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ABSTRACT

Grokking refers to a delayed generalization following overfitting when optimizing
artificial neural networks with gradient-based methods. In this work, we demon-
strate that grokking can be induced by regularization, either explicit or implicit.
More precisely, we show that when there exists a model with a property P (e.g.,
sparse or low-rank weights) that generalizes on the problem of interest, gradient
descent with a small but non-zero regularization of P (e.g., ℓ1 or nuclear norm
regularization) result in grokking. This extends previous work showing that small
non-zero weight decay induces grokking. Moreover, our analysis shows that over-
parameterization by adding depth makes it possible to grok or ungrok without
explicitly using regularization, which is impossible in shallow cases. We further
show that the ℓ2 norm of the model parameters cannot be used as an indicator of
grokking in a general setting in place of the regularized property P : the ℓ2 norm
grows in many cases where no weight decay is used, but the model generalizes
anyway. We also show that grokking can be amplified through only data selection
(with any other hyperparameter fixed).

1 INTRODUCTION

The optimization of machine learning models today relies entirely on gradient descent (GD). The
reasons behind the ability of such a procedure to converge towards generalizing solutions are still not
fully understood, particularly in over-parameterized regimes. Power et al. (2022) recently observed
an even more surprising feature of this optimization procedure, grokking: the optimization first goes
through a solution that perfectly memorizes the training data, but after a sufficiently long training
time, it suddenly converges on a solution that generalizes.

Many works have shown that grokking can be observed by using a large-scale initialization and a
small (but non-zero) weight decay (Liu et al., 2023a; Lyu et al., 2023). Moreover, some works have
shown that the ℓ2 norm of the weights can be used during optimization as a progression measure for
generalization since it generally decreases during the transition from memorization to generalization
(Liu et al., 2023a; Thilak et al., 2022; Varma et al., 2023). All these theories have left open the
question of whether we always need an ℓ2 regularization to observe generalization or whether the ℓ2
norm of the parameter is always a good predictor of generalization in general. This paper attempts to
answer these questions. We hypothesize that the dynamic of grokking goes beyond the ℓ2 norm, that
is: If there exists a model with a property P (e.g., sparse or low-rank weights) that fits the data, then
GD with a small but non-zero regularization of P (e.g., ℓ1 or nuclear norm regularization) will also
result in grokking, provided the number of training sample is large enough. Moreover, the ℓ2 norm is
no longer guaranteed to decrease with generalization when the property sought is not the ℓ2 norm of
the parameters.

For sparsity, we first focus on a linear teacher-student setup and show that recovery of sparse vectors
using gradient descent and a lasso penalty exhibits a grokking phenomenon, which is impossible
using only the ℓ2 regularization no matter the initialization scale as advocated by previous art (Lyu
et al., 2023; Liu et al., 2023b). We also formally show that the generalization delay is inversely
proportional to the learning rate and the ℓ1 regularization strength and proportional to the ℓ∞ norm of
the parameters at memorization. Moreover, with a deeper over-parametrized model, there is no need
to use ℓ1, i.e., gradient descent is implicitly biased toward such a sparse solution. For the low-rank
structure, we focus on matrix factorization and show that nuclear norm regularization (denoted ℓ∗)
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is needed for generalization in the shallow case, and the delay between memorization and perfect
recovery is inversely proportional to the strength of the ℓ∗ regularization and the learning rate used,
and proportional to the large singular value of the iterate at memorization. This extends previous
works on matrix factorization that show that deeper linear networks can factorize low-rank matrices
without explicit regularization (Arora et al., 2018; 2019). All this holds beyond shallow and/or linear
networks. We show that ℓ1 or ℓ∗ can replace ℓ2 in a more general setting and accelerate generalization,
i.e., reduce grokking. We focus on a nonlinear teacher-student setup, on the algorithmic data setup
(Power et al., 2022) on which grokking was first observed, with different classes of models (MLP,
LSTM), and on image classification with MLP. In a setting where the ℓ2 regularization is not used,
the ℓ2 norm of the model parameters tends to grow during training and after generalization, but
optimization still produces a generalizable solution. We further observe that using ℓ2 can worsen
generalization when the property P differs from the ℓ2 norm and is necessary for generalization.
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Figure 1: Generalization step
t2 and recovery error ∥b(t2) −
b∗∥2 as a function of αβ1. We
can see that t2 ∝ ∥b̂∥∞/αβ1

and ∥b(t2) − b∗∥2 ∝ αβ1,
i.e. small αβ1 require longer
time to converge, but do so at
a lower recovery error. The
outlier for small αβ1 is due to
insufficient training (Fig. 12).

Our contributions can be summarized as follows: (i) We show that
grokking can be induced by the interplay between the sparse/low-
rank structure of the solution and the ℓ1 / ℓ∗ regularization used
in training, extending previous results on ℓ2 regularization (Liu
et al., 2023a; Lyu et al., 2023). (ii) For shallow linear networks, we
theoretically characterize the relation between grokking time and
regularization strength, showing that regularization is necessary to
observe grokking on sparse or low-rank solutions. (iii) Moreover, we
empirically show that in deep (non-linear) networks, the sparse/low-
rank structure of the data is enough to have generalization without
explicit regularization. Adding depth makes it possible to grok or
ungrok simply from the implicit regularization of gradient descent.
(iv) Leveraging the notion of coherence, we show that grokking can
be amplified through only data selection (with any other hyperpa-
rameter fixed). (v) We show that ℓ1 or ℓ∗ can replace ℓ2 in a more
general setting and reduce grokking. Moreover, in such a scenario,
and in the shallow sparse/low-rank scenario mentioned above, the ℓ2
cannot be used as an indicator of grokking. (vi) We also show that
other forms of domain-specific regularizers strongly affect the delay
between memorization and generalization.

This paper is organized as follows. We study grokking on sparse
recovery and low-rank matrix factorization in section 2. In section 3, we show how our result extends
beyond sparse recovery and matrix factorization. We then discuss and conclude our work in section 4.

2 GROKKING IN SPARSE RECOVERY AND MATRIX FACTORIZATION

Compressed sensing theory provides the foundation for recovering sparse signals from undersampled
noisy linear measurements. Given N ≪ n measurements y∗ = Fa∗(X) + ξ of a vector a∗ ∈ Rn,
where Fa(X) = Xa and ξ denotes noise, we seek a reconstruction of the form a =

∑n
i=1 b

∗
iΦ:,i =

Φb, with Φ ∈ Rn×n a dictionary and s = ∥b∗∥0 := |{i,b∗
i ̸= 0}| ≪ n. The exact recovery problem

(P0), which involves minimizing ∥b∥0 under the constraint of the form ∥FΦb(X) − y∗∥2 ≤ ϵ,
is NP-hard. Therefore, we focus on the relaxed problem (P1), minimizing ∥b∥1 under the same
constraint, commonly known as Basis Pursuit. We investigate the optimization dynamics of solving
(P1) through gradient descent by formally characterizing grokking time. More precisely, we want to
minimize f(b) = 1

2∥X̃b− y∗∥22 +
β2

2 ∥b∥22 + β1∥b∥1 using gradient descent with a learning rate α.
The subgradient update rule for this problem is given by b(t+1) = b(t)−α

(
Gβ2(b

(t)) + β1h(b
(t))
)

where Gβ2(b) = ∇b
1
2∥X̃b−y∗∥22+β2b and h(b) ∈ ∂∥b∥1 is any subgradient of ∥b∥1. Intuitively,

the training dynamics can be decomposed in two steps: the update b(t) first moves near the least

square solution b̂ :=
(
X̃⊤X̃+ β2In

)†
X̃⊤y∗ leading to memorization. Later in training, h(b)

dominates the update, leading to ∥b(t) − b∗∥∞ ∈ O (αβ1) withing Θ(1/αβ1) additional steps.
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Theorem 2.1. Assume α < 2
σmax(X̃⊤X̃)+β2

and 0 < β1 ≪ σmax(X̃
⊤X̃)+β2√
n

. Then, there exists C > 0

and t1 < ∞ such that ∥b(t) − b̂∥2 ≤ 2αβ1n
1/2

1−ρ2
∀t ≥ t1 and ∥b(t) − b∗∥2 ≤ Cαβ1n

1/2 ⇐⇒ t ≥

t1 +∆t where ρ2 := σmax

(
In − α

(
X̃⊤X̃+ β2In

))
and ∆t = Θ

(
∥b̂∥∞
αβ1

)
.

This result in valid for any ℓp norm (p ∈ (0,∞]) such that ρp :=
∥∥∥In − α

(
X̃⊤X̃+ β2In

)∥∥∥
p→p

∈

(0, 1), and under this condition ∥ · ∥2 becomes ∥ · ∥p and n1/2 becomes n1/p. We also show that
f(b(t)) → f(b∗) and ∥b(t)∥1 → ∥b∗∥1 as t → ∞ (Theorems C.3 and C.13). Note that when N is
large enough, X̃b(t) = y∗ (memorization) and ∥b(t)∥1 = ∥b∗∥1 are enough to conclude b(t) = b∗

(generalization). In fact, after memorization, when ∥b(t)∥1 becomes too small, ∥b(t) − b∗∥∞ ≈ 0
(Figure 2) since for problem of interest, the sparse solution b∗ is the minimum ℓ1 solution to
∥X̃b− y∗∥2 ≤ ϵ under the sparsity constraint (section C). The smaller αβ1 is, the longer it takes to
recover b∗, and the smaller is the error ∥b(t) − b∗∥∞ when t → ∞ (Figures 1 and 12).
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Figure 2: Gβ2(b
(t)) dominates

β1h(b
(t)) until memorization at t1;

after which β1h(b
(t)) dominates and

make ∥b(t)∥1 converge to ∥b∗∥1 at t2,
and so b(t2) = b∗.

In addition to gradient descent, our results (Section C.7) ex-
tend to other iterative methods for ℓ1 minimization, includ-
ing the projected subgradient method (Section C.7) and
for the proximal gradient descent method (Section C.8).
Contrary to previous findings (Lyu et al., 2023; Liu et al.,
2023a), we observe that in the over-parameterized regime
(N < n), large-scale initialization and ℓ2-regularization
alone do not necessarily induce grokking (Section C.9),
and instead lead to abrupt transitions in generalization er-
ror without converging to optimal solutions when sample
sizes are insufficient. We term this effect “grokking with-
out understanding”, as highlighted in related work (Levi
et al., 2024). Our analysis (Section C.10) demonstrates
that coherence significantly impacts grokking in sparse
recovery, with higher coherence delaying generalization
by limiting the diversity of information captured by mea-
surements. Furthermore, in deep linear networks (Section
C.11), we find that depth L ≥ 2 can implicitly promote
sparsity and generalization, reducing the reliance on ℓ1-
regularization while mitigating generalization delays. Finally, in Section C.12, we extend these
findings to realistic signals, including MNIST images, sinusoidal signals, and sparse polynomials.

For matrix factorization, given a low rank r matrix A∗ ∈ Rn1×n2 , a measurement matrix X ∈
RN×n1n2 ; and the measures y∗ = X vec(A∗) + ξ, and want to minimize f(A) = 1

2∥X vec(A)−
y∗∥22+

β2

2 ∥A∥F +β∗∥A∥∗ using gradient descent. The subgradient update rule is given by A(t+1) =

A(t) − α
(
Gβ2

(A(t)) + β∗h(A
(t))
)

where Gβ2
(A) = ∇A

1
2∥X vecA− y∗∥22 + β2A and h(A) ∈

∂∥A∥∗. Like in sparse recovery with gradient descent, the update A(t) first moves near the least
square solution vec(Â) :=

(
X⊤X+ β2In

)†
X⊤y∗, and later in training, it converges to a solution

with norm σmax

(
A(t)

)
∈ O(αβ∗) (maximum singular value, i.e., operator norm).

Theorem 2.2. Assume α < 2
σmax(X⊤X)+β2

and 0 < β∗ ≪ σmax(X
⊤X)+β2√

min(n1,n2)
. For all p ∈ (0,∞] such

that ρp :=
∥∥In − α

(
X⊤X+ β2In

)∥∥
p→p

∈ (0, 1), there exists t1 < ∞; ∥ vec(A(t))− vec(Â)∥p ≤
2αβ∗n

1/p

1−ρp
∀t ≥ t1 and ∥A(t)∥p ≤ αβ∗n

1/p ⇐⇒ t ≥ t2 := t1 +∆t with ∆t = Θ
(
⌊σmax(Â)

αβ∗
⌋
)

.

In particular, for p = 2, ρ2 ∈ (0, 1) since 0 < α < 2
σmax(X⊤X)+β2

. A choice of larger p means

choosing the learning rate to have ρp ∈ (0, αmax). We also show that f(A(t)) → f(A∗) and
∥A(t)∥1 → ∥A∗∥1 as t → ∞ (Theorems D.4 and D.13). When N is large enough, X vecA(t) = y∗

(memorization) and ∥A(t)∥∗ = ∥A∗∥∗ are enough to conclude A(t) = A∗ (generalization). In
fact, when Gβ2(A) become negligeable compare to β∗h(A), the singular values starts involving as
σ
(t+1)
i ≈ |σ(t)

i − α| (Theorem D.12). This leads to a generalization through a multiscale singular
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value decay phenomenon (Figure 4). The small singular value after memorization converges to
{σ, 0 ≤ σ < αβ∗}, followed by the next smaller one until the larger one. This process take time
Θ
(
⌊σmax(Â)

αβ∗
⌋
)

. So, the smaller αβ∗, the longer it take to recover A∗, and the smaller is the error

∥A(t) − A∗∥∞ when t → ∞. We also analyze the effect of coherence on grokking in matrix
factorization. For matrix completion, given τ ∈ [0, 1], we select the first τN examples with the
highest values of local coherence and select the remaining (1− τ)N examples uniformly among the
remaining. Unlike compressed sensing, where large values of τ are detrimental to generalization,
here, as τ → 1, performance improves, and the number of examples required to generalize decreases
exponentially, as does the time it takes the models to do so (Figures 45 and Figures 46).

3 BEYONG SPARSE RECOVERY AND LOW-RANK MATRIX FACTORIZATION

In this section, we show that ℓ1, ℓ∗, and domain-specific regularizers can replace ℓ2 in a more
general setting and reduce grokking. Let consider a teacher y∗(x) = B∗ max(A∗x, 0). We i.i.d
sample N inputs output pair {(xi,y

∗(xi))}Ni=1 and optimize the parameters θ = (A,B) of a student
yθ(x) = Bmax(Ax, 0) on them with the loss function Ê(θ) = 1

N

∑N
i=1 ∥yθ(xi)− y∗(xi)∥22 and

different regularizer Ωp(θ) for p ∈ {1, 2, ∗}. For any p ∈ {1, 2, ∗}, the smaller is βp and/or α, the
longer is the delay between memorization and generalization (see Figures 3 for the training curve
with ℓ1, and 47, 48, 49 for more results with ℓ∗/2).
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(a) ℓ1 Regularization
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Figure 3: Training and test error two layers ReLU teacher-student, for different values of the learning
rate α and the ℓ1 (resp. Sobolev) coefficient β1. We can see that the smaller is α and or β1, the

longer is the delay between memorization and generalization.

Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019) leverage prior knowledge from
differential equations by incorporating their residuals into the loss function, ensuring that solutions
remain consistent with physical laws. Sobolev training (Czarnecki et al., 2017) generalizes this
idea by incorporating not only input-output pairs but also derivatives of the target function. We
optimizer the student above by adding on the objective function the first order Sobolev penalty
β1

N

∑N
i=1

∥∥∥∂yθ

∂x (xi)− ∂y∗

∂x (xi)
∥∥∥2

F
, where the hyperparameter β1 ensures that the model not only fits

the data but also respects known smoothness constraints or differential structure. We observe that the
smaller αβ, the longer the delay between memorization and generalization (See Figures 3 and 50).

We train a tree layers MLP and a LSMT on the addition modulo p = 97 problem (Power et al., 2022),
and a two layers ReLU MLP trained on MNIST. We observe that ℓ1 and ℓ∗ have the same effect on
grokking as ℓ2, i.e., smaller regularization coefficient (and learning rate) delay generalization (more
details in Sections E.3 and E.4).

4 DISCUSSION AND CONCLUSION

This work extends the understanding of grokking, showing that the transition from memorization to
generalization can be induced not just by ℓ2 regularization but also by sparsity or low-rank structure
regularization or domain-specific regularization. These findings are particularly relevant in practice,
where large-scale initialization is not always feasible, yet grokking still occurs. Our results highlight
that in deep models, gradient descent implicitly drives the model towards solutions with sparse or
low-rank properties, effectively mitigating overfitting (Arora et al., 2018). We also study the impact
of data selection on grokking, and show that grokking can be amplified through only data selection.
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Dynamics of stochastic gradient descent for two-layer neural networks in the teacher–student
setup*. Journal of Statistical Mechanics: Theory and Experiment, 2020(12):124010, December
2020. ISSN 1742-5468. doi: 10.1088/1742-5468/abc61e. URL http://dx.doi.org/10.
1088/1742-5468/abc61e.

Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro.
Implicit regularization in matrix factorization. Advances in neural information processing systems,
30, 2017.

Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J. Tibshirani. Surprises in high-
dimensional ridgeless least squares interpolation, 2020. URL https://arxiv.org/abs/
1903.08560.

Noam Levi, Alon Beck, and Yohai Bar-Sinai. Grokking in linear estimators - a solvable model that
groks without understanding. International Conference on Learning Representations, 2024.

Zhiyuan Li, Yuping Luo, and Kaifeng Lyu. Towards resolving the implicit bias of gradient descent
for matrix factorization: Greedy low-rank learning. CoRR, abs/2012.09839, 2020. URL https:
//arxiv.org/abs/2012.09839.

Ziming Liu, Eric J Michaud, and Max Tegmark. Omnigrok: Grokking beyond algorithmic data.
In The Eleventh International Conference on Learning Representations, 2023a. URL https:
//openreview.net/forum?id=zDiHoIWa0q1.

