mitigate the dependence on retrieval010
and simultaneously maintain, or even improve,011
the performance benefits provided by retrieval,012
we propose a method to detect the knowledge013
boundary of VLLMs, allowing for more effi-014
cient use of techniques like RAG. Specifically,015
we propose a method with two variants that fine-016
tunes a VLLM on an automatically constructed017
dataset for boundary identification. Experimen-018
tal results on various types of Visual Question019
Answering datasets show that our method suc-020
cessfully depicts a VLLM’s knowledge bound-021
ary based on which we are able to reduce in-022
discriminate retrieval while maintaining or im-023
proving the performance. In addition, we show024
that the knowledge boundary identified by our025
method for one VLLM can be used as a surro-026
gate boundary for other VLLMs. Code will be027
released at https://code.github.com028

1 Introduction029

The great advancements in language models have030

led to the integration of image encoding and un-031

derstanding capabilities (Achiam et al., 2023; Lu032

et al., 2024; Wang et al., 2024), significantly en-033

hancing the performance of a series of pre-trained034

Visual Large Language Models (VLLMs) in tasks035

involving Visual Question Answering (VQA). De-036

spite these advancements, akin to text Large Lan-037

guage Models (LLMs) (Touvron et al., 2023; Work-038

shop et al., 2022; Brown et al., 2020; Zhang et al.,039

2024b), VLLMs remain constrained by the bound-040

aries of their knowledge (Lin and Byrne, 2022).041

As a result, their ability to accurately respond to042
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Figure 1: VLLMs Knowledge Boundary concept. The
black part represents all the knowledge humans have ex-
plored, and the orange and green parts represent knowl-
edge possessed by VLLMs and knowledge that can
be retrieved from external sources respectively. They
overlap in some areas and the boundary between them
remains unclear. The overall knowledge boundary of
VLLMs can be differentiated into two parts that overlap
with knowledge between RAG and world knowledge.
Our method aims to identify both, and we conduct ex-
periments to validate the potential VQA performance
improvements using RAG.

content outside the model’s knowledge scope, such 043

as knowledge-intensive questions, real-time news, 044

and queries with dynamic answers, is considerably 045

limited. 046

Some works study the knowledge boundary of 047

text LLMs (Li et al., 2025; Cheng et al., 2024; 048

Zhang et al., 2024b; Ren et al., 2023) via prompt- 049

based or SFT-based methods. As of yet, there has 050

been little research on the methodology for de- 051

termining the knowledge boundaries of VLLMs. 052

In practical applications, to answer VQA queries 053

outside its knowledge scope, indiscriminately em- 054

ploying Retrieval Augmented Generation (RAG) 055

techniques is often a viable solution. Although this 056

approach has been proven to enhance the (V)LLMs’ 057

performance (Wang et al., 2021; Lewis et al., 2020; 058

Chen et al., 2017), the comprehensive reliance on 059

retrieval methods incurs significant latency due to 060

the retrieval steps and the introduction of exces- 061
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sively long inputs (Chevalier et al., 2023; Zhang062

et al., 2024a; Chen et al., 2024).063

To mitigate the dependence on retrieval for an-064

swering questions and simultaneously maintain,065

or improve, the performance benefits provided by066

retrieval, we aim to develop a method that can de-067

pict the knowledge boundary of a VLLM. In this068

paper, we employ a method with two variants to069

delineate the knowledge boundaries of a VLLM by070

fine-tuning a VLLM on data constructed based on071

sampling the responses of the VLLM.072

With the ability to depict the knowledge bound-073

ary of a VLLM, we then adopt RAG techniques074

to validate the accuracy of the identified bound-075

ary in various held-out datasets. We conduct ex-076

periments using a variety of VQA datasets, in-077

cluding three knowledge-intensive datasets, two078

non-knowledge-intensive datasets, and one mixed079

dataset. After determining whether a query falls080

within the knowledge boundary, we use RAG to081

assess the potential improvements the retrieved in-082

formation provides to the queries falling out of the083

knowledge boundary. Our experimental results re-084

veal that on a mixed dataset, which contains both085

non-knowledge-intensive and knowledge-intensive086

queries simulating real situations, our method out-087

performs the indiscriminative use of RAG (de-088

noted “All RAG”) and prompt-based baseline with089

50.67% retrieval reduction. The fine-tuned knowl-090

edge boundary model lowers the retrieving ratio091

on less knowledge-intensive data and obtains close092

or even better performance compared to the “All093

RAG” setting. Besides, we show that the fine-tuned094

VLLM for boundary identification for one VLLM095

can be used as a surrogate boundary identifier for096

other VLLMs.097

To sum up, our contributions are as follows:098

1. We propose a method with two variants that099

detects the knowledge boundary of a VLLM.100

2. Experimental results show that we maintain, or101

even improve, the performance of the VLLM102

on various types of data while lowering the ra-103

tio of using RAG, and our method outperforms104

the “All RAG” setting and other baselines on a105

dataset simulating real situations.106

3. We show that the knowledge boundary for one107

VLLM can be used as a surrogate boundary for108

other VLLMs, to reduce retrieval while main-109

taining or improving the performance.110

2 Method 111

We propose a method with two variants that fine- 112

tunes a VLLM, which can depict the hard or soft 113

knowledge boundary of VLLMs. The proposed 114

method relies only on (V)LLMs and does not re- 115

quire manual annotation. In the following sections, 116

we first introduce the background and necessary 117

notations. Then we give details on constructing 118

two types of datasets for fine-tuning a VLLM for 119

knowledge boundary approximation. 120

2.1 Background 121

Consider a Visual Question Answering query q 122

with gold text answer a, where q contains image(s) 123

qi and a text query qt. Also, contexts k related to 124

q can be retrieved from a given corpus, where k 125

can refer to the collection of both texts and images. 126

Given a VL model, parameterized by θ, we can 127

answer the query with or without RAG by running 128

decoding (Dec) on the model: 129

yn = Decθ(y|q)
yr = Decθ(y|q,k)

(1) 130

where k might also contain prompts connecting 131

related content and it is omitted here for simplicity. 132

It is acknowledged that VLLMs have a limited 133

knowledge scope (Lin and Byrne, 2022; Wu et al., 134

2022), denoted as S, and the boundary is a rather 135

vague concept and is hard to depict accurately. 136

2.2 Sampling 137

To approximate whether a query q should lie in 138

VLLMs’ knowledge scope S, we run repeated sam- 139

pling of a VLLM and collect its outputs. The sam- 140

pling methods include but are not limited to, top-p 141

sampling and top-k sampling. These sampling- 142

based methods are widely adopted to study the 143

model’s knowledge boundary problems (Li et al., 144

2025; Zhang et al., 2024b; Cheng et al., 2024). By 145

running R times sampling, we obtain R outputs 146

given query q: 147

y(i) = Decθ(y|q), i ∈ {1, 2, ..., R} (2) 148

After obtaining the R predictions, a text LLM is 149

prompted1 to evaluate each prediction y(i) where 150

the gold answer is also given. Subsequently a score 151

si ∈ [sw, sc] is provided by this text LLM. We 152

define the score range within sw and sc, where 153

1The prompt is referenced from Liu (2022). Please refer
to our code for a detailed definition.
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In what year did humans 

first land on this planet?

