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ABSTRACT

Graph Neural Networks (GNNs) have emerged as powerful tools for graph repre-
sentation learning. However, their vulnerability to adversarial attacks underscores
the importance of gaining a deeper understanding of techniques in graph adversar-
ial attacks. Existing attack methods have demonstrated that it is possible to deteri-
orate the predictions of GNNs by injecting a small number of edges, but they often
suffer from poor scalability due to the need of computing/storing gradients on a
quadratic number of entries in the adjacency matrix. In this paper, we propose
EGALA, a novel approach for conducting large-scale graph adversarial attacks.
By showing the derivative of linear graph neural networks can be approximated
by the inner product of two matrices, EGALA leverages efficient Approximate
Nearest Neighbor Search (ANNS) techniques to identify entries with dominant
gradients in sublinear time, offering superior attack capabilities, reduced memory
and time consumption, and enhanced scalability. We conducted comprehensive
experiments across various datasets to demonstrate the outstanding performance
of our model compared with the state-of-the-art methods.

1 INTRODUCTION

Graphs are widely used to represent interrelations in various domains of the modern world, such
as social networks, protein-protein interaction, and knowledge graphs. Extensive research has been
conducted on Graph Neural Networks (GNNs) to effectively capture graph representations (Hamil-
ton et al., 2017). While GNNs demonstrate remarkable performance in graph representation learn-
ing, they are also vulnerable to adversarial attacks. Specifically, it has been noted that perturbing
the adjacency matrix by adding just a few edges can significantly alter the predictions of GNNs
(Waniek et al., 2018; Dai et al., 2018; Zügner et al., 2018). This finding underscores the importance
of robustness of GNNs in environments with potential malicious users, thereby necessitating the
development of highly efficient attacking algorithms for red-teaming GNN models.

In this study, we consider structural attacks on GNNs, where the attacker aims to interfere the pre-
diction of GNNs by adding or removing a few edges in the graph. Although several attacking
methods have been proposed in the literature (Bojchevski & Günnemann, 2019; Zügner et al., 2020;
Deng et al., 2022), most of these approaches have limited scalability due to a fundamental chal-
lenge in structural attack – when conducting graph adversarial attacks on edges, one must consider
all N2 entries in the adjacency matrix, where N represents the number of nodes in the graph. For
larger graphs, computing gradient on all N2 edges become prohibitive, making them impractical
for large graphs. To tackle this issue, recently Geisler et al. (2021) introduced a scalable structural
attack algorithm by only considering a random subset of O(b) edges at each attacking step, where
O(b)≪ O(N2). With this approximation, they are able to compute the gradient on all O(b) entries
and select the top ones to attack at each step. The improved scalability also enables them to conduct
global attacks on large graphs, showing it is possible to perturb a few edges to downgrade the overall
prediction preformance of GNNs.

Despite being an efficient approximation, there is no guarantee that vulnerable edges will be located
in the sampled block, potentially resulting in suboptimal outcomes for this attack. Consequencely,
as the graph size grows, they need to sample larger blocks correspondingly in order to maintain the
attack performance (Geisler et al., 2021). Computing exact gradients for all elements within the
block imposes a significant computational burden and a high memory cost.
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In response to these limitations, we propose our model EGALA, an innovative approach for effi-
ciently conducting large-scale graph adversarial attacks. Given that the adjacency matrix is inher-
ently discrete, our strategy for edge addition/deletion during coordinate descent doesn’t necessitate
precise gradient values across all N2 matrix entries. Instead, we focus exclusively on identifying
the m entries with the most significant gradients. Building upon this concept, we approximate the
gradient of loss across the entire adjacency matrix and convert it to the inner product of two N -
by−d matrices, where d represents the latent feature dimension. With this approximation, the top
m entries can be selected by efficient Approximate Nearest Neighbor Search (ANNS) algorithms,
which runs in sublinear time and does not require full scan through all N2 entries (Johnson et al.,
2019; Malkov & Yashunin, 2018). We then implement a clustering-based ANNS algorithm on these
two N -by-d matrices to efficiently find top elements at each iteration for conducting our attack.

To rigorously assess the effectiveness of our proposed model EGALA, we conducted comprehen-
sive experiments across various datasets, comparing with the state-of-the-art PRBCD and GRBCD
models proposed in Geisler et al. (2021). The results demonstrate that EGALA exhibits significantly
higher efficiency compared to previous methods, while also achieving a slightly enhanced attacking
performance.

Our contributions can be succinctly summarized as follows:

• We propose a novel approach EGALA for conducting graph adversarial attacks through efficient
gradient approximation. The key innovation of EGALA lies in its successful reconfiguration of the
computation of loss gradients across the entire adjacency matrix as the inner product of two N -by-d
matrices. This enables the identification of entries with the most significant gradients in sublinear
time through ANNS and makes the attack scalable to large graphs.

• Our model consistently outperforms baseline models across vairous datasets, showcasing its ef-
fectiveness in conducting graph adversarial attacks. Its consistently outstanding performance across
diverse GNN architectures underscores its strong transferability and generalizability. Furthermore,
our model demonstrates significant efficiency gains, as it operates in less than half the time of base-
line models on large graphs such as ArXiv and Products, while also boasting markedly reduced
memory consumption.

