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Abstract
Deep learning for time series forecasting has tradi-
tionally operated within a one-model-per-dataset
framework, limiting its potential to leverage
the game-changing impact of large pre-trained
models. The concept of universal forecasting,
emerging from pre-training on a vast collection
of time series datasets, envisions a single Large
Time Series Model capable of addressing diverse
downstream forecasting tasks. However, con-
structing such a model poses unique challenges
specific to time series data: i) cross-frequency
learning, ii) accommodating an arbitrary number
of variates for multivariate time series, and iii)
addressing the varying distributional properties
inherent in large-scale data. To address these
challenges, we present novel enhancements to the
conventional time series Transformer architecture,
resulting in our proposed Masked EncOder-based
UnIveRsAl TIme Series Forecasting Transformer
(MOIRAI). Trained on our newly introduced
Large-scale Open Time Series Archive (LOTSA)
featuring over 27B observations across nine do-
mains, MOIRAI achieves competitive or superior
performance as a zero-shot forecaster when com-
pared to full-shot models. Code, data, and model
weights can be found at https://github.
com/SalesforceAIResearch/uni2ts.

1. Introduction
In the era of foundation models (FMs) (Bommasani et al.,
2021), the landscape of deep learning for time series fore-
casting is experiencing a revolution. In contrast to FMs capa-
ble of tackling a multitude of downstream tasks, the current
deep forecasting paradigm, involving training a model on
a single dataset with a fixed context and prediction length,
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Multiple Domains

Figure 1. A universal forecaster is a large pre-trained model capa-
ble of handling any time series forecasting problem. It is trained
on a large-scale time series dataset spanning multiple domains.
Compared to the existing paradigm, universal forecasting faces the
three key issues of i) multiple frequencies, ii) any-variate forecast-
ing, and iii) varying distributions.

appears increasingly antiquated, lacking the capacity to gen-
eralize or adapt to diverse scenarios or datasets. Given
the unreasonable effectiveness of large pre-trained models
in improving performance and data efficiency via transfer
learning in modalities like vision and language (Dosovitskiy
et al., 2020; Brown et al., 2020), we are starting to see a
push to transition away from the existing paradigm, towards
a universal forecasting paradigm (see Figure 1), where a sin-
gle large pre-trained model is able to handle any time series
forecasting problem. However, the road to building a univer-
sal time series forecasting model is mired with challenges.

Unlike the modalities of vision and language which have the
unified formats of images and text respectively, time series
data is highly heterogeneous. Firstly, the frequency (e.g.
minutely, hourly, daily sampling rates) of time series plays
an important role in determining the patterns present in the
time series. Cross-frequency learning has been shown to be
a challenging task due to negative interference (Van Ness
et al., 2023), with existing work simply avoiding this
problem for multi-frequency datasets by learning one model
per frequency (Oreshkin et al., 2020). Secondly, time series
data are heterogeneous in terms of dimensionality, whereby
multivariate time series can have different number of
variates. Furthermore, each variate measures a semantically
different quantity across datasets. While considering each
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Table 1. Comparison between pre-trained forecasting models. Fur-
ther discussion on the notion of a “flexible distribution” can be
found in Appendix B.3.

Any-variate
(Zero-shot)

Probabilistic
Forecasting

Flexible
Distribution Pre-training Data (Size) Open-source

MOIRAI ✓ ✓ ✓ LOTSA (> 27B) ✓
TimeGPT-1 ✓ ✓ ✗ Unknown (100B) ✗
ForecastPFN ✗ ✗ - Synthetic Data (60M) ✓
Lag-Llama ✗ ✓ ✗ Monash (< 1B) ✓
TimesFM ✗ ✗ - Wiki + Trends + Others (> 100B) ✓
TTM ✗ ✗ - Monash (< 1B) ✓
LLMTime ✗ ✓ ✓ Web-scale Text ✓

variate of a multivariate time series independently (Nie et al.,
2023; Ekambaram et al., 2023) can sidestep this problem,
we expect a universal model to be sufficiently flexible to
consider multivariate interactions and take into account
exogenous covariates. Thirdly, probabilistic forecasting is a
critical feature often required by practitioners, yet, different
datasets have differing support and distributional properties
– for example, using a symmetric distribution (e.g. Normal,
Student-T) as the predictive distribution is not suitable
for positive time series – making standard approaches of
pre-defining a simple parametric distribution (Salinas et al.,
2020) to be insufficiently flexible to capture a wide variety
of datasets. Lastly, a large pre-trained model capable
of universal forecasting requires a large-scale dataset
from diverse domains. Existing time series datasets are
insufficiently large to support the training of such models.

Starting from a masked encoder architecture which has
been shown to be a strong candidate architecture for scaling
up pre-trained time series forecasting models (Woo et al.,
2023), we alleviate the above issues by introducing novel
modifications which allows the architecture to handle
the heterogeneity of arbitrary time series data. Firstly,
we propose to learn multiple input and output projection
layers to handle the differing patterns from time series of
varying frequencies. Using patch-based projections with
larger patch sizes for high-frequency data and vice versa,
projection layers are specialized to learn the patterns of that
frequency. Secondly, we address the problem of varying
dimensionality with our proposed Any-variate Attention,
which simultaneously considers both time and variate axes
as a single sequence, leveraging Rotary Position Embed-
dings (RoPE) (Su et al., 2024), and learned binary attention
biases (Yang et al., 2022b) to encode time and variate axes
respectively. Importantly, Any-variate Attention allows the
model to take as input arbitrary number of variates. Thirdly,
we overcome the issue of requiring flexible predictive
distributions with a mixture of parametric distributions.
Furthermore, optimizing the negative log-likelihood of a
flexible distribution has the added benefit of being competi-
tive with target metric optimization (Awasthi et al., 2022), a
powerful feature for pre-training universal forecasters, given
that it can be evaluated with any target metric subsequently.

To power the training of our Large Time Series Model

(LTM), we introduce the Large-scale Open Time Series
Archive (LOTSA), the largest collection of open time series
datasets with 27B observations across nine domains. We
optimize the negative log-likelihood of the mixture distri-
bution, and randomly sample context and prediction lengths
during training, allowing for flexible downstream usage
of the pre-trained model. We train our proposed method,
Masked EncOder-based UnIveRsAl TIme Series Forecast-
ing Transformer (MOIRAI1), in three sizes – MOIRAISmall,
MOIRAIBase, and MOIRAILarge, with 14m, 91m, and
311m parameters respectively. We perform experimental
evaluations on both in and out-of-distribution settings, and
show that MOIRAI consistently achieves competitive or
superior performance compared to state-of-the-art full-shot
baselines. Our contributions are summarized as follows:

1. We introduce a novel Transformer architecture to
support the requirements of universal forecasting.
Crucially, the components we propose extend beyond
masked encoders and are versatile, applicable to a
broad range of Transformer variants.

2. We introduce LOTSA, a new large-scale collection of
open time series datasets to empower pre-training of
LTMs. LOTSA, the model weights, and our library
for unified training of universal time series models,
UNI2TS, will be fully open sourced.

3. Trained on LOTSA data, MOIRAI achieves competitive
or superior performance as a zero-shot forecaster when
compared to full-shot models.

2. Related Work
Pre-training for Zero-shot Forecasting Table 1 provides
a summary of the key differences between recent pre-trained
models with zero-shot forecasting capabilities, which is a re-
cently emerging field. TimeGPT-1 (Garza & Mergenthaler-
Canseco, 2023) first presented a closed-source model, offer-
ing zero-shot forecasting capabilities as well as supporting
fine-tuning through an API, currently only available to their
beta users. ForecastPFN (Dooley et al., 2023) proposes to
pre-train on synthetic time series, which can be subsequently
be leveraged as a zero-shot forecaster, albeit specialized
for data or time limited settings. Lag-llama (Rasul et al.,
2023) works towards a foundation model for time series
forecasting, leveraging the LLaMA (Touvron et al., 2023)
architecture design with lagged time series features, and
also presents neural scaling laws for time series forecasting.
TimesFM (Das et al., 2023b) is a patch-based decoder-only
foundation model for time series forecasting, introducing a

1In ancient Greek religion and mythology, the Moirai, often
known in English as the Fates, were the personifications of destiny.
(Wikipedia contributors, 2024)
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larger output patch size for faster decoding. They collected
a massive amount of data from Google Trends and Wiki
pageviews to pre-train their model in combination with open-
data. Tiny Time Mixers (TTMs) (Ekambaram et al., 2024)
is a concurrent work leveraging lightweight mixer-style
architecture. They perform data augmentation by downsam-
pling high-frequency time series, and support multivariate
downstream tasks by fine-tuning an exogenous mixer.
leverage Large Language Models (LLMs), pre-trained on
web-scale text data, have been leveraged for zero-shot fore-
casting. Specifically, LLMTime (Gruver et al., 2023) treats
time series as strings, applying careful pre-processing based
on the specific LLMs’ tokenizer, showing that LLMs have
the inherent capability to perform zero-shot forecasting.

Pre-train + Fine-tune for Time Series Forecasting
Pre-training with subsequent fine-tuning on downstream
forecasting tasks has predated the recent zero-shot fore-
casting efforts. Denoising autoencoders (Zerveas et al.,
2021) and contrastive learning (Yue et al., 2022; Woo et al.,
2022) have been shown to be effective pretext tasks for
time series forecasting, but have largely been applied to
the existing paradigm of pre-training and fine-tuning on
the same dataset, without exploring their generalization
capabilities. More recently, Dong et al. (2023) explored
combining both reconstruction and contrastive based
pre-training approaches, and performed initial explorations
into cross-dataset transfer. The topic has been well explored,
and we refer readers to more comprehensive surveys (Zhang
et al., 2023; Ma et al., 2023). “Reprogramming” is a recent
direction which involves fine-tuning the model weights
of an LLM which has been pre-trained on text data, for
downstream tasks for other modalities. Zhou et al. (2023);
Jin et al. (2023) introduce modules and fine-tuning methods
to adapt LLMs for time series tasks including forecasting.
Liu et al. (2024) has explored leveraging pre-trained LLMs
on the cross-dataset setting.