Use RAG:

In what year did humans first 

land on this planet?

VLLM

…

Human never …

According to 
my limited …

In 1971, the 
Soviet … 

Sorry, …

LLM/...
score: 1 -- 5

Avg.: 4.1
Hard

Soft
VLLM

Train /
Inference

…

Use RAG: 1.9

Use RAG: False

1.9

False

Figure 2: Method illustration of training a Knowledge Boundary model.

sc indicates a perfectly correct answer and sw in-154

dicates a wrong answer. Then an average score155

is calculated over R scores, indicating the overall156

performance of this query:157

s = mean(si), i ∈ {1, 2, ..., R} (3)158

and we note that s is also ∈ [sw, sc].159

2.3 Training160

The score s is used to construct the knowledge161

boundary training data. We differentiate our162

method into two variants. A VLLM is adopted163

to train on the knowledge boundary training data.164

We denote the parameters by ϕ.165

Hard Knowledge Boundary By setting a thresh-166

old ϵ, we deem the queries with score s ≥ ϵ inside167

the knowledge boundary S and the rest outside S.168

The query q, together with proper prompts Ph, will169

be constructed into a training sample x(q, Ph) as170

shown in Sec. A.1. For any x(q, Ph) in the training171

dataset, we define the training objective Jh w.r.t. ϕ172

as follows:173

Jh(ϕ) = −
∑

x(q,Ph):q/∈S

logPϕ(“True”|x(q, Ph))

−
∑

x(q,Ph):q∈S

logPϕ(“False”|x(q, Ph))

(4)174

where Pϕ(a|b) stands for the probability model ϕ175

predicts on a given input b. ϕ is optimized by176

minimizing Jh(ϕ).177

Soft Knowledge Boundary Setting a threshold178

to binarily classify the queries might be an overly179

rigid method and there is no room for adjustment180

when the knowledge boundary model performs181

poorly in possibly unseen scenarios unless we ad-182

just ϵ and retrain the model. Thus, we also propose183

a method that can depict a softer boundary. Recall 184

that for query q, the average score s over R model 185

predictions ranges in [sw, sc], where sw indicates a 186

wrong answer and sc indicates a correct one. We 187

linearly flip the score, for example, the new score 188

s
′
= sw represents a strong tendency for external 189

knowledge while s
′
= sc represents a refusal to 190

external knowledge. 191

The query q, together with prompts Ps, will 192

be constructed into a training sample x(q, Ps) as 193

shown in Sec. A.1. For any x(q, Ps) in the training 194

dataset, we define the training objective as follows: 195

Js(ϕ) = −
∑

x(q,Ps)

logPϕ(s
′ |x(q, Ps)) (5) 196

where ϕ is optimized by minimizing Js(ϕ). 197

By optimizing objective 4, we get a Hard Knowl- 198

edge Boundary model HKBϕ that can take a 199

VQA sample and predict a binary output “True” 200

or “False” indicating whether the RAG technique 201

can help solve this query. Similarly, a Soft Knowl- 202

edge Boundary model SKBϕ that can predict a 203

soft score, ranging from sw to sc, is trained by 204

optimizing objective 5: 205

HKBϕ(x(q, Ph)) = True / False

SKBϕ(x(q, Ps)) ∈ [sw, sc]
(6) 206

2.4 Application of RAG in Our Method 207

An indicator function is defined to map the predic- 208

tion of a Hard/Soft Knowledge Boundary model to 209

a real search decision: 210

I(q,k) =


k, if HKBϕ(x(q, Ph)) == true

or SKBϕ(x(q, Ps)) ≥ ϵ

None, else
(7) 211

Then we can combine the decoding with or with- 212

out RAG stated in equation 1 into: 213

ykb = Decθ,ϕ(y|q, I(q,k)) (8) 214
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Source # Samples Model Avg. Score ± std.

InfoSeek 216000
QW 1.82± 1.17

DS 1.86± 1.28

OK-VQA 9009
QW 3.70± 1.48

DS 4.92± 0.47

VQAv2.0 108000
QW 4.27± 1.36

DS 4.50± 1.22

MMBench
(en) 4329

QW 3.92± 1.72

DS 4.08± 1.65

MME 2374
QW 4.15± 1.63

DS 4.15± 1.64

Table 1: Training set sources and statistics. Answers
are sampled from Qwen-VL-7B-Chat (QW) (Bai et al.,
2023) DeepSeek-VL-7B-Chat (DS) (Lu et al., 2024)
respectively. Scores are evaluated by Qwen-Max (Team,
2024)

3 Experiment215

3.1 Setup216

3.1.1 Training Data217

With method stated in Sec. 2.2 and 2.3, we adopt In-218

foSeek (Chen et al., 2023), OK-VQA (Marino et al.,219

2019), VQAv2.0 (Goyal et al., 2017), MMBench220

(Liu et al., 2025), and MME (Fu et al., 2023) to con-221

struct the training set where we randomly sample222

two subsets from InfoSeek and VQAv2.0 respec-223

tively due to their large sizes. Table 1 presents the224

detailed sizes for each dataset we use along with the225

average scores s. In our experiments sw = 1 and226

sc = 5. We adopt all these datasets to increase the227

diversity of queries as much as possible. A detailed228

description of each dataset is stated in Sec. A.2.229

3.1.2 Test Data230

As we aim to construct a model that can take vari-231

ous input queries and make good judgments about232

the knowledge boundary, we adopt held-out data to233

evaluate the final VQA performance. We summa-234

rize the overall RAG Effect on each data in Table 2235

and a brief introduction as follows.236

Life VQA We collect a set of VQA data from237

people’s daily lives and extract the ones current238

VLLMs do not perform well, which is used to ver-239

ify whether our model decides to resort to RAG for240

help. We will release this data along with the code241

and name it Life VQA.242

Private VQA is an internal dataset spanning243

broad categories, including animals, plants, archi-244

tecture, geographic locations, etc. Due to the com-245

plexity of the backgrounds and the presence of246

Test Data RAG Effect

Life VQA High

Private VQA Medium

Dyn-VQA High

NoCaps Low

Visual7W Low

Mix ?