Ziming Liu, Ziqian Zhong, and Max Tegmark. Grokking as compression: A nonlinear complexity
perspective. arXiv preprint arXiv: 2310.05918, 2023b.

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning library
for solving differential equations. SIAM Review, 63(1):208–228, January 2021. ISSN 1095-7200.
doi: 10.1137/19m1274067. URL http://dx.doi.org/10.1137/19M1274067.

Kaifeng Lyu, Jikai Jin, Zhiyuan Li, Simon S. Du, Jason D. Lee, and Wei Hu. Dichotomy of early and
late phase implicit biases can provably induce grokking. arXiv preprint arXiv: 2311.18817, 2023.

William Merrill, Nikolaos Tsilivis, and Aman Shukla. A tale of two circuits: Grokking as competition
of sparse and dense subnetworks. arXiv preprint arXiv: 2303.11873, 2023.

Mohammad Pezeshki, Amartya Mitra, Yoshua Bengio, and Guillaume Lajoie. Multi-scale feature
learning dynamics: Insights for double descent, 2021. URL https://arxiv.org/abs/
2112.03215.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: General-
ization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv: Arxiv-2201.02177,
2022.

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378:686–707, 2019. ISSN 0021-9991. doi: https://
doi.org/10.1016/j.jcp.2018.10.045. URL https://www.sciencedirect.com/science/
article/pii/S0021999118307125.

Holger Rauhut. Compressive Sensing and Structured Random Matrices, pp. 1–92. De Gruyter,
Berlin, New York, 2010. ISBN 9783110226157. doi: doi:10.1515/9783110226157.1. URL
https://doi.org/10.1515/9783110226157.1.

Noam Razin and Nadav Cohen. Implicit regularization in deep learning may not be explainable by
norms. CoRR, abs/2005.06398, 2020. URL https://arxiv.org/abs/2005.06398.

6

http://arxiv.org/abs/1909.12051
http://arxiv.org/abs/1909.12051
http://dx.doi.org/10.1088/1742-5468/abc61e
http://dx.doi.org/10.1088/1742-5468/abc61e
https://arxiv.org/abs/1903.08560
https://arxiv.org/abs/1903.08560
https://arxiv.org/abs/2012.09839
https://arxiv.org/abs/2012.09839
https://openreview.net/forum?id=zDiHoIWa0q1
https://openreview.net/forum?id=zDiHoIWa0q1
http://dx.doi.org/10.1137/19M1274067
https://arxiv.org/abs/2112.03215
https://arxiv.org/abs/2112.03215
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://doi.org/10.1515/9783110226157.1
https://arxiv.org/abs/2005.06398


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

David Saad and Sara Solla. Learning with noise and regularizers in multilayer neural networks. In
M.C. Mozer, M. Jordan, and T. Petsche (eds.), Advances in Neural Information Processing Sys-
tems, volume 9. MIT Press, 1996. URL https://proceedings.neurips.cc/paper_
files/paper/1996/file/e1d5be1c7f2f456670de3d53c7b54f4a-Paper.pdf.

David Saad and Sara A. Solla. On-line learning in soft committee machines. Phys. Rev. E, 52:
4225–4243, Oct 1995a. doi: 10.1103/PhysRevE.52.4225. URL https://link.aps.org/
doi/10.1103/PhysRevE.52.4225.

David Saad and Sara A. Solla. Exact solution for on-line learning in multilayer neural networks.
Phys. Rev. Lett., 74:4337–4340, May 1995b. doi: 10.1103/PhysRevLett.74.4337. URL https:
//link.aps.org/doi/10.1103/PhysRevLett.74.4337.

Vimal Thilak, Etai Littwin, Shuangfei Zhai, Omid Saremi, Roni Paiss, and Joshua Susskind. The
slingshot mechanism: An empirical study of adaptive optimizers and the grokking phenomenon.
arXiv preprint arXiv: Arxiv-2206.04817, 2022.

Ryan Tibshirani. Machine learning 10-725/36-725, convex optimization: Spring 2015, lecture
8: February 9. https://www.stat.cmu.edu/˜ryantibs/convexopt-S15/, 2015.
Course lecture available online.

Vikrant Varma, Rohin Shah, Zachary Kenton, János Kramár, and Ramana Kumar. Explaining
grokking through circuit efficiency. arXiv preprint arXiv: 2309.02390, 2023.

Tomas Vavskevivcius, Varun Kanade, and Patrick Rebeschini. Implicit regularization for optimal
sparse recovery, 2019. URL https://arxiv.org/abs/1909.05122.

100 101 102 103 104 105 106 107

10 4

10 3

10 2

10 1

100

Er
ro

r

t1 t2

t

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Gr
ad

ie
nt

s R
at

io
||Xvec(A(t)) y * ||F / ||y * ||2
||A(t) A * ||F / ||A * ||F
|| * h(A(t))||F / ||G 2(A(t))||F

100 101 102 103 104 105 106 107

10 4

10 3

10 2

10 1

100

Er
ro

r

t1 t2
0.0

2.5

5.0

7.5

10.0

12.5

15.0

||A
|| *

||A(t)|| *

||A * || *

101 103 105 107

Steps (t)

0

100

101

Si
ng

ul
ar

 v
al

ue
s

t1 t2
t

1

2

3

4

5

6

7

8

9

10

Di
m

en
sio

ns
 (n

)
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generalization error. The outlier for very small αβ∗ is due to insufficient training (Figure 42).

A RELATED WORKS

Large initialization and ℓ2 regularization Many studies in the linear teacher-student setup focus
on ℓ2 regularization, and the aim is generally to understand the classical generalization phenomenon
like double descent (Hastie et al., 2020; Pezeshki et al., 2021), but not grokking. The only work
on such models for grokking is Levi et al. (2024). They work on classification setting and show
that the sharp increase in generalization accuracy may not imply a transition from “memorization”
to “understanding” but can be an artifact of the accuracy measure. This aligns with the grokking
without understanding the problem we observe in sparse recovery and low-rank matrix factorization.
Our results are valid with many optimization methods for ℓ1/ℓ∗ minimization problems, such as
subgradient, projected subgradient, and proximal gradient descent.

Grokking and stochasticity Our work also contradicts the hypothesis put forward when grokking
was first observed, namely that grokking may be due to stochasticity or an anomaly in the optimization
(Power et al., 2022; Thilak et al., 2022). Here, our algorithms are all deterministic (up to initialization).

Sparsity Barak et al. (2022) observed grokking on binary sparse parity problem, and Merrill et al.
(2023) show that two subnetworks compete during training on such training, a dense (memorization)
subnetwork, and a sparse (generalization) subnetwork. Since we can build a very sparse network that
generalizes the sparse parity data Merrill et al. (2023), we claim that it is this sparsity that gives the
models trained on this task their grokking nature.

Matrix completion To the best of our knowledge, we are the first to formally study grokking in the
context of sparse recovery and low-rank matrix factorization (the shallow case). Lyu et al. (2023)
show that low-rank matrix completion problems exhibit grokking with large initialization. But we
prove that even on such a simple model, we do not need way decay and large initialization to observe
grokking, but just ℓ1/∗ regularization.

B NOTATIONS, DEFINITIONS, PRELIMINARIES

We will optimize functions of the form f(θ) = Ê(θ) + βΩ(θ), where Ê is the square loss or cross-
entropy loss function of the considered model on the training data, θ the set of model parameters,
and Ω a regularizer applied to θ. It can be the standard ℓp norm or quasi-norm of θ, the sum of the
nuclear norms of each matrix in θ (in this case, we call it ℓ∗), etc. For a vector a ∈ Rn, we consider
the measurement operator Fa(X) = Xa ∈ RN that take N measurement vectors {Xi ∈ Rn}i∈[N ] a
return the measures {X⊤

i a}i∈[N ].
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We work in R for compressed sensing and matrix completion, but many of our results extend easily
to C.

• We let e(n)k = [In]:,k be the kth vector of the canonical basis of Rn, e(n)kl = δkl∀l. The
subscript (n) will be omitted when the context will be clear

• ⊙ is Hadamard product. For Q ∈ Rm×n and R ∈ Rm×n, (Q ⊙ R)i,j = Qi,jRi,j

(0 ≤ i < m, 0 ≤ j < p)
• ⊗ is the Kronecker product. For Q ∈ Rm×n and R ∈ Rp×q , (Q⊗R)pr+v,qs+w = QrsRvw

(0 ≤ r < m, 0 ≤ v < p, 0 ≤ s < n and 0 ≤ w < q)

• ◦ is the outer product,
(
a(1) ◦ · · · ◦ a(n)

)
i1,··· ,in

= a
(1)
i1

· · ·a(n)in
∀(i1, · · · , in) ∈ [m1]×

· · · × [mn] for n vectors a(i) ∈ Rmi ∀i ∈ [n].

• σmax /min(A) =
√
λmax /min(A⊤A) is the maximum (resp. minimum) singular value of

a matrix A, with λmax /min the corresponding eigenvalue

• For a vector x ∈ Rn, ∥x∥0 = |{i ∈ [n],xi ̸= 0}|, ∥x∥p = (
∑n

i=1 |xi|p)
1
p ∀p ∈ (0,∞) and

∥x∥∞ = maxi∈[n] |xi|.
We have 1√

n
∥x∥1 ≤ ∥x∥2 ≤ ∥x∥1 and ∥x∥∞ ≤ ∥x∥2 ≤

√
n∥x∥∞.

• For a matrix A ∈ Rm×n, the schatten p-norm of A is ∥A∥p = (
∑

i σi(A)p)
1/p. For

p = 1, this gives the trace/nuclear norm ∥A∥∗ =
∑

i σi(A) = tr
(√

A⊤A
)

. The induce

p → q norm of A is ∥A∥p→q = supx̸=0
∥Ax∥q

∥x∥p
= sup∥x∥p=1 ∥Ax∥q . We have ∥A∥1→1 =

maxj∈[n]

∑m
i=1 |Aij | (maximum absolute column sum), ∥A∥2→2 = ∥A∥2 = σmax(A)

(operator norm, spectral norm, induced 2-norm) and ∥A∥∞→∞ = maxi∈[m]

∑n
j=1 |Aij |

(maximum absolute row sum).

1√
n
∥A∥2→2 ≤ ∥A∥1→1 ≤

√
m∥A∥2→2

1√
m
∥A∥2→2 ≤ ∥A∥∞→∞ ≤

√
n∥A∥2→2

(1)

Definition B.1 (Khatri-Rao and Face-splitting products). For A ∈ Rm×n and B ∈ Rp×n, the
Khatri-Rao product A ⋆B ∈ Rmp×n contains in each column i ∈ [n] the matrix A:,i ⊗B:,i. We
have the formula A ⋆B = (A⊗ 1p)⊙ (1m ⊗B).

For A ∈ Rm×n and B ∈ Rm×p, the face-splitting product A •B ∈ Rm×np contains in each row
i ∈ [m] the matrix Ai,: ⊗ Bi,:. It can be seen as the row-wise Khatri-Rao product, and we have
(A •B) = (A⊤ ⋆B⊤)⊤ =

(
A⊗ 1⊤p

)
⊙ (1⊤n ⊗B).

We will generalize this operator in a higher number of vectors. If we have N vectors A(k) ∈ Rm×nk ,
then

(
A(1) •A(2) • · · · •A(N)

)
i,:

= A
(1)
i,: ⊗A

(3)
i,: ⊗ · · · ⊗A

(N)
i,: ∈ R

∏
k nk .

Definition B.2. A matrix M ∈ Rm×n can be vectorized column-wise, vecc(M)in+j = Mij , or
row-wise vecr(M)jm+i = Mij , where 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1. So vecc(M) =
vec(M) and vecr(M) = vec(M⊤) = K(m,n)vec(M) with vec(M) the vanilla vectorization,
which stack the column of M in a vector.
Definition B.3. A tensor T ∈ Rm×n×p can be vectorized column-wise, vecc(T )kmn+jm+i =
T ijk, or row-wise vecr(T )inp+jm+k = T ijk, where 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1 and
0 ≤ k ≤ p− 1. Note that T can be vectorized in 3! ways1.

Let T (12) = T (1) ∈ Rm×np (mode-1 unfolding of T ), T (21) = T (2) ∈ Rn×mp and T (32) =

T ⊤
(3) ∈ Rmn×p. That is

T (32) :=

[ | | |
vecc(T ::1) vecc(T ::2) · · · vecc(T ::p)

| | |

]
∈ Rmn×p

1A tensor of order K can be vectorized in K! ways.
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and

T (12) :=

[−vecr(T 1)−
· · ·

−vecr(T p)−

]
∈ Rm×pn

We have

vecc(T ) =



|
vecc(T ::1)

|
·
·
·
|

vecc(T ::p)
|


= vecc

(
T (32)

)
:= T (321)

and

vecr(T ) =



|
vecr(T 1)

|
·
·
·
|

vecr(T n)
|


= vecr

(
T (12)

)
:= T (123)

For A ∈ Rq×p and B ∈ Rq×m, AT (32) = AT (3) = (T ×3 A)(3) and BT (12) = BT (1) =

(T ×1 B)(1).

If we CP-decompose T = JA,B,CK =
∑R

i=1 A:,i ◦B:,i ◦C:,i, with A ∈ Rm×R, B ∈ Rn×R and
C ∈ Rp×R the three mode loading matrices, then T (1) = A(C ⋆ B)⊤, T (2) = B(A ⋆C)⊤ and
T (3) = C(B ⋆A)⊤.

C SPARSE RECOVERY

C.1 DEFINITIONS AND PRELIMINARIES

Definition C.1 (Restricted Isometry Property (RIP) and Restricted Isometric Constant(RIC)). Let
A ∈ Rm×n and (s, δs) ∈ [n]× (0, 1). The matrix A is said to satisfy the (s, δs)-RIP if

(1− δs)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δs)∥x∥22 (2)

for all s-sparse vector x ∈ Rn (ie ∥x∥0 ≤ s). This is equivalent to saying that for every J ⊂ [n] with
|J | = s

(1− δs)∥x∥22 ≤ ∥A:,Jx∥22 ≤ (1 + δs)∥x∥22 (3)

for every x ∈ Rs; where the submatrix A:,J ∈ Rm×s of A is build by selecting the columns index
in J . This condition is also equivalent to the statement ∥A⊤

:,JA:,J − Is∥2→2 ≤ δs, which is finally
equivalent to Spec

(
A⊤

:,JA:,J

)
⊂ [1− δs, 1 + δs].

We say that A satisfies s-RIP if it satisfies (s, δs)-RIP with some δs ∈ (0, 1). The s-RIC of A is
defined as the infimum δs(A) of all possible δs such that A ∈ Rm×n satisfy the (s, δs)-RIP.

δs(A) = inf
{
δs ∈ (0, 1) | (1− δs)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δs)∥x∥22 ∀x ∈ Rn, ∥x∥0 ≤ s

}
= inf

{
δs ∈ (0, 1) | (1− δs)∥x∥22 ≤ ∥A:,Jx∥22 ≤ (1 + δs)∥x∥22 ∀x ∈ Rs, J ⊂ [n], |J | = s

}
= inf

{
δs ∈ (0, 1) | ∥A⊤

:,JA:,J − Is∥2→2 ≤ δs ∀J ⊂ [n], |J | = s
}

= inf
{
δs ∈ (0, 1) | Spec

(
A⊤

:,JA:,J

)
⊂ [1− δs, 1 + δs] ∀J ⊂ [n], |J | = s

}
10
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So, for all ∀J ⊂ [n] with |J | = s, the condition number of A⊤
:,JA:,J is bounds from above by

1+δs(A)
1−δs(A) , a the one of A:,J by

√
1+δs(A)
1−δs(A) .

We say that a matrix A satisfies the RIP if δs(A) is small for reasonably large s. All the above
definitions extend to any linear map f : Rn → Rm.

Proposition C.1. δs(A) ≤ δs+1(A) for all A ∈ Rm×n and s ∈ [n].

Definition C.2 (Restricted Isometry Property). Let F : Rm×n → Rq be a linear map and (r, δr) ∈
[n]× (0, 1). f is said to satisfy (r, δr)-RIP if for all rank-r matrices X ∈ Rm×n:

(1− δr)∥X∥2F ≤ ∥F(X)∥22 ≤ (1 + δr)∥X∥2F (4)

We say that F satisfies r-RIP if F satisfies (r, δr)-RIP with some δr ∈ (0, 1), and the r-RIC of F is
defined as the infimum δr(F) of all possible δr such that F satisfy the (r, δr)-RIP.

Definition C.3 (Coherence). The coherence between two matrices A ∈ Rq×m and B ∈ Rq×n is

µ(A,B) = max
i∈[m],j∈[n]

|⟨A:,i,B:,j⟩|
∥A:,i∥∥B:,j∥

= max
i∈[m],j∈[n]

|[A⊤B]i,j |
∥A:,i∥∥B:,j∥

(5)

Coherence measures how similar or aligned two matrices or vectors are. Specifically, it measures how
much overlap there is between the columns of A and B. High coherence means they are similar or
aligned, and low coherence (or incoherence) means they are very different. Incoherence is essentially
the opposite of coherence. It refers to a low overlap or low similarity between the columns of A and
B.

The mutual coherence of a matrix A ∈ Rm×n is

µ(A) = max
(i,j)∈[m]×[n],i̸=j

|⟨A:,i,A:,j⟩|
∥A:,i∥∥A:,j∥

= max
(i,j)∈[m]×[n],i̸=j

[A⊤A]i,j
∥A:,i∥∥A:,j∥

(6)

If the coherence is small, then the columns of A are almost mutually orthogonal. A small coherence
is desired in order to have good sparse recovery properties.

We also have the 1-coherence

µ1(A, s) = max
i∈[n]

max
J⊆[n]\i,|J|≤s

∑
j∈J

|⟨A:,i,A:,j⟩|
∥A:,i∥∥A:,j∥

≤ sµ(A)

Example C.1. For the Fourier basis
√
nΦji = e−2πi jin , we have µ1(Φ, s) = sµ(Φ) = s/

√
n

(Rauhut, 2010). Each column in this basis vector corresponds to a specific frequency. For a signal
a∗, if only a few frequency components contribute significantly to a∗, then b∗ = Φ−1a∗, the Fourier
transform of a∗, will be sparse. This Φ is unitary, and its inverse is

√
nΦ−1

ji = e2πi jin .