3. Method
Problem Formulation Consider a dataset of N
time series D = {(Y (i),Z(i))}Ni=1, where Y (i) =

(y
(i)
1 ,y

(i)
2 , . . . ,y

(i)
Ti
) ∈ Rdyi

×Ti is a target time series of
dyi

variates and Ti time steps. Each time series is associated
with a set of covariates Z(i) = (z

(i)
1 , z

(i)
2 , . . . ,z

(i)
Ti
) ∈

Rdzi
×Ti . The goal is to forecast the predictive distribution

p(Yt:t+h|ϕ) by predicting distribution parameters ϕ via
a learned model fθ : (Yt−l:t,Zt−l:t+h) 7→ ϕ̂ which
maximizes the log-likelihood:

max
θ

E
(Y,Z)∼p(D)
(t,l,h)∼p(T |D)

log p(Yt:t+h|ϕ̂),

s.t. ϕ̂ = fθ(Yt−l:t,Zt−l:t+h), (1)

where p(D) is the data distribution which samples for a time
series, (Y ,Z), and p(T |D) is the task distribution which
defines the lookback window, Yt−l:t = (yt−l, . . . ,yt−1)
with context length l and forecast horizon,
Yt:t+h = (yt, . . . ,yt+h−1) with prediction length h.

3.1. Architecture

Illustrated in Figure 2, MOIRAI follows a (non-overlapping)
patch-based approach to modeling time series with a masked
encoder architecture. One of our proposed modifications
to extend the architecture to the any-variate setting is to
“flatten” multivariate time series, considering all variates as
a single sequence. Patches are subsequently projected into
vector representations via a multi patch size input projection
layer. The [mask] signifies a learnable embedding which
replaces patches falling within the forecast horizon. The out-
put tokens are then decoded via the multi patch size output
projection into the parameters of the mixture distribution.
While not visualized, (non-learnable) instance normalization
(Kim et al., 2022) is applied to inputs/outputs, aligning with
the current standard practice for deep forecasting models.

The core Transformer module is an encoder-only Trans-
former architecture, leveraging various improvements as
proposed by recent state-of-the-art LLM architectures. We
use pre-normalization (Xiong et al., 2020) and replace all
LayerNorms with RMSNorm (Zhang & Sennrich, 2019),
and also apply query-key normalization (Henry et al., 2020).
The non-linearity in FFN layers are replaced with SwiGLU
(Shazeer, 2020), adjusting the hidden dimension to have
equal number of parameters as the original FFN layer. We
omit biases in all layers of the Transformer module.

3.1.1. MULTI PATCH SIZE PROJECTION LAYERS

In the context of universal forecasting, a single model should
possess the capability to handle time series spanning a wide
range of frequencies. Existing patch-based architectures
rely on a single patch size hyperparameter, a legacy feature
from the prevailing one-model-per-dataset paradigm. In-
stead, we aim for a more flexible strategy: opting for a larger
patch size to handle high-frequency data, thereby lower the
burden of the quadratic computation cost of attention while
maintaining a long context length. Simultaneously, we
advocate for a smaller patch size for low-frequency data to
transfer computation to the Transformer layers, rather than
relying solely on simple linear embedding layers. To im-
plement this approach, we propose learning multiple input
and output embedding layers, each associated with varying
patch sizes. The selection of the appropriate patch size for
a given time series frequency relies on pre-defined settings
(see Appendix B.1). Note that we only learn one set of
projection weights per patch size, which is shared amongst
frequencies if there is an overlap based on the settings.
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Variate 0 Variate 1 Variate 2

Patch Size 8 Patch Size 16 Patch Size 32 Patch Size 64 Patch Size 128Multi Patch Size
Input Projection

[mask][mask]
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Transformer (Full Self-Attention)
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Figure 2. Overall architecture of MOIRAI. Visualized is a 3-variate time series, where variates 0 and 1 are target variables (i.e. to be
forecasted, and variate 2 is a dynamic covariate (values in forecast horizon known). Based on a patch size of 64, each variate is patchified
into 3 tokens. The patch embeddings along with sequence and variate id are fed into the Transformer. The shaded patches represent the
forecast horizon to be forecasted, whose corresponding output representations are mapped into the mixture distribution parameters.

3.1.2. ANY-VARIATE ATTENTION

Universal forecasters must be equipped to handle arbitrary
multivariate time series. Existing time series Transform-
ers often rely on an independent variate assumption or are
limited to a single dimensionality due to embedding layers
mapping Rdy → Rdh , where Rdh is the hidden dimension.
We overcome this limitation as shown in Figure 2, by flat-
tening a multivariate time series to consider all variates as a
single sequence. This introduces a new requirement of hav-
ing variate encodings to enable the model to disambiguate
between different variates in the sequence. Furthermore, we
need to ensure that permutation equivariance w.r.t. variate
ordering, and permutation invariance w.r.t. variate indices
are respected. Conventional approaches like sinusoidal or
learned embeddings do not meet these requirements, and
are unable to handle an arbitrary number of variates. To
address this, we propose Any-variate Attention, leveraging
binary attention biases to encode variate indices.

Dropping layer and attention head indices, and scaling factor
for brevity, the attention score between the (i,m)-th query
where i represents the time index and m represents the
variate index, and the (j, n)-th key, Aij,mn ∈ R, is given by:

Eij,mn = (WQxi,m)TRi−j(W
Kxj,n)

+ u(1) ∗ 1{m=n} + u(2) ∗ 1{m̸=n}, (2)

Aij,mn =
exp{Eij,mn}∑
k,o exp{Eik,mo}

, (3)

where WQxi,m,WKxj,n ∈ Rdh are the respective query
and key vectors, Ri−j ∈ Rdh×dh is the rotary matrix (Su

et al., 2024), u(1), u(2) ∈ R are learnable scalars for each
head in each layer, and 1{cond} =

{
1, if cond
0, otherwise is the indica-

tor function. The binary attention bias component allows
for disambiguation between variates via attention scores,
fulfills the criteria of permutation equivariance/invariance
w.r.t. variate ordering/indices, and can extend to arbitrary
number of variates.

3.1.3. MIXTURE DISTRIBUTION

To achieve the goal of having a flexible distribution, yet
ensuring that operations of sampling and evaluating the
loss function remains simple, we propose to use a mixture
of parametric distributions. A mixture distribution of c
components has p.d.f.:

p(Yt:t+h|ϕ̂) =
c∑

i=1

wipi(Yt:t+h|ϕ̂i), (4)

where ϕ̂ = {w1, ϕ̂1, . . . , wc, ϕ̂c}, and pi is the i-th
component’s p.d.f. While the choice of mixture components
is flexible and implementing any combination of parametric
distributions is straightforward, we specifically propose
to use the following mixture components: i) a Student’s
t-distribution which has shown to be a robust option for
general time series, ii) a negative binomial distribution
for positive count data, iii) a log-normal distribution to
model right-skewed data commonly across economic and
and natural phenomena, and iv) a low variance normal
distribution for high confidence predictions. Further details
can be found in Appendix B.2.
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Table 2. Key statistics of LOTSA by domain.

Energy Transport Climate CloudOps Web Sales Nature Econ/Fin Healthcare

# Datasets 30 23 6 3 3 6 5 23 6
# Obs. 16,358,600,896 4,900,453,419 4,188,011,890 1,518,268,292 428,082,373 197,984,339 28,547,647 24,919,596 1,594,281
% 59.17% 17.73% 15.15% 5.49% 1.55% 0.72% 0.09% 0.10% 0.01%

Table 3. Key statistics of LOTSA by frequency.

Yearly Quarterly Monthly Weekly Daily (Multi) Hourly (Multi) Minute-level (Multi) Second-level

# Datasets 4 5 10 7 21 31 25 2
# Obs. 873,297 2,312,027 11,040,648 18,481,871 709,017,118 19,875,993,973 7,013,949,430 14,794,369
% 0.003% 0.008% 0.040% 0.067% 2.565% 71.893% 25.370% 0.054%

3.2. Unified Training

3.2.1. LOTSA DATA

Existing work has predominantly relied on three primary
sources of data – the Monash Time Series Forecasting
Archive (Godahewa et al., 2021), datasets provided by the
GluonTS library (Alexandrov et al., 2020), and datasets
from the popular long sequence forecasting benchmark (Lai
et al., 2018; Wu et al., 2021). While Monash and GluonTS
comprise of datasets from diverse domains, they are con-
strained in size, with approximately 1B observations com-
bined. In comparison, LLMs are trained on trillions of to-
kens. Das et al. (2023b) builds a private dataset mainly based
on Google Trends and Wiki pageviews, but lacks diversity
in terms of the domains these time series originate from.

The effectiveness of FMs heavily stem from large-scale pre-
training data. Given that existing data sources fall short of
supporting such a paradigm, attempting to train an LTM
on them may result in misleading conclusions. Thus, we
tackle this issue head-on by building a large-scale archive
of open time series datasets by collating publicly available
sources of time series datasets. This effort aims to cover
a broad spectrum of domains, consolidating datasets from
diverse sources with varying formats. We design a uni-
fied storage format using Arrow (Richardson et al., 2023)
which is ready for deep learning pipelines. The result-
ing collection, LOTSA, spans nine domains, with a total
of 27, 646, 462, 733 observations, with key statistics in Ta-
bles 2 and 3, and in-depth details in Appendix A.

3.2.2. PRE-TRAINING

As introduced in Equation (1), our pre-training task is for-
mulated to optimize the mixture distribution log-likelihood.
The design of both the data distribution and task distribu-
tion are two critical aspects of the pre-training pipeline.
This design imparts versatile capabilities to our LTM, en-
abling it to adapt to a range of downstream tasks. This
flexibility stands in contrast to the prevailing deep forecast-
ing paradigm, where models are typically specialized for
specific datasets and settings.

Data Distribution The data distribution, (Y,Z) ∼ p(D),
defines how time series are sampled from the dataset.
Trained on LOTSA, which is a dataset of datasets, we in-
troduce the notion of sub-datasets, by decomposing the
data distribution into a sub-dataset distribution, and a time
series distribution conditioned on a sub-dataset, p(D) =
p(Y,Z|D)p(D). Thus, we first sample a sub-dataset from
p(D), and given that sub-dataset, we sample a time series.
For K sub-datasets, where Dk represents the set of indices
of time series belonging to sub-dataset k, the structure of
p(Y (i),Z(i)|Dk) =

Ti∗1{i∈Dk}∑
j∈Dk

Tj
, proportionate to the num-

ber of observations, is straightforward.