Table 2: Test data property illustration that whether
RAG is helpful in answering the queries.

multiple objects, this collection poses a notable 247

challenge for advanced visual reasoning and un- 248

derstanding. This dataset will not be released for 249

now. 250

Dyn-VQA is released by Li et al. (2024) and 251

contains three types of questions: questions with 252

rapidly changing answers, questions requiring 253

multi-modal knowledge and multi-hop questions. 254

This dataset is a challenging one in our evaluation. 255

Gold query is annotated by Li et al. (2024) that 256

combines the text query and image to be used to 257

retrieve useful information. 258

NoCaps (Agrawal et al., 2019) is an open- 259

domain image captioning dataset derived from 260

Open Images (Krasin et al., 2017), focusing on 261

generating captions for a diverse array of objects 262

and scenes. We sample a subset of size 500. 263

Visual7W (Zhu et al., 2016) is a VQA dataset 264

containing images from COCO (Lin et al., 2014), 265

paired with seven types of questions (who, what, 266

when, where, how, why and which). It aims to 267

evaluate models’ abilities in object recognition and 268

deeper reasoning within visual contexts. 269

Mix is a composite dataset consisting of 100 sam- 270

ples from each of the aforementioned datasets. It 271

is designed to integrate the characteristics of each 272

dataset and simulate real-world scenarios. Thus the 273

effect of RAG on this dataset is mixed and hard to 274

predict intuitively. 275

3.1.3 Use of RAG 276

We aim not only to locate the queries that need 277

RAG to answer better but also adopt retrieval tech- 278

niques to verify the final VQA performance with 279

the search decision HKBϕ and SKBϕ defined in 280

equations 6. We note that although there are var- 281

ious options for retrieval, such as text search and 282

image search, we do not design detailed methods 283
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Dataset Metric No
RAG

All
RAG

Prompt-
based % HKB % SKB % Human %

Life VQA LLM 30.00 40.70 33.89 12.75% 40.64 96.64% 36.78 61.74% 39.33 71.14%
Acc. 17.80 36.11 21.38 12.75% 36.11 96.64% 29.44 61.74% 33.36 71.14%

Private VQA LLM 22.90 24.35 24.95 14.80% 24.50 99.20% 22.89 67.80% 24.20 72.00%
Acc. 16.26 18.40 17.26 14.80% 18.40 99.20% 17.35 67.80% 18.55 72.00%

Dyn-VQA ch LLM 19.16 38.95 19.70 6.38% 37.94 95.66% 36.53 84.26% 28.89 46.95%
Acc. 23.41 43.06 24.37 6.38% 42.71 95.66% 40.97 84.26% 33.13 46.95%

Dyn-VQA en LLM 21.60 34.93 23.51 14.13% 33.30 89.79% 32.06 76.08% 25.73 29.51%
Acc. 25.64 41.87 27.58 14.13% 40.66 89.79% 38.51 76.08% 30.83 29.51%

NoCaps LLM 50.13 30.37 50.13 0.00% 42.50 38.40% 50.13 0.00% 50.13 0.00%
Acc. 40.50 30.72 40.50 0.00% 36.95 38.40% 40.50 0.00% 40.50 0.00%

Visual7W LLM 54.48 52.04 55.32 31.36% 52.95 35.37% 54.27 2.96% 54.53 0.52%
Acc. 44.34 44.94 44.18 31.36% 44.32 35.37% 44.68 2.96% 44.34 0.52%

Mix LLM 34.44 38.60 34.98 12.67% 39.59 76.83% 39.93 49.33% 38.29 38.33%
Acc. 26.13 32.39 27.23 12.67% 32.73 76.83% 30.98 49.33% 31.02 38.33%

Table 3: Main results of Qwen-VL-Chat. Scores are shown in columns except for the % ones. Metrics are evaluated
by Qwen-Max (LLM) and Token Accuracy (Acc.). Underlines mark the results that outperform three baseline “No
RAG”, “All RAG” and “Prompt-based” settings. Boldface marks the best results.

to determine the best option in this paper. Instead,284

we directly use text search (Google) for Dyn-VQA285

and image search (Bing) for the rest for better re-286

trieval information quality towards answering the287

question. We note that Dyn-VQA is a challenging288

dataset that includes many samples of multi-hop289

property, therefore we use the golden query Li et al.290

(2024) have summarized for retrieving useful infor-291

mation.292

In the following sections, the “No RAG” set-293

ting refers to the performance of only VLLMs and294

no retrieval information is given, and “All RAG”295

refers to always incorporating RAG. “Prompt-296

based” refers to prompting the model that is sam-297

pled to adopt RAG or not.298

3.1.4 Base Models299

When constructing the training set according to300

the method stated in Sec. 2.2, we experiment with301

Qwen-VL-7B-Chat and DeepSeek-VL-7B-Chat302

that are used to be sampled R = 30 times and fine-303

tuned according to Sec. 2.3 respectively. Refer to304

Sec. A.3 for detailed training settings. Qwen-Max305

is prompted to score the R predictions to get scores306

si where we adopt sw = 1 and sc = 5 referenced307

from Liu (2022).308

For Visual Question Answering, we first evalu-309

ate the performance of the original models to be310

sampled. In addition, we seek to validate whether311

the identified knowledge boundary can function312

as a surrogate boundary for other VLLMs since313

constructing training datasets through sampling 314

(Sec. 2.3) on (larger) models can be prohibitively 315

expensive. We further validate the surrogate knowl- 316

edge boundary on the following VLLMs, Qwen- 317

VL-Max (Bai et al., 2023), Qwen-VL-2 (Wang 318

et al., 2024) and GPT4-o (Hurst et al., 2024), to 319

evaluate its potential for generalizing across differ- 320

ent VLLMs. 321

3.2 Main Results 322

We present our main results of Qwen-VL-7B-Chat 323

in Table 3 and result of DeepSeek-VL-7B-Chat in 324

Appendix A.4. In this section, we focus on the 325

results of Qwen. 326

Metrics LLM represents that the score is evalu- 327

ated by a text LLM, Qwen-Max, given the model 328

prediction and gold answer. Metrics Acc. refers 329

to token accuracy which involves determining the 330

proportion of tokens in the model’s predictions 331

that match the tokens in the gold answer. Both 332

Scores range from 0 to 100 and a higher score indi- 333

cates a higher performance. The % columns refer 334

to the ratio of data that our knowledge boundary 335

model predicts to lie beyond the VLLM’s knowl- 336

edge boundaries. The “Human” column represents 337

the corresponding statistics where the Knowledge 338

Boundary model is trained on the human-labeled 339

data mentioned in Sec. 3.1.1 and we deem it a ref- 340

erence result. 341

First, the results in the Mix row, which considers 342

all kinds of VQA queries in our setting and simu- 343
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Metric:
LLM

No
RAG

All
RAG

Prompt-
based % HKB % SKB % Human %

Life VQA

Ds.-VL-Chat 25.54 47.38 27.68 12.75% 46.91 96.64% 41.21 61.74% 41.61 71.14%
Qwen-VL-Max 43.26 56.38 45.97 12.75% 56.85 96.64% 53.86 61.74% 55.23 71.14%
Qwen-VL-2 42.55 54.43 46.28 12.75% 54.03 96.64% 52.28 61.74% 53.96 71.14%
GPT4-o 47.52 55.47 48.26 12.75% 56.14 96.64% 54.83 61.74% 54.90 71.14%