Proposition C.2. For a matrix A ∈ Rm×n with unit norm columns, µ(A) ≥
√

n−m
m(n−1) and

µ1(A, s) ≥ s
√

n−m
m(n−1) whenever s ≤

√
n− 1 (Rauhut, 2010).

Proposition C.3. For a matrix A ∈ Rm×n with unit norm columns, µ(A) = δ2(A), µ1(A, s) =
maxJ∈[n],|J|≤s+1 ∥A⊤

:,JA:,J − I∥1→1, and δs(A) ≤ µ1(A, s− 1) ≤ (s− 1)µ(A) (Rauhut, 2010).

Proposition C.4 (Connexion between the coherence µ(A,B) and δs(A
⊤B)). Let A ∈ Rq×m,

B ∈ Rq×n and M = A⊤B ∈ Rm×n. We have

max

(
1

m
√
s
,

1

s
√
m

)
∥M:,J∥2→2 ≤ µ(A,B) ≤ min

(√
m,

√
n
)
∥M∥2→2 ∀J ⊂ [n], |J | = s

and √
1− δs(A⊤B) ≤ m+ s

2
µ(A,B) (7)

Proof. For J ⊂ [n] with |J | = s, we have M:,J = A⊤B:,J ∈ Rm×s and Spec
(
M⊤

:,JM:,J

)
⊂

[1− δs, 1 + δs]. This implies ∥M:,J∥22→2 = λmax(M
⊤
:,JM:,J) ∈ [1− δs, 1 + δs].

11
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Also,

∥M:,J∥1→1 = max
j∈[s]

m∑
i=1

|[M:,J ]ij | ≤ mmax
j∈[s]

max
i∈[m]

|[M:,J ]ij | = mµ(A,B:,J) ≤ mµ(A,B)

µ(A,B) = max
i∈[m],j∈[n]

|Mi,j | ≤ max
i∈[m],j∈[n]

m∑
k=1

|Mk,j | = max
j∈[n]

m∑
k=1

|Mk,j | = ∥M∥1→1

and

∥M:,J∥∞→∞ = max
i∈[m]

s∑
j=1

|[M:,J ]ij | ≤ smax
i∈[m]

max
j∈[s]

|[M:,J ]ij | = sµ(A,B:,J) ≤ sµ(A,B)

µ(A,B) = max
i∈[m],j∈[n]

|Mi,j | ≤ max
i∈[m],j∈[n]

n∑
k=1

|Mi,k| = max
i∈[m]

n∑
k=1

|Mi,k| = ∥M∥∞→∞

So

max

(
∥M:,J∥1→1

m
,
∥M:,J∥∞→∞

s

)
≤ µ(A,B) ≤ min (∥M∥1→1, ∥M∥∞→∞) (8)

For C ∈ Rm×n,
1√
n
∥C∥2→2 ≤ ∥C∥1→1 ≤

√
m∥C∥2→2

1√
m
∥C∥2→2 ≤ ∥C∥∞→∞ ≤

√
n∥C∥2→2

(9)

Using 8 and 9, we obtain

max

(
1

m
√
s
,

1

s
√
m

)
∥M:,J∥2→2 ≤ µ(A,B) ≤ min

(√
m,

√
n
)
∥M∥2→2

Combining with ∥M:,J∥22→2 = λmax(M
⊤
:,JM:,J) ∈ [1− δs, 1 + δs] give√

max(m, s)

ms

√
1− δs(A⊤B) ≤ µ(A,B) ≤

√
min (m,n)

√
1 + δn(A⊤B) (10)

Since ∥M:,J∥2→2 ≤ max (∥M:,J∥1→1, ∥M:,J∥∞→∞) (Rauhut, 2010), we also have√
1− δs(A⊤B) ≤ m+ s

2
µ(A,B) (11)

C.2 THE PROBLEM

Compressed sensing theory predicts that sparse signals in high dimensions can be recovered from
undersampled linear measurements. More precisely, given N ≪ n noisy measurements y∗ =
Fa∗(X) + ξ ∈ RN of a vector a∗ ∈ Rn (digital signal, image, etc.), we look for a reconstruction
a ∈ Rn that minimizes ∥Fa(X) − y∗∥2; where Fa(X) = Xa ∈ RN is the measurement operator
that take N measurement vectors {Xi ∈ Rn}i∈[N ] a return the measures {X⊤

i a}i∈[N ]. Without
further knowledge, this is impossible for N < n. This is why the sparsity of the original signal a∗ is
assumed, i.e., we can write a∗ =

∑n
i=1 b

∗
iΦ:,i = Φb∗ with s = ∥b∗∥0 := |{i,b∗

i ̸= 0}| ≪ n, and
Φ ∈ Rn×n a dictionary (see example C.1 for the Fourier transform). We assume for simplicity that Φ
is an orthonormal matrix, Φ⊤Φ = In (Assumption C.3). In sparse coding, we aim to find a = Φb
under the constraint that ∥b∥0 ≪ n. This can be stated as

(P0) Minimize ∥b∥0 s.t. ∥FΦb(X)− y∗∥2 ≤ ϵ (12)

with ϵ an upper bound on the size of the error term ξ ∈ RN , ∥ξ∥2 ≤ ϵ. This problem is NP-hard, and
the constraint ∥b∥0 is often relaxed to an ℓ1 regularization, and leading to the convex problem

(P1) Minimize ∥b∥1 s.t. ∥FΦb(X)− y∗∥2 ≤ ϵ (13)

12
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This problem has been well studied in the signal processing literature under the name Basis Pursuit.
It is well known that under certain conditions on the measurement matrix X (e.g., coherence with
respect to Φ) and the sparsity of a∗ in Φ, sufficiently sparse solutions of (P1) are also solutions of
(P0) (Donoho & Elad, 2003; Candes et al., 2006). Many lower bounds on the number of measures
N guaranteeing ∥b− b∗∥2 ≤ ϵ with high probability have also been derived. Such lower bounds
generally have the form N = Ω

(
δ−β (s logα (n/s) + log 1/η)

)
(Rauhut, 2010), where δ capture the

Restricted Isometry Property (RIP, Definition C.1) of X̃ = XΦ and is also related to the coherence
(Definition C.3) of X with respect to Φ (Proposition C.3), η is the percentage of error (i.e. N
guaranteed a recovery with probability at least 1−η), α > 0 and β > 0 are constants. Observe that in
the noiseless setting, we want b such that X̃b = X̃b∗, that is b ∈ b∗ + Null(X̃). Donoho (2006a;b)
show that the nullspace X̃b = 0 has a very special structure for certain X̃ (e.g. incoherent with any
orthonormal basis): when b∗ is sparse, the only element in the affine subspace b∗ + Null(X̃) that
can have a small ℓ1 norm is b∗ itself.

Given the measures y∗ ∈ RN (possibly noisy), the measurement matrix X ∈ RN×n, and the sparse
basis (or dictionary) Φ ∈ Rn×n, we aim to solve the following problem

(P0) Minimize ∥b∥0 s.t. ∥FΦb(X)− y∗∥2 ≤ ϵ (14)

and more precisely, its convex relaxation

(P1) Minimize ∥b∥1 s.t. ∥FΦb(X)− y∗∥2 ≤ ϵ (15)

C.3 ASSUMPTION ON THE SPARSE BASIS

We will assume for simplicity that Φ is an orthonormal matrix, Φ⊤Φ = In. It is common in sparse
coding theory to consider Φ ∈ Rn×m as a dictionary with m columns referred to as atoms: and
saying a∗ is sparse means it can be written as a linear combination of a few of such atoms. But here,
we assume for simplicity that we have a∗ = Φb∗ with b∗ ∈ Rm and Φ ∈ Rn×m a set of m ≤ n
linearly independent vectors (its column). Let Φ⊥ ∈ Rn×(n−m) be the orthogonal complement
of Φ in Rn, Ψ :=

[
Φ Φ⊥] ∈ Rn×n, Φ̃ := Ψ

(
Ψ⊤Ψ

)−1/2
the orthonormal version of Ψ, and

b̃∗ :=
(
Ψ⊤Ψ

)1/2 [b∗

0

]
. We have a∗ = Φ̃b̃∗, with ∥b̃∗∥0 = ∥b∗∥0 since Ψ⊤Ψ is diagonal. So,

assuming Φ orthonormal is without loss of generality.

C.4 THE CONTROLS PARAMETERS

The incoherence between the measurement vectors (line of X) and the sparse basis (column of Φ)
is crucial for successfully recovering a∗ (or equivalently b∗, the sparse representation). If X is
incoherent with Φ, each measurement captures a distinct “view” of a∗, reducing redundancy. This
diversity of information allows for the successful reconstruction of b∗ even with fewer measurements
(e.g., below the Nyquist rate for signals). Achieving low coherence (high incoherence) can be done
by designing X to be a random matrix (e.g., Sub-Gaussian like Gaussian or Bernoulli matrices). Such
random matrices are, with high probability, incoherent with any fixed orthonormal basis (Theorems
C.1 and C.2).
Theorem C.1. Le m ≤ n and Φ ∈ Rn×m with Φ⊤Φ = Im. For any N ≥ 1, α > 0 and β > 1; the

matrix X ∈ RN×n with nαXij
iid∼ N (0, 1) satisfies µ(X⊤,Φ) ≤ 2β

√
ln(nN)

nα with probability at
least 1− 1/(nN)2β

2−1.

Proof. Let σ = n−α. We have X iid∼ N (0, σ2), so [XΦ]ij
iid∼ N (0, σ2) since Φ has normal columns.

This implies P
[∣∣∣[XΦ]ij

∣∣∣ ≥ t
]
≤ exp

(
− t2

2σ2

)
, which in turn implies P

[
maxi,j

∣∣∣[XΦ]ij

∣∣∣ ≥ t
]
≤∑

i,j P
[∣∣∣[XΦ]ij

∣∣∣ ≥ t
]
≤ nN exp

(
− t2

2σ2

)
. Using t = 2β

√
ln(nN)

nα with β > 1, we have t2 =

2
(

1
nα

)2
ln
(

nN
η

)
with η = (nN)1−2β2

, so nN exp
(
− t2

2σ2

)
= η.

We also have the following theorem from Rauhut (2010) about the RIP of such a matrix.

13
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Theorem C.2. Let X ∈ RN×n be a Gaussian or Bernoulli random matrix. Let η, δ ∈ (0, 1) and
assume N ≥ Cδ−2 (s ln (n/s) + ln (1/η)) for a universal constant C > 0. Then, δs(X) ≤ δ with
probability at least 1− η .

In the rest of this section, to control the incoherence, we generate X for a given N by taking the
first N1 = min(⌊τN⌋, n) rows (with 0 ≤ τ ≤ 1, default to 0) from the first columns of Φ and the

elements of the remaining N2 = N−N1 rows iid from N (0, 1/n) so that X̃ = XΦ =

[
Φ⊤

:,:N1

XN1:,:

]
Φ =[

IN1×n

XN1:,:Φ

]
with XN1:,:

iid∼ N (0, 1/n). The higher τ (and so N1), the less incoherence between the

measures (columns of X⊤) and Φ. For a given s, we generate a random vector b∗ iid∼ N (0, 1/n)
such that ∥b∗∥0 ≤ s, and set a∗ = Φb∗. We used Φ = In for simplicity.

The problem (P1) can be solved easily using convex programming library, with relative error
∥b − b∗∥2/∥b∗∥2 of the order of 10−6 (Section C.5, Figures 6 and 7). As s and/or τ increases,
Nmin(s, τ), the number of samples needs for perfect recovery increases. When τ → 1, Nmin(s, τ) →
n for all s.

C.5 CONVEX OPTIMIZATION FORMULATIONS

Consider the problem of recovering b∗ from noiseless measurements:

(P1-noiseless) : min
b

∥b∥1

subject to X̃b = y∗,
(16)

where y∗ = X̃b∗. To rewrite the ℓ1-norm objective linearly, let introduce auxiliary variables
ti for each component bi, and impose −ti ≤ bi ≤ ti, ti ≥ 0, for i = 1, . . . , n. Then, since
∥b∥1 =

∑n
i=1 |bi|, minimizing ∥b∥1 is equivalent to minimizing

∑n
i=1 ti subject to these constraints.

The problem becomes

min
b,t

n∑
i=1

ti

subject to X̃b = y∗,

− ti ≤ bi ≤ ti, i = 1, . . . , n,

ti ≥ 0, i = 1, . . . , n.

(17)

All constraints and the objective function are linear, so this reformulation is a linear program (LP).
Now assume the measurements are noisy y∗ = X̃b∗ + ξ and we allow for a noise tolerance ϵ ≥ 0.
The recovery problem is

(P1-noisy) : min
b

∥b∥1

subject to ∥X̃b− y∗∥2 ≤ ϵ.
(18)

and by introducing the auxiliary variables, it becomes

min
b,t

n∑
i=1

ti

subject to ∥X̃b− y∗∥2 ≤ ϵ,

− ti ≤ bi ≤ ti, i = 1, . . . , n,

ti ≥ 0, i = 1, . . . , n.

(19)

The constraints −ti ≤ bi ≤ ti and ti ≥ 0 are linear, while the constraint ∥X̃b− y∗∥2 ≤ ϵ defines a
second-order (quadratic) cone. Thus, the overall problem is a second-order cone program (SOCP).

We fix n = 102 and solve for different (N, s, τ) the convex problem (P1-noiseless) using the
cvxpy library. As s and/or τ increases, Nmin(s, τ), the number of samples needs for perfect recovery
increases (Figures 6 and 7). When τ converges to 1, Nmin(s, τ) → n for all s. The error in those
figures is the relative recovery error ∥b − b∗∥2/∥b∗∥2. This error is usually of the order of 10−6.
This value gives us a basis for comparison with other methods.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

0.00 0.25 0.50 0.75 1.00

0.4

0.6

0.8

1.0

co
he

re
nc

e

20

40

60

80

N

(a)

0 25 50 75 100
Sparsity level (s)

20

40

60

80

100

N
m

in
 fo

r r
ec

ov
er

y

0.0

0.2

0.4

0.6

0.8

1.0

(b)

Figure 6: (a) Cohence µ(X⊤,Φ) as a function of τ ∈ (0, 1) (b) Minimum number of samples for
perfect recovery (relative recovery error ≤ 10−6) for n = 102 as a function of the sparsity level

s ∈ [n] and coherence parameter τ ∈ (0, 1)

# Input : X, Phi, y_star, n, EPSILON
import cvxpy as cp
b = cp.Variable(n)
objective = cp.Minimize(cp.norm(b, p=1))
constraints = [cp.norm(X @ (Phi @ b) - y_star, 2) <= EPSILON]
problem = cp.Problem(objective, constraints)
problem.solve()
b = b.value

C.6 SUBGRADIENT DESCENT

Let y(b) = Fb(X̃) = X̃b. We have y∗ = Fb∗(X̃) + ξ = X̃b∗ + ξ, and want to minimize
f(b) = gβ2

(b) + β1∥b∥1 using gradient descent, where

gβ2
(b) :=

1

2
∥y(b)− y∗∥22 +

β2

2
∥b∥22

=
1

2
b⊤X̃⊤X̃b− y∗⊤X̃b+

1

2
y∗⊤y∗ +

β2

2
b⊤b

=
1

2
b⊤X̃⊤X̃b−

(
b∗⊤X̃⊤ + ξ⊤

)
X̃b+

1

2

(
b∗⊤X̃⊤ + ξ⊤

)(
X̃b∗ + ξ

)
+

β2

2
b⊤b

=


1
2b

⊤
(
X̃⊤X̃+ β2In

)
b−

(
X̃⊤X̃b∗ + X̃⊤ξ

)⊤
b+ 1

2∥X̃b∗ + ξ∥22
1
2 (b− b∗)⊤

(
X̃⊤X̃+ β2In

)
(b− b∗)−

(
X̃⊤ξ − β2b

∗
)⊤

(b− b∗) + 1
2∥ξ∥

2
2 +

β2

2 ∥b∗∥22
(20)

We write F (b) := Gβ2
(b) + β1h(b) with

Gβ2(b) := ∇bgβ2(b) = X̃⊤(y − y∗) + β2b =


(
X̃⊤X̃+ β2In

)
b−

(
X̃⊤X̃b∗ + X̃⊤ξ

)(
X̃⊤X̃+ β2In

)
(b− b∗)−

(
X̃⊤ξ − β2b

∗
)

(21)

and h(b) ∈ ∂∥b∥1 any subgradient of ∥b∥1, that is h(b)i = sign(bi) for bi ̸= 0, and any value in
[+1,−1] for bi = 0. We used h(b) = sign(b) for simplicity and without loss of generality.

Suppose we start at some b(1) := ζb̃(1), with ζ ≥ 0 the initialization scale and b̃(1) iid∼ N (0, 1/n).
Using F(t) := F (b(t)), the subgradient update rule is

b(t+1) = b(t) − αtF
(t) ∀t > 1 (22)
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Figure 7: Relative error ∥b− b∗∥2/∥b∗∥2 as a function of the number of measurements N , the
sparsity level s ∈ [n] and and coherence parameter τ ∈ (0, 1), for n = 102
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with αt the learning rate at step t. That is, using h(t) = h(b(t)), b(t+1) =
[
In − αt

(
X̃⊤X̃+ β2In

)]
b(t) + αt

(
X̃⊤X̃b∗ + X̃⊤ξ

)
− β1αth

(t)

b(t+1) − b∗ =
[
In − αt

(
X̃⊤X̃+ β2In

)]
(b(t) − b∗) + αt

(
X̃⊤ξ − β2b

∗
)
− β1αth

(t)

(23)

We let f∗ = f(b∗) = β1∥b∗∥1+ β2

2 ∥b∗∥22+∥ξ∥22 and f (t) = f(b(t)). Since the subgradient method
is not a descent method, we let b(t)

best = argminb∈{b(t′),t′≤t} f(b) = argmin
b∈

{
b

(t−1)
best ,b(t)

} f(b)

be the best point found so far at step t, and f
(t)
best = f(b

(t)
best) = min

{
f
(t−1)
best , f (t)

}
. This b(t)

best can be
made η-optimal for an arbitrary precision η if the step rule is chosen appropriately, as the following
theorem shows.