However, due to data imbalance across domains and fre-
quency, we avoid sampling sub-datasets proportionately,
and instead cap the contribution of each sub-dataset at
ϵ = 0.001, before re-normalizing: p(Dk) = ωk∑K

i=1 ωi
,

where ωk = min( |Dk|∑K
i |Di|

, ϵ), and |Dk| =
∑

i∈Dk
Ti.

Task Distribution Different from the existing deep fore-
casting paradigm, we aim to train a model with forecasting
capabilities over varying context and prediction lengths.
Rather than defining a fixed context and prediction length,
we sample from a task distribution, (t, l, h) ∼ p(T |D)
which defines the lookback window and forecasting horizon,
given a time series. In practice, rather than sampling t, l, h,
given a time series, we crop a uniformly sampled window,
whose length is uniformly sampled from a range. This range
is defined by a minimum sequence length per variate of 2,
and a total maximum sequence length of 512. The window
is then split into lookback and horizon segments, where
the prediction length is uniformly sampled as a proportion
(within the range [0.15, 0.5]) of the window. We further
augment training by i) uniformly subsampling multivariate
time series in the variate dimension, and ii) constructing
multivariate time series from sub-datasets with univariate
time series, by randomly concatenating them. The number
of variates is sampled from a beta-binomial distribution
with parameters n = 128, a = 2, b = 5 which supports a
maximum of 128 variates, with mean ≈ 37 for efficiency.
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Table 4. Details of MOIRAI model sizes.

Layers dmodel dff Heads dkv Params

MOIRAISmall 6 384 1536 6 64 14m
MOIRAIBase 12 768 3072 12 64 91m
MOIRAILarge 24 1024 4096 16 64 311m
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Figure 3. Aggregate results of the Monash Time Series Forecasting
Benchmark. The normalized MAE is reported, which normalizes
the MAE of each dataset by the naive forecast’s MAE, and aggre-
gated by taking the geometric mean across datasets.

Training We train MOIRAI in three sizes – small, base,
and large, with key parameter details listed in Table 4.
The small model is trained for 100, 000 steps, while
base and large models are trained for 1, 000, 000 steps
with a batch size of 256. For optimization, we use the
AdamW optimizer with the following hyperparameters,
lr = 1e-3,weight decay = 1e-1, β1 = 0.9, β2 = 0.98. We
also apply a learning rate scheduler with linear warmup
for the first 10, 000 steps, and cosine annealing thereafter.
Models are trained on NVIDIA A100-40G GPUs with
TF32 precision. We implement sequence packing (Raffel
et al., 2020) to avoid large amounts of padding due to
the disparity of sequence lengths in the new setting with
varying context, prediction, and variate lengths, thereby
increasing the effective batch size.

4. Experiments
4.1. In-distribution Forecasting

We first perform an in-distribution evaluation using the
Monash benchmark, which aim to measure generaliza-
tion capability across diverse domains. Described in Ap-
pendix A, LOTSA includes the Monash Time Series Fore-
casting Archive as a source of data. For a large portion of
these datasets, we only include the train set, holding out
the test set which we now use for in-distribution evaluation.
In this evaluation, we consider a standard setting with a
context length of 1000, and a patch size of 32 for all fre-
quencies, except for quarterly data with a patch size of 8.
Figure 3 summarizes the results based on the normalized
mean absolute error (MAE), in comparison with the base-
lines presented in the Monash benchmark. It is worth noting
that each baseline in the Monash benchmark is typically
trained individually per dataset or per time series within a

dataset. In contrast, MOIRAI stands out by being a single
model evaluated across various datasets. Full results as well
as a comparison with LLMTime (Gruver et al., 2023) can
be found in Appendix D.1.

We observe that MOIRAI outperforms all baselines from the
Monash benchmark regardless of model size, displaying the
strong in-distribution and cross-domain capabilities arising
from our unified training methodology. We highlight that
each instance of MOIRAI is a single model evaluated across
datasets, compared to baselines for which one model is
trained per dataset. Further analysis on computational costs
can be found in Appendix D.4.

4.2. Out-of-distribution / Zero-shot Forecasting

Next, we perform an out-of-distribution evaluation on un-
seen target datasets. Here, MOIRAI is a zero-shot fore-
caster compared with state-of-the-art full-shot baselines
which have been trained on the individual target datasets.
While the ideal scenario would be to include other univer-
sal forecasters, this proves to be a challenging task. As a
nascent field, most universal forecasters currently do not yet
have open weights avaiable for evaluation. Furthermore, the
problem of comparing zero-shot methods is exacerbated by
not having a standard held-out test split, making it challeng-
ing to collate a set of datasets which all the models have not
been trained on. Thus, we establish the strong zero-shot ca-
pabilities of MOIRAI by displaying competitive or stronger
results compared with SOTA full-shot methods – datasets
used in the following have not been included in LOTSA.

Probabilistic Forecasting We evaluate on six datasets
across energy, transport, climate, and sales domains,
following a rolling evaluation setup with stride equal to
prediction length. Prediction lengths and number of rolling
evaluations are defined for each dataset based on frequency.
We report the Continuous Ranked Probability Score (CRPS)
and Mean Scaled Interval Score (MSIS) metrics (definitions
in Appendix C), comparing against four full-shot baselines –
DeepAR (Salinas et al., 2020), PatchTST (Nie et al., 2023),
and TiDE (Das et al., 2023a) with Student’s t-distribution
prediction heads, and TFT based on quantile prediction
(Lim et al., 2021), all implemented with the GluonTS
library (Alexandrov et al., 2020), as well as simple
baselines AutoARIMA (Garza et al., 2022) and Seasonal
Naive (Hyndman & Athanasopoulos, 2018). For each
dataset and baseline, we perform hyperparameter tuning
on a validation CRPS, and report results averaged over
five training runs with different seeds. For MOIRAI, we
perform inference time tuning, selecting context length
from {1000, 2000, 3000, 4000, 5000} and patch sizes based
on frequency, on the validation CRPS. Full details of the
evaluation setting can be found in Appendix C.
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Table 5. Probabilistic forecasting results. Best results are highlighted in bold, and second best results are underlined. Baseline results are
aggregated over five training runs with different seeds, reporting the mean and standard deviation.

Zero-shot Full-shot Baseline

MOIRAISmall MOIRAIBase MOIRAILarge PatchTST TiDE TFT DeepAR AutoARIMA Seasonal Naive

Electricity
CRPS 0.072 0.055 0.050 0.052±0.00 0.048±0.00 0.050±0.00 0.065±0.01 0.327 0.070
MSIS 7.999 6.172 5.875 5.744±0.12 5.672±0.08 6.278±0.24 6.893±0.82 29.412 35.251

Solar
CRPS 0.471 0.419 0.406 0.518±0.09 0.420±0.00 0.446±0.03 0.431±0.01 1.055 0.512
MSIS 8.425 7.011 6.250 8.447±1.59 13.754±0.32 8.057±3.51 11.181±0.67 25.849 48.130

Walmart
CRPS 0.103 0.093 0.098 0.082±0.01 0.077±0.00 0.087±0.00 0.121±0.00 0.124 0.151
MSIS 9.371 8.421 8.520 6.005±0.21 6.258±0.12 8.718±0.10 12.502±0.03 9.888 49.458

Weather
CRPS 0.049 0.041 0.051 0.059±0.01 0.054±0.00 0.043±0.00 0.132±0.11 0.252 0.068
MSIS 5.236 5.136 4.962 7.759±0.49 8.095±1.74 7.791±0.44 21.651±17.34 19.805 31.293

Istanbul Traffic
CRPS 0.173 0.116 0.112 0.112±0.00 0.110±0.01 0.110±0.01 0.108±0.00 0.589 0.257
MSIS 5.937 4.461 4.277 3.813±0.09 4.752±0.17 4.057±0.44 4.094±0.31 16.317 45.473

Turkey Power
CRPS 0.048 0.040 0.036 0.054±0.01 0.046±0.01 0.039±0.00 0.066±0.02 0.116 0.085
MSIS 7.127 6.766 6.341 8.978±0.51 8.579±0.52 7.943±0.31 13.520±1.17 14.863 36.256

Table 6. Long sequence forecasting results. Results are averaged across prediction lengths {96, 192, 336, 720}. Best results are highlighted
in bold, and second best results are underlined. Full-shot results are obtained from Liu et al. (2023b).

Zero-shot Full-shot

MOIRAISmall MOIRAIBase MOIRAILarge iTransformer TimesNet PatchTST Crossformer TiDE DLinear SCINet FEDformer

ETTh1
MSE 0.400 0.434 0.510 0.454 0.458 0.469 0.529 0.541 0.456 0.747 0.44
MAE 0.424 0.438 0.469 0.448 0.450 0.455 0.522 0.507 0.452 0.647 0.46

ETTh2
MSE 0.341 0.345 0.354 0.383 0.414 0.387 0.942 0.611 0.559 0.954 0.437
MAE 0.379 0.382 0.376 0.407 0.497 0.407 0.684 0.550 0.515 0.723 0.449

ETTm1
MSE 0.448 0.381 0.390 0.407 0.400 0.387 0.513 0.419 0.403 0.486 0.448
MAE 0.409 0.388 0.389 0.410 0.406 0.400 0.495 0.419 0.407 0.481 0.452

ETTm2
MSE 0.300 0.272 0.276 0.288 0.291 0.281 0.757 0.358 0.35 0.571 0.305
MAE 0.341 0.321 0.320 0.332 0.333 0.326 0.611 0.404 0.401 0.537 0.349

Electricity
MSE 0.233 0.188 0.188 0.178 0.193 0.216 0.244 0.252 0.212 0.268 0.214
MAE 0.320 0.274 0.273 0.270 0.295 0.304 0.334 0.344 0.3 0.365 0.327

Weather
MSE 0.242 0.238 0.259 0.258 0.259 0.259 0.259 0.271 0.265 0.292 0.309
MAE 0.267 0.261 0.275 0.278 0.287 0.281 0.315 0.320 0.317 0.363 0.36

Table 5 reports the CRPS and MSIS, with full results
including deterministic metrics in Appendix D.2. We
observe that MOIRAIBase and MOIRAILarge consistently
achieve strong zero-shot performance, obtaining either best
or second best results for all datasets except Walmart and
Istanbul Traffic. Even for these datasets, performance is
still close to the best performance, despite being a single
zero-shot model compared to baselines which have been
tuned and trained on the train sets.