Private VQA

Ds.-VL-Chat 23.01 27.06 23.89 14.80% 26.94 99.20% 26.19 67.80% 25.83 72.00%
Qwen-VL-Max 35.20 41.90 38.30 14.80% 41.68 99.20% 40.45 67.80% 43.18 72.00%
Qwen-VL-2 35.16 38.02 36.57 14.80% 37.84 99.20% 35.85 67.80% 38.25 72.00%
GPT4-o 39.70 38.21 40.06 14.80% 37.85 99.20% 38.83 67.80% 40.21 72.00%

Dyn-VQA ch

Ds.-VL-Chat 21.62 44.10 22.98 6.38% 42.92 95.66% 40.99 84.26% 34.24 46.95%
Qwen-VL-Max 32.97 51.24 34.23 6.38% 50.86 95.66% 48.24 84.26% 43.33 46.95%
Qwen-VL-2 32.78 50.74 34.02 6.38% 50.48 95.66% 48.19 84.26% 43.05 46.95%
GPT4-o 41.91 56.31 42.53 6.38% 56.31 95.66% 54.49 84.26% 48.95 46.95%

Dyn-VQA en

Ds.-VL-Chat 25.58 38.10 27.19 14.13% 36.86 89.79% 36.32 76.08% 29.44 29.51%
Qwen-VL-Max 37.19 43.98 38.32 14.13% 43.09 89.79% 42.78 76.08% 39.48 29.51%
Qwen-VL-2 37.12 44.20 37.17 14.13% 42.47 89.79% 42.32 76.08% 40.07 29.51%
GPT4-o 45.41 50.93 45.24 14.13% 49.88 89.79% 48.75 76.08% 47.14 29.51%

NoCaps

Ds.-VL-Chat 63.67 59.81 63.67 0.00% 61.23 38.40% 63.67 0.00% 63.67 0.00%
Qwen-VL-Max 62.10 49.66 62.10 0.00% 57.09 38.40% 62.10 0.00% 62.10 0.00%
Qwen-VL-2 62.10 49.93 62.10 0.00% 56.93 38.40% 62.10 0.00% 62.10 0.00%
GPT4-o 61.43 63.98 61.43 0.00% 62.12 38.40% 61.43 0.00% 61.43 0.00%

Visual7W

Ds.-VL-Chat 58.34 57.29 57.26 31.36% 57.85 35.37% 58.13 2.96% 58.28 0.52%
Qwen-VL-Max 58.37 55.51 62.11 31.36% 57.10 35.37% 58.25 2.96% 58.30 0.52%
Qwen-VL-2 58.16 54.41 62.19 31.36% 56.66 35.37% 57.85 2.96% 58.02 0.52%
GPT4-o 52.96 47.06 51.82 31.36% 50.87 35.37% 52.89 2.96% 52.87 0.52%

Mix

Ds.-VL-Chat 34.96 45.18 35.71 12.67% 45.08 76.83% 43.35 49.33% 42.20 38.33%
Qwen-VL-Max 46.54 49.26 47.30 12.67% 50.64 76.83% 51.06 49.33% 52.05 38.33%
Qwen-VL-2 46.36 47.89 47.46 12.67% 49.31 76.83% 49.29 49.33% 51.41 38.33%
GPT4-o 51.44 52.90 50.57 12.67% 54.10 76.83% 52.97 49.33% 55.27 38.33%

Table 4: Knowledge Boundary model (Qwen-VL-7B-Chat) as a surrogate boundary identifier for other VLLMs.

lates a real situation, show that our methods out-344

perform all other baseline and reference settings.345

Our HKB method lowers the retrieval demand346

by 23.17%, and the SKB method lowers it by347

50.67%.348

Second, as shown by the % columns and the349

RAG Effect we summarized in Table 2, our Knowl-350

edge Boundary models succeed in predicting a high351

ratio on test data when RAG can effectively aid in352

answering the query, and it lowers the ratio for data353

where the queries tend to fall within the knowledge354

scope of a VLLM.355

Third, on the first four datasets where RAG can356

(greatly) enhance the VQA performance, we show357

that with our HKB and SKB, the performance is358

close to that achieved with the “All RAG” setting.359

For example, with the SKB model, Qwen-VL-360

Chat archives a 32.06 LLM score on the Dyn-VQA361

(en) dataset with 76.08% RAG ratio, whereas the362

“All RAG” setting achieves 34.93. With the HKB363

model, Qwen-VL-Chat exceeds the “All RAG” set-364

ting on Private VQA, even though we note that “All365

RAG” is a strong setting on this data.366

At last, on the NoCaps and Visual7W datasets 367

where VLLMs can perform well without RAG and 368

RAG tends to supply noise, our method can identify 369

a much lower search ratio. Specifically, the search 370

ratio from SKB is close to or equal to zero. 371

4 Analysis 372

In this section, we present three analytical exper- 373

iments. The first one shows the performance of 374

other VLLMs if we employ the identified knowl- 375

edge boundary as a surrogate. The second shows 376

how the RAG ratio and VQA performance are af- 377

fected by the threshold defined in the SKB vari- 378

ant. The third one presents the accuracy of VLLM 379

boundary identification on held-in data at training 380

time. 381

4.1 Surrogate Boundary for Other VLLMs 382

We assemble around 340 thousand VQA samples 383

from various domains discussed in Sec. 3.1.1. Sam- 384

pling each data thirty times is prohibitively expen- 385

sive for closed-source VLLMs. Although differ- 386

ent VLLMs intuitively possess varying scopes of 387
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Figure 3: Effect of ϵ. The lighter dashed lines accordingly indicate the performance under each base model’s “No
RAG” setting. Knowledge Boundary model is Qwen-VL-7B-Chat.