2 PRELIMINARY

We focus on structural adversarial attacks for node classification. Consider a graph denoted as
G = (A,X), where A ∈ {0, 1}N×N represents its adjacency matrix, encompassing m edges, and
the node attributes are captured by X ∈ RN×d0 . The central objective of structural adversarial
attacks lies in the strategic manipulation of this graph by adding or deleting a limited number of
edges, thereby causing a decline in the performance of GNNs applied to this altered structure. We
primarily emphasize evasion attacks at test time, although it is worth noting that our methodology
can also be extended to poisoning attacks during training (Zügner & Günnemann, 2019). Generally,
we formulate the structural attack as follows:

max
Â s.t. ∥Â−A∥0<∆

L(fθ(Â,X)), (1)

where L represents the attack loss function, ∆ denotes the attack budget, and fθ(·) is the GNN
model applied to the graph. In the evasion attack scenario, the model parameter θ remains fixed
throughout the adversarial attack process.

Attack loss. Empirically, the commonly used surrogate loss functions are Masked Cross Entropy
(MCE) loss and Hyperbolic Tangent of the Margin loss (Geisler et al., 2021; Li et al., 2022). MCE
loss is defined as LMCE = 1

|V+|
∑

i∈V+ −log(pi,c∗). Here, V+ denotes the set of correctly classi-
fied nodes, c∗ represents the ground-truth label of the node, and consequently, pi,c∗ represents the
probability or confidence score predicted for node i after the softmax activation. The Hyperbolic
Tangent of the Margin loss is given by Ltanhmargin = − tanh(zc∗ −max

c̸=c∗
zc), where zc represents

the logit predicting an arbitrary node as class c before the softmax activation.
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Projected Randomized Block Coordinate Descent (PRBCD). To better illustrate, we can refor-
mulate the graph structural attack as follows:

max
P s.t. P∈{0,1}N×N ,

∑
P≤∆

L(fθ(A⊕ P,X)), (2)

where pij = 1 represents an edge flip. To conduct Projected Gradient Descent (PGD), we relax the
discrete edge perturbation matrix to a continuous counterpart P ∈ [0, 1]N×N one. The operation ⊕
is defined as:

(A⊕ P )ij = Aij ⊕ Pij =

{
Aij + Pij Aij = 0
Aij − Pij Aij = 1

(3)

Previously, the gradient-based graph adversarial attacks calculate the gradient for all entries in the
adjacency matrix, such as and PDG topology attack (Xu et al., 2019). It requires O(N2) gradient
computations, making it suitable only to smaller datasets and impractical for larger graphs. While
efforts have been made to circumvent the exhaustive calculation of complete gradients, such as
GradArgmax (Dai et al., 2018) and SGA (Li et al., 2021), they each come with their own drawbacks.
GradArgmax only computes gradients with respect to the connected edges in the adjacency matrix,
allowing only for edge deletion with no edge addition, and thus leave the performance suboptimal.
SGA extracts a subgraph comprising k-hop neighbors of the target node and flips edges with the
largest gradient magnitudes within this subgraph. However, SGA is only suitable to the local attack
scenario, restricting its capability in broader contexts.

To overcome these problems, Geisler et al. (2021) proposed PRBCD that only calculates the gra-
dients of some certain places in the edge perturbation matrix P , referred to as the ”block” or
the ”search space”. In each step, the attack loss with continuous edge perturbation, denoted as
L(fθ(A ⊕ P,X)) in Eq 2, is first calculated. Gradient descent is exclusively applied within the
search space, and projection is then applied to constrain the updated values within the range of
[0, 1]. At the end of each step, only parts of the search space exhibiting the largest gradients are
retained, while the remaining areas are discarded. Subsequently, the discarded search space is re-
constructed by resampling from the edge perturbation matrix for the next epoch. Finally, after a
few steps of gradient descent within the search space, PRBCD chooses the entries with the top-∆
gradients and flips the corresponding edges, where ∆ is the total attack budget. As we can see from
this full process of PRBCD attack, the memory requirements for maintaining gradients are reduced
to the size of the active search space.

Greedy Randomized Block Coordinate Descent (GRBCD). GRBCD (Geisler et al., 2021)
greedily flips the entries with the largest gradients in the block in each step until the perturbation
budget is met. Consider the total number of steps to be E,

∑E
t=1 ∆t = ∆. The budget is distributed

evenly for each epoch. Compared to PRBCD, GRBCD exhibits a somewhat higher level of scala-
bility because it continuously and greedily flips edges throughout the process, thus eliminating the
necessity for the block size to exceed the total budget. Nonetheless, it is crucial to note that there
is no assurance of how closely it approximates the actual optimization problem, and for effective
performance, the block size should still be reasonably large.

As stated in Section 1, achieving better attack performance requires a large block size. Therefore,
the time and memory consumption is still nontrivial involving larger datasets. Besides, the inherent
unpredictability of randomized search space selection potentially introduces instability and subopti-
mal performance. As a matter of fact, for greedy attacks, the precise computation of gradient values
is unnecessary. Therefore, our EGALA model focuses on identifying entries with the highest gra-
dients quickly and accurately. EGALA can potentially search through all entries in the adjacency
matrix while remaining scalable to large graphs.