Long Sequence Forecasting We evaluate on a subset
of the popular long sequence forecasting benchmark (Wu
et al., 2021), omitting datasets which have datasets from
the same source present in our pre-training data and cannot
be considered zero-shot. We report the Mean Squared Er-
ror (MSE) and MAE, comparing against six state-of-the-art
baselines, iTransformer (Liu et al., 2023b), TimesNet (Wu
et al., 2023), PatchTST, Crossformer (Zhang & Yan, 2023),
TiDE, DLinear (Zeng et al., 2023), SCINet (Liu et al., 2022),
and FEDformer (Zhou et al., 2022b). Point forecasts are ob-
tained from MOIRAI by taking the median from the samples
of the predictive distribution. Tuning for MOIRAI was based
on the average validation MSE across prediction lengths,
further including the options between channel indepedent
and channel mixing strategies (Nie et al., 2023) for the low
dimension datasets (ETT and Weather).

Table 6 reports the average performance across prediction
lengths, with full results in Appendix D.3. We observe
that MOIRAI achieves strong results compared to full-shot
baselines. While MOIRAIBase consistently achieves strong
performance across datasets with either best or second-best
performance, the large model is less consistent, with
slightly weaker but competitive results. The relationship
between performance and model size is tenuous in this
setting, however, this does not constitute strong evidence
against the potential of scaling, since these results are
based on models trained on a fixed dataset size and settings.
Rather, this calls for more comprehensive neural scaling
laws (Kaplan et al., 2020) for LTMs, to build a stronger
understanding of their scaling behavior.

4.3. Ablation Study
Architecture We perform a series of ablations in Table 7,
starting from the default MOIRAISmall. Firstly, we ablate
the multi patch size component, removing the constraints
by allowing any frequency to have any patch size during
training, and also simply fixing the patch size to 32. In
both cases, we observe a deterioration in normalized MAE.
Removing Any-variate Attention and using additive learned
embeddings (randomizing variate index during training
to encourage permutation invariance) instead, leads to
suboptimal results, showcasing the strength of Any-variate
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Table 7. Ablation study on Monash benchmark. The aggregated
normalized MAE, similarly calculated as in Figure 3 is reported.

Normalized MAE

MOIRAISmall 0.655
w/o patch size constraints 0.720
w/o multi patch size 1.156
w/o Any-variate Attention 0.904
w/o mixture distribution 0.740
w/o LOTSA 0.809
w/o packing 0.785

target
prediction
prediction: 0.5
prediction: 0.9

(a) Mixture distribution.
target
prediction
prediction: 0.5
prediction: 0.9

(b) Student’s t-distribution.

Figure 4. Visualization of probabilistic forecasts by two variants
of MOIRAISmall on the Traffic Hourly dataset. Both models fore-
cast peaks, however, the Student’s t-distribution has a symmetric
distribution, giving inappropriate prediction intervals for a peak,
as highlighted in red.

Attention. We see similar deterioration when replacing
the mixture distribution with a Student’s t-distribution, and
further visualize the necessity of flexible distributions for
probabilistic forecasts in Figure 4.

Training Methodology We study the impact of a large
and diverse dataset by training MOIRAISmall only on the Glu-
onTS and Monash datasets, observing that diversity of data
is critical for cross-domain training even on in-distribution
evaluation. Finally, given the same batch size and training
iterations, we show that packed training significantly boosts
performance. This is because packing increases the effec-
tive batch size and increases the number of observations the
model is trained on, given the same amount of compute.

4.4. Further Analysis
Context Length Our pre-training methodology varies
context length defined by the task distribution. We verify
that MOIRAI has the capability to take as input arbitrary
context lengths by visualizing in Figure 5 the relationship
between performance and increasing context lengths
over three datasets in the zero-shot setting. Zeng et al.
(2023); Liu et al. (2023b) previously observed that the
desiderata of continuously improving performance with
increasing context length is not present in conventional
Transformer-based forecasters. Here, we observe that
MOIRAI indeed achieves this desired property, in fact,

10
0

25
0

50
0

75
0
10

00
20

00
30

00
40

00
50

00
0.4

5
0.5

0
0.5

5
0.6

0
0.6

5

ETTm1

10
0

25
0

50
0

75
0
10

00
20

00
30

00
40

00
50

00

0.2
4

0.2
6

0.2
8

0.3
0

0.3
2

Electricity

10
0

25
0

50
0

75
0
10

00
20

00
30

00
40

00
50

00
0.3

0

0.3
5

0.4
0

0.4
5

0.5
0

Weather

Figure 5. Plot of performance (MAE) against context length (x-
axis in log scale) with prediction length 96 and patch size 32 on
the validation set of the ETTm1, Electricity, and Weather datasets.
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Figure 6. Histogram of sequence length when sampling data from
LOTSA based on the proposed task distribution. Sequence length
refers to the number of tokens after patching and flattening.

capable of handling thousands of time steps.

Packing Packing has long been applied in training LLMs
and other Transformer-based models, but not for time series
Transformers. While we can get away with inefficiencies
when dealing with small-scale data, we start to suffer from
longer training times as we scale towards the paradigm of
FMs and LTMs. This is further exacerbated by our “flat-
tened” setting which increases the disparity in sequence
lengths. As evidenced in Section 4.3, keeping compute
(batch size, iterations, etc.) constant, packing improves per-
formance by 16%. To understand why this is the case, we
visualize sequence length distribution in Figure 6. With a
large portion of the data being shorter than the maximum se-
quence length, padding represents a whopping 61.08% of in-
put tokens without packed training, and only 0.38% with our
packed implementation (calculated over 1000 iterations).

5. Conclusion
In this work, we introduced MOIRAI, a masked encoder-
based universal time series forecasting Transformer which
alleviates the issues faced in the universal forecasting
paradigm. We also introduce the LOTSA, the largest col-
lection of open-data for pre-training time series forecasting
models. MOIRAI is evaluated on the in-distribution and
out-of-distribution settings, and is capable of probabilistic
and long sequence forecasting. We show that as a zero-
shot forecaster, MOIRAI achieves competitive or superior
performance compared to full-shot models.

Limitations & Future Work While MOIRAI achieves
phenomenal in and out-of-distribution performance, this
is just a first step in the universal forecasting paradigm.
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Due to resource constraints, little to no hyperparameter tun-
ing was performed – efficient tuning techniques such as
µP (Yang et al., 2022a) can be applied. In terms of archi-
tecture, our approach to tackling cross-frequency learning
with a multi patch size mapping is somewhat heuristic, and
future work should design a more flexible and elegant ap-
proach. Also, the current architecture has limited support
for high-dimensional time series, and efficient methods for
extending Transformer input length can alleviate this issue.
The masked encoder structure also makes it amenable to
exploration of a latent diffusion architecture (Feng et al.,
2024). In terms of data, LOTSA can be further enhanced
with greater diversity in terms of domain and frequency.
Finally, incorporating multi-modality such as tabular or text
inputs is an exciting new direction which universal forecast-
ing has unlocked.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Alexandrov, A., Benidis, K., Bohlke-Schneider, M.,

Flunkert, V., Gasthaus, J., Januschowski, T., Maddix,
D. C., Rangapuram, S., Salinas, D., Schulz, J., Stella,
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A. Large-scale Open Time Series Archive
LOTSA is a collection of time series datasets curated for pre-training of LTMs. In the following, we describe its constituent
datasets and their respective sources, listing any pre-processing and data splitting performed. We further details on the key
properties of these datasets, providing the domain, frequency, number of time series, number of target variates, number
of past covariates (covariates whose values in the forecast horizon are unknown), and total number of observations in the
dataset (defined as

∑N
i=1 Ti for a dataset with N time series). Of note, if we consider number of observations to include the

number of variates, i.e.
∑N

i=1 Ti ∗ dyi , LOTSA would have 231,082,956,489 (231B) total observations.

Table 8. Datasets and key properties from BuildingsBench.

Dataset Domain Frequency # Time Series # Targets # Past Covariates # Obs.

BDG-2 Panther Energy H 105 1 0 919,800
BDG-2 Fox Energy H 135 1 0 2,324,568
BDG-2 Rat Energy H 280 1 0 4,728,288
BDG-2 Bear Energy H 91 1 0 1,482,312
Low Carbon London Energy H 713 1 0 9,543,348
SMART Energy H 5 1 0 95,709
IDEAL Energy H 219 1 0 1,265,672
Sceaux Energy H 1 1 0 34,223
Borealis Energy H 15 1 0 83,269
Buildings900K Energy H 1,792,328 1 0 15,702,590,000

BuildingsBench BuildingsBench (Emami et al., 2023) (Table 8) provides a collection of datasets for residential and
commercial building energy consumption. The BDG-2 datasets, Low Carbon London, SMART, IDEAL, Sceaux, and
Borealis are real building energy consumption datasets from various sources. The Electricity dataset (Trindade, 2015) is also
included in BuildingsBench but we omit it from LOTSA and use it for out-of-distribution evaluation instead. They further
release the Buildings-900K dataset a large-scale dataset of 900K simulated buildings. Emami et al. (2023) introduce a
pre-train/test split based on Public Use Microdata Area, but we use include both splits in LOTSA for pre-training. No special
pre-processing was applied to these datasets. More information regarding these datasets can be found in Emami et al. (2023).

Table 9. Datasets and key properties from ClimateLearn.

Dataset Domain Frequency # Time Series # Targets # Past Covariates # Obs.

CMIP6 Climate 6H 1,351,680 53 0 1,973,453,000
ERA5 Climate H 245,760 45 0 2,146,959,000

ClimateLearn We include the ERA5 and CMIP6 datasets from the ClimateLearn library (Nguyen et al., 2023) (Table 9).
The ERA5 and CMIP6 datasets provide time series of various climate related variables such as temperature, and humidity
and various pressure levels, based on a grid structure. We use the 2.8125◦ resolution which contains time series in a 64×128
grid.