knowledge, we believe that it is highly probable388

that a significant portion of these scopes overlap.389

For instance, queries regarding recently occurring390

news events typically fall outside the knowledge391

boundaries of any model. Thus, we conduct an392

experiment that validates whether the identified393

knowledge boundary can function as a surrogate394

boundary for other VLLMs.395

The experimental results with Qwen as a bound-396

ary model are presented in Table 4 and Table 9.397

The results with DeepSeek as a boundary model398

are presented in Appendix A.5.399

From Table 4 Mix row, Qwen-VL-Max, Qwen-400

VL-2 and GPT4-o achieve better performance than401

all three baseline settings. Deepseek-VL-7B-Chat402

remains competitive to the “All RAG” setting with403

LLM metric and outperforms all other settings in404

Table 9 Mix row. For other datasets, we show405

that the previously identified knowledge boundary406

can help maintain the performance with a reduced407

RAG ratio. For example, GPT4-o achieves 54.83408

with only 61.74% RAG ratio while the “All RAG”409

setting achieves 55.47 on the Life VQA dataset.410

Deepseek-VL-7B-Chat maintains its performance411

on the Dyn-VQA (en) dataset compared to the “All412

RAG” setting and keeps a clear margin compared413

to the “No RAG” setting with a 23.92% retrieving414

deduction.415

4.2 Effect of ϵ for SKB 416

In Sec 3.2, we show the result of the SKB method 417

with the least RAG ratio, i.e., ϵ is set to maintain a 418

low tendency to resort to RAG. Here we show how 419

the overall VQA performance is affected by ϵ. The 420

results of three datasets are illustrated in Fig. 3. The 421

leftmost point of the horizontal axis corresponds 422

to the “All RAG” setting (with ϵ = sw), while the 423

rightmost point represents the minimal search ratio. 424

Light-coloured dashed lines depict the “No RAG” 425

setting. For the left two data in Fig 3, where RAG 426

can greatly affect the performance, our methods 427

can maintain a clear margin between the “No RAG” 428

setting and obtain a relatively stable performance 429

with a decreased search ratio. For the Mix data 430

where all types of data are fused, our methods can 431

still lower the search ratio while maintaining, or 432

improving, the performance. 433

4.3 Efficiency 434

Our method incorporates an additional forward 435

pass for each VQA example for knowledge bound- 436

ary identification. We report the overall efficiency 437

in Table 5 on the Mix dataset, where the All RAG 438

setting always uses RAG (calls to search engine 439

included) and does not perform the forward pass, 440

and HKB/SKB refers to partially performing 441

RAG according to our model’s predictions with 442

forward-pass time included. 443
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Model All RAG HKB
(Mix)

SKB
(Mix)

Time (s) QW 619.20 598.13 427.85
DS 386.61 326.74

Improvement
(%)

QW - 3.40% 30.90%
DS 37.56% 47.23%

Table 5: Efficiency illustration of Knowledge Boundary
model Qwen-VL-7B-Chat (QW) and DeepSeek-VL-
7B-Chat (DS). Time row shows the time spent before
generating the answer in the VQA task.

Model Fold Human-labeled Hard Soft

QW Train 96.25 90.50 88.41
Val. - 91.16 88.96

DS Train 96.25 93.91 92.10
Val - 93.76 92.11

Table 6: Training and validation results on the held-in
dataset. Metrics are shown in the accuracy defined in
swift package. We have a limited number of human-
labeled samples thus we do not set a validation set for
“Human-labeled” setting.

4.4 Performance of Knowledge Boundary444

Identification on Held-In Data445

The training results of the Knowledge Boundary446

model are shown in Table 6. We show that by train-447

ing Qwen-VL-7B-Chat (QW) and DeepSeek-VL-448

7B-Chat (DS), they succeed in modeling the knowl-449

edge boundary on held-in data we constructed ac-450

cording to Sec. 2.3.451

5 Related Work452

5.1 Knowledge Boundary Study of Text LLM453

As the LLMs are applied to a wider range of454

fields, users expect them to perform well on any455

query. However, inevitably, the knowledge embed-456

ded within LLMs does not automatically update457

over time, resulting in certain queries consistently458

falling outside the model’s knowledge boundaries.459

Some works study the Knowledge Boundaries of460

text LLMs. A commonly used approach prompts461

LLMs to output content like “I don’t know” (Li462

et al., 2025; Cheng et al., 2024; Ren et al., 2023).463

Alternatively, another approach is to construct a464

dataset and perform Supervised Fine-Tuning (SFT)465

(Zhang et al., 2024b; Cheng et al., 2024; Li et al.,466

2025). Both aforementioned types of approaches467

focus on making the models express “I know” or468

“I don’t know”. Most aforementioned works find469

that prompt-based methods are poorly performed.470

We contend that this task is actually challenging 471

for two primary reasons. First, regarding whether 472

a model can itself articulate its own knowledge 473

boundaries, considerable debate persists in current 474

research. For example, Ren et al. (2023) states that 475

LLMs struggle to perceive their factual knowledge 476

boundary, and tend to be overconfident, however, 477

Cheng et al. (2024) conclude that the AI assistant 478

can, to a significant extent, identify what it does not 479

know. Second, it is difficult to verify the accuracy 480

of the predicted boundaries. 481

5.2 Retrieval-Augmented Generation 482

The RAG technique is widely adopted to help mod- 483

els answer certain queries needing external infor- 484

mation in both texts (Jeong et al., 2024; Chen et al., 485

2024; Lewis et al., 2020) and image-text scenarios 486

(Lin and Byrne, 2022; Wu et al., 2022). However, 487

current RAG techniques are far from being per- 488

fect for enhancing (V)LLMs in all settings. For 489

example, Zhang et al. (2024b) finds that for math 490

reasoning and code questions, RAG usually brings 491

noise rather than useful information, and thus RAG 492

may even yield adverse effects. Therefore, more 493

effective utilization of RAG can not only result in 494

savings of time and computational resources but 495

also enhance performance in certain scenarios. 496

6 Conclusion 497

In this paper, we introduce a method with two 498

variants that fine-tunes VLLMs on automatically 499

constructed datasets for boundary identification. 500

This method mitigates the reliance on RAG tech- 501

niques, which introduce significant latency and 502

long input sequences. Our experiments across di- 503

verse held-out VQA datasets, including knowledge- 504

intensive, non-knowledge-intensive, and mixed 505

datasets, demonstrate that our method not only 506

maintains or enhances VLLM performance but also 507

lowers the RAG ratio. Additionally, the fine-tuned 508

knowledge boundary exhibits versatility by func- 509

tioning as a surrogate for other VLLM series, fa- 510

cilitating retrieval reduction without compromising 511

performance. These findings underscore the ef- 512

ficacy of our approach in optimizing the balance 513

between retrieval dependence and model perfor- 514

mance, paving the way for more efficient and ef- 515

fective deployment of VLLMs in practical applica- 516

tions. 517
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7 Limitations518

In this paper, we do not design detailed methods519

to distinguish the search type, such as text search520

and image search, towards answering a VQA sam-521

ple. Experiments utilizing training data sampled522

from larger VLLMs are currently lacking. Both523

limitations will be addressed in our future work.524
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A Appendix723

A.1 Training Examples724

Hard Knowledge Boundary Query q, together725

with prompts Ph (in blue)2, will be constructed into726

a training sample x(q, Ph) as follows:727

You are an assistant capable of deciding
whether a search is needed in a multimodal
question-answering scenario. Below, I will
provide you with a multimodal question that
includes a text question and an image link.
Please respond with "true" or "false," indi-
cating whether a search is necessary (true) or
not (false) to answer this multimodal question.
<ST_1>
Text question: qt
<Image>: qi
<ST_2>

Soft Knowledge Boundary Query q, together728

with prompts Ps (in blue), will be constructed into729

a training sample x(q, Ps) as follows:730

You are an assistant capable of deciding
whether a search is needed in a multimodal
question-answering scenario. Below, I will
provide you with a multimodal question that
includes a text question and an image link.
Please respond with a score ranging from 1.0
to 5.0 indicating whether a search is necessary
or not to answer this multimodal question.