3 METHODOLOGY

Given that the adjacency matrix inherently comprises a discrete {0, 1}N×N structure, in the context
of greedy updates, the attacker’s objective is to strategically flip edges associated with the highest
gradient values. Precise gradient value calculations become unnecessary, as long as the attacker
has a good identification of these key entries. We transform the gradient computation to an elegant
closed-form solution and utilize clustering-based Approximate Nearest Neighbor Search (ANNS) to
efficiently do the identification in the range of all entries in the adjacency matrix. Without the burden
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of massive gradient computation, our model is scalable to larger graphs and avoid the instability of
random block sampling. In each step, our model identifies entries with the most significant gradients
in sublinear time relative to the total number of entries. We choose the top-∆t entries with the largest
gradient values and greedily flip the corresponding edges, where ∆t is the budget for the tth step.

The main contribution of our model lies in its capacity to efficiently pinpoint entries with the largest
gradient values, being scalable to large graphs without the need of exact gradient computation or
random block sampling. To illustrate our methodology, we start by introducing a surrogate model,
an easy and useful representative of frequently used GNN models. Subsequently, we show that the
gradient computation for this surrogate model has an elegant closed-form solution. Notably, this
solution paves the way for the efficient identification of high-gradient entries, facilitated through the
innovative application of ANNS techniques.

3.1 SURROGATE MODEL AND LOSS FUNCTION

We consider a practical attack setting, where attackers lack access to the target model, but can
use the available training data to train a surrogate model and transfer the attacks on the surrogate
model to the target model. This setting has been widely adopted in the literature of adversarial
attacks to computer vision (Papernot et al., 2017; Wu et al., 2018; Tramèr et al., 2017) and graph
neural networks (Zügner et al., 2018; Wang & Gong, 2019; Jin et al., 2021). Given the attacker’s
limited knowledge of the target model, it is customary to select the surrogate model from the most
general GNN models. The prevailing choice for surrogate models for graph adversarial attack is
Vanilla GCN (Kipf & Welling, 2016). Another commonly used surrogate model is Simplified Graph
Convolutional Network (SGC), a linear variant of GCN proposed by Wu et al. (2019). SGC differs
from GCN in that it replaces the nonlinear ReLU activation function between each layer with the
identity function. This simplicity in computation makes SGC an attractive surrogate model for graph
adversarial attacks, as evidenced in studies such as Li et al. (2021) and Zügner et al. (2018). In our
EGALA model, we adopt a two-layer SGC as our surrogate model for attacks. Its formulation can
be expressed as:

Z = Â(ÂXW0)W1, (4)
where W0 ∈ Rd0×d1 , W1 ∈ Rd1×d2 , d2 equals to the number of classes. This can also be represented
in a summation form:

zi = WT
1

N∑
j=1

aij(W
T
0

N∑
k=1

ajkxk). (5)

For the sake of streamlined gradient computation, we opt for the hyperbolic tangent of the margin,
as introduced in Section 2, as our surrogate loss function:

L =
∑
i∈S

li =
∑
i∈S
− tanh(zi,c∗ −max

c̸=c∗
zi,c), (6)

where zi,c represents the logit predicting the node i as class c, and S denotes the set of target nodes.
In line with the implementation of Geisler et al. (2021), we set the target nodes to be all of the test
nodes in the global attack scenario. For local attacks, we only need to specify it as a specific node.

3.2 GRADIENT COMPUTATION WITH CHAIN RULE

In this section, we show that with the surrogate model, the gradient of the entire adjacency matrix
can be reduced to computing inner product of two N -by-d matrices. This nice structure will then
lead to an efficient routine for finding entries with top-k gradient values.

Chain Rule. By applying the chain rule, we can decompose the gradient of the loss with respect
to the adjacency matrix into three components. The derivative of the loss function with respect to
the entry located at position (p, q) in the adjacency matrix is represented as:

∂L
∂epq

=
∑
i∈S

∂li
∂epq

=
∑
i∈S

∂li
∂zi

∂zi
∂apq

∂apq
∂epq

, (7)

where epq ∈ {0, 1} indicates whether there exists an edge between node p and node q, while apq
signifies the value of the element at row p, column q in the normalized adjacency matrix. Then we
can calculate the three components individually.
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Gradient of the Hyperbolic Tangent Loss. The first term of equation 7 is the derivative of loss
to the final layer output. For this term we need to consider the derivative of the hyperbolic tangent,
which is given by∇ tanh(x) = 1− tanh2(x). Then we can get:

(
∂li
∂zi

)c =


−(1− tanh2(zi,c∗ −max

c ̸=c∗
zi,c)) c = c∗i

1− tanh2(zi,c∗ −max
c ̸=c∗

zi,c) c = cmax
i

0 otherwise

=

 −(1− l2i ) c = c∗i
1− l2i c = cmax

i
0 otherwise

(8)

where c∗i represents the ground-truth label of the node, and cmax
i = argmaxc̸=c∗ zi,c.

Gradient with respect to the Normalized Adjacency Matrix. For the second component of
equation 7, we have:

∂zi
∂apq

=

{
aipW

T
1 WT

0 xq i ̸= p

aipW
T
1 WT

0 xq +WT
1 WT

0

∑N
k=1 aqkxk i = p

(9)

Detailed calculations are provided in Appendix A. It’s evident that aipWT
1 WT

0 xq consistently ap-
pears in ∂zi/∂apq , while WT

1 WT
0

∑N
k=1 aqkxk is present only when i = p.