Theorem C.3. If ∥F (b)∥2 ≤ L ∀b and ∥b(1) − b∗∥2 ≤ R, then f
(T )
best − f∗ ≤ R2+L2 ∑T

t=1 α2
t

2
∑T

t=1 αt
.

Proof. By the definition of the subgradient F(T ) = F (b(T )) of f at b(T ), we have f(b(T )) +(
b∗ − b(T )

)⊤
F(T ) ≤ f(b∗), i.e. −

(
b(T ) − b∗)⊤ F(T ) ≤ −(f (T ) − f∗). So

0 ≤ ∥b(T+1) − b∗∥22 = ∥b(T ) − αTF
(T ) − b∗∥22

= ∥b(T ) − b∗∥22 − 2αT

(
b(T ) − b∗

)⊤
F(T ) + α2

T ∥F(T )∥22

≤ ∥b(T ) − b∗∥22 − 2αT

(
f (T ) − f∗

)
+ α2

T ∥F(T )∥22

≤ ∥b(1) − b∗∥22 − 2

T∑
t=1

αt

(
f (t) − f∗

)
+

T∑
t=1

α2
t ∥F(t)∥22

(24)

This implies

2(f
(T )
best − f∗)

T∑
t=1

αt ≤ 2

T∑
t=1

αt

(
f (t) − f∗

)
≤ ∥b(1) − b∗∥22 +

T∑
t=1

α2
t ∥F(t)∥2 ≤ R2 + L2

T∑
t=1

α2
t

(25)

The second condition of this theorem can always be satisfied by choosing an initialization appropri-
ately. For example, if ζ = 0, then we can take R = ∥b∗∥2. The second condition will be satisfied if,
for example, f satisfies the Lipschitz condition |f(u)−f(v)| ≤ L∥u−v∥2 for all u, v. But the condi-
tion is satisfied if and only if b (or just the b(t)) is restricted to a bounded domain since F (b) is a linear
function (up to γh(b)). If ∥b∥2 ≤ B ∀b, then ∥F (b)∥2 ≤ ∥X̃⊤X̃ + β2In∥∥b∥2 + ∥X̃⊤X̃b∗ +

X̃⊤ξ∥2 + β1∥h(b)∥2 = ∥X̃⊤X̃ + β2In∥B + ∥X̃⊤X̃b∗ + X̃⊤ξ∥2 + β1
√
n. Note that we always

have ∥b(t+1)∥2 ≤ ∥In − αt

(
X̃⊤X̃+ β2In

)
∥∥b(t)∥2 + αt∥X̃⊤X̃b∗ + X̃⊤ξ∥2 + β1αt∥h(t)∥2 ≤

maxk |1− αt

(
σ2
k(X̃) + β2

)
∥b(t)∥+ αt

(
σ2
max(X̃)∥b∗∥2 + σmax(X̃)∥ξ∥2

)
+ β1αt

√
n.

That said, many step size rules lead to different accuracy.
Corollary C.1. With a constant step size, αt = α

f
(T )
best − f∗ ≤ R2 + L2Tα2

2Tα
−→T→∞ L2α/2 (26)

In that case, we need a small learning rate and longer training time to achieve low errors.

With a square summable but not summable step size rule,
∑

t α
2
t < ∞ and

∑
t αt = ∞, we have

f
(T )
best − f∗ ≤

R2 + L2
∑T

i=1 α
2
i

2
∑T

i=1 αi

−→T→∞ 0 (27)

For example, αt = a/(b+ t), a > 0 and b ≥ 0. This method is common in practice for subgradient
methods.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

To explain grokking in such a setting, we will look at the landscape of the solution. Let X̃ = UΣ
1
2V⊤

under the SVD decomposition, with Σ = diag(σk)k∈[r], where r = rank(X̃) and σmax = σ1 ≥
· · ·σk ≥ σk+1 · · · ≥ σmin = σr > σr+1 = · · · = 0. We assume by default the SVD to be compact,
i.e., U ∈ RN×r and V ∈ Rn×r have orthonormal columns, but we will make precision when we
want it full, i.e., they also orthonormal rows, with that time U ∈ RN×N and V ∈ Rn×n. Using
Σ̃(t) = I − αt (Σ + β2I), the dynamics rewrites b(t+1) = VΣ̃(t)V⊤b(t) + αt

(
VΣV⊤b∗ +VΣ

1
2U⊤ξ

)
− β1αth

(t)

b(t+1) − b∗ = VΣ̃(t)V⊤(b(t) − b∗) + αt

(
VΣ

1
2U⊤ξ − β2b

∗
)
− β1αth

(t)

We assume the step size αt = α satisfies 0 < α < 2
σmax+β2

. In fact, for the dynamical system to

converge, we need Spec
[
In − αt

(
X̃⊤X̃+ β2In

)]
⊂ (−1, 1), that is 0 < αt <

2

λmax(X̃⊤X̃)+β2
=

2

σ2
max(X̃)+β2

= 2
σmax+β2

.

For all p > 0, let define ρp :=
∥∥∥In − αt

(
X̃⊤X̃+ β2In

)∥∥∥
p→p

, so that ρ2 = ∥In −
α (Σ + β2In) ∥2→2 = max{maxk∈[r] |1− α(σk + β2)| , |1− αβ2|} ∈ (0, 1).

C.6.1 MEMORIZATION

We will show that the update first moves to the least square solution of the problem, b̂ =(
X̃⊤X̃+ β2In

)†
X̃⊤y∗ = V (Σ + β2I)−1

(
ΣV⊤b∗ +Σ

1
2U⊤ξ

)
; which is also the min norm

solution for N < n 2. It moves exactly to b̂ (and stay there) for β1 = 0 (Theorem C.6), and very
close for β1 small enough (Theorem C.8). If β1 is too high, the subgradient term h(b) dominates
early, and there is no convergence, i.e., no memorization nor generalization (Theorem C.4). This b̂
can memorize (Theorem C.9) , but cannot generalize for N < n (Theorem C.10).

Theorem C.4 (Oscillatory Behavior for Large β1). Let b(1) ∈ Rn. Consider the subgradient descent
update

b(t+1) = b(t) − αt

(
∇bgβ2

(b(t)) + β1h(b
(t))
)

(28)

with a fixed step size αt = α > 0, where gβ2
(b) = 1

2∥X̃b − y∗∥22 +
β2

2 ∥b∥22 and h(b) ∈ ∂∥b∥1.
If β1 > σmax+β2√

n
then the ℓ1-term dominates the updates, causing the sequence b(t) to exhibit

oscillatory behavior without convergence to a minimizer of f(b) = gβ2
(b) + β1∥b∥1. Consequently,

neither memorization nor generalization is achieved, and both training and test errors oscillate above
a suboptimal level.

Proof. We use lemma C.5 with L = ∥X̃⊤X̃+ β2In∥2→2 = σmax(X̃
⊤X̃) + β2 (operator norm) be

the Lipschitz constant for Gβ2
(b) = ∇bgβ2

(b) = X̃⊤(X̃b − y∗) + β2b =
(
X̃⊤X̃+ β2In

)
b −(

X̃⊤X̃b∗ + X̃⊤ξ
)

, since ∥Gβ2
(u)−Gβ2

(v)∥2 ≤ L∥u− v∥2 for all u, v.

Lemma C.5. Let f(b) = g(b) + β1∥b∥1 be a convex function where g has a Lipschitz continuous
gradient with Lipschitz constant L > 0, i.e., ∥∇g(u)−∇g(v)∥2 ≤ L∥u− v∥2 for all u,v ∈ Rn.
Consider the subgradient descent update

b(t+1) = b(t) − α
(
∇g(b(t)) + β1h(b

(t))
)

(29)

with a fixed step size α > 0, where h(b(t)) ∈ ∂∥b(t)∥1. If β1 > L√
n

then the ℓ1-term dominates

the updates, causing the sequence {b(t)}t>1 to exhibit oscillatory behavior without convergence

2Assume β2 = 0. For N ≥ n, the least square solution is b̂ =
(
X̃⊤X̃

)†
X̃⊤y∗ = VV⊤b∗+VΣ− 1

2U⊤ξ;

and for N < n, the min norm solution is b̂ = X̃⊤
(
X̃X̃⊤

)†
y∗ = VV⊤b∗ +VΣ− 1

2U⊤ξ
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to a minimizer of f . Consequently, neither memorization nor generalization is achieved, and both
training and test errors oscillate above a suboptimal level.

Proof Sketch. Since g has a Lipschitz continuous gradient with constant L, ∥∇g(b(t))∥2 ≤ L for
all t when b(t) is in a bounded region. Given that ∥h(b(t))∥2 ≈

√
n at the beginning of training, if

β1 > L√
n

, then

β1∥h(b(t))∥2 ≈ β1

√
n > L ≥ ∥∇g(b(t))∥2 (30)

This inequality implies that the update is dominated by the ℓ1-term:

b(t+1) ≈ b(t) − αβ1 h(b
(t)) (31)

with the influence of ∇g(b(t)) becoming negligible. Because h(b(t)) reflects the sign of b(t), the
update effectively pushes the iterates in a direction that primarily depends on sign changes rather
than the curvature or detailed shape of g. This often leads to overshooting and sign flipping in each
coordinate, resulting in oscillations. Consequently, the iterates do not converge to a stable minimizer
of f , and the error metrics (both training and test) oscillate, remaining above some suboptimal
threshold. This behavior indicates that the algorithm fails to memorize training data properly and
cannot generalize well when β1 is excessively large.

Let us focus on reasonable values of β1, starting with β1 = 0.

Theorem C.6. If β1 = 0 and α = αt ∈ (0, 2
σmax+β2

) ∀t, then Gβ2(b
(t)) → 0 as t → ∞; where

Gβ2(b) = 0 ⇐⇒ b = b̂+

(
In −

(
X̃⊤X̃+ β2In

)† (
X̃⊤X̃+ β2In

))
c = b̂+

(
In −VV⊤) c ∀c ∈ Rn

(32)

Also,

∥b(t+1) − b̂∥2 ≤ ρt2∥b(1) − b̂∥2 ∀t ∈ N (33)

Proof. The solutions of Gβ2
(b) = 0 are


(
X̃⊤X̃+ β2In

)
b = X̃⊤y∗(

X̃⊤X̃+ β2In
)
(b− b∗) =

(
X̃⊤ξ − β2b

∗
)

⇐⇒


(
X̃⊤X̃+ β2In

)
b = X̃⊤y∗ = X̃⊤X̃b∗ + X̃⊤ξ = VΣV⊤b∗ +VΣ

1
2U⊤ξ

V (Σ + β2I)V⊤(b− b∗) =
(
VΣ

1
2U⊤ξ − β2b

∗
)

⇐⇒

 b =
(
X̃⊤X̃+ β2In

)†
X̃⊤y∗ +

(
In −

(
X̃⊤X̃+ β2In

)† (
X̃⊤X̃+ β2In

))
c = b̂+

(
In −VV⊤) c ∀c ∈ Rn

b− b∗ =
[
V (Σ + β2I)−1

ΣV⊤ − In
]
b∗ +V (Σ + β2I)−1

Σ
1
2U⊤ξ +

(
In −VV⊤) c ∀c ∈ Rn

(34)
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We know that
z(t+1) = A(t)z(t) +w(t)

=

(
t−i∏
k=t

A(k)

)
z(t−i) +

t−1∑
j=t−i

(
j+1∏
k=t

A(k)

)
w(j) +w(t) ∀i ≤ t

=


(∏1

k=t A
(k)
)
z(1) +

∑t−1
j=1

(∏j+1
k=t A

(k)
)
w(j) +w(t)(∏0

k=t A
(k)
)
z(0) +

∑t−1
j=0

(∏j+1
k=t A

(k)
)
w(j) +w(t)

=

{
Atz(1) +

∑t
j=1 A

t−jw(j)

At+1z(0) +
∑t

j=0 A
t−jw(j) if A(k) = A ∀k

=

 Atz(1) +
(∑t−1

i=0 A
i
)
w

At+1z(0) +
(∑t

i=0 A
i
)
w

if A(k) = A and w(k) = w ∀k

=

{
Atz(1) + (I −A)

†
(I −At)w

At+1z(0) + (I −A)
† (I −At+1

)
w

if A(k) = A and w(k) = w ∀k

(35)

Let A(t) = In − αt

(
X̃⊤X̃+ β2In

)
= VΣ̃(t)V⊤ and w(t) = αtX̃

⊤y∗ =

αt

(
X̃⊤X̃b∗ + X̃⊤ξ

)
= αt

(
VΣV⊤b∗ +VΣ

1
2U⊤ξ

)
; so that b(t+1) = A(t)b(t+1) +w(t) when

β1 = 0. For αt = α, we let A = VΣ̃V⊤ and w = α
(
VΣV⊤b∗ +VΣ

1
2U⊤ξ

)
. As t −→ ∞,

Σ̃t −→ 0. We have
t−1∑
i=0

Ai = In +

t−1∑
i=1

VΣ̃iV⊤

= In −VV⊤ +

t−1∑
i=0

VΣ̃iV⊤

= In −VV⊤ +V diag

(
t−1∑
i=0

σ̃i
k

)
k

V⊤

= In −VV⊤ +V diag

(
1− σ̃t

k

1− σ̃k

)
k

V⊤

= In −VV⊤ +V
(

I − Σ̃
)−1 (

I − Σ̃t
)
V⊤

−→ In −VV⊤ +V
(

I − Σ̃
)−1

V⊤ = In −VV⊤ +
1

α
V (Σ + β2In)

−1
V⊤ as t −→ ∞

(36)

So, as t −→ ∞,

b(t+1) =

( ∞∑
i=0

Ai

)
w

= α

(
Ir −VV⊤ +

1

α
V (Σ + β2Ir)

−1
V⊤
)(

VΣV⊤b∗ +VΣ
1
2U⊤ξ

)
= V (Σ + β2I)−1

V⊤
(
VΣV⊤b∗ +VΣ

1
2U⊤ξ

)
+
(
In −VV⊤) c with c = w

= V (Σ + β2I)−1
V⊤

(
VΣV⊤b∗ +VΣ

1
2U⊤ξ

)
= b̂

(37)

We have Ab̂+c = b̂, so b(t+1)−b̂ = A(b(t)−b̂) = At(b(1)−b̂), which implies ∥b(t+1)−b̂∥2 ≤
∥At∥2→2∥b(1) − b̂∥2; with ∥At∥2→2 = σmax(A

t) = σmax(A)t = ρt2.
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We now move to a general case with β1 ≥ 0.
Lemma C.7. For all p > 0 such that ρp < 1, we have

∥b(t) − b̂∥p ≤ ρtp∥b(1) − b̂∥p + αβ1n
1/p

1− ρtp
1− ρp

≤ ρtp∥b(1) − b̂∥p +
αβ1n

1/p

1− ρp
∀t ≥ 1 (38)

In particular,

∥b(t) − b̂∥2 ≤ ρt∥b(1) − b̂∥2 + αβ1

√
n
1− ρt2
1− ρ2

≤ ρt∥b(1) − b̂∥2 +
αβ1

√
n

1− ρ2
∀t ≥ 1 (39)

and

∥b(t) − b̂∥∞ ≤ ρt∞∥b(1) − b̂∥∞ + αβ1
1− ρt∞
1− ρ∞

≤ ρt∞∥b(1) − b̂∥∞ +
αβ1

1− ρ∞
∀t ≥ 1 (40)

Proof. Recall

Gβ2
(b) = X̃⊤(y − y∗) + β2b =

(
X̃⊤X̃+ β2In

)
b−

(
X̃⊤X̃b∗ + X̃⊤ξ

)
(41)

Starting from the update rule

b(t+1) = b(t) − α
(
Gβ2(b

(t)) + β1h
(t)
)

(42)

We have
b(t+1) − b̂ =

(
b(t) − b̂

)
− α

(
Gβ2(b

(t)) + β1h
(t)
)

(43)

Since Gβ2
(b̂) = 0 and Gβ2

is linear,

Gβ2(b
(t)) =

(
X̃⊤X̃+ β2In

)
(b(t) − b̂) (44)

Substituting this back,

b(t+1) − b̂ =
(
b(t) − b̂

)
− α

(
Gβ2

(b(t)) + β1h
(t)
)

=
(
b(t) − b̂

)
− α

((
X̃⊤X̃+ β2In

)
(b(t) − b̂) + β1h

(t)
)

=
[
In − α

(
X̃⊤X̃+ β2In

)](
b(t) − b̂

)
− αβ1h

(t)

(45)

Taking the norm; applying triangle inequality and using ∥h(t)∥p ≤ n1/p give

∥b(t+1) − b̂∥p ≤ ρp∥b(t) − b̂∥p + αβ1n
1/p (46)

Repeatedly applying the recurrence,

∥b(t) − b̂∥p ≤ ρtp∥b(1) − b̂∥p + αβ1n
1/p
(
1 + ρp + · · ·+ ρt−1

p

)
= ρtp∥b(1) − b̂∥p + αβ1n

1/p
1− ρtp
1− ρp

for ρp ̸= 1

≤ ρtp∥b(1) − b̂∥p +
αβ1n

1/p

1− ρp
for ρp < 1

Theorem C.8. Let p > 0 such that ρp < 1. Define

t1 :=

−
ln
(
1 +

(1−ρ)∥b(1)−b̂∥p

αβ1n1/p

)
ln(ρp)

 (47)
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Then for all t ≥ t1,

∥b(t) − b̂∥p ≤ 2αβ1n
1/p

1− ρtp
1− ρp

≤ 2
αβ1n

1/p

1− ρp
(48)

and the prediction error for t ≥ t1 is bounded by

∥X̃b(t) − y∗∥p ≤ 2αβ1n
1/p

1− ρtp
1− ρp

∥X̃∥p→p + ∥X̃b̂− y∗∥p

≤ 2
αβ1n

1/p

1− ρp
∥X̃∥p→p + ∥X̃b̂− y∗∥p

(49)

Proof. The definition of t1 ensures that for t ≥ t1,

ρt∥b(1) − b̂∥p ≤ αβ1n
1/p

1− ρtp
1− ρp

(50)

Thus, using lemma C.7, we have for t ≥ t1,

∥b(t) − b̂∥p ≤ 2αβ1n
1/p

1− ρtp
1− ρp

(51)

Using this, we derive the following

∥X̃b(t) − y∗∥p = ∥X̃(b(t) − b̂) + (X̃b̂− y∗)∥p
≤ ∥X̃∥p→p∥b(t) − b̂∥p + ∥X̃b̂− y∗∥p

≤ 2αβ1n
1/p

1− ρtp
1− ρp

∥X̃∥p→p + ∥X̃b̂− y∗∥p for t ≥ t1

(52)

Corollary C.2. Let p > 0 such that ρp < 1. Define

t̃1 :=


−

ln

(
(1−ρ)∥b(1)−b̂∥p

αβ1n1/p

)
ln(ρp)

 if ∥b(1) − b̂∥p > αβ1

1−ρp

0 otherwise

> t1 (53)

Then for all t ≥ t̃1,

∥b(t) − b̂∥p ≤ 2
αβ1n

1/p

1− ρp
(54)

and the prediction error for t ≥ t̃1 is bounded by

∥X̃b(t) − y∗∥p ≤ 2αβ1n
1/p

1− ρp
∥X̃∥p→p + ∥X̃b̂− y∗∥p (55)

Proof. The definition of t̃1 ensures that for t ≥ t̃1,

ρt∥b(1) − b̂∥∞ ≤ αβ1n
1/p

1− ρp
(56)

The rest of the proof follows from lemma C.7.