Table 10. Datasets and key properties from CloudOps TSF

Dataset Domain Frequency # Time Series # Targets # Past Covariates # Obs.

Azure VM Traces 2017 CloudOps 5T 159,472 1 2 885,522,908
Borg Cluster Data 2011 CloudOps 5T 143,386 2 5 537,552,854
Alibaba Cluster Trace 2018 CloudOps 5T 58,409 2 6 95,192,530

CloudOps TSF Woo et al. (2023) introduces three large-scale CloudOps time series datasets (Table 10) measuring
various variables such as CPU and memory utilization. We follow their pre-train/test split and only include the pre-train
time series in LOTSA, holding out the test set.
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Table 11. Datasets and key properties from the GluonTS library.

Dataset Domain Frequency # Time Series # Targets # Past Covariates # Obs.

Taxi Transport 30T 67,984 1 0 54,999,060
Uber TLC Daily Transport D 262 1 0 47,087
Uber TLC Hourly Transport H 262 1 0 1,129,444
Wiki-Rolling Web D 47,675 1 0 40,619,100
M5 Sales D 30,490 1 0 58,327,370

GluonTS The GluonTS library (Alexandrov et al., 2020) provides many datasets popularly used in time series forecasting.
We only include the datasets presented in Table 11 as we either hold out the other datasets, or are already included in the
Monash repository.

Table 12. Key properties of the LargeST Benchmark Dataset.

Dataset Domain Frequency # Time Series # Targets # Past Covariates # Obs.

LargeST Transport 5T 42,333 1 0 4,452,510,528

LargeST LargeST (Liu et al., 2023a) (Table 12) collects the largest dataset from the California Department of Transporta-
tion Performance Measurement System (PeMS) (Chen et al., 2001) to date. The PeMS is a popular source of data for many
traffic forecasting datasets such as PEMS03, PEMS04, PEMS07, PEMS08, and PEMS Bay, as well as the popular Traffic
dataset from (Lai et al., 2018). Since we use such a large amount of dataset from the same source, we can no longer consider
forecasting on any of these datasets as an out-of-distribution or zero-shot forecasting task anymore, and thus omit the Traffic
dataset of the LSF benchmark from our evaluations.

Table 13. Datasets and key properties from the LibCity library.

Dataset Domain Frequency # Time Series # Targets # Past Covariates # Obs.

PEMS03 Transport 5T 358 1 0 9,382,464
PEMS04 Transport 5T 307 3 0 5,216,544
PEMS07 Transport 5T 883 1 0 24,921,792
PEMS08 Transport 5T 170 3 0 3,035,520
PEMS Bay Transport 5T 325 1 0 16,937,700
Los-Loop Transport 5T 207 1 0 7,094,304
Loop Seattle Transport 5T 323 1 0 33,953,760
SZ-Taxi Transport 15T 156 1 0 464,256
Beijing Subway Transport 30T 276 2 11 248,400
SHMetro Transport 15T 288 2 0 1,934,208
HZMetro Transport 15T 80 2 0 146,000
Rotterdam Transport 2T 208 1 0 4,813,536
Q-Traffic Transport 15T 45,148 1 0 264,386,688

LibCity LibCity (Wang et al., 2023a) (Table 13) provides a collection urban spatio-temporal datasets. We drop the spatial
aspect of these datsets and consider them as time series data.

Monash The Monash Time Series Forecasting Repository (Godahewa et al., 2021) (Table 14) is a large collection of
diverse time series datasets, the most popular source for building LTMs. We use Monash for in-distribution evaluation, and
thus apart from the exceptions listed below, we only include the train region in LOTSA, by holding out the final forecast
horizon as the test set. The final forecast horizon is defined for each dataset by (Godahewa et al., 2021). For the following
datasets, we include their entirety in LOTSA without a held-out test set for the following reasons:
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Table 14. Datasets and key properties from the Monash Time Series Forecasting Repository.

Dataset Domain Frequency # Time Series # Targets # Past Covariates # Obs.

London Smart Meters Energy 30T 5,520 1 0 166,238,880
Wind Farms Energy T 337 1 0 172,165,370
Wind Power Energy 4S 1 1 0 7,397,147
Solar Power Energy 4S 1 1 0 7,397,222
Oikolab Weather Climate H 8 1 0 800,456
Elecdemand Energy 30T 1 1 0 17,520
Covid Mobility Transport D 362 1 0 148,602
Kaggle Web Traffic Weekly Web W 145,063 1 0 16,537,182
Extended Web Traffic Web D 145,063 1 0 370,926,091
M1 Yearly Econ/Fin Y 106 1 0 3,136
M1 Quarterly Econ/Fin Q 198 1 0 9,854
M1 Monthly Econ/Fin M 617 1 0 44,892
M3 Yearly Econ/Fin Y 645 1 0 18,319
M3 Quarterly Econ/Fin Q 756 1 0 37,004
M3 Monthly Econ/Fin M 1,428 1 0 141,858
M3 Other Econ/Fin Q 174 1 0 11,933
M4 Yearly Econ/Fin Y 22,739 1 0 840,644
M4 Quarterly Econ/Fin Q 24,000 1 0 2,214,108
M4 Monthly Econ/Fin M 48,000 1 0 10,382,411
M4 Weekly Econ/Fin W 359 1 0 366,912
M4 Hourly Econ/Fin H 414 1 0 353,500
M4 Daily Econ/Fin D 4,227 1 0 9,964,658
NN5 Daily Econ/Fin D 111 1 0 81,585
NN5 Weekly Econ/Fin W 111 1 0 11,655
Tourism Yearly Econ/Fin Y 419 1 0 11,198
Tourism Quarterly Econ/Fin Q 427 1 0 39,128
Tourism Monthly Econ/Fin M 366 1 0 100,496
CIF 2016 Econ/Fin M 72 1 0 6,334
Traffic Weekly Transport W 862 1 0 82,752
Traffic Hourly Transport H 862 1 0 14,978,112
Australian Electricity Demand Energy 30T 5 1 0 1,153,584
Rideshare Transport H 2,304 1 0 859,392
Saugeen Nature D 1 1 0 23,711
Sunspot Nature D 1 1 0 73,894
Temperature Rain Nature D 32,072 1 0 22,290,040
Vehicle Trips Transport D 329 1 0 32,512
Weather Climate D 3,010 1 0 42,941,700
Car Parts Sales M 2,674 1 0 104,286
FRED MD Econ/Fin M 107 1 0 76,612
Pedestrian Counts Transport H 66 1 0 3,130,762
Hospital Healthcare M 767 1 0 55,224
COVID Deaths Healthcare D 266 1 0 48,412
KDD Cup 2018 Energy H 270 1 0 2,897,004
Bitcoin Econ/Fin D 18 1 0 74,824
US Births Healthcare D 1 1 0 7,275
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• London Smart Meters, Wind Farms, Wind Power, Solar Power, Oikolab Weather, Covid Mobility: Originally not
included in the Monash benchmark.

• Extended Web Traffic, Kaggle Web Traffic Weekly: We include the extended version of Web Traffic which contains
overlap with the original Web Traffic dataset.

• M1 Yearly, M1 Quarterly, M3 Yearly, M3 Quarterly, M4 Yearly, M4 Quarterly, Tourism Yearly: Some time series in
these datasets are too short after train/test splits, thus we do not split them (setting a minimum of 16 time steps to
achieve at least 2 patches).

We omit Electricity (Trindade, 2015) and Solar (Lai et al., 2018) datasets for out-of-distribution evaluation. Note that the
“Weather” from Monash is a different dataset from that used in the out-of-distribution evaluations.

Table 15. Datasets and key properties from the ProEnFo library.

Dataset Domain Frequency # Time Series # Targets # Past Covariates # Obs.

Covid19 Energy Energy H 1 1 6 31,912
GEF12 Energy H 20 1 1 788,280
GEF14 Energy H 1 1 1 17,520
GEF17 Energy H 8 1 1 140,352
PDB Energy H 1 1 1 17,520
Spanish Energy H 1 1 1 35,064
BDG-2 Hog Energy H 24 1 5 421,056
BDG-2 Bull Energy H 41 1 3 719,304
BDG-2 Cockatoo Energy H 1 1 5 17,544
ELF Energy H 1 1 0 21,792

ProEnFo ProEnFo (Wang et al., 2023b) (Table 15) provides a range of datasets for load forecasting. Unlike Buildings-
Bench, ProEnFo provides various covariates such as temperature, humidity, and wind speed. We again omit Electricity
(Trindade, 2015) which is originally included in ProEnFo for out-of-distribution evaluations.

Table 16. Datasets and key properties from the SubseasonalClimateUSA library.

Dataset Domain Frequency # Time Series # Targets # Past Covariates # Obs.

Subseasonal Climate D 862 4 0 14,097,148
Subseasonal Precipitation Climate D 862 1 0 9,760,426

SubseasonalClimateUSA The SubseasonalClimateUSA library (Mouatadid et al., 2023) (Table 16) provides climate time
series data at a lower granularity (daily) for subseasonal level forecasting. We extract two datasets Subseasonal Precipitation
which is the precipitation data from 1948 - 1978, and Subseasonal, which is precipitation and temperature data from 1979
- 2023.

Others Finally, detailed in Table 17, we further collect datasets from miscellaneous sources not provided by a library or
collection. These datasets require more extensive pre-processing since they are not provided by a library, and are raw data
instead. We take a standard approach of filtering out time series which are either too short, or have too many missing values.
Fo each time series, we consider all variates to be targets, unless otherwise specified by the creators of the dataset (e.g. KDD
Cup 2022 is a competition dataset, for which only the “Patv” variate is defined to be the target, with 9 other covariates).
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Table 17. Datasets and key properties from other miscellaneous sources.
Dataset Source Domain Frequency # Time Series # Targets # Past Covariates # Obs.