By merging the first two components, we can derive the gradient of the loss with respect to the
normalized adjacency matrix, and we rewrite it in the form that separates the variables related to p
and q, so that it is feasible to extend to the matrix form:

∂L
∂apq

=
∑
i∈S

∂li
∂zi

∂zi
∂apq

= (
∑
i∈S

aip
∂li
∂zi

WT
1 )(WT

0 xq) + (
∂lp
∂zp

WT
1 )(WT

0

N∑
k=1

aqkxk). (10)

As we know from Equation 8, ( ∂li
∂zi

)c is non-zero only when c = c∗i or c = cmax
i , and the absolute

value is equal to 1− l2i . Therefore, we can simplify equation 10 as:

∂L
∂apq

= (
∑
i∈S

aip(1− l2i )[(W
T
1 )cmax

i
− (WT

1 )c∗i ])(W
T
0 xq)

+ ((1− l2p)[(W
T
1 )cmax

p
− (WT

1 )c∗p ])(

N∑
k=1

aqkW
T
0 xk),

(11)

where (WT
1 )cmax

i
and (WT

1 )c∗i refer to the cmax
i -th and c∗i -th row of the matrix WT

1 ∈ Rd2×d1 ,
respectively.

Gradient to the Raw Adjacency Matrix. The normalized adjacency matrix is defined as:

Ā = D̃− 1
2 ÃD̃− 1

2 (12)

where Ã = A+I , and D̃ = diag(d̂) is the diagonal matrix containing node degrees with a self-loop.

We can rewrite this in the following form:

aij =
eij√
d̂id̂j

= eij(1 +
∑
k∈Ni

eik)
− 1

2 (1 +
∑
k∈Nj

ejk)
− 1

2 (13)

where aij = (Ā)ij , eij = (A)ij , d̂i denotes the degree of node i with a self-loop, and Ni denotes
the set of neighbors of node i. Then we can derive the gradient of normalized adjacency matrix to
the raw adjacency matrix as

∂aij
∂eij

= (1− eij

2d̂i
)

1√
d̂id̂j

. (14)
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3.3 GRADIENT AS A MATRIX PRODUCT

Based on the derivations above, we can obtain an approximate closed-form solution to the gradient
computation. As demonstrated in Equation 11, we observe that there are four d1-dimensional vectors
associated with the entry located at position (p, q) in the adjacency matrix, two corresponding to
node p and the other two corresponding to node q. We proceed by constructing two matrices:
H1 ∈ RN×d1 , where the ith row is given by (1 − l2i )[(W

T
1 )cmax

i
− (WT

1 )c∗i ], and H2 ∈ RN×d1

with the ith row being WT
0 xi. Subsequently, we employ one-time neighborhood aggregation using

H1 and H2 as latent feature matrices, resulting in J1 and J2 ∈ RN×d1 . Notably, the neighborhood
for aggregating H1 comprises only the target nodes, whereas for H2, it encompasses all nodes.
Therefore,

∑
i∈S aip(1 − l2i )[(W

T
1 )cmax

i
− (WT

1 )c∗i ] is the pth row of J1 and
∑N

k=1 aqkW
T
0 xk is

the qth row of J2. Consequently, we can readily express the gradient of the loss with respect to the
normalized adjacency matrix in matrix form as:

∂L
∂Ā

= J1H
T
2 +H1J

T
2 = [J1, H1] · [H2, J2]

T , (15)

where [·, ·] denotes the concatenation of two matrices along the columns.

The final step involves multiplying this gradient by the derivative of adjacency matrix normalization.
To facilitate matrix multiplication, we also want to separates the variables related to i and j in the
derivative, while as shown in Equation 14, the element of eij is inseparable. However, considering
the sparsity of edges in most graphs, where eij ∈ {0, 1} and often takes the value zero, we can

simplify the derivative as ∂aij/∂eij = 1/
√
d̂id̂j . Empirically, this approximation maintains good

performance with our method.

We construct the reciprocal of square root degree vector, denoted as d̂rsqrt, where the ith element
is 1/

√
d̂i. We then scale each row of matrices H1, H2, J1, J2 by d̂rsqrt to obtain the new matrices

H̄1, H̄2, J̄1, J̄2. This modification enables us to derive the final expression for the entire gradient as
the inner product of two (N, 2d1) matrices:

∂L
∂A
≈ [J̄1, H̄1] · [H̄2, J̄2]

T . (16)

We will leverage this special structure of the gradient to conduct efficient attack.

3.4 CLUSTERING AND APPROXIMATE NEAREST NEIGHBOR SEARCH

Let’s denote the matrices as follows: Q1 = [J̄1, H̄1], Q2 = [H̄2, J̄2] ∈ RN×2d1 . To conduct
attacks, the goal is to identify which entries in Q1 ·QT

2 has the highest values. Although finding the
exact top entries require O(N2) time, thanks to the special matrix product structure, this problem
can be reduced to the all-pair Approximate Nearest Neighbor Search (ANNS) or Maximum Inner
Product Search (MIPS) problems (Ballard et al., 2015; Jiang et al., 2020; Shrivastava & Li, 2014;
Malkov & Yashunin, 2018), where given a set of N vectors, efficient algorithms have been developed
to find the approximate top k pairs in sublinear time. Theoretically, given a query v a database
with N vectors {u1, . . . , uN}, ANNS/MIPS algorithms are able to find argmaxi u

T
i v in O(logN)

time (Friedman et al., 1977; Shrivastava & Li, 2014), so the overall cost of finding smallest pairs
require only O(N logN).