When the initialization b(1) is close to b̂, it takes less time to memorize since t1 decreases with
∥b(1) − b̂∥p, as well as t̃1 : if ∥b(1) − b̂∥p ≤ αβ1n

1/p

1−ρp
, t̃1 is trivialy 0, otherwise it decreases with

∥b(1) − b̂∥p > αβ1n
1/p

1−ρp
.
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Figure 8: (Left) t1 compute experimentally (when the relative training error ∥X̃b(t) − y∗∥2/∥y∗∥2
is reach 10−4, see Figure 9) and the upper bound − ln

(
1 +

(1−ρ)∥b(1)−b̂∥p

αβ1n1/p

)
/ ln(ρp) computed in

Theorem C.8, for p = ∞. (Right) Step t2 compute experimentally (when the relative recovery error
∥b(t) − b∗∥2/∥b∗∥2 reach 10−4 for the first time) and the upper bound t1 +∆t. The notation b(∞)

represent the update b(t) at the end of training. The hyperparameters for this figure are
(n, s) = (100, 5), N ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} and (α, β1, β2) = (10−1, 10−5, 0).
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Figure 9: Training error ∥X̃b(t) − y∗∥2/∥y∗∥2 and recovery error ∥b(t) − b∗∥2/∥b∗∥2 as a
function of the number of measurements N ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} and the

subgradient descent training steps 0 ≤ t ≤ 2× 106, for (n, s) = (100, 5) and
(α, β1, β2) = (10−1, 10−5, 0).
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When the learning rate α alone becomes smaller, the term αβ1n
1/p

1−ρp
decreases, reducing the

asymptotic error bound. However, a smaller α makes ρp closer to 1 (for example, ρ2 =
max{maxk∈[r] |1− α(σk + β2)| , |1− αβ2|}), which increases t1 and t̃1. This means more iter-
ations are needed to reach the regime where the error stabilizes near its lower bound. Another
alternative for reducing the term αβ1n

1/p

1−ρp
and guaranteeing perfect memorization earlier is to reduce

β1. But we’ll see below that this also increases the generalization delay.

Ideally, if the system, X̃b = y∗ has an exact solution (and with appropriate β2), then X̃b̂ = y∗.
In practice, due to noise in y∗, the regularization with β2, or model mismatch, the solution b̂

might not perfectly reproduce y∗, resulting in a non zero residual ∥X̃b̂− y∗∥2. Note that we have
y∗ = X̃b∗ + ξ = UΣ

1
2V⊤b∗ + ξ, so

y(b̂) = X̃b̂ =

 X̃
(
X̃⊤X̃+ β2In

)†
X̃⊤y∗

UΣ
1
2V⊤V (Σ + β2I)−1

(
ΣV⊤b∗ +Σ

1
2U⊤ξ

)
=

{
X̃
(
X̃⊤X̃+ β2In

)†
X̃⊤y∗

UΣ
1
2 (Σ + β2I)−1

ΣV⊤b∗ +UΣ
1
2 (Σ + β2I)−1

Σ
1
2U⊤ξ

=

{
X̃
(
X̃⊤X̃+ β2In

)†
X̃⊤y∗

UΣ
1
2 (Σ + β2I)−1

ΣV⊤b∗ +U (Σ + β2I)−1
ΣU⊤ξ

and

y(b̂)− y∗ =


[
X̃
(
X̃⊤X̃+ β2In

)†
X̃⊤ − IN

]
y∗

UΣ
1
2

[
(Σ + β2I)−1

Σ− I
]
V⊤b∗ +

[
U (Σ + β2I)−1

ΣU⊤ − IN
]
ξ

=


[
X̃
(
X̃⊤X̃+ β2In

)†
X̃⊤ − IN

]
X̃b∗ +

[
X̃
(
X̃⊤X̃+ β2In

)†
X̃⊤ − IN

]
ξ

UΣ
1
2U⊤

[
U (Σ + β2I)−1

ΣU⊤ − I
]
UV⊤b∗ +

[
U (Σ + β2I)−1

ΣU⊤ − IN
]
ξ

Theorem C.9. Assume E[ξ] = 0 and Cov(ξ) = σ2
ξ IN . Then

Eξ

[
∥X̃b̂− y∗∥22

]
=

r∑
i=1

(
β2σi

σi + β2

)2

(V⊤b∗)2i +

r∑
i=1

(
β2

σi + β2

)2

σ2
ξ + σ2

ξ (N − r) (57)

Proof. We have

b̂ =
(
X̃⊤X̃+ β2In

)†
X̃⊤y∗

= V (Σ + β2I)−1
Σ

1
2U⊤y∗

(58)

Next,

X̃b̂ = UΣ
1
2 (Σ + β2I)−1

Σ
1
2U⊤y∗

= UΣ (Σ + β2I)−1
U⊤y∗

β2=0
= UU⊤y∗

(59)

Now consider the residual

X̃b̂− y∗ = UΣ (Σ + β2Ir)
−1

U⊤y∗ −UU⊤y∗ − (IN −UU⊤)y∗

= U
[
Σ (Σ + β2Ir)

−1 − Ir
]
U⊤y∗ − (IN −UU⊤)y∗

= −β2U(Σ + β2Ir)
−1U⊤y∗ − (IN −UU⊤)y∗ since Σ(Σ + β2Ir)

−1 − Ir = −β2(Σ + β2Ir)
−1

(60)
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The first term, β2U(Σ + β2Ir)−1U⊤y∗, lies in Col(U), while the second term, (IN −UU⊤)y∗,
lies in Col(U)⊥. Thus, they are orthogonal, and

∥X̃b̂− y∗∥22 = ∥β2U(Σ + β2Ir)
−1U⊤y∗∥22 + ∥(IN −UU⊤)y∗∥22 (61)

Let’s start with the second term. Since y∗ = UΣ
1
2V⊤b∗ + ξ,

(IN −UU⊤)y∗ = (IN −UU⊤)UΣ
1
2V⊤b∗ + (IN −UU⊤)ξ

= (IN −UU⊤)ξ
(62)

So

∥(IN −UU⊤)y∗∥22 = ∥(IN −UU⊤)ξ∥22
= ξ⊤(IN −UU⊤)(IN −UU⊤)ξ

= ξ⊤(IN −UU⊤)ξ

(63)

and

Eξ∥(IN −UU⊤)y∗∥22 = Eξ

[
ξ⊤(IN −UU⊤)ξ

]
= tr

(
(IN −UU⊤) Cov(ξ)

)
+ (Eξ)⊤ (IN −UU⊤) (Eξ)

= σ2
ξ tr

(
IN −UU⊤)

= σ2
ξ

(
N − tr(UU⊤)

)
= σ2

ξ

(
N − tr(U⊤U)

)
= σ2

ξ (N − tr(Ir))

= σ2
ξ (N − r)

(64)

For the first term, we have

∥β2U(Σ + β2Ir)
−1U⊤y∗∥22 = ∥β2(Σ + β2Ir)

−1U⊤y∗∥22

=

r∑
i=1

(
β2

σi + β2

)2

(U⊤y∗)2i

=

r∑
i=1

(
β2

σi + β2

)2 (
σ

1
2
i (V

⊤b∗)i + (U⊤ξ)i

)2
since U⊤y∗ = Σ

1
2V⊤b∗ +U⊤ξ

=

r∑
i=1

(
β2

σi + β2

)2 (
σi(V

⊤b∗)2i + 2σ
1
2
i (V

⊤b∗)i(U
⊤ξ)i + (U⊤ξ)2i

)
(65)

Using Eξ[(U
⊤ξ)i] = 0 and Var((U⊤ξ)i) = σ2

ξ , we get

Eξ∥β2U(Σ + β2Ir)
−1U⊤y∗∥22 =

r∑
i=1

(
β2

σi + β2

)2 (
σi(V

⊤b∗)2i + σ2
ξ

)
(66)

This concludes the proof.

The expression

Eξ

[
∥X̃b̂− y∗∥22

]
=

r∑
i=1

(
β2σi

σi + β2

)2

(V⊤b∗)2i +

r∑
i=1

(
β2

σi + β2

)2

σ2
ξ + σ2

ξ (N − r) (67)

offers insights into how various factors influence the prediction quality X̃b̂.
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Signal-to-Noise Ratio (SNR) ∥b∗∥2/σξ When ∥b∗∥2 is large compared to σξ (high SNR), the
signal component (V⊤b∗)2i in the first sum becomes significant, and the bias introduced by regular-
ization interacts more strongly with the true signal, so the first term largely determines the expected

residual. Otherwise, the noise terms
∑r

i=1

(
β2

σi+β2

)2
σ2
ξ +σ2

ξ (N−r) dominate the expected residual.
In this case, noise largely drives the error, and recovering the signal becomes more challenging.

Effect of the Regularization Parameter β2 If β2 ≪ σi for most i, then β2

σi+β2
≈ β2

σi
and

β2σi

σi+β2
≈ β2

σi
. The bias and the noise contribution for dominant singular modes are both reduced,

resulting in lower expected residual error. If β2 ≫ σi, then β2

σi+β2
≈ 1 and β2σi

σi+β2
≈ σi. Over-

regularization increases bias and noise contributions, generally raising the expected residual. So β2

controls the bias-variance tradeoff: increasing β2 reduces variance but increases bias. The optimal β2

minimizes the overall expected residual.

Dependence on X̃ and its Rank. The rank r of X̃ appears explicitly in the term σ2
ξ (N − r). If

X̃ is full rank (i.e., r = N when N ≤ n), then the term σ2
ξ (N − r) vanishes, eliminating the noise

component in the nullspace of X̃⊤. For rank-deficient X̃ (r < N ), σ2
ξ (N − r) accounts for noise in

directions orthogonal to the column space of X̃. This part of the noise cannot be captured or reduced
by the model, setting a lower bound on the residual error.

In practice, we run the experiment for different training data X̃, then average the results. However,
taking the expectation over the distribution of X̃ (e.g., assuming X̃ij

iid∼ N (0, 1/n)) involves (i)
Averaging over the singular values {σi} of X̃, which, in large dimensions, follow the Marchenko-
Pastur law; (ii) Considering the distribution of singular vectors U and V, which tend to be uniformly
distributed over appropriate spheres. Explicit calculation of EX̃,ξ

[
∥X̃b̂− y∗∥22

]
requires integrating

the above expression with respect to the joint distribution of singular values and vectors, which is
complex. In high-dimensional asymptotics, one typically replaces sums over singular values with
integrals against the Marchenko-Pastur density and assumes uniformity in the projections (V⊤b∗)2i ,
but this does not generally yield a closed-form expression. Instead, one uses approximations or
numerical simulations to understand behavior under these conditions.

So b̂ can memorize. But can it generalize? We have

b̂− b∗ =


(
X̃⊤X̃+ β2In

)†
X̃⊤

(
X̃b∗ + ξ

)
− b∗

V (Σ + β2I)−1
(
ΣV⊤b∗ +Σ

1
2U⊤ξ

)
− b∗

=


[(

X̃⊤X̃+ β2In
)†

X̃⊤X̃− In

]
b∗ +

(
X̃⊤X̃+ β2In

)†
X̃⊤ξ[

V (Σ + β2I)−1
ΣV⊤ − In

]
b∗ +V (Σ + β2I)−1

Σ
1
2U⊤ξ

Theorem C.10. For N < n,

∥b̂− b∗∥22 ≥ ∥(In −VV⊤)b∗∥22 (68)

In particular, if b∗ has a nonzero component orthogonal to Col(V), then b̂ cannot perfectly generalize
to b∗.

Proof. Consider the regularized least-squares estimator

b̂ =
(
X̃⊤X̃+ β2In

)†
X̃⊤y∗

= V (Σ + β2I)−1
Σ

1
2U⊤y∗

(69)

We have VV⊤b̂ = b̂, i.e. b̂ ∈ Col(V). Let decompose b∗ into two orthogonal components:

b∗ = VV⊤b∗ + (In −VV⊤)b∗ = b∥ + b⊥, (70)
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where
b∥ := VV⊤b∗ ∈ Col(V), and b⊥ := (In −VV⊤)b∗ ∈ Col(V)⊥ (71)

Since b̂ ∈ Col(V),
VV⊤(b̂− b∥) = b̂− b∥ (72)

and VV⊤b⊥ = 0 by orthogonality. Thus, we can express the error as

b̂− b∗ = b̂− (b∥ + b⊥)

= (b̂− b∥)− b⊥
(73)

Because b̂− b∥ ∈ Col(V) and b⊥ lies in the orthogonal complement of Col(V), these two vectors
are orthogonal. Hence,

∥b̂− b∗∥22 = ∥b̂− b∥∥22 + ∥b⊥∥22
≥ ∥b⊥∥22
= ∥(In −VV⊤)b∗∥22.

(74)

The theorem above shows that unless (In −VV⊤)b∗ = 0, i.e., b∗ ∈ Col(V), the error ∥b̂− b∗∥2
remains strictly positive. For N < n, V has rank r < n, so in general b∗ will have a nonzero
orthogonal component b⊥, implying that b̂ cannot fully generalize to b∗

For β2 = 0 (i.e., no ℓ2 regularization), b̂ = VV⊤b∗ +VΣ− 1
2U⊤ξ. This solution memorizes the

training data since y(b̂) − y∗ =
(
UU⊤ − IN

)
ξ, so that ∥y(b̂) − y∗∥22 = ξ

(
IN −UU⊤) ξ ≤

∥ξ∥22 ≤ ϵ2. We have b̂− b∗ =
(
VV⊤ − In

)
b∗ +VΣ− 1

2U⊤ξ, so

∥b̂− b∗∥22 = b∗⊤ (VV⊤ − In
) (

VV⊤ − In
)
b∗ + 2b∗⊤ (VV⊤ − In

)
VΣ− 1

2U⊤ξ + ξ⊤UΣ− 1
2V⊤VΣ− 1

2U⊤ξ

= b∗⊤ (In −VV⊤)b∗ + ξ⊤UΣ−1U⊤ξ

For N < n, X̃ is necessary column rank deficient, that is In −VV⊤ > 0. In that case, b̂ can not be
generalized, since ∥b̂−b∗∥2

2

∥b∗∥2
2

≥ 1 + ξ⊤UΣ−1U⊤ξ
∥b∗∥2

2
. For N ≥ n, b̂ can generalize if X̃ is full rank (e.g.,

if τ = 0, i.e. full random Gaussian X, then X̃ is full rank with high probability), has small condition
number σmax

σmin
, and the signal to noise ratio ∥b∗∥2/σξ is big enough.

C.6.2 GENERALIZATION

We now turn our attention to the generalization delay. Based on the analysis up to Theorem C.8,
we now analyze the subsequent “generalization” phase, during which the iterate b(t) transitions
from memorizing the training data (b(t) ≈ b̂) to converging toward the sparse ground truth b∗. We
focus on quantifying the additional number of iterations ∆t required for this phase and bounding the
generalization error ∥b(t) − b∗∥∞ as t → ∞.

Lemma C.11. Given α > 0 and b(1) ∈ R, let b(t+1) = b(t) − αh(b(t)) for all t ≥ 1, where
h(b) ∈ ∂|b|.

1. A point b is stationary for this dynamical system if and only if |b| ≤ α.

2. We have |b(t)| ≤ α if and only if t > ⌊ |b(1)|
α ⌋.

3. In particular, for h(b) = sign(b) ∀b ∈ R, if b(1)/α ∈ Z, then b(t) = 0 for all t > ⌊ |b(1)|
α ⌋.

Proof. Let first consider the simple case h(b) = sign(b), so that b(t+1) = b(t) − α sign(b(t)).
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• If b(t) ∈ {0, α,−α}, then b(t+∆) = 0 for all ∆ > 0.

• If b(t) ∈ (0, α), then b(t+1) = b(t) −α ∈ (−α, 0), and b(t+2) = b(t+1) +α = b(t) ∈ (0, α),
and so on.