Follow these guidelines for scoring:
- Your score has to be between 1.0 and 5.0,
where 1.0 stands for an unnecessary search
and 5.0 stands for a necessary search.
- The score does not have to be integer.
Example Response:
4.0

<ST_1>
Text question: qt
<Image>: qi
<ST_2>
Your score:

2where <ST_*> means optional special tokens to specify
the position of q and indicate the output starting position after
<ST_2>. The detailed format of <ST_*> and <Image> tokens
might need to be modified according to different VL model
input formats.

Base Model Qwen- & DeepSeek-VL-7B-Chat

LoRA Q,K, V

LoRA Rank 8

LoRA Alpha 32

Learning Rate 1e-4

Optimizer AdamW

LR Scheduler Linear

Precision bf16

Batch Size 1

GPU NVIDIA A100-SXM4-80GB

Table 7: Detailed hyperparameters.

A.2 Training Dataset Description 731

Below is a brief description of each dataset (for 732

training). 733

InfoSeek is designed to assess the capability of 734

models to seek and incorporate external informa- 735

tion for question answering. It features a variety of 736

queries that necessitate fact retrieval and reasoning 737

that go beyond the provided context. 738

OK-VQA is a dataset where images are paired 739

with open-ended questions that require answers 740

stemming from general knowledge that extends 741

beyond the image alone. 742

VQAv2.0 is a comprehensive VQA dataset that 743

requires interpretation or understanding of the vi- 744

sual content. It features a diverse and balanced 745

range of answers. 746

MMBench is a benchmarking suite for evaluat- 747

ing multi-modal understanding, ensuring that multi- 748

modal machine learning systems can effectively 749

process and synthesize data from different sources. 750

MME is focused on tasks related to multi-modal 751

entity recognition and extraction. The dataset con- 752

tains annotations of text and images with multi- 753

modal entities that need to be identified or linked. 754

Human-Labeled A group of annotators is asked 755

to annotate whether RAG can help solve a VQA 756

sample. We construct this data to form a reference 757

setting. 758

A.3 Training Details and Hyperparameters 759

Recall that our methods need to train a VLLM, 760

parameterized by ϕ, as a Knowledge Boundary 761

model discussed in Sec. 2.3. In experiments, we 762
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Dataset Metric No
RAG

All
RAG

Prompt-
based % HKB % SKB % Human %

Life VQA LLM 25.81 47.35 33.36 30.20% 35.81 46.31% 42.18 73.83% 47.21 96.64%
Acc. 10.82 36.79 20.84 30.20% 24.81 46.31% 31.93 73.83% 36.79 96.64%

Private VQA LLM 22.80 27.28 23.93 21.20% 25.45 27.60% 26.03 56.40% 27.08 88.20%
Acc. 15.51 19.75 16.38 21.20% 17.70 27.60% 17.75 56.40% 19.57 88.20%

Dyn-VQA ch LLM 21.32 44.20 25.63 12.48% 28.29 27.00% 37.81 79.10% 43.54 97.42%
Acc. 20.74 46.91 24.15 12.48% 28.07 27.00% 41.18 79.10% 46.23 97.42%

Dyn-VQA en LLM 24.90 38.36 25.63 12.73% 29.41 33.57% 32.31 60.56% 37.77 96.78%
Acc. 24.37 43.28 26.51 12.73% 30.22 33.57% 35.49 60.56% 43.01 96.78%

NoCaps LLM 63.10 59.39 62.95 2.00% 63.12 0.20% 61.40 32.40% 62.50 6.20%
Acc. 43.89 40.45 43.62 2.00% 43.88 0.20% 42.50 32.40% 43.48 6.20%

Visual7W LLM 58.54 57.68 58.17 2.44% 58.24 7.67% 58.16 10.98% 56.98 54.70%
Acc. 46.55 46.62 46.40 2.44% 46.27 7.67% 46.55 10.98% 46.18 54.70%

Mix LLM 35.07 45.37 37.17 13.50% 39.38 25.00% 42.46 54.83% 45.63 74.50%
Acc. 25.81 35.23 28.11 13.50% 29.08 25.00% 33.23 54.83% 35.83 74.50%

Table 8: Main results of DeepSeek-VL-7B-Chat.

adopt LoRA (Hu et al., 2021) to optimize ϕ and763

the related hyperparameters are shown in Table 7.764

We note that our method does not rely heavily on765

tuning hyperparameters. We just choose intuitive766

values and it works fairly well.767

A.4 Main Results on DeepSeek768

We present our main results of DeepSeek-VL-7B-769

Chat in Table 8. For both the HKB and SKB770

methods, DeepSeek performs more confidently771

than Qwen, and it tends to predict a lower ratio of772

resorting to RAG. On the Mix dataset, DeepSeek773

also well maintains the performance with the SKB774

method compared to the All RAG setting and775

outperforms the Prompt-based method. In addi-776

tion, compared to Qwen, DeepSeek better utilizes777

human-labeled data to depict the knowledge bound-778

ary and obtains the best result among all settings.779

A.5 Supplementary Results of “Surrogate780

Boundary” Experiments781

We provide the supplementary experimental results782

for Sec 4.1 where the token accuracy metrics are783

shown in Table 9. It can be concluded that similar784

conclusions can be drawn as in Sec 4.1. The exper-785

iment where DeepSeek-VL-7B-Chat is trained for786

surrogate boundary prediction is shown in Table 10787

and 11.788

A.6 Supplementary Results on MMMU 789

Dataset 790

In this section, we show the experimental results 791

of our methods on a challenging dataset, MMMU3 792

(Yue et al., 2024) in Table 12. MMMU is a dataset 793

containing VQA samples demanding college-level 794

subject knowledge and deliberate reasoning, and it 795

is hard to verify the knowledge boundary that our 796

methods depict by simply adopting RAG. 797

The results in Table 12 show the Knowledge 798

Boundary model trained by human-labeled data 799

helps achieve the best performance. It verifies that 800

the aforementioned Human-labeled training data is 801

effective. In addition, we show that our methods 802

also exhibit substantial potential within this setting, 803

in which both the HKB and SKB models predict 804

a high search ratio over MMMU. We contend that 805

the suboptimal performance of this dataset arises 806

because it lies beyond the knowledge boundaries, 807

that are challenging to validate using RAG, as de- 808

lineated by the white dashed lines in Fig. 1. We 809

present the performance of each of the 30 subjects 810

in the MMMU validation set in Fig 4. The first row 811

shows the LLM evaluation results and the second 812

shows the token accuracy metric. We can see that 813

in most subjects “Human” setting succeeds in ob- 814

taining a higher performance than both “All RAG” 815

and “No RAG” settings. 816

3We converted the dataset’s original multiple-choice for-
mat into a conventional VQA format to ensure consistency
with the aforementioned experimental settings.