However, many existing implementations and algorithms require substantial indexing time for near-
est neighbor search, resulting in a significant amount of overhead at each iteration. Therefore, we
implement a light-weighted ANNS algorithm in our attack based on the clustering idea proposed
in (Jiang et al., 2020). First, we utilize the K-means algorithm to cluster the row vectors in matrices
Q1 and Q2 separately, obtaining cluster centroids for each. Subsequently, we compare the cluster
centroids of Q1 with those of Q2, calculating the inner products between these cluster centroids.
This yields the K closest cluster pairs. Next, we perform ANNS within each of these cluster pairs to
obtain the indices of the m closest vector pairs. We utilized the open-source library Faiss (Johnson
et al., 2019) for this step. This step results in a total of mK pairs of indices, corresponding to vectors
with potentially high similarity. Finally, we compute the gradients associated with these index pairs
using matrices Q1 and Q2. We select the index pairs with the highest inner product results and use
them to identify the corresponding entries in the adjacency matrix for subsequent updates.
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The pseudo code of our EGALA model is shown in Algorithm 1.

Algorithm 1: Efficient Gradient Approximation for Large-scale Graph Adversarial Attack
(EGALA)

1 Input: graph G = (A,X), label c∗, GNN parameters W0,W1, loss function L
2 Parameter: step size ∆t for t ∈ {1, 2, ..., E}, the number of clusters: w, the number of closest

cluster pairs: K, the number of closest vector pairs: m, period of cluster update: f , the
number of samples for clustering: ns

3 Initialize Â← A
4 Randomly initialize the cluster centroids for the row vectors in matrices Q1 and Q2

5 for t ∈ {1, 2, ..., E} do
6 Calculate matrix Q1 and Q2 according to 3.2 and 3.3
7 if t%f == 0 then
8 for Q1 and Q2 do
9 Randomly select ns row vectors of the matrix

10 Conduct K-means and determine the w cluster centroids
11 Cluster the N row vectors of the matrix
12 end
13 Identify the K closest cluster pairs by comparing the cluster centroids of Q1 with those

of Q2.
14 for k ∈ {1, 2, ...,K} do
15 Create a database containing row vectors from Q2 that are associated with cluster

pair k
16 end
17 end
18 for k ∈ {1, 2, ...,K} do
19 Conduct ANNS with Faiss for row vectors of Q1 with the database that belongs to the

cluster pair k, and retrieve m pairs of indices with the highest similarity scores
20 end
21 Compute the inner products of the row vectors in Q1 and Q2 that correspond to the index

pairs
22 Update Â by flipping ∆t edges with the highest inner product values
23 end
24 Return Â

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Datasets. Our experiments are conducted on five commonly used graph datasets: Cora ML (Bo-
jchevski & Günnemann, 2017), Citeseer (Giles et al., 1998), PubMed (Sen et al., 2008), ArXiv (Hu
et al., 2020), and Products (Hu et al., 2020). Detailed information regarding these datasets is pre-
sented in Table 1. For Cora ML, Citeseer, PubMed, and ArXiv, we conduct our experiments on
a standard 11GB GeForce GTX 1080 Ti, where most of the existing models can hardly scale to
PubMed dataset (Geisler et al., 2021). For Products dataset, we use 48GB NVIDIA RTX A6000.

Baseline models. We conducted a thorough comparison of our model against state-of-the-art
large-scale graph attack models, specifically PRBCD and GRBCD (Geisler et al., 2021). It is im-
portant to note that many other existing graph attack models are constrained by scalability issues (Li
et al., 2021; Zügner et al., 2018), restricted on small datasets and local attacks. Geisler et al. (2021)
have comprehensively compared various basic models in the global attack setting and demonstrated
their superiority over models, including DICE (Waniek et al., 2018), PGD (Xu et al., 2019), and
FGSM (Dai et al., 2018). As a result, we omit these baseline models from our comparative analysis
and concentrate our evaluation on the two leading models, PRBCD and GRBCD.
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Table 1: Statics of datasets.

Dataset # Nodes N # Edges # Features d0 # Classes
Cora ML 2,801 7,981 2,879 7
Citeseer 2,110 3,668 3,703 6
PubMed 19,717 44,324 500 3
ArXiv 169,343 1,157,799 128 40
Products 2,449,029 61,859,706 100 47

Attack settings. In line with
Geisler et al. (2021), we set the
experiments as global attack, evasion
attack, gray-box attack, and untar-
geted attack. For fair comparison,
we take SGC (Wu et al., 2019) as the
surrogate model for all the attacks
in our experiments. For consistency
with Geisler et al. (2021), we further
compare our model with the baseline
models using their originally suggested surrogate model, Vanilla GCN (Kipf & Welling, 2016).

GNN models. We assess the effectiveness of our attack across a range of GNN models, including
SGC, Vanilla GCN, Vanilla GDC (Gasteiger et al., 2019), Soft Median GDC (Geisler et al., 2021),
Vanilla PPRGo (Bojchevski et al., 2020), and Soft Median PPRGo (Geisler et al., 2021).