KDD Cup 2022 Zhou et al. (2022a) Energy 10T 134 1 9 4,727,519
GoDaddy Kaggle Econ/Fin M 3,135 2 0 128,535
Favorita Sales Kaggle Sales D 111,840 1 0 139,179,538
Favorita Transactions Kaggle Sales D 54 1 0 84,408
Restaurant Kaggle Sales D 216 1 0 76,573
Hierarchical Sales Mancuso et al. (2021) Sales D 118 1 0 212,164
China Air Quality Zheng et al. (2015) Nature H 437 6 0 5,739,234
Beijing Air Quality Chen (2019) Nature H 12 11 0 420,768
Residential Load Power Bergmeir et al. (2023) Energy T 271 3 0 145,994,559
Residential PV Power Bergmeir et al. (2023) Energy T 233 3 0 125,338,950
CDC Fluview ILINet CDC (2017) Healthcare W 75 5 0 63,903
CDC Fluview WHO NREVSS CDC (2017) Healthcare W 74 4 0 41,760
Project Tycho van Panhuis et al. (2018) Healthcare W 1,258 1 0 1,377,707

B. MOIRAI Architecture Details
B.1. Multi Patch Size Projection Layers

Each multi patch size projection is a simple Linear layer, for input projections, mapping patch size to hidden state, and for
output projections, mapping hidden state to distribution parameters. In practice, we pre-define the frequency to patch size
mapping heuristically, selecting smaller patch sizes for low frequency data and larger patch sizes for high frequency data as
follows:

• Yearly, Quarterly: 8

• Monthly: 8, 16, 32

• Weekly, Daily: 16, 32

• Hourly: 32, 64

• Minute-level: 32, 64, 128

• Second-level: 64, 128

Note that we only learn one Linear layer per patch size, and share them across frequencies if there is overlap. This means
that we learn five input projection layers and five output projection layers.

B.2. Mixture Distribution

As described in Salinas et al. (2020), our model predicts the parameters of a probability distribution, in this case, a mixture
distribution. We apply a softmax layer to the parameters associated to the mixture weights, constraining them to the
probability simplex. The mixture components are as described.

Student’s t-distribution A random variable x following the Student’s t-distribution has p.d.f.:

p(x; ν, µ, τ) =
Γ(ν+1

2 )

Γ(ν2 )
√
πντ

(
1 +

1

ν

(x− µ

τ

)2)−(ν+1)/2

with parameters ν > 0, µ ∈ R, τ > 0, the degrees-of-freedom (df), location, and scale parameters respectively, and Γ is the
gamma function. We predict the df, location, and scale parameters, and apply a softplus function for the positivity constraint.
We further lower bound the df parameter to 2, since variance is undefined otherwise.

Log-normal distribution A random variable x which follows a log-normal distribution has p.d.f.:

p(x;µ, σ) =
1

xσ
√
2π

exp

(
− (lnx− µ)2

2σ2

)
with parameters µ ∈ R, σ > 0. We predict both parameters, applying softplus function for positivity.
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Negative binomial distribution Following Awasthi et al. (2022), we implement a continuous extension of the negative
binomial distribution. A random variable x following such a distribution has p.d.f.:

p(x; r, p) ∝ Γ(x+ r)

Γ(x+ 1)Γ(r)
(1− p)rpx

given parameters r > 0 and p ∈ [0, 1], and Γ is the gamma function. We predict both parameters, applying the softplus
function for positivity, and sigmoid function to constrain to a probability.

Low variance normal distribution A random variable x following a normal distribution has p.d.f.:

p(x;µ, σ) =
1

σ
√
2π

exp

(
− (x− µ)2

2σ2

)
where µ ∈ R, σ > 0. For a low variance normal distribution, we only predict µ, and fix σ to a small number, in this case we
fix σ = 1e-3.

B.3. Discussion on “Flexible Distribution”

Table 1 categorizes various pre-trained forecasting models with the notion of a “flexible distribution” – this is largely
a qualitative categorization rather than a quantitative one. As of writing, only 3 other models considered probabilistic
forecasting – Lag-llama, TimeGPT, and LLMTime. The other models only considered point forecasts, and thus the concept
of ”flexible distribution” does not apply to them. The following are specific reasons on why we made the categorization for
the 3 models which can handle probabilistic forecasting:

• Lag-llama uses a Student-T distribution which is only able to model symmetric distributions. This is an inflexible
distribution which is unable to model asymmetric distributions, as demonstrated in Figure 4 of our paper. They also
raise this issue in their paper (Section 4.3), citing the use of more expressive distribution heads such as normalizing
flows and copulas in future work.

• TimeGPT uses conformal prediction to construct prediction intervals. We refer to a tweet2 from the creators, which
claim: ”Some prediction intervals don’t account for domain constraints. A few users highlighted intervals suggesting
negative values for time series that only take positive values.” Thus, we consider it to be inflexible.

• LLMTime uses a categorical distribution. In their paper (paragraph titled ”Language models as flexible distributions”
in Section 3), they demonstrated that this approach is a flexible distribution which can approximate many different
kinds of continuous distributions.

2https://twitter.com/nixtlainc/status/1694466983927153131
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C. Probabilistic Forecasting
C.1. Evaluation Metrics

Continuous Ranked Probability Score The CRPS (Gneiting & Raftery, 2007) is a probabilistic forecasting evaluation
metric, given a predicted distribution with c.d.f. F and ground truth y, it is defined as:

CRPS =

∫ 1

0

2Λα(F
−1(α), y)dα

Λα(q, y) = (α− 1y<q)(y − q),

where Λα is the α-quantile loss, also known as the pinball loss at quantile level α.

In practice, the CRPS is intractable or computationally expensive to compute, and we also want to compute a normalized
metric, thus we compute a normalized discrete approximation, the mean weighted sum quantile loss (Park et al., 2022),
defined as the average of K quantiles:

CRPS ≈ 1

K

K∑
k=1

wQL[αk]

wQL[α] = 2

∑
t Λα(q̂t(α), yt)∑

t |yt|
,

where q̂t(α) is the predicted α-quantile at time step t. We take K = 9, α1 = 0.1, α2 = 0.2, . . . , α9 = 0.9 in practice.

Mean Scaled Interval Score The MSIS is a metric to evaluate uncertainty around point forecasts, introduced in the M4
Competition (Makridakis et al., 2020). Given an upper bound prediction, Ut, and lower bound prediction Lt, the MSIS is
defined as:

MSIS =
1

h

∑h
t=1(Ut − Lt) +

2
a (Lt − Yt)1{Yt<Lt} +

2
a (Yt − Ut)1{Yt>Ut}

1
n−m

∑n
t=m+1 |Yt − Yt−m|

where a = 0.05 is the significance level for a 95% prediction interval, over a forecast horizon of length h, and m is the
seasonal factor.

C.2. Evaluation Setup

Table 18. Summary of datasets used in the out-of-distribution probabilistic forecasting evaluation setting.
Dataset Domain Frequency Prediction Length Rolling Evaluations

Electricity (Trindade, 2015) Energy H 24 7
Solar (Lai et al., 2018) Energy H 24 7
Walmart (Walmart Competition Admin, 2014) Sales W 8 4
Weather Climate 10T 144 7
Istanbul Traffic 3 Transport H 24 7
Turkey Power 4 Energy H 24 7

We perform evaluation in a non-overlapping rolling window fashion, i.e. stride is equal to prediction length. The test
set is defined as the last h ∗ r time steps where h is the prediction length of the forecast horizon, and r is the number of
rolling evaluation windows. We take the validation set to be the last forecast horizon before the test set, and the train set to
be everything before that. From Table 18, our evaluation spans four domains, from minute-level to weekly frequencies.
Prediction length and rolling evaluations are defined for each dataset based on frequency, making day ahead predictions for
sub-hourly frequencies for seven days, and eight week ahead predictions for 32 weeks for weekly frequency.

3https://www.kaggle.com/datasets/leonardo00/istanbul-traffic-index
4https://www.kaggle.com/datasets/dharanikra/electrical-power-demand-in-turkey
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C.3. Baselines

Table 19. Hyperparameter search values for probabilistic forecasting evaluation baselines.
Hyperparameter Values

PatchTST d model {64, 128, 256}
num encoder layers [2, 6]

DeepAR hidden size {64, 128, 256}
num layers [2, 6]

TFT hidden dim {64, 128, 256}
TiDE hidden dim {64, 128, 256}

num encoder layers = num decoder layers [2, 6]

For the four deep learning baselines, DeepAR (Salinas et al., 2020), PatchTST (Nie et al., 2023), TiDE (Das et al., 2023a),
and TFT (Lim et al., 2021), we perform hyperparameter tuning based on the values presented in Table 19, and also tune
learning rate [1e-6, 1e-3] in log scale, and the context length as l = m ∗ h, where m is tuned in the range [2, 20], and h is the
prediction length. We perform random search through these values over 15 training runs, and report results on 5 independent
training runs based on the best validation CRPS.
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D. Full Experimental Results
D.1. In-distribution Forecasting: Monash Time Series Forecasting Benchmark
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(a) Results aggregated over full all datasets in Table 20.
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(b) Results aggregated over LLaMA2 subset in Table 20.

Figure 7. Extended aggregate results of the Monash Time Series Forecasting Benchmark as per Figure 3. GPT3.5 is our reproduction of
LLMTime based on the GPT3.5 API, whereas LLaMA2 is based on the results reported in Gruver et al. (2023).