12



Metric:
Acc.

No
RAG

All
RAG

Prompt-
based % HKB % SKB % Human %

Life VQA

Ds.-VL-Chat 10.82 36.79 14.12 12.75% 36.12 96.64% 30.97 61.74% 30.50 71.14%
Qwen-VL-Max 24.21 42.30 27.66 12.75% 41.96 96.64% 38.37 61.74% 38.20 71.14%
Qwen-VL-2 23.06 41.05 27.64 12.75% 40.71 96.64% 37.27 61.74% 37.05 71.14%
GPT4-o 31.72 40.85 32.81 12.75% 40.85 96.64% 38.47 61.74% 41.88 71.14%

Private VQA

Ds.-VL-Chat 15.51 19.75 16.65 14.80% 19.75 99.20% 18.20 67.80% 18.51 72.00%
Qwen-VL-Max 27.93 28.14 28.08 14.80% 28.29 99.20% 27.68 67.80% 28.96 72.00%
Qwen-VL-2 27.69 30.72 27.75 14.80% 30.87 99.20% 28.96 67.80% 31.13 72.00%
GPT4-o 31.12 27.02 30.88 14.80% 26.87 99.20% 27.72 67.80% 29.10 72.00%

Dyn-VQA ch

Ds.-VL-Chat 20.74 46.91 22.37 6.38% 46.05 95.66% 44.13 84.26% 33.60 46.95%
Qwen-VL-Max 31.53 46.73 33.53 6.38% 46.38 95.66% 44.82 84.26% 39.79 46.95%
Qwen-VL-2 31.52 46.70 33.52 6.38% 46.28 95.66% 44.69 84.26% 39.85 46.95%
GPT4-o 36.46 51.27 37.32 6.38% 50.85 95.66% 49.4 84.26% 42.45 46.95%

Dyn-VQA en

Ds.-VL-Chat 24.37 43.28 26.80 14.13% 42.08 89.79% 40.61 76.08% 31.67 29.51%
Qwen-VL-Max 37.54 45.27 38.03 14.13% 44.30 89.79% 43.55 76.08% 39.40 29.51%
Qwen-VL-2 37.37 45.16 37.25 14.13% 43.84 89.79% 43.48 76.08% 40.66 29.51%
GPT4-o 43.33 49.71 42.40 14.13% 48.48 89.79% 47.66 76.08% 45.07 29.51%

NoCaps

Ds.-VL-Chat 43.89 40.45 43.89 0.00% 42.76 38.40% 43.89 0.00% 43.89 0.00%
Qwen-VL-Max 37.47 34.55 37.47 0.00% 36.75 38.40% 37.47 0.00% 37.47 0.00%
Qwen-VL-2 37.26 34.61 37.26 0.00% 36.35 38.40% 37.26 0.00% 37.26 0.00%
GPT4-o 32.12 36.25 32.12 0.00% 33.22 38.40% 32.12 0.00% 32.12 0.00%

Visual7W

Ds.-VL-Chat 46.55 46.62 46.29 31.36% 46.03 35.37% 46.58 2.96% 46.55 0.52%
Qwen-VL-Max 46.07 44.44 48.63 31.36% 45.16 35.37% 46.13 2.96% 46.07 0.52%
Qwen-VL-2 45.94 43.86 48.47 31.36% 45.06 35.37% 45.99 2.96% 45.94 0.52%
GPT4-o 41.59 37.16 40.09 31.36% 39.41 35.37% 41.80 2.96% 41.48 0.52%

Mix

Ds.-VL-Chat 25.81 35.23 26.55 12.67% 35.38 76.83% 33.06 49.33% 32.73 38.33%
Qwen-VL-Max 32.35 34.78 33.00 12.67% 35.48 76.83% 34.84 49.33% 35.51 38.33%
Qwen-VL-2 32.59 35.56 33.27 12.67% 36.29 76.83% 35.62 49.33% 36.33 38.33%
GPT4-o 34.52 35.96 33.99 12.67% 35.90 76.83% 35.86 49.33% 36.49 38.33%

Table 9: Knowledge Boundary model (Qwen-VL-7B-Chat) as a surrogate boundary identifier for other VLLMs.
Results evaluated by token accuracy.
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Figure 4: Qwen-VL-Max and Qwen-VL-2 performance on MMMU validation set with Knowledge Boundary model
trained on Human-labeled data.
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Metric:
LLM

No
RAG

All
RAG

Prompt-
based % HKB % SKB % Human %

Life VQA

Qwen-VL-Chat 31.14 42.85 33.62 30.20% 37.08 46.31% 41.78 73.83% 43.05 96.64%
Qwen-VL-Max 44.09 56.64 46.51 30.20% 48.59 46.31% 54.16 73.83% 56.51 96.64%
Qwen-VL-2 42.95 54.23 45.00 30.20% 48.66 46.31% 53.36 73.83% 54.23 96.64%
GPT4-o 47.45 56.38 53.15 30.20% 54.16 46.31% 55.37 73.83% 56.11 96.64%

Private VQA

Qwen-VL-Chat 24.45 26.16 25.21 21.20% 25.35 27.60% 26.08 56.40% 26.01 88.20%
Qwen-VL-Max 36.84 42.97 36.45 21.20% 39.16 27.60% 42.26 56.40% 43.73 88.20%
Qwen-VL-2 36.76 38.20 36.65 21.20% 38.52 27.60% 39.37 56.40% 39.03 88.20%
GPT4-o 40.13 38.72 39.15 21.20% 40.59 27.60% 40.76 56.40% 39.56 88.20%

Dyn-VQA ch

Qwen-VL-Chat 37.73 44.68 38.44 12.48% 40.31 27.00% 39.63 79.10% 43.85 97.42%
Qwen-VL-Max 32.67 50.85 35.11 12.48% 37.20 27.00% 46.62 79.10% 50.32 97.42%
Qwen-VL-2 45.95 50.91 46.33 12.48% 48.03 27.00% 46.42 79.10% 50.13 97.42%
GPT4-o 42.10 56.51 44.55 12.48% 44.80 27.00% 51.99 79.10% 56.23 97.42%

Dyn-VQA en

Qwen-VL-Chat 22.07 35.23 23.58 12.73% 26.91 33.57% 30.06 60.56% 34.27 96.78%
Qwen-VL-Max 19.41 39.90 22.86 12.73% 24.71 33.57% 36.01 60.56% 39.44 96.78%
Qwen-VL-2 37.90 44.29 38.58 12.73% 40.45 33.57% 40.11 60.56% 43.58 96.78%
GPT4-o 32.73 51.17 35.25 12.73% 37.36 33.57% 47.15 60.56% 50.65 96.78%