Hyperparameters. In GNN training and attacks of PRBCD and GRBCD, we follow the settings
in Geisler et al. (2021). We choose the block size b of 1,000,000, 2,500,000, and 10,000,000 for
Cora ML/Citeseer, PubMed and ArXiv/Products, respectively. For EGALA, we search the number
of clusters w in the set {5, 10, 20, 40}, the number of closest cluster pairs K in {5, 10, 20, 40, 80}.
We set the number of closest vector pairs m for each cluster pair to be two or three times of the step
size of each epoch. The period of cluster update f is set as 2 or 3. The number of samples ns for
clustering to be 500 and 1,000 for Cora ML/Citeseer and PubMed/ArXiv/Products, respectively.

4.2 EXPERIMENTAL RESULTS

We run each experiment with three random seeds. We set the attack budget to be 10% of the total
number of edges in the original graph. For smaller datasets like Cora ML and Citeseer, we also con-
duct a comparison between our EGALA, which utilizes clustering-based ANNS, and an alternative
approach denoted as EGALA-N. EGALA-N directly computes Q1 · QT

2 to approximate gradients
for all N2 entries. This comparative analysis aims to demonstrate that our EGALA achieves results
comparable to those of EGALA-N using direct gradient computation, thus reinforcing the effective-
ness of our clustering-based ANNS approach.

Attack performance. The experiment results are shown in Table 2. In this table, the last column
shows the original accuracy of the GNN models before the adversarial attack. ”S-GDC” and ”S-
PPRGo” denote Soft Median GDC and Soft Median PPRGo, respectively. Upon scrutinizing the
results, it becomes evident that our model consistently outperforms PRBCD and GRBCD across
various datasets. Furthermore, our model exhibits strong transferability across various GNN ar-
chitectures. The consistently superior performance of our approach across different GNN models
highlights its versatility and ability to generalize. The comparative results with PRBCD and GRBCD
using Vanilla GCN as the surrogate model is shown in Appendix B.2. To demonstrate the efficacy
of our transfer attack approach, we also compare EGALA with adaptive PRBCD and GRBCD, the
analysis shown in Appendix B.1. We conduct a thorough ablation study to assess the impact of
different hyperparameters on EGALA and the results can be found in Appendix C.

Time and memory cost. The time and memory cost is presented in Table 3. As the dataset size
increases, PRBCD and GRBCD necessitate larger block sizes for attacks, resulting in slower speeds
and a substantial memory increase. In contrast, our method exhibits superior efficiency in terms of
both time and memory usage, particularly excelling with large datasets, demonstrating the strong
scalability of our method. It is noteworthy that the computational cost of EGALA on small datasets
exceeds that of baselines, as well as our non-ANNS variant, EGALA-N. This increment in cost
can be attributed to the ANNS methodology employed in EGALA, where Faiss is directly utilized.
Exploring more efficient ANNS implementations holds the potential to notably diminish the overall
computation cost. Importantly, for smaller datasets like Cora and Citeseer, the direct computation
of matrix multiplication proves to be both rapid and incurs minimal memory cost. Conversely, for
larger datasets like Arxiv and Products, the incorporation of the ANNS mechanism significantly
mitigates computational costs, justifies its application.
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Table 2: Node classification accuracy on various target GNNs using SGC as the surrogate model.

Dataset Model PRBCD GRBCD EGALA EGALA-N Original

Cora ML

SGC 0.635±0.005 0.607±0.010 0.601±0.006 0.599±0.006 0.820±0.003
GCN 0.644±0.010 0.623±0.005 0.615±0.006 0.615±0.006 0.821±0.008
GDC 0.660±0.016 0.654±0.014 0.657±0.013 0.655±0.011 0.829±0.012
PPRGo 0.699±0.009 0.716±0.008 0.697±0.011 0.695±0.010 0.820±0.011
S-GDC 0.731±0.014 0.731±0.014 0.726±0.014 0.725±0.014 0.831±0.012
S-PPRGo 0.769±0.011 0.772±0.013 0.768±0.016 0.766±0.014 0.811±0.013

Citeseer

SGC 0.561±0.004 0.517±0.003 0.516±0.005 0.516±0.006 0.713±0.005
GCN 0.590±0.021 0.562±0.019 0.553±0.028 0.552±0.027 0.717±0.004
GDC 0.589±0.002 0.573±0.014 0.570±0.004 0.571±0.008 0.705±0.012
PPRGo 0.640±0.011 0.633±0.017 0.613±0.014 0.613±0.013 0.720±0.008
S-GDC 0.643±0.008 0.633±0.015 0.627±0.011 0.628±0.011 0.715±0.009
S-PPRGo 0.676±0.012 0.677±0.011 0.675±0.012 0.676±0.012 0.706±0.010

PubMed

SGC 0.608±0.009 0.569±0.012 0.564±0.010 - 0.772±0.006
GCN 0.605±0.006 0.582±0.011 0.581±0.008 - 0.773±0.007
GDC 0.637±0.014 0.611±0.019 0.607±0.017 - 0.776±0.006
PPRGo 0.671±0.007 0.663±0.011 0.653±0.006 - 0.769±0.006
S-GDC 0.671±0.014 0.649±0.021 0.641±0.014 - 0.776±0.007
S-PPRGo 0.712±0.003 0.716±0.002 0.711±0.002 - 0.754±0.004

ArXiv

SGC 0.404±0.002 0.364±0.002 0.336±0.003 - 0.692±0.002
GCN 0.426±0.006 0.421±0.001 0.402±0.010 - 0.698±0.004
GDC 0.431±0.002 0.433±0.002 0.426±0.001 - 0.678±0.001
PPRGo 0.502±0.004 0.515±0.008 0.505±0.008 - 0.675±0.007
S-PPRGo 0.556±0.002 0.557±0.003 0.554±0.002 - 0.601±0.002

Products
SGC 0.453±0.001 0.313±0.002 0.302±0.002 - 0.656±0.001
GCN 0.584±0.001 0.592±0.001 0.542±0.002 - 0.755±0.001
GDC 0.569±0.002 0.563±0.001 0.561±0.001 - 0.665±0.001

Table 3: Time and memory cost of our attack versus the baselines.