Table 20. Full results of Monash Time Series Forecasting Benchmark. MAE is reported.
MOIRAISmall MOIRAIBase MOIRAILarge Naive SES Theta TBATS ETS (DHR-)ARIMA PR CatBoost FFNN DeepAR N-BEATS WaveNet Transformer GPT3.5 LLaMA2

M1 Monthly 2,082.26 2,068.63 1,983.18 2,707.75 2,259.04 2,166.18 2,237.50 1,905.28 2,080.13 2,088.25 2,052.32 2,162.58 1,860.81 1,820.37 2,184.42 2,723.88 2562.84 -
M3 Monthly 713.41 658.17 664.03 837.14 743.41 623.71 630.59 626.46 654.8 692.97 732 692.48 728.81 648.6 699.3 798.38 877.97 -
M3 Other 263.54 198.62 202.41 278.43 277.83 215.35 189.42 194.98 193.02 234.43 318.13 240.17 247.56 221.85 245.29 239.24 300.30 -
M4 Monthly 597.6 592.09 584.36 671.27 625.24 563.58 589.52 582.6 575.36 596.19 611.69 612.52 615.22 578.48 655.51 780.47 728.27 -
M4 Weekly 339.76 328.08 301.52 347.99 336.82 333.32 296.15 335.66 321.61 293.21 364.65 338.37 351.78 277.73 359.46 378.89 518.44 -
M4 Daily 189.1 192.66 189.78 180.83 178.27 178.86 176.6 193.26 179.67 181.92 231.36 177.91 299.79 190.44 189.47 201.08 266.52 -
M4 Hourly 268.04 209.87 197.79 1,218.06 1,218.06 1,220.97 386.27 3,358.10 1,310.85 257.39 285.35 385.49 886.02 425.75 393.63 320.54 576.06 -
Tourism Quarterly 18,352.44 17,196.86 15,820.02 15,845.10 15,014.19 7,656.49 9,972.42 8,925.52 10,475.47 9,092.58 10,267.97 8,981.04 9,511.37 8,640.56 9,137.12 9,521.67 16918.86 9311.98
Tourism Monthly 3,569.85 2,862.06 2,688.55 5,636.83 5,302.10 2,069.96 2,940.08 2,004.51 2,536.77 2,187.28 2,537.04 2,022.21 1,871.69 2,003.02 2,095.13 2,146.98 5608.61 3145.48
CIF 2016 655,888.58 539,222.03 695,156.92 578,596.53 581,875.97 714,818.58 855,578.40 642,421.42 469,059.49 563,205.57 603,551.30 1,495,923.44 3,200,418.00 679,034.80 5,998,224.62 4,057,973.00 599313.84 684057.87
Aus. Elec. Demand 266.57 201.39 177.68 659.6 659.6 665.04 370.74 1,282.99 1,045.92 247.18 241.77 258.76 302.41 213.83 227.5 231.45 760.81 560.48
Bitcoin 1.76E+18 1.62E+18 1.87E+18 7.78E+17 5.33E+18 5.33E+18 9.90E+17 1.10E+18 3.62E+18 6.66E+17 1.93E+18 1.45E+18 1.95E+18 1.06E+18 2.46E+18 2.61E+18 1.74E+18 8.57E+17
Pedestrian Counts 54.88 54.08 41.66 170.88 170.87 170.94 222.38 216.5 635.16 44.18 43.41 46.41 44.78 66.84 46.46 47.29 97.77 65.92
Vehicle Trips 24.46 23.17 21.85 31.42 29.98 30.76 21.21 30.95 30.07 27.24 22.61 22.93 22 28.16 24.15 28.01 31.48 -
KDD cup 39.81 38.66 39.09 42.13 42.04 42.06 39.2 44.88 52.2 36.85 34.82 37.16 48.98 49.1 37.08 44.46 42.72 -
Weather 1.96 1.8 1.75 2.36 2.24 2.51 2.3 2.35 2.45 8.17 2.51 2.09 2.02 2.34 2.29 2.03 2.17 2.09
NN5 Daily 5.37 4.26 3.77 8.26 6.63 3.8 3.7 3.72 4.41 5.47 4.22 4.06 3.94 4.92 3.97 4.16 7.10 6.67
NN5 Weekly 15.07 16.42 15.3 16.71 15.66 15.3 14.98 15.7 15.38 14.94 15.29 15.02 14.69 14.19 19.34 20.34 15.76 15.60
Carparts 0.53 0.47 0.49 0.65 0.55 0.53 0.58 0.56 0.56 0.41 0.53 0.39 0.39 0.98 0.4 0.39 0.44 -
FRED-MD 2,568.48 2,679.29 2,792.55 2,825.67 2,798.22 3,492.84 1,989.97 2,041.42 2,957.11 8,921.94 2,475.68 2,339.57 4,264.36 2,557.80 2,508.40 4,666.04 2804.64 1781.41
Traffic Hourly 0.02 0.02 0.01 0.03 0.03 0.03 0.04 0.03 0.04 0.02 0.02 0.01 0.01 0.02 0.02 0.01 0.03 0.02
Traffic Weekly 1.17 1.14 1.13 1.19 1.12 1.13 1.17 1.14 1.22 1.13 1.17 1.15 1.18 1.11 1.2 1.42 1.15 1.15
Rideshare 1.35 1.39 1.29 6.29 6.29 7.62 6.45 6.29 3.37 6.3 6.07 6.59 6.28 5.55 2.75 6.29 6.28 -
Hospital 23 19.4 19.44 24.07 21.76 18.54 17.43 17.97 19.6 19.24 19.17 22.86 18.25 20.18 19.35 36.19 25.68 22.75
COVID Deaths 124.32 126.11 117.11 353.71 353.71 321.32 96.29 85.59 85.77 347.98 475.15 144.14 201.98 158.81 1,049.48 408.66 653.31 66.14
Temperature Rain 5.3 5.08 5.27 9.39 8.18 8.22 7.14 8.21 7.19 6.13 6.76 5.56 5.37 7.28 5.81 5.24 6.37 -
Sunspot 0.11 0.08 0.13 3.93 4.93 4.93 2.57 4.93 2.57 3.83 2.27 7.97 0.77 14.47 0.17 0.13 5.07 0.28
Saugeen River Flow 24.07 24.4 24.76 21.5 21.5 21.49 22.26 30.69 22.38 25.24 21.28 22.98 23.51 27.92 22.17 28.06 34.84 23.01
US Births 872.51 624.3 476.5 1,152.67 1,192.20 586.93 399 419.73 526.33 574.93 441.7 557.87 424.93 422 504.4 452.87 1374.99 638.82

We include the full breakdown of results for the Monash benchmark in Table 20, including two versions of LLMTime:
GPT3.5 (our reproduction), and LLaMA2 (results from Gruver et al. (2023)). GPT3.5 is our reproduction by running their
code5 on the full dataset, using GPT3.5-Turbo-Instruct since text-davinci-003 has been deprecated. LLaMA2 only has
results for a subset of datasets in Table 20, thus in Figure 7, we present two aggregated results, one aggregated on the full
Table 20, and one on the subset with results available for LLaMA2. As observed, MOIRAI retains the top rankings for with
the base and large models in all settings.

D.2. Out-of-distribution Forecasting: Probabilistic Forecasting

Table 21 provides the full results of the probabilistic forecasting experiments with additional point forecasting metrics,
including the symmetric mean absolute percentage error (sMAPE) (Hyndman, 2014), mean absolute scaled error (MASE)
(Hyndman & Koehler, 2006), normalized deviation (ND), and normalized root mean squared error (NRMSE) (Yu et al.,
2016).

D.3. Out-of-distribution Forecasting: Long Sequence Forecasting

Table 22 provides the full breakdown of results for the long sequence forecasting experiments, listing results for each
prediction length.

5https://github.com/ngruver/llmtime
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Table 21. Full results for probabilistic forecasting experiments. Best results are highlighted in bold, and second best results are underlined.
Zero-shot Full-shot Baseline

MOIRAISmall MOIRAIBase MOIRAILarge PatchTST TiDE TFT DeepAR AutoARIMA Seasonal Naive

Electricity

CRPS 0.072 0.055 0.050 0.052±0.00 0.048±0.00 0.050±0.00 0.065±0.01 0.327 0.070
MSIS 7.999 6.172 5.875 5.744±0.12 5.672±0.08 6.278±0.24 6.893±0.82 29.412 35.251

sMAPE 0.134 0.111 0.106 0.107±0.00 0.102±0.00 0.106±0.01 0.118±0.02 0.318 0.108
MASE 0.981 0.792 0.751 0.753±0.01 0.706±0.02 0.747±0.03 0.844±0.16 3.229 0.881

ND 0.092 0.069 0.063 0.065±0.00 0.061±0.00 0.063±0.00 0.080±0.02 0.357 0.070
NRMSE 0.840 0.551 0.465 0.506±0.02 0.514±0.02 0.511±0.02 0.704±0.11 3.296 0.478

Solar

CRPS 0.471 0.419 0.406 0.518±0.09 0.420±0.00 0.446±0.03 0.431±0.01 1.055 0.512
MSIS 8.425 7.011 6.250 8.447±1.59 13.754±0.32 8.057±3.51 11.181±0.67 25.849 48.130

sMAPE 1.445 1.410 1.400 1.501±0.10 1.400±0.00 1.391±0.01 1.385±0.00 1.685 0.691
MASE 1.465 1.292 1.237 1.607±0.25 1.265±0.02 1.399±0.11 1.222±0.01 2.583 1.203

ND 0.624 0.551 0.528 0.685±0.11 0.538±0.01 0.594±0.05 0.520±0.00 1.098 0.512
NRMSE 1.135 1.034 1.014 1.408±0.26 1.093±0.00 1.236±0.06 1.033±0.01 1.784 1.168

Walmart

CRPS 0.103 0.093 0.098 0.082±0.01 0.077±0.00 0.087±0.00 0.121±0.00 0.124 0.151
MSIS 9.371 8.421 8.520 6.005±0.21 6.258±0.12 8.718±0.10 12.502±0.03 9.888 49.458

sMAPE 0.179 0.168 0.174 0.150±0.01 0.145±0.00 0.172±0.00 0.216±0.00 0.219 0.205
MASE 1.048 0.964 1.007 0.867±0.09 0.814±0.01 0.948±0.02 1.193±0.02 1.131 1.236

ND 0.129 0.117 0.124 0.105±0.01 0.097±0.00 0.108±0.00 0.147±0.00 0.141 0.151
NRMSE 0.324 0.291 0.332 0.218±0.02 0.204±0.00 0.235±0.01 0.298±0.00 0.305 0.328

Weather

CRPS 0.049 0.041 0.051 0.059±0.01 0.054±0.00 0.043±0.00 0.132±0.11 0.252 0.068
MSIS 5.236 5.136 4.962 7.759±0.49 8.095±1.74 7.791±0.44 21.651±17.34 19.805 31.293

sMAPE 0.686 0.623 0.688 0.668±0.01 0.636±0.01 0.672±0.01 0.776±0.05 0.770 0.401
MASE 0.521 0.487 0.515 0.844±0.19 0.832±0.13 0.692±0.02 3.170±3.47 0.938 0.782