NoCaps

Qwen-VL-Chat 50.46 30.41 50.00 2.00% 50.48 0.20% 44.43 32.40% 49.48 6.20%
Qwen-VL-Max 62.04 49.63 61.82 2.00% 61.92 0.20% 57.63 32.40% 61.16 6.20%
Qwen-VL-2 61.88 49.84 61.66 2.00% 61.78 0.20% 57.44 32.40% 60.92 6.20%
GPT4-o 61.58 64.51 61.68 2.00% 61.56 0.20% 62.00 32.40% 61.68 6.20%

Visual7W

Qwen-VL-Chat 55.53 54.52 55.45 2.44% 55.76 7.67% 55.31 10.98% 55.01 54.70%
Qwen-VL-Max 61.72 58.16 61.59 2.44% 61.27 7.67% 61.08 10.98% 59.04 54.70%
Qwen-VL-2 61.81 58.07 61.58 2.44% 61.25 7.67% 61.23 10.98% 58.78 54.70%
GPT4-o 53.34 47.44 53.30 2.44% 52.71 7.67% 52.70 10.98% 49.97 54.70%

Mix

Qwen-VL-Chat 34.58 39.03 35.54 13.50% 37.12 25.00% 39.76 54.83% 42.61 74.50%
Qwen-VL-Max 46.13 49.02 46.47 13.50% 47.43 25.00% 48.98 54.83% 51.39 74.50%
Qwen-VL-2 46.26 47.84 46.64 13.50% 48.17 25.00% 48.55 54.83% 50.13 74.50%
GPT4-o 51.21 52.70 51.81 13.50% 52.28 25.00% 52.04 54.83% 53.42 74.50%

Table 10: Knowledge Boundary model (DeepSeek-VL-7B-Chat) as a surrogate boundary identifier for other VLLMs.
Results evaluated by LLM.
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Metric:
Acc.

No
RAG

All
RAG

Prompt-
based % HKB % SKB % Human %

Life VQA

Qwen-VL-Chat 17.80 36.11 23.68 30.20% 28.05 46.31% 34.43 73.83% 36.78 96.64%
Qwen-VL-Max 25.42 42.30 30.09 30.20% 32.83 46.31% 38.38 73.83% 42.07 96.64%
Qwen-VL-2 25.29 41.05 29.77 30.20% 33.75 46.31% 38.48 73.83% 40.83 96.64%
GPT4-o 31.72 40.85 36.49 30.20% 38.53 46.31% 40.01 73.83% 42.19 96.64%

Private VQA

Qwen-VL-Chat 16.26 18.40 17.28 21.20% 18.11 27.60% 18.34 56.40% 18.90 88.20%
Qwen-VL-Max 27.12 28.14 26.77 21.20% 27.94 27.60% 28.18 56.40% 28.31 88.20%
Qwen-VL-2 27.04 30.72 27.89 21.20% 28.78 27.60% 29.94 56.40% 30.95 88.20%
GPT4-o 31.12 27.02 29.74 21.20% 30.78 27.60% 29.73 56.40% 28.24 88.20%

Dyn-VQA ch

Qwen-VL-Chat 37.37 45.16 38.25 12.48% 39.83 27.00% 39.37 79.10% 44.84 97.42%
Qwen-VL-Max 31.66 46.70 34.29 12.48% 35.11 27.00% 42.80 79.10% 46.35 97.42%
Qwen-VL-2 43.33 49.71 43.68 12.48% 45.47 27.00% 45.17 79.10% 49.28 97.42%
GPT4-o 36.46 51.27 38.75 12.48% 39.78 27.00% 46.96 79.10% 51.13 97.42%

Dyn-VQA en

Qwen-VL-Chat 25.64 41.87 27.33 12.73% 31.66 33.57% 35.00 60.56% 41.63 96.78%
Qwen-VL-Max 23.41 43.06 26.81 12.73% 29.04 33.57% 39.36 60.56% 42.57 96.78%
Qwen-VL-2 37.54 45.27 37.52 12.73% 40.05 33.57% 40.50 60.56% 44.95 96.78%
GPT4-o 31.66 46.73 34.25 12.73% 34.93 33.57% 42.96 60.56% 46.39 96.78%

NoCaps

Qwen-VL-Chat 40.50 30.72 40.39 2.00% 40.49 0.20% 37.88 32.40% 39.92 6.20%
Qwen-VL-Max 37.47 34.55 37.44 2.00% 37.42 0.20% 36.47 32.40% 37.22 6.20%
Qwen-VL-2 37.26 34.61 37.30 2.00% 37.21 0.20% 36.21 32.40% 37.04 6.20%
GPT4-o 32.12 36.25 32.23 2.00% 32.12 0.20% 32.96 32.40% 32.35 6.20%

Visual7W

Qwen-VL-Chat 44.34 44.94 44.26 2.44% 44.64 7.67% 44.86 10.98% 45.11 54.70%
Qwen-VL-Max 49.41 45.13 49.39 2.44% 49.28 7.67% 48.13 10.98% 46.04 54.70%
Qwen-VL-2 49.71 44.19 49.48 2.44% 49.58 7.67% 48.43 10.98% 45.51 54.70%
GPT4-o 41.59 37.16 41.76 2.44% 40.96 7.67% 40.91 10.98% 39.10 54.70%

Mix

Qwen-VL-Chat 26.13 32.39 28.00 13.50% 29.55 25.00% 32.46 54.83% 34.06 74.50%
Qwen-VL-Max 32.35 34.78 32.91 13.50% 33.17 25.00% 35.12 54.83% 35.96 74.50%
Qwen-VL-2 32.45 35.56 33.51 13.50% 33.86 25.00% 35.88 54.83% 36.63 74.50%
GPT4-o 34.52 35.96 35.17 13.50% 35.77 25.00% 35.86 54.83% 36.24 74.50%

Table 11: Knowledge Boundary model (DeepSeek-VL-7B-Chat) as a surrogate boundary identifier for other VLLMs.
Results evaluated by token accuracy.

No RAG All RAG Human % HKB % SKB %

MMMU

Qwen-VL-Chat 20.12 20.28 21.24 6.88% 20.35 97.08% 20.18 61.26%
Qwen-VL-Max 51.33 41.37 52.67 6.88% 41.46 97.08% 44.40 61.26%
Qwen-VL-2 51.45 42.39 51.93 6.88% 42.54 97.08% 45.61 61.26%
GPT4-o 56.60 56.64 57.36 6.88% 56.92 97.08% 56.91 61.26%

Table 12: Results evaluated by LLM on MMMU validation set.
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