• If b(t) ∈ (−α, 0), then b(t+1) = b(t)+α ∈ (0, α), and b(t+2) = b(t+1)−α = b(t) ∈ (−α, 0),
and so on.

• If b(t) > α (resp. b(t) < −α), it will be decreased (resp. increase) by α until b(t) ∈ (0, α]
(resp. b(t) ∈ [−α, 0)), and we get back to the previous cases. In that case, |b(t+1)| =
|b(t)| − α = |b(1)| − tα ≤ α =⇒ t+ 1 ≥ |b(1)|

α .

Let k = ⌊ |b(1)|
α ⌋. Assume b(1) ≥ 0, then kα ≤ b(1) < (k + 1)α, so that (k − t + 1)α ≤ b(t) <

(k− t+ 2)α. Letting k− t+ 1 = 0, we obtain t = k+ 1 and 0 ≤ b(t) < α, so that |b(t+∆)| < α for
all ∆ > 0. If b(1) ≤ 0, then −(k + 1)α < b(1) ≤ −kα, so that (t− k − 2)α < b(t) ≤ (t− k − 1)α.
Letting t− k − 1 = 0, we obtain t = k + 1 and −α < b(t) ≤ 0, so that |b(t+∆)| < α for all ∆ > 0.
This achieves the proof for h(b) = sign(b).

Now consider the general dynamic b(t+1) = b(t) − αh(b(t)). If b(1) ̸= 0 (the case b(1) = 0 is trivial),
then the dynamic is b(t+1) = b(t) −α sign(b(t)) as long as |b(t)| ≥ α, after which it will just oscillate
in the ball {b, |b| ≤ α} indefinitely. In fact, a fixed point b must satisfy b = b− αh(b); i.e. h(b) = 0.
The only case where 0 ∈ ∂|b| is b = 0 or when it lies in the interval where the subgradient can be
0. However, for any b such that |b| ≤ α, it is possible to choose h(b) (for instance, h(b) = b/α)
such that b = b − αh(b), making b a fixed point. Conversely, if |b| > α, then |h(b)| = 1 and
|b− αh(b)| = ||b| − α| > 0, so b is not a fixed point.

In practice, we work with the subgradient h(b) = sign(b), the one provided by automatic differentia-
tion in many optimization libraries, like Pytorch.

Theorem C.12. Given α > 0 and b(1) ∈ Rn, let b(t+1) = b(t) − αh(b(t)) for all t ≥ 1, where
h(b) ∈ ∂∥b∥1.

1. A point b is stationary for this dynamical system if and only if |bi| ≤ α ∀i ∈ [n]. As a
consequence, ∥b∥p ≤ αn1/p ∀p ∈ [1,∞].

2. We have ∥b(t)∥∞ ≤ α if and only if t > ⌊∥b(1)∥∞
α ⌋.

3. In particular, for h(b) = sign(b) ∀b ∈ Rn, we have ∥b(t)∥0 =
∣∣∣{i | b(1)

i /α ∈ Z
}∣∣∣ for all

t > ⌊∥b(1)∥∞
α ⌋.

Proof. By applying the Lemma C.11 coordinate wise the proof is immediat.

Recall we have

b(t+1) = b(t) − α
(
Gβ2(b

(t)) + β1h(b
(t))
)

(75)

with

Gβ2(b) = X̃⊤(y−y∗)+β2b =
(
X̃⊤X̃+ β2In

)
b−
(
X̃⊤X̃b∗ + X̃⊤ξ

)
= β2b

∗−X̃⊤ξ for b = b∗

(76)

and h(b) ∈ ∂∥b∥1. From Theorem C.8, for all t ≥ t1 =

−
ln

(
1+

(1−ρ)∥b(1)−b̂∥p
αβ1n1/p

)
ln(ρp)

, and for all

p satisfying ρp ∈ (0, 1) (e.g p = 2); we have ∥b(t) − b̂∥p ≤ 2αβ1n
1/p 1−ρt

p

1−ρp
≤ 2αβ1n

1/p

1−ρp
, where
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b̂ =
(
X̃⊤X̃+ β2In

)†
X̃⊤y∗ is the the least square solution of the problem. So

∥Gβ2
(b(t))∥p = ∥Gβ2

(b(t))−Gβ2
(b̂)∥p since Gβ2

(b̂) = 0

≤ ∥X̃⊤X̃+ β2In∥p→p∥b(t) − b̂∥p

≤ 2αβ1n
1/p∥X̃⊤X̃+ β2In∥p→p

1− ρtp
1− ρp

≤ 2αβ1n
1/p

1− ρp
∥X̃⊤X̃+ β2In∥p→p

(77)

So, this gradient can be made much smaller than the subgradient term by choosing αβ1 sufficiently
small. This bound also writes

∥Gβ2
(b(t))∥2 ≤ 2αβ1

√
n(σmax(X̃

⊤X̃) + β2)
1− ρt2
1− ρ2

≤ 2αβ1
√
n

1− ρ2
(σmax(X̃

⊤X̃) + β2)

≤ 2β1

√
n(1− ρt2)

σmax(X̃
⊤X̃) + β2

σmin(X̃⊤X̃) + β2

≤ 2β1

√
n
σmax + β2

σmin + β2
if X̃ is full rank

(78)

The last line follows from the fact that if X̃ is full rank, then ρ2 = 1− α(σmin(X̃
⊤X̃) + β2), so that

1− ρ2 = α(σmin(X̃
⊤X̃) + β2).

Let I := {i ∈ [n] | b∗i ̸= 0} be the support of b∗. Since b∗ is s-sparse, s = |I| ≪ n. After time t1,
the contribution of the gradient Gβ2 to the update of b(t)

i is dominated by the ℓ1–regularization term.
Specifically, for each i ∈ [n], the update rule approximates

b
(t+1)
i ≈ b

(t)
i − αβ1h(b

(t)
i ) (79)

By Theorem C.12, this lead to ∥b(t)∥p ≤ αn1/p ∀p ∈ [1,∞] for (and only for) t ≥ t2 := t1 +⌊
∥b(1)∥∞

αβ1

⌋
.

For i ∈ I in particular, if |b(t1)
i | ≫ |b∗

i |, then using the approximate dynamics b
(t+1)
i ≈ b

(t)
i −

αβ1h(b
(t)
i − b∗

i ), we can conclude also that |b(t)
i − b∗

i | ≤ αβ1 for (and only for) t ≥ t2.

Note that when ∥b(t)∥1 becomes too small, b(t) ≈ b∗ since for problem of interest, the sparse
solution b∗ is the unique minimizer of ∥X̃b− y∗∥2 under the sparsity constraint s = ∥b∗∥0 ≪ n

(and the RIP assumptions on X̃). Our argument here is that the additional number of steps it takes
to reach this small ℓ1-norm solution is ∆t = Θ

(
∥b̂∥∞
αβ1

)
, so that the smaller β1 is (for α fixed), the

longer it take to recover b∗, and the smaller is the error ∥b(t) − b∗∥∞ when t → ∞. If β2 is choose
such that ∥b̂∥∞ ≪ αβ1, then b(t) will get stuck near b̂, and there will be no generalization after
memorization. So a bad choice of a non-zero β2 can be detrimental to generalization (it is better to
not use β2 on that problem unless the initialization scale is nontrivial).

By carefully choosing α and β1, one can balance the speed of generalization (smaller ∆t) with the
accuracy of recovery (smaller ∥b(t) − b∗∥∞). Appropriate step rule also guaranteed the converge of
∥b(t)∥1 to ∥b∗∥1.
Theorem C.13. For all T ∈ N∗, we have

min
1≤t≤T

(
∥b(t)∥1 − ∥b∗∥1

)
≤

∥b(1) − b∗∥22 +
(
max1≤t≤T ∥∇bf(b

(t))∥22
)∑T

t=1 α
2
t

2β1

∑T
t=1 αt

+
∥ξ∥22 + β2∥b∗∥22

2β1
.

(80)

Proof. We have f(b(t)) = 1
2∥X̃b(t) − y∗∥22 + β2

2 ∥b(t)∥22 + β1∥b(t)∥1 and f(b∗) = 1
2∥X̃b∗ −

y∗∥22 +
β2

2 ∥b∗∥22 + β1∥b∗∥1 = 1
2∥ξ∥

2
2 +

β2

2 ∥b∗∥22 + β1∥b∗∥1. So for any t,

f(b(t))− f(b∗) = 1
2∥X̃b(t) − y∗∥22 +

β2

2

(
∥b(t)∥22 − ∥b∗∥22

)
+ β1

(
∥b(t)∥1 − ∥b∗∥1

)
− 1

2∥ξ∥
2
2

≥ β1

(
∥b(t)∥1 − ∥b∗∥1

)
− 1

2∥ξ∥
2
2 −

β2

2
∥b∗∥22

(81)
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Since
1

2
∥X̃b(t) − y∗∥22 ≥ 0 and

β2

2

(
∥b(t)∥22 − ∥b∗∥22

)
≥ −β2

2
∥b∗∥22 (82)

Rearranging equation equation 81 yields

∥b(t)∥1 − ∥b∗∥1 ≤ f(b(t))− f(b∗)

β1
+

∥ξ∥22 + β2∥b∗∥22
2β1

. (83)

By Theorem C.3, when ∥b(1) − b∗∥2 ≤ R and ∥F (b(t))∥2 ≤ L ∀t ≤ T ,

min
1≤t≤T

(
f(b(t))− f(b∗)

)
≤

R2 + L2
∑T

t=1 α
2
t

2
∑T

t=1 αt

(84)

Substituting this into equation 83 gives

min
1≤t≤T

(
∥b(t)∥1 − ∥b∗∥1

)
≤

R2 + L2
∑T

t=1 α
2
t

2β1

∑T
t=1 αt

+
∥ξ∥22 + β2∥b∗∥22

2β1
. (85)

So, when
∑

t α
2
t < ∞ and

∑
t αt = ∞ (e.g. αt = a/(b + t), a > 0 and b ≥ 0), ∥b(t)∥1 →

∥b∗∥1 → 0 as T → ∞, for β2 = 0 in the noiseless setting.

C.6.3 OPTIMIZATION LANDSCAPE

We will look at the landscape of the solution. Let I := {i ∈ [n] | b∗i ̸= 0} be the support of b∗;
u(t) = ∥b(t)

I ∥2 and v(t) = ∥b(t)
[n]\I∥2 be the norms of b(t) restraint on its indexes in I (resp, outside

I).

Figure 10 shows how b(t) first converge to the least square solution (memorization), and from least
square solution to b∗ (N large enough) or a suboptimal solution (N too small). After memorization,
when N is large enough, v(t) converge to zero while u(t) converge to the norm of b∗. This is because
the components of b(t) that are not in I are shrunk at each training step until they all reach 0 (Figure
11). This convergence is impossible if β1 = 0 (even if β2 ̸= 0).

C.6.4 ADDITIONNAL EXPERIMENTS

We optimize the noiseless problem (ξ = 0) using the subgradient descent method with
(n, s,N, ζ, β2) = (102, 5, 30, 10−6, 0) for different values of α and β1. As expected, larger α
and/or β1 lead to fast convergence and do so at a suboptimal value of the test error (Figure 12).

We optimize the noiseless problem (ξ = 0) using the subgradient descent method with
(n, ζ, α, β1, β2) = (102, 10−6, 10−1, 10−5, 0), for different values of s and N . See Figures 13,
14, 15 and 16).

C.7 PROJECTED SUBGRADIENT

To ensure memorization, we can use the projected subgradient for problem (P1) of minimizing ∥b∥1
subject to the constraint Fb(X̃) = X̃b = y∗, where at each step the update (using now just β1h(b)
as gradient, not the whole F (b)) is projected onto the constraint set. In our case, the update write

b(t+1) = Π
(
b(t) − αtβ1h(b

(t))
)

with Π(b) = b − X̃⊤
(
X̃X̃⊤

)†
(X̃b − y∗) = P (b− b∗) +

b∗ + X̃⊤
(
X̃X̃⊤

)†
ξ the projection of b on the set {b, X̃b = y∗}, P = In − X̃⊤

(
X̃X̃⊤

)−1

X̃.

So b(t+1) − b∗ = P
(
b(t) − b∗) − αtβ2Ph(b(t)) + X̃⊤

(
X̃X̃⊤

)†
ξ3. We can also keep

3For a fat and full rank X̃ (rank(X̃) = N ≤ n), if we start at b(1) such that X̃b(1) = y∗, for example, the

min norm solution b(1) = X̃⊤
(
X̃X̃⊤

)−1

y∗, then P
(
b(t) − b∗

)
= b(t) − b∗ − X̃⊤

(
X̃X̃⊤

)†
ξ ∀t ≥ 1,
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Figure 10: From initialization to least square solution (memorization), and from least square solution
to b∗ (N large enough) or a suboptimal solution (N too small). The steps t1 and t2 are different

from those introduced above to measure memorization and generalization (respectively). They are
just a means of tracing the evolution of training here. Here N ∈ {20, 30, 40, 50, 60, 70}, for

(n, s) = (100, 5) and (α, β1, β2) = (10−1, 10−5, 0).
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Figure 11: Convergence of b(t)
i to b∗

i for each i ∈ [n]. Here (n, s,N) = (100, 5, 30) and
(α, β1, β2) = (10−1, 10−5, 0).

track of the best minimum ℓ1 solution during training, b
(t)
best = argminb∈{b(t′),t′≤t} ∥b∥1 =

argmin
b∈

{
b

(t−1)
best ,b(t)

} ∥b∥1. Using this, we can show that the ℓ1 optimal gap of this method enjoys

the same bound given above for the non-projected case without the requirement ∥F (b)∥2 ≤ L ∀b,
with the rescale learning rate α̃t = β1αt; and the bound

√
n on the subgradient, ∥h(b)∥22 ≤ n ∀b.

Note that we have f∗ = f(b∗) = β1∥b∗∥1+ β2

2 ∥b∗∥22+ ∥ξ∥22, and after one step of training (t > 1),
f (t) = f(b(t)) = β1∥b(t)∥1 + β2

2 ∥b(t)∥22 since y(b(t)) = y∗.

Theorem C.14. Let α̃t = β1αt. If ∥b(1) − b∗∥2 ≤ R, then ∥b(t)
best∥1 − ∥b∗∥1 ≤ R2+n

∑T
t=1 α̃2

t

2
∑T

t=1 α̃t
.

Proof. We have

0 ≤ ∥b(T+1) − b∗∥22 = ∥Π
(
b(T ) − αTβ1 · h(b(T ))

)
− b∗∥22

≤ ∥b(T ) − b∗ − αTβ1 · h(b(T ))∥22
= ∥b(T ) − b∗∥22 − 2αTβ1(b

(T ) − b∗)⊤h(b(T )) + β2
1α

2
T ∥h(b(T ))∥22

≤ ∥b(T ) − b∗∥22 − 2β1αT

(
∥b(T )∥1 − ∥b∗∥1

)
+ β2

1α
2
T ∥h(b(T ))∥22 (by the definition of h)

≤ ∥b(1) − b∗∥22 − 2β1

T∑
t=1

αt

(
∥b(t)∥1 − ∥b∗∥1

)
+ β2

1

T∑
t=1

α2
t ∥h(b(t))∥22

and the update simplifies to b(t+1) = b(t) − αtβ2Ph(b(t)). In general, even if we don’t start at b(1) satisfying
X̃b(1) = y∗, as soon as X̃b(t0) = y∗ for a certain t1 (memorization), the next updates have the previous form.
Note that P⊤ = P and P⊤P = P2 = P.
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Figure 12: Training error ∥X̃b(t) − y∗∥2/∥y∗∥2 and recovery error ∥b(t) − b∗∥2/∥b∗∥2 as a
function of the learning rate α and the ℓ1-regularization coefficient β1. Here (n, s,N) = (100, 5, 30)
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Figure 13: Training error ∥X̃b(t) − y∗∥2/∥y∗∥2 and recovery error ∥b(t) − b∗∥2/∥b∗∥2 as a
function of the sparsity level s ∈ {1, 5, 10, 15} and the measurements N ∈ {10, 20, . . . 100}. Here

(n, α, β1, β2) = (102, 10−1, 10−5, 0), with the subgradient descent
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Figure 14: On the left axis, the memorization step t1 compute experimentally (smaller t such that
∥X̃b(t) − y∗∥2/∥y∗∥2 ≤ 10−4) and the upper bound − ln

(
1 + (1−ρ)∥b(1)−b̂∥∞

αβ1

)
/ ln(ρ)

computed in Theorem C.8. On the right axis, the error ∥X̃b(t1) − y∗∥2/∥y∗∥2 at step t1 and the
recovery error ∥b(∞) − b∗∥2/∥b∗∥2 at the end of training. Here

(n, α, β1, β2) = (102, 10−1, 10−5, 0), with the subgradient descent.
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Figure 15: Training error ∥X̃b(t1) − y∗∥2/∥y∗∥2 at memorization, recovery error
∥b(t2) − b∗∥2/∥b∗∥2 at generalization, memorization step t1 (smaller t such that
∥X̃b(t) − y∗∥2/∥y∗∥2 ≤ 10−4), and generalization step (smaller t such that

∥b(t) − b∗∥2/∥b∗∥2 ≤ 10−4 or the maximum training step). Here
(n, α, β1, β2) = (102, 10−1, 10−5, 0), with the subgradient descent

20 40 60 80 100
N

101

102

103

104

105

t

t1 (experiments)
O(t1) (theory)

1

5

10

15

s

Figure 16: Memorization step t1 compute experimentally (smaller t such that
∥X̃b(t) − y∗∥2/∥y∗∥2 ≤ 10−4) and the upper bound computed in Theorem C.8. Here

(n, α, β1, β2) = (102, 10−1, 10−5, 0), with the subgradient descent.
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=⇒ 2β1