ND 0.063 0.048 0.063 0.072±0.01 0.066±0.01 0.051±0.00 0.163±0.15 0.139 0.068
NRMSE 0.229 0.417 0.331 0.260±0.01 0.214±0.00 0.211±0.00 0.486±0.43 0.465 0.290

Istanbul Traffic

CRPS 0.173 0.116 0.112 0.112±0.00 0.110±0.01 0.110±0.01 0.108±0.00 0.589 0.257
MSIS 5.937 4.461 4.277 3.813±0.09 4.752±0.17 4.057±0.44 4.094±0.31 16.317 45.473

sMAPE 0.359 0.284 0.288 0.287±0.01 0.280±0.01 0.287±0.01 0.249±0.01 1.141 0.391
MASE 0.990 0.644 0.631 0.653±0.02 0.618±0.03 0.620±0.03 0.613±0.03 3.358 1.137

ND 0.224 0.146 0.143 0.148±0.01 0.140±0.01 0.141±0.01 0.139±0.01 0.758 0.257
NRMSE 0.294 0.194 0.186 0.190±0.01 0.185±0.01 0.185±0.01 0.181±0.01 0.959 0.384

Turkey Power

CRPS 0.048 0.040 0.036 0.054±0.01 0.046±0.01 0.039±0.00 0.066±0.02 0.116 0.085
MSIS 7.127 6.766 6.341 8.978±0.51 8.579±0.52 7.943±0.31 13.520±1.17 14.863 36.256

sMAPE 0.389 0.378 0.375 0.416±0.01 0.389±0.00 0.383±0.00 0.404±0.01 0.244 0.125
MASE 0.948 0.888 0.870 1.234±0.12 0.904±0.02 0.890±0.05 1.395±0.30 1.700 0.906

ND 0.061 0.051 0.046 0.071±0.01 0.059±0.01 0.049±0.00 0.083±0.02 0.150 0.085
NRMSE 0.149 0.118 0.102 0.158±0.01 0.139±0.03 0.104±0.01 0.181±0.05 0.383 0.231

Table 22. Full results of long sequence forecasting experiments. Best results are highlighted in bold, and second best results are underlined.
Full-shot results are obtained from Liu et al. (2023b).

Zero-shot Full-shot

MOIRAISmall MOIRAIBase MOIRAILarge iTransformer TimesNet PatchTST Crossformer TiDE DLinear SCINet FEDformer

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.375 0.402 0.384 0.402 0.380 0.398 0.386 0.405 0.384 0.402 0.414 0.419 0.423 0.448 0.479 0.464 0.386 0.400 0.654 0.599 0.376 0.419
192 0.399 0.419 0.425 0.429 0.440 0.434 0.441 0.436 0.436 0.429 0.460 0.445 0.471 0.474 0.525 0.492 0.437 0.432 0.719 0.631 0.420 0.448
336 0.412 0.429 0.456 0.450 0.514 0.474 0.487 0.458 0.491 0.469 0.501 0.466 0.570 0.546 0.565 0.515 0.481 0.459 0.778 0.659 0.459 0.465
720 0.413 0.444 0.470 0.473 0.705 0.568 0.503 0.491 0.521 0.500 0.500 0.488 0.653 0.621 0.594 0.558 0.519 0.516 0.836 0.699 0.506 0.507

ETTh2

96 0.281 0.334 0.277 0.327 0.287 0.325 0.297 0.349 0.340 0.374 0.302 0.348 0.745 0.584 0.400 0.440 0.333 0.387 0.707 0.621 0.358 0.397
192 0.340 0.373 0.340 0.374 0.347 0.367 0.380 0.400 0.402 0.414 0.388 0.400 0.877 0.656 0.528 0.509 0.477 0.476 0.860 0.689 0.429 0.439
336 0.362 0.393 0.371 0.401 0.377 0.393 0.428 0.432 0.452 0.541 0.426 0.433 1.043 0.731 0.643 0.571 0.594 0.541 1.000 0.744 0.496 0.487
720 0.380 0.416 0.394 0.426 0.404 0.421 0.427 0.445 0.462 0.657 0.431 0.446 1.104 0.763 0.874 0.679 0.831 0.657 1.249 0.838 0.463 0.474

ETTm1

96 0.404 0.383 0.335 0.360 0.353 0.363 0.334 0.368 0.338 0.375 0.329 0.367 0.404 0.426 0.364 0.387 0.345 0.372 0.418 0.438 0.379 0.419
192 0.435 0.402 0.366 0.379 0.376 0.380 0.377 0.391 0.374 0.387 0.367 0.385 0.450 0.451 0.398 0.404 0.380 0.389 0.439 0.450 0.426 0.441
336 0.462 0.416 0.391 0.394 0.399 0.395 0.426 0.420 0.410 0.411 0.399 0.410 0.532 0.515 0.428 0.425 0.413 0.413 0.490 0.485 0.445 0.459
720 0.490 0.437 0.434 0.419 0.432 0.417 0.491 0.459 0.478 0.450 0.454 0.439 0.666 0.589 0.487 0.461 0.474 0.453 0.595 0.550 0.543 0.490

ETTm2

96 0.205 0.282 0.195 0.269 0.189 0.260 0.180 0.264 0.187 0.267 0.175 0.259 0.287 0.366 0.207 0.305 0.193 0.292 0.286 0.377 0.203 0.287
192 0.261 0.318 0.247 0.303 0.247 0.300 0.250 0.309 0.249 0.309 0.241 0.302 0.414 0.492 0.290 0.364 0.284 0.362 0.399 0.445 0.269 0.328
336 0.319 0.355 0.291 0.333 0.295 0.334 0.311 0.348 0.321 0.351 0.305 0.343 0.597 0.542 0.377 0.422 0.369 0.427 0.637 0.591 0.325 0.366
720 0.415 0.410 0.355 0.377 0.372 0.386 0.412 0.407 0.408 0.403 0.402 0.400 1.730 1.042 0.558 0.524 0.554 0.522 0.960 0.735 0.421 0.415

Electricity

96 0.205 0.299 0.158 0.248 0.152 0.242 0.148 0.240 0.168 0.272 0.195 0.285 0.219 0.314 0.237 0.329 0.197 0.282 0.247 0.345 0.193 0.308
192 0.220 0.310 0.174 0.263 0.171 0.259 0.162 0.253 0.184 0.289 0.199 0.289 0.231 0.322 0.236 0.330 0.196 0.285 0.257 0.355 0.201 0.315
336 0.236 0.323 0.191 0.278 0.192 0.278 0.178 0.269 0.198 0.300 0.215 0.305 0.246 0.337 0.249 0.344 0.209 0.301 0.269 0.369 0.214 0.329
720 0.270 0.347 0.229 0.307 0.236 0.313 0.225 0.317 0.220 0.320 0.256 0.337 0.280 0.363 0.284 0.373 0.245 0.333 0.299 0.390 0.246 0.355

Weather

96 0.173 0.212 0.167 0.203 0.177 0.208 0.174 0.214 0.172 0.220 0.177 0.218 0.158 0.230 0.202 0.261 0.196 0.255 0.221 0.306 0.217 0.296
192 0.216 0.250 0.209 0.241 0.219 0.249 0.221 0.254 0.219 0.261 0.225 0.259 0.206 0.277 0.242 0.298 0.237 0.296 0.261 0.340 0.276 0.336
336 0.260 0.282 0.256 0.276 0.277 0.292 0.278 0.296 0.280 0.306 0.278 0.297 0.272 0.335 0.287 0.335 0.283 0.335 0.309 0.378 0.339 0.380
720 0.320 0.322 0.321 0.323 0.365 0.350 0.358 0.349 0.365 0.359 0.354 0.348 0.398 0.418 0.351 0.386 0.345 0.381 0.377 0.427 0.403 0.428
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D.4. Computation Costs

Table 23. Computational cost in terms of seconds of various models in terms of seconds for inference for a batch size of 32. “(32)” for
MOIRAI refers to patch size.

Context Length Prediction Length

1000 2000 3000 4000 5000 1000 2000 3000 4000 5000

MOIRAISmall (32) 0.03 0.04 0.05 0.06 0.07 0.03 0.04 0.05 0.06 0.07
MOIRAIBase (32) 0.05 0.06 0.08 0.11 0.13 0.05 0.06 0.08 0.11 0.13
MOIRAILarge (32) 0.09 0.14 0.19 0.25 0.3 0.09 0.14 0.19 0.25 0.3

PatchTST 0.01 0.02 0.02 0.03 0.04 0.01 0.01 0.01 0.01 0.02
TiDE 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
TFT 0.02 0.04 0.06 0.08 0.09 0.03 0.07 0.12 0.17 OOM

DeepAR 0.26 0.32 0.37 0.43 0.49 2.02 4.06 6.1 8.17 10.24

We perform an analysis on the computation cost of MOIRAI compared to other deep learning based models, while varying
the context and prediction lengths. Overall, given the same model size and setting, the cost of inference compared to other
deep learning models would be similar. From an architecture perspective, MOIRAI has the following benefits:

• Patch based inputs: This decreases the computation cost significantly by reducing the number of input tokens.

• Masked encoder architecture: Unlike decoder-only Transformers, the masked encoder architecture can make multi step
predictions in a single forward pass. For decoder-only Transformers and RNNs, they need to autoregressively make
predictions, making multiple forward passes for a multi step forecast. For long horizons, this can be quite costly.

Furthermore, compared to standard baselines, MOIRAI performs zero-shot forecasting. The standard baseline approach has
to be trained (multiple times with hyperparameter tuning) for each dataset, leading to increased costs. As MOIRAI continues
to be utilized on new datasets, the pre-training costs are amortized and only becomes cheaper, while standard approaches
need to be trained over and over again on new datasets. We note that while MOIRAI indeed incurs increased costs due to
model size, inference is still highly competitive, taking under 1 second to construct forecasts even with extremely long
context/prediction lengths.
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E. Forecast Visualizations
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Figure 8. Visualizations of zero-shot forecasts from MOIRAIBase on ETTh1 and ETTm1 datasets.
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Figure 9. Visualizations of zero-shot forecasts from MOIRAIBase on Istanbul Traffic and Turkey Power datasets.
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