Dataset Time per step (s) Memory (MB)
PRBCD GRBCD EGALA EGALA-N PRBCD GRBCD EGALA EGALA-N

Cora ML 0.081 0.052 0.148 0.015 1101 1101 2,275 873
Citeseer 0.086 0.057 0.146 0.017 965 967 2,273 765
PubMed 0.207 0.125 0.173 - 1,735 1,817 2,606 -
ArXiv 1.064 1.020 0.229 - 6,723 6,315 4,616 -
Products 70.19 30.98 19.09 - 40,457 46,591 30,588 -

5 CONCLUSION

In this paper, we propose Enhanced Gradient Approximation for Large-scale Graph Adversarial
Attack (EGALA), a novel approach to address the challenges associated with conducting graph ad-
versarial attacks on large-scale datasets. By approximating gradients by a matrix product, coupled
with the strategic application of clustering and Approximate Nearest Neighbor Search (ANNS),
EGALA efficiently identifies entries with the largest gradients in the adjacency matrix without the
need for explicit gradient calculations, and thus significantly enhances the model’s scalability. Fur-
ther, the idea of using ANNS for scalable graph attack can be used as a core building block for other
structural attack algorithms in the future.

Limitations. The current paper focuses on the transfer attack setting since the derivation of gra-
dient being a matrix product is based on the SGC network. It will be an interesting future direction
to generalize this finding to general graph neural network architectures (probably with certain level
of approximation) which will enable EGALA in the white-box attack setting. Further, beyond the
clustering-based approach for ANNS used in the current implementation, it will be worthwhile in-
vestigating how other ANNS algorithms such as graph-based algorithms (Malkov & Yashunin, 2018;
Chen et al., 2023; Jayaram Subramanya et al., 2019) and quantization-based algorithms Guo et al.
(2020) can be applied to graph structural attacks.
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A DETAILS OF GRADIENT COMPUTATION
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B ATTACK PERFORMANCE COMPARISON WITH PRBCD AND GRBCD IN
DIFFERENT SETTINGS

B.1 COMPARATIVE EVALUATION OF EGALA WITH ADAPTIVE PRBCD AND GRBCD

To thoroughly understand the robustness of neural networks, it is essential to evaluate them against
adaptive attacks, as these provide a more accurate reflection of their defensive capabilities (Mu-
jkanovic et al., 2022; Tramer et al., 2020). Our proposed EGALA initially focuses on the transfer
attack paradigm, leveraging a surrogate model based on a two-layer Simplified Graph Convolution
(SGC). In this context, to demonstrate the efficacy of our transfer attack approach, we have drawn
comparisons between our transfer EGALA and adaptive PRBCD and GRBCD, where in adaptive
attacks the attacker has access to gradients from the victim model itself. Table 4 presents the results
of these comparisons.
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Table 4: Node classification accuracy comparing with adaptive PRBCD and GRBCD.

Dataset Model PRBCD GRBCD EGALA EGALA-N

Cora ML
GCN 0.637±0.007 0.614±0.011 0.615±0.006 0.615±0.006
GDC 0.638±0.014 0.697±0.005 0.657±0.013 0.655±0.011
S-GDC 0.684±0.013 0.725±0.015 0.726±0.014 0.725±0.014

Citeseer
GCN 0.568±0.004 0.540±0.014 0.553±0.028 0.552±0.027
GDC 0.552±0.008 0.599±0.020 0.570±0.004 0.571±0.008
S-GDC 0.598±0.016 0.635±0.019 0.627±0.011 0.628±0.011

PubMed GCN 0.615±0.004 0.569±0.007 0.581±0.008 -
GDC 0.601±0.018 0.670±0.012 0.607±0.017 -

Table 5: Time and memory cost of adaptive attacks.

Dataset Model Time per step (s) Memory (MB)
PRBCD GRBCD PRBCD GRBCD

Cora ML
GCN 0.085 0.051 1071 1073
GDC 0.158 0.093 1217 1239
S-GDC 0.152 0.108 1275 1309

Citeseer
GCN 0.083 0.049 965 967
GDC 0.124 0.074 1093 1073
S-GDC 0.147 0.086 1193 1211

PubMed GCN 0.200 0.128 1735 1817
GDC 9.73 6.62 9985 10569

The results indicate that for adaptive attacks on Vanilla GCN, PRBCD and GRBCD display supe-
rior performance over transfer attacks, with GRBCD outperforming transfer EGALA and adaptive
PRBCD, yielding the worst classification accuracy. For Vanilla GDC and Soft Median GDC mod-
els, adaptive PRBCD emerges as the most effective, surpassing attack results. Interestingly, adaptive
GRBCD on these models does not outperform its transfer counterpart, which suggests that for greedy
methods, being adaptive does not guarantee better performance than a transfer attack.