(
T∑

t=1

αt

)
min
t≤T

(
∥b(t)∥1 − ∥b∗∥1

)
≤ 2β1

T∑
t=1

αt

(
∥b(t)∥1 − ∥b∗∥1

)
≤ R2 + β2

1

T∑
t=1

α2
t ∥h(b(t))∥22

⇐⇒ min
t≤T

(
∥b(t)∥1 − ∥b∗∥1

)
≤

R2 + β2
1

∑T
t=1 α

2
t ∥h(b(t))∥22

2β1

∑T
t=1 αt

=
R2 + β2

1n
∑T

t=1 α
2
t

2β1

∑T
t=1 αt

We optimize the noiseless problem (ξ = 0) using the projected subgradient descent method with
(n, ζ, α, β1, β2) = (102, 10−6, 10−1, 10−5, 0), for different values of s and N . We observe a
grokking-like pattern similar to the subgradient case (Figures 17, 18, 19 and 20). Here, one step of
training is enough to get zero training error. This further shows that generalization is driven by β1.
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Figure 17: Training error ∥X̃b(t) − y∗∥2/∥y∗∥2 and recovery error ∥b(t) − b∗∥2/∥b∗∥2 as a

function of the sparsity level s ∈ {1, 5, 10, 15} and the measurements N ∈ {10, 20, . . . 100}. Here
(n, α, β1, β2) = (102, 10−1, 10−5, 0), with the projected subgradient descent

C.8 PROXIMAL GRADIENT DESCENT AND ITERATIVE SOFT-THRESHOLDING ALGORITHM

We have
b− αGβ2

(b) = argmin
c

gβ2
(b) + (c− b)⊤Gβ2

(b) +
1

2α
∥c− b∥22

So

b− αF (b) ≈ argmin
c

gβ2
(b) + (c− b)⊤Gβ2

(b) +
1

2α
∥c− b∥22 + β1∥c∥1

= argmin
c

1

2α

[
∥αGβ2

(b)∥22 + 2α(c− b)⊤Gβ2
(b) + ∥c− b∥22

]
+ β1∥c∥1

= argmin
c

1

2α
∥c− (b− αGβ2(b)) ∥22 + β1∥c∥1

= Πα (b− αGβ2
(b))

with Πα the proximal mapping for c → β1∥c∥1,

Πα(b) = argmin
c

1

2α
∥c− b∥22 + β1∥c∥1
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Figure 18: On the left axis, the memorization step t1 compute experimentally (smaller t such that
∥X̃b(t) − y∗∥2/∥y∗∥2 ≤ 10−4) and the upper bound − ln

(
1 + (1−ρ)∥b(1)−b̂∥∞

αβ1

)
/ ln(ρ)

computed in Theorem C.8. On the right axis, the error ∥X̃b(t1) − y∗∥2/∥y∗∥2 at step t1 and the
recovery error ∥b(∞) − b∗∥2/∥b∗∥2 at the end of training. Here

(n, α, β1, β2) = (102, 10−1, 10−5, 0), with the projected subgradient descent.
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Figure 19: Training error ∥X̃b(t1) − y∗∥2/∥y∗∥2 at memorization, recovery error
∥b(t2) − b∗∥2/∥b∗∥2 at generalization, memorization step t1 (smaller t such that
∥X̃b(t) − y∗∥2/∥y∗∥2 ≤ 10−4), and generalization step (smaller t such that

∥b(t) − b∗∥2/∥b∗∥2 ≤ 10−4 or the maximum training step). Here
(n, α, β1, β2) = (102, 10−1, 10−5, 0), with the projected subgradient descent
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Figure 20: Memorization step t1 compute experimentally (smaller t such that
∥X̃b(t) − y∗∥2/∥y∗∥2 ≤ 10−4) and the upper bound computed in Theorem C.8. Here

(n, α, β1, β2) = (102, 10−1, 10−5, 0), with the projected subgradient descent.
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Using

Qα(b) =
b−Πα (b− αGβ2

(b))

α
The proximal update writes

b(t+1) = Παt

(
b(t) − αtGβ2

(b(t))
)

= b(t) − αt

b(t) −Παt

(
b(t) − αtGβ2(b

(t))
)

αt

= b(t) − αtQαt
(b(t))

This form appears similar to the standard gradient descent update but is not the most interesting in
this context.

Πα(b) = argmin
c

1

2α
∥c− b∥22 + β1∥c∥1

= argmin
c

1

2
∥c− b∥22 + αβ1∥c∥1

= Sαβ1
(b)

with Sγ(b) = sign(b)⊙max(|b| − γ, 0) the soft-thresholding operator4,

Sγ(b)i =

{
bi − γ if bi > γ
0 if − γ ≤ bi ≤ γ
bi + γ if bi < −γ

The final form of the update, known as the Iterative soft-thresholding algorithm (ISTA) (Daubechies
et al., 2003), is then

b(t+1) = Sαtβ1

(
b(t) − αtGβ2

(b(t))
)

∀t > 1 (86)

with

Gβ2(b) := ∇bgβ2(b) = X̃⊤(y − y∗) + β2b =


(
X̃⊤X̃+ β2In

)
b−

(
X̃⊤X̃b∗ + X̃⊤ξ

)(
X̃⊤X̃+ β2In

)
(b− b∗)−

(
X̃⊤ξ − β2b

∗
)

Theorem C.15. Let L = ∥X̃⊤X̃+β2In∥2→2 = σmax(X̃
⊤X̃)+β2 (operator norm) be the Lipschitz

constant for Gβ2
, |Gβ2

(u) − Gβ2
(v)| ≤ L∥u − v∥2 for all u, v. If ∥b(1) − b∗∥2 ≤ R and

αt = α ≤ 1/L, then f (T ) − f∗ ≤ R2

2αT for the ISTA.

Proof. We applied a standard bound on proximal gradient descent (Tibshirani, 2015) for a function
of the form f = g + h : Rn → R. Such result state that the proximal gradient descent with fixed step
size αt ≤ 1/L satisfies f (T ) − f∗ ≤ ∥b(1)−b∗∥2

2

2αT when g is convex, differentiable, dom(g) = Rn,
∇g is Lipschitz continuous with constant L > 0; and h is convex and its proximal map Πα can be
evaluated.

We optimize the noiseless problem (ξ = 0) using the soft-thresholding algorithm (ISTA) with
(n, ζ, α, β1, β2) = (102, 10−6, 10−1, 10−5, 0), for different values of s and N . We observe a
grokking-like pattern similar to the subgradient case (Figures 21, 22, 23 and 24).

C.9 GROKKING WITHOUT UNDERSTANDING

We start the optimization at b(1) iid∼ ζN (0, 1/n) with ζ ≥ 0 the initialization scale. With a small
initialization, β1 is sufficient for generalization to happen, provided N is large enough and β2 is not
very large (if it is chosen so that ∥b̂∥∞ ≪ αβ1, it may be possible to not generalize, see section
C.6.2). If the scale at initialization is large, β2 is necessary to generalize, but is it sufficient? That is,
can we generalize to the problem studied here with β1 = 0 and β2 > 0?

4On complex numbers, the soft-thresholding operator Sγ(b) = sign(b)⊙max(|b| − γ, 0) only shrinks the
magnitude and keeps the phase fixed.

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

100 101 102 103 104 105 106

Steps (t)

10 4

10 3

10 2

10 1

100

Er
ro

r

s=1

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

10
20
30
40
50
60
70
80
90
100

N

100 101 102 103 104 105 106

Steps (t)

10 4

10 3

10 2

10 1

100

Er
ro

r

s=5

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

10
20
30
40
50
60
70
80
90
100

N

100 101 102 103 104 105 106

Steps (t)

10 4

10 3

10 2

10 1

100

Er
ro

r

s=10

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

10
20
30
40
50
60
70
80
90
100

N
100 101 102 103 104 105 106

Steps (t)

10 4

10 3

10 2

10 1

100

Er
ro

r

s=15

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

10
20
30
40
50
60
70
80
90
100

N

Figure 21: Training error ∥X̃b(t) − y∗∥2/∥y∗∥2 and recovery error ∥b(t) − b∗∥2/∥b∗∥2 as a
function of the sparsity level s ∈ {1, 5, 10, 15} and the measurements N ∈ {10, 20, . . . 100}. Here

(n, α, β1, β2) = (102, 10−1, 10−5, 0), with the soft-thresholding algorithm (ISTA)

As shown above, the answer to this question is no (Figures 25 and 26). But what we want to illustrate
here is a phenomenon that contradicts previous art (Liu et al., 2023a; Lyu et al., 2023), namely that in
the over-parametrized regime (N < n in our case), large initialization and non-zero weight decay do
not always lead to grokking. What happens is that, because of the large initialization, a more or less
abrupt transition is observed in the generalization error during training, corresponding to a transition
in the ℓ2 norm of the model parameters. But this can not be called grokking because the model only
converges to a sub-optimal solution. What’s more, this transition appears even if the problem posed
admits no solution, e.g., sparse recovery or matrix completion with a number N of examples far
below the theoretical limit required for the solution to the problem posed to be the optimal solution
(by any method whatsoever). This transition appears abrupt just because the training error is large at
the beginning of training since the model’s outputs are large. When its ℓ2 norm becomes small, its
outputs also become small, leading to a transition in error. In figure 25, without visualization of the
error on a logarithmic scale, it looks like grokking has occurred, whereas this is not the case. Figure
26 futher shows the non convergence of b(t) to b∗ : every components of b(t) are almost 0 at the end
of training.

We call this phenomenon “grokking without understanding” like Levi et al. (2024) who illustrated it
in the case of linear classification. They show that the sharp increase in generalization accuracy may
often not imply a transition from “memorization” to “understanding” but can be an artifact of the
accuracy measure. But in our case, we are not using any significant scale at initialization (we focus
on 0 ≤ ζ ≤ 10−5) and are not dealing with the generalization measure problem since our test error is
directly the recovery error in the function space, not the accuracy.

We hypothesize that the interplay between large initialization and small non-zero weight decay that
leads to grokking as predicted (provably) by Lyu et al. (2023) does not hold in our setting because
our model violates they Assumption 3.2. Let yb(x̃) = b⊤x̃ denote our model.

• Assumption 3.1 (Lyu et al., 2023): For all x̃ ∈ Rn, the function b → yb(x̃) is L-
homogeneous with L = 1, because ycb(x̃) = cLyb(x̃) for all c > 0.

• Assumption 3.2 (Lyu et al., 2023): for ζ = 0, yb(1)(x̃) = 0 for all x̃ (there is generalization
in this case with ℓ1), but if ζ > 0 (for instance ζ large), this is (almost surely) no longer true.
So, this assumption is violated (with high probability).
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Figure 22: On the left axis, the memorization step t1 compute experimentally (smaller t such that
∥X̃b(t) − y∗∥2/∥y∗∥2 ≤ 10−4) and the upper bound − ln

(
1 + (1−ρ)∥b(1)−b̂∥∞

αβ1

)
/ ln(ρ)

computed in Theorem C.8. On the right axis, the error ∥X̃b(t1) − y∗∥2/∥y∗∥2 at step t1 and the
recovery error ∥b(∞) − b∗∥2/∥b∗∥2 at the end of training. Here

(n, α, β1, β2) = (102, 10−1, 10−5, 0), with the soft-thresholding algorithm (ISTA).
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Figure 23: Training error ∥X̃b(t1) − y∗∥2/∥y∗∥2 at memorization, recovery error
∥b(t2) − b∗∥2/∥b∗∥2 at generalization, memorization step t1 (smaller t such that
∥X̃b(t) − y∗∥2/∥y∗∥2 ≤ 10−4), and generalization step (smaller t such that

∥b(t) − b∗∥2/∥b∗∥2 ≤ 10−4 or the maximum training step). Here
(n, α, β1, β2) = (102, 10−1, 10−5, 0), with the soft-thresholding algorithm (ISTA)
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Figure 24: Memorization step t1 compute experimentally (smaller t such that
∥X̃b(t) − y∗∥2/∥y∗∥2 ≤ 10−4) and the upper bound computed in Theorem C.8. Here

(n, α, β1, β2) = (102, 10−1, 10−5, 0), with the ISTA.
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• Assumption 3.8 (Lyu et al., 2023): The NTK (Neural Tangent Kernel) features of training
samples {∇byb(X̃i)}i∈[N ] are linearly independent (almost surely). In fact, ∇byb(x̃) =

x̃ ∀x̃. In the over-parametrized regime N < n, If X ∈ RN×n has entries independent and
identically distributed from a normal distribution, then the NTK features {X̃i}i∈[N ] are
linearly independent with high probability (because the rank of X̃ = ΦX is N with high
probability), so this assumption is verified.
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Figure 25: The figures show the relative errors and the the norm ∥b(t)∥2 (left) and ∥b(t)∥1 for
β1 = 0 and β1 ̸= 0. Here (n, s,N) = (100, 5, 30) and (α, β1) = (10−1, 0); with large

initialization scale ζ = 101 and small weights decay β2 = 10−5. Without visualization of the error
on a logarithmic scale (top), it looks like grokking has occurred, whereas this is not the case (bottom).

C.10 IMPACT OF COHERENCE ON GROKKING: AMPLIFYING GROKKING THROUGH DATA
SELECTION

Above, we introduce the parameter τ ∈ [0, 1] that control the incoherence between the measures
{Xi}i∈[N ] and the sparse basis (dictionary) {Φ:,j}j∈[n]. τ = 0 correspond to a full random gaussian
X, and correspond to the maximum incoherence, while τ = 1 correspond to Xi ∈ {Φ:,j}j∈[n] for all
i ∈ [N ], and correspond minimum incoherence (coherence of 1). We also experimentally observe that
when using convex programming on the problem (P1), Nmin(s, τ), the number of samples needed for
perfect recovery increases as s and/or τ increases. When τ → 1, Nmin(s, τ) → n for all s (Section
C.5).

Here, we also observe that the generalization time and the generalization delay increase with τ while
the generalization error decreases with it (Figures 27 and 28 and 29). For N < n, when τ → 1, the
generalization time t2 → ∞. This is because each measurement captures a single view (component)
of b∗, and this makes it impossible to find the optimal b∗ by solving the equation XΦb = y∗ (by
any method whatsoever). On the other hand, as τ → 0, X becomes completely random, and every
measurement captures a distinct “view” of a∗, giving the best possible generalization time for the
data size considered. The error ∥b(t2) − b∗∥2/∥b∗∥2 at generalization (t2) as a function of N and τ
has the same shape as in the convex programming (Figures 6 and 7).

C.11 DEEP SPARSE RECOVERY: THE EFFECT OF OVERPARAMETRIZATION

Let now use the parameterization b = ⊙L
k=1Bk ∈ Rn, with B ∈ RL×n. This corresponds to a linear

network with L layers, where each hidden layer has the parameter diag(Bk) ∈ Rn×n—with this,
increasing L leads to overparameterization without altering the expressiveness of the function class
b → Fb(x) = x⊤b, since the model remains linear with respect to the input x. Unlike the shallow
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Figure 26: Non convergence of b(t) to b∗ for β1 = 0 and β1 ̸= 0. Here (n, s,N) = (100, 5, 30) and
(α, β1) = (10−1, 0); with large initialization scale ζ = 101 and small weights decay β2 = 10−5.
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Figure 27: Training and error ∥X̃b(t) − y∗∥2/∥y∗∥2 and recovery error ∥b(t) − b∗∥2/∥b∗∥2 as a
function of the number of sample N and the coherence parameter τ ∈ [0, 1]. Here

(n, s, α, β1, β2, ζ) = (102, 5, 10−1, 10−5, 0, 10−6).
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Figure 28: Training and error ∥X̃b(t1) − y∗∥2/∥y∗∥2 and recovery error ∥b(t2) − b∗∥2/∥b∗∥2
(along with t1 and t2, the memorization and the generalization step) as a function of the number of

sample N and the coherence parameter τ ∈ [0, 1]. Here
(n, s, α, β1, β2, ζ) = (102, 5, 10−1, 10−5, 0, 10−6).
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Figure 29: Training and error ∥X̃b(t1) − y∗∥2/∥y∗∥2 and recovery error ∥b(t2) − b∗∥2/∥b∗∥2
(along with t1 and t2, the memorization and the generalization step) as a function of the number of

sample N and the coherence parameter τ ∈ [0, 1]. Here
(n, s, α, β1, β2, ζ) = (102, 5, 10−1, 10−5, 0, 10−6).

case (L = 1), there is no need for ℓ1 (β1 = 0) to generalize when L ≥ 2 (and the initialization scale
is small), as the experiments of this section suggest. With depth, the update for the whole iterate
(which is now replaced by a product of matrices and a vector) is similar to the shallow case but with a
preconditioner in front of the gradient. This preconditioner makes it possible to recover the sparse
signal without any regularization.

We have y(b) = Fb(X̃) = X̃b and y∗ = Fb∗(X̃) + ξ = X̃b∗ + ξ, and want to minimize
f(b) = gβ2

(b) + β1∥B∥1 using gradient descent, where

gβ2
(b) :=

1

2
∥y(b)− y∗∥22 +

β2

2
∥B∥2F

=
1

2
b⊤X̃⊤X̃b− y∗⊤X̃b+

1

2
y∗⊤y∗ +

β2

2
∥B∥2F

=
1

2
b⊤X̃⊤X̃b−

(
X̃⊤X̃b∗ + X̃⊤ξ

)⊤
b+

β2

2
∥B∥2F +

1

2
∥X̃b∗ + ξ∥22

(87)

Let G(b) :=
∂gβ2

(b)

∂b = X̃⊤(y(b) − y∗) = X̃⊤X̃(b − b∗) − X̃⊤ξ. The gradient for each Bi is

Gβ2
(Bi) :=

∂gβ2
(b)

∂Bi
= ∂b

∂Bi

∂gβ2
(b)

∂b + β2Bi = diag(
∏

k ̸=i Bk)G(b) + β2Bi, and the update rule
for each Bi is

B
(t+1)
i = B

(t)
i − αGβ2

(B
(t)
i )− αβ1h(B

(t)
i )

= (1− αβ2)B
(t)
i − α diag(

∏
k ̸=i

B
(t)
k )G(b(t))− αβ1h(B

(t)
i ) (88)

where h(Bi) ∈ ∂∥Bi∥1 any subgradient of ∥Bi∥1, h(Bi)k = sign(Bik) for Bik ̸= 0, and any
value in [+1,−1] for Bik = 0. We start the optimization at B(1)

i
iid∼ ζN (0, 1/n) with ζ ≥ 0 the

initialization scale.

Without ovaparametrization (L = 1), the gradient update for b writes

b(t+1) = b(t) − αGβ2
(b(t))− αβ1h(b

(t))

= (1− αβ2)b
(t) − α

(
G(b(t)) + β1h(b

(t))
) (89)
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As we show above, for s = ∥b∗∥0 ≪ n and N < n, without ℓ1 regularization (β1 = 0), we don’t
have perfect recovery. Here, the update is unconditioned and progresses uniformly in all directions.
So without ℓ1-regularization, there is no mechanism to enforce sparsity, and perfect recovery of b∗ is
impossible.

For L = 2, let c := B2
1 +B2

2. If β1 = 0, then

b(t+1) = B
(t+1)
1 ⊙B

(t+1)
2

=
(
(1− αβ2)B

(t)
1 − α diag(B

(t)
2 )G(b(t))

)
⊙
(
(1− αβ2)B

(t)
2 − α diag(B

(t)
1 )G(b(t))

)
= (1− αβ2)

2b(t) − α(1− αβ2) diag(B
(t)
1 ⊙B

(t)
1 +B

(t)
2 ⊙B

(t)
2 )G(b(t)) + α2 diag(b(t))G(b(t))2

= (1− αβ2)
2b(t) − α(1− αβ2)c

(t) ⊙G(b(t)) + α2b(t) ⊙G(b(t))2

≈ (1− 2αβ2)b
(t) − αc(t) ⊙G(b(t)) for α → 0

(90)
and

c(t+1) = B
(t+1)
1 ⊙B

(t+1)
1 +B

(t+1)
2 ⊙B

(t+1)
2

= (1− αβ2)
2B

(t)
1 ⊙B

(t)
1 − 2α(1− αβ2) diag(B

(t)
1 ⊙B

(t)
2 )G(b(t)) + α2 diag(B

(t)
2 ⊙B

(t)
2 )G(b(t))2

+ (1− αβ2)
2B

(t)
2 ⊙B

(t)
2 − 2α(1− αβ2) diag(B

(t)
2 ⊙B

(t)
1 )G(b(t)) + α2 diag(B

(t)
1 ⊙B

(t)
1 )G(b(t))2

= (1− αβ2)
2c(t) − 4α(1− αβ2)b

(t) ⊙G(b(t)) + α2c(t) ⊙G(b(t))2

≈ (1− 2αβ2)c
(t) − 4αb(t) ⊙G(b(t)) for α → 0

(91)

The depth adds the preconditioning P(t) = (1− αβ2) diag(c
(t)) in front of the update for b. This

preconditioning mechanism seems to implicitly favor sparsity and, thus, a perfect recovery after
memorization since a sparse solution for the problem of interest is necessary b∗ when N is large
enough (with respect to s = ∥b∗∥0 and n). In fact, when c

(t)
i goes to zero (which is the case when

b
(t)
i is also small), the update becomes b

(t+1)
i ≈ (1 − 2αβ2)b

(t)
i , and thus push b

(t+1)
i to 0 at a

geometric rate of O(1− 2αβ2). Otherwise, c(t)i (large) will amplify the gradient so that c(t)i G(b(t))i
dominates the update, which pushes b(t) towards b∗ (as the gradient G(b(t)) points towards a small
error b(t) − b∗ direction, particularly for full rank X̃ and high signal to ratio regime).

We optimize the noiseless problem (ξ = 0) using the subgradient descent method with
(n, s, ζ, α, β1, β2) = (102, 30, 10−2, 10−1, 10−5, 0), for different values of N and L ∈ {1, 2, 3, 4}.
Here, initializing B too close to the origin (initialization scale ζ → 0) leads b to not change during
training. The model is able to recover the true signal b∗, and the generalization delay becomes
extremely small (compared to the shallow case with β1 ̸= 0) for L = 2 and disappears (ungrokking)
for L > 2 (Figure 30). As L becomes larger, the phase transition to generalization becomes extremely
abrupt. The loss decreases in a staircase fashion, with more or less long plateaus of suboptimal
generalization error during training. This type of behavior is generally observed in the optimization of
Soft Committee Machines (Biehl & Schwarze, 1995; Saad & Solla, 1995b;a; 1996; Engel & Broeck,
2001; Aubin et al., 2018; Goldt et al., 2020), which are two-layer linear or non-linear teacher-student
systems, with the output layer of the student fixed to that of the teacher during training.

Also, for a fixed number N of measure, the test error decreases with L, showing that depth helps
to find the signal with a smaller number of measures, albeit with a longer training time (Figures 31
and 32). So, the depth seems to have the same effect on generalization as β1. This is in accord with
the result of Arora et al. (2018) in the context of matrix factorization. They show that introducing
depth effectively turns gradient descent into a shallow (single-layer) training process equipped with
a built-in preconditioning mechanism. This mechanism biases updates toward directions already
explored by the optimization, serving as an acceleration technique that fuses momentum with adaptive
step sizes. Furthermore, they demonstrate that depth-based overparameterization can substantially
speed up training, even in straightforward convex tasks like linear regression under with ℓp loss,
p > 2.

Note that for L ≥ 2, using a large scale initialization and a small but non-zero ℓ2 regularization
β2 results in grokking (Figures 34, 35 and 33), unlike the case of L = 1 that gives the “grokking
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Figure 30: Training and error ∥X̃b(t) − y∗∥2/∥y∗∥2 and recovery error ∥b(t) − b∗∥2/∥b∗∥2 as a
function of the number of sample N and the depth L ∈ {1, 2, 3, 4}. Here

(n, s, α, β1, β2) = (102, 5, 10−1, 0, 0); with small initialization scale ζ = 10−6 for L = 1 and
ζ = 10−2 for L > 1.
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Figure 31: Training and error ∥X̃b(t1) − y∗∥2/∥y∗∥2 and recovery error ∥b(t2) − b∗∥2/∥b∗∥2
(along with t1 and t2, the memorization and the generalization step) as a function of the number of
sample N and the depth L ∈ {1, 2, 3, 4}. Here (n, s, α, β1, β2) = (102, 5, 10−1, 0, 0); with small

initialization scale ζ = 10−6 for L = 1 and ζ = 10−2 for L > 1.
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Figure 32: Training and error ∥X̃b(t1) − y∗∥2/∥y∗∥2 and recovery error ∥b(t2) − b∗∥2/∥b∗∥2
(along with t1 and t2, the memorization and the generalization step) as a function of the number of
sample N and the depth L ∈ {1, 2, 3, 4}. Here (n, s, α, β1, β2) = (102, 5, 10−1, 0, 0); with small

initialization scale ζ = 10−6 for L = 1 and ζ = 10−2 for L > 1. The growth (as a function of N )
in the test error for L = 4 is simply due to the fact that we did not optimize long enough for it to

decrease.

without understanding” phenomenon (Section C.9). In this regime of large intialisation and small
non-zero weight decay, when L increases, the number of steps required for the model to move from
memorization to generalization is reduced (grokking acceleration), and the generalization error at
the end of training is considerably lower (Figure 33). Lyu et al. (2023) used a similar setup to show
that an interplay between large initialization and small nonzero weights decay gives rise to grokking
with the diagonal linear network y(x) =

(
u⊙L − v⊙L

)⊤
x in the context of binary classification,

but there did not study the impact of L on the generalization delay, but focus on characterizing how
sharp is the transition from memorization to generalization as a function of the initialization scale
and the weight decay coefficient, and how long it takes for this transition to occurs. This diagonal
linear network is also often used for sparse recovery problems (Vavskevivcius et al., 2019), but the
focus is generally on its ability to recover the optimal solution, and not grokking.

C.12 REALISTIC SIGNALS

C.12.1 RECOVERY OF AN IMAGE

We consider a 8× 8 digit 0 from the MNIST dataset, n = 82 = 64. The image is normalized to have
values in [0, 1], and the values below 0.5 are set to zero, leading to a sparsity level s = 22 (34.38% of
n). The evaluation of the errors is shown in Figures 36, and the evolution of the reconstructed image
as a function of the training steps are shown in Figure 37.

C.12.2 RECOVERY OF A SINUSOIDAL SIGNAL

We construct a sparse real-valued signal a∗ ∈ Rn from a set of sinusoidal components defined by
their frequencies, amplitudes, and phases. For that, we first define the sparse frequency-domain
representation b∗ ∈ Cn as b∗(k) = Ake

iφk · 1 (k ∈ F) where F ⊂ {0, 1, . . . , n− 1} is the set of
selected frequency indices with |F| = s; Ak ∈ R+ the amplitude of the sinusoid at frequency index
k; φk ∈ [0, 2π) the phase of the sinusoid at frequency index k; and i the imaginary unit (i2 = −1).
The real-valued time-domain signal a∗ ∈ Rn is obtained by applying the inverse discrete Fourier
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Figure 33: Training and error ∥X̃b(t) − y∗∥2/∥y∗∥2 and recovery error ∥b(t) − b∗∥2/∥b∗∥2 as a
function of the number of sample N and the depth L ∈ {1, 2, 3, 4}. Here (n, s) = (102, 5) and

(α, β1) = (10−1, 0); with large initialization scale ζ = 100 and small weights decay β2 = 10−5.

1 2 3 4
L

102

103

104

105

106

107

t

N=20

10 5

10 4

10 3

10 2

10 1

100

Er
ro

r

t1
t2

||Xb(t1) y * ||2 / ||y * ||2
||b(t2) b * ||2 / ||b * ||2

1 2 3 4
L

103

104

105

106

107

t

N=40

10 5

10 4

10 3

10 2

10 1

100
Er

ro
r

t1
t2

||Xb(t1) y * ||2 / ||y * ||2
||b(t2) b * ||2 / ||b * ||2

1 2 3 4
L

103

104

105

106

t

N=60

10 5

10 4

10 3

10 2

10 1

100

Er
ro

r

t1
t2

||Xb(t1) y * ||2 / ||y * ||2
||b(t2) b * ||2 / ||b * ||2

1 2 3 4
L

104

105

106

t

N=80

10 4

10 3

10 2

10 1

Er
ro

r

t1
t2

||Xb(t1) y * ||2 / ||y * ||2
||b(t2) b * ||2 / ||b * ||2

Figure 34: Training and error ∥X̃b(t1) − y∗∥2/∥y∗∥2 and recovery error ∥b(t2) − b∗∥2/∥b∗∥2
(along with t1 and t2, the memorization and the generalization step) as a function of the number of

sample N and the depth L ∈ {1, 2, 3, 4}. Here (n, s) = (102, 5) and (α, β1) = (10−1, 0); with
large initialization scale ζ = 100 and small weights decay β2 = 10−5.
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Figure 35: Training and error ∥X̃b(t1) − y∗∥2/∥y∗∥2 and recovery error ∥b(t2) − b∗∥2/∥b∗∥2
(along with t1 and t2, the memorization and the generalization step) as a function of the number of

sample N and the depth L ∈ {1, 2, 3, 4}. Here (n, s) = (102, 5) and (α, β1) = (10−1, 0); with
large initialization scale ζ = 100 and small weights decay β2 = 10−5.
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Figure 36: Reconstruction of a 8× 8 digit from the MNIST dataset. The figures show the relative
errors, gradient ratio, and the norm ∥b(t)∥1 (right). Gβ2

(b(t)) dominates β1h(b
(t)) until

memorization, i.e. ∥β1h(b
(t))∥/∥Gβ2(b

(t))∥ ≪ 1 for all t ≤ t1. From memorization β1h(b
(t))

dominates and make ∥b(t)∥1 converge to ∥b∗∥1 at t2, and so b(t2) = b∗.
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Figure 37: Reconstruction of a 8× 8 digit from the MNIST dataset. The figure shows the evolution
of the reconstructed image with the training step t.
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transform to b∗, scaled by a factor n to ensure consistent normalization:

a∗(t) = n · Re

(
1

n

n−1∑
k=0

b∗[k]ei2π kt
n

)
=
∑
k∈F

Ak cos

(
2πk

n
t+ φk

)
for t = 0, . . . , n− 1 (92)

We use (n, s) = (100, 5), F = {10, 25, 40, 75, 95}, A = [1.0, 0.8, 1.2, 1.5, 0.5] and φ =
[0, π/4, 3π/8, 3π/4, π] (Figure 38). The evaluation of the errors is shown in Figures 39, and the
evolution of the reconstructed signal as a function of the training steps is shown in Figure 40.
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Figure 38: Reconstruction of a sinusoidal signal a∗(t) =
∑

k∈F Ak cos
(
2πk
n t+ φk

)
with a sparse

representation b∗(k) = Ake
iφk · 1 (k ∈ F), where (n, s) = (100, 5), F = {10, 25, 40, 75, 95},

A = [1.0, 0.8, 1.2, 1.5, 0.5] and φ = [0, π/4, 3π/8, 3π/4, π].
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Figure 39: Reconstruction of a sinusoidal signal. The figures show the relative errors, gradient ratio,
and the norm ∥b(t)∥1 (right). Gβ2(b

(t)) dominates β1h(b
(t)) until memorization, i.e.

∥β1h(b
(t))∥/∥Gβ2

(b(t))∥ ≪ 1 for all t ≤ t1. From memorization β1h(b
(t)) dominates and make

∥b(t)∥1 converge to ∥b∗∥1 at t2, and so b(t2) = b∗.
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Figure 40: Reconstruction of a sinusoidal signal. The figure shows the evolution of the reconstructed
image with the training step t.

C.12.3 RECOVERY OF SPARSE POLYNOMIAL

We consider a polynomial p∗ : Rm → R define by p∗(x) = x⊤M∗x+m∗⊤x = (x⊗x)⊤ vecM∗+
m∗⊤x = a∗⊤q(x) with a∗ = [vec(M∗) m∗] ∈ Rm(m+1) and q(x) = [x⊗ x x] ∈ Rm(m+1).

To well define p∗, we make M∗ upper triangular (M∗
ij = 0 for j < i) so that p∗(x) =∑m

i=1

∑m
j=i M

∗
ijxixj +

∑m
i=1 m

∗
ixi. This function has n = (m+1)m

2 +m = (m+3)m
2 parameters,

and write p∗(x) = a∗⊤q(x) with a∗ = [M∗
11,M

∗
12, . . . ,M

∗
1m,M∗

22, . . . ,M
∗
mm m∗

1, . . . ,m
∗
m] ∈

Rn and
q(x) =

[
x2
1,x1x2, . . . ,x1xm,

x2
2,x2x3, . . . ,x2xm,

. . . ,

x2
m,x1,x2, . . . ,xm

]
∈ Rn

(93)

We sample s ≪ n of the n parameters iid from N (0, 1/n) and set the remaining to 0. Also,
x

iid∼ N (0, 1/n).

There are two ways to have grokking on this problem :

• We can iid sample N inputs output pair {(xi, p
∗(xi))}Ni=1 and optimize the parameters of

a student p(x) =
∑n

i=1

∑n
j=i Mijxixj +

∑n
i=1 mixi on them (see Section E.1 for more

details).

• Or we consider that we are dealing with a compressed sensing problem, with the sparse
signal a∗ ∈ Rn and the measurements given by q(x) ∈ Rn for all x ∈ Rm. We optimized
this version and observed grokking (Figure 41).
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Figure 41: Reconstruction of a sparse polynomial p∗(x) =
∑m

i=1

∑m
j=i M

∗
ijxixj +

∑m
i=1 m

∗
ixi.

D TENSOR FACTORIZATION

D.1 MATRIX SENSING

Matrix sensing seeks to recover a low rank matrix A∗ ∈ Rn1×n2 from N measurement matri-
ces {Xi ∈ Rn1×n2}i∈[N ] and measures y∗ =

(
tr(X⊤

i A
∗)
)
i∈[N ]

. We have y∗
i = tr(X⊤

i A
∗) =

vec(Xi)
⊤ vec(A∗) = Fvec(A∗)(vec(Xi)). This gives us a compressed sensing problem, with the sig-

nal vector vec(A∗) ∈ Rn1n2 and the measurement matrix X = [vec(Xi)]i∈[N ] ∈ RN×n1n2 . In fact,
under full SVD A∗ = U∗Σ∗V∗⊤, we have a∗ = vec(A∗) = Φb∗; where b∗ = vec(Σ∗) ∈ Rn1n2 ,
which is sparse since ∥b∗∥0 = rank(A∗) ≤ min(n1, n2) ≪ n1n2; and Φ = V∗ ⊗ U∗ ∈
Rn1n2×n1n2 , which has orthonormal column since Φ⊤Φ =

(
V∗⊤V∗) ⊗ (U∗⊤U∗) = In1n2

. We
have X̃ = XΦ.

D.2 MATRIX COMPLETION

For a matrix completion problem with matrix A∗ ∈ Rn1×n2 , we have N measurement vectors(
X

(1)
i ,X

(2)
i

)
∈ Rn1 × Rn2 and measures y∗

i = X
(1)⊤
i A∗X

(2)
i =

(
X

(2)
i ⊗X

(1)
i

)⊤
vec(A∗) =

Fvec(A∗)

(
X

(2)
i ⊗X

(1)
i

)
, i.e. y∗ =

(
X(2) •X(1)

)
vec(A∗) = Fvec(A∗)

(
X(2) •X(1)

)
. This gives

us a compressed sensing problem, with the signal vector vec(A∗) ∈ Rn1n2 and the measurement
matrix X = X(2) •X(1) ∈ RN×n1n2 . Standard matrix completion is usually defined as recovering
missing elements of a higher-order tensor from its incomplete observation. This is equivalent to
requiring X

(k)
i to be selection vectors for all k ∈ [2], i.e. X(k)

i is the s(i, k)th vector of the canonical
basis of Rnk for a certain s(i, k) ∈ [nk]. This make each Xi = X

(2)
i ⊗X

(1)
i a selection vector in

Rn, and