Additionally, we examined the computational resources required for these adaptive attacks. The
results are shown in Table 5. We observed that the execution time and memory consumption dra-
matically increase when utilizing the more complex GNN models, constraining the scalability of
adaptive attacks. Geisler et al. (2021) underscore this limitation by noting the absence of an efficient
backpropagation-supported Personalized PageRank (PPR) implementation, which results in exorbi-
tant computation and memory demands. Consequently, this restricts the feasibility of executing an
adaptive, global attack on the Soft Median GDC to smaller datasets only.

In summary, while adaptive attacks can provide a more stringent test for model robustness, our
EGALA provides competitive results in the transfer setting. Moreover, the limitations in resource
requirements of adaptive attacks should not be overlooked, as they can be a restriction to testing
model resilience in more complex, scalable real-world scenarios.

B.2 COMPARATIVE ANALYSIS WITH VANILLA GCN AS THE SURROGATE MODEL FOR
PRBCD AND GRBCD

We have further investigated the choice of surrogate models in graph adversarial attacks. We note
that SGC’s simplicity and scalability make it a prevalent choice for large graphs and is hence em-
ployed as a surrogate model in many state-of-the-art attack strategies, including ours (Li et al., 2021;
Zügner et al., 2018). In order to have a more comprehensive experiment, we carried out additional
experiments to consider PRBCD and GRBCD utilizing their originally suggested surrogate model,
Vanilla GCN. We present the results of this analysis in Table 6.
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Table 6: Node classification accuracy on various target GNNs with Vanilla GCN as the surrogate
model for PRBCD and GRBCD.

Dataset Model PRBCD GRBCD EGALA EGALA-N

Cora ML

SGC 0.641±0.008 0.629±0.013 0.601±0.006 0.599±0.006
GCN 0.637±0.007 0.614±0.011 0.615±0.006 0.615±0.006
GDC 0.659±0.010 0.658±0.014 0.657±0.013 0.655±0.011
PPRGo 0.695±0.011 0.719±0.007 0.697±0.011 0.695±0.010
S-GDC 0.728±0.010 0.735±0.011 0.726±0.014 0.725±0.014
S-PPRGo 0.770±0.012 0.777±0.014 0.768±0.016 0.766±0.014

Citeseer

SGC 0.583±0.015 0.562±0.022 0.516±0.005 0.516±0.006
GCN 0.568±0.004 0.540±0.014 0.553±0.028 0.552±0.027
GDC 0.583±0.011 0.568±0.011 0.570±0.004 0.571±0.008
PPRGo 0.642±0.004 0.634±0.002 0.613±0.014 0.613±0.013
S-GDC 0.631±0.020 0.631±0.023 0.627±0.011 0.628±0.011
S-PPRGo 0.675±0.009 0.675±0.009 0.675±0.012 0.676±0.012

PubMed

SGC 0.618±0.008 0.584±0.012 0.564±0.010 -
GCN 0.615±0.004 0.569±0.007 0.581±0.008 -
GDC 0.638±0.016 0.611±0.022 0.607±0.017 -
PPRGo 0.671±0.011 0.663±0.016 0.653±0.006 -
S-GDC 0.673±0.013 0.651±0.020 0.641±0.014 -
S-PPRGo 0.711±0.001 0.717±0.003 0.711±0.002 -

When comparing these results with those in Table 2, it is observed that substituting Vanilla GCN
as the surrogate model for PRBCD and GRBCD does not markedly change their attack perfor-
mance. Importantly, our EGALA maintains competitive performance relative to these baselines.
The choice between Vanilla GCN and SGC as a surrogate appears to exert trivial influence on the
overall performance of PRBCD and GRBCD, affirming the effectiveness of our EGALA across
various experimental conditions.

C ABLATION STUDY

To investigate the impact of various clustering parameters on the efficacy of our EGALA model, we
conducted an ablation study using the Cora ML dataset. The attack model used is SGC (Wu et al.,
2019). Our exploration centers on three key parameters: the number of clusters (w), the number
of closest cluster pairs (K), and the period of cluster updates (f ). We assess the implications on
attack performance as well as resource utilization, including time and memory consumption, to gain
a more comprehensive understanding. In this ablation study, we set the parameter governing the
number of closest vector pairs (m) within each cluster pair to double the step size. Moreover, the
number of samples (ns) selected for clustering is consistently maintained at 500.

Figure 1 illustrates the effect of varying the number of clusters (w) on model performance, keeping
the number of closest cluster pairs (K) at 20 and the update frequency (f ) at 3. Figure 2 demonstrates
how alterations to the number of closest cluster pairs (K) affect the model, with the number of
clusters (w) held constant at 10 and the update frequency (f ) at 3. Lastly, Figure 3 depicts the
impact of different cluster update periods (f ), given a fixed number of clusters (w) at 5 and closest
cluster pairs (K) at 5.

The observed results indicate that a smaller number of clusters (w) leads to reduced computational
time without compromising model performance. To ensure optimal performance, the cluster update
frequency (f ) must be relatively low, with a value of 3 appearing optimal, striking a balance between
computational efficiency and attack efficacy. Variations in the model parameters shown in our tests
have a negligible effect on memory usage. To summarize, the influence of clustering parameters
on the EGALA model is minimal. Our analysis demonstrates that the model consistently delivers
robust performance over a wide range of parameter configurations, highlighting its flexibility and
stability under various settings.
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Figure 2: Influence of closest cluster pairs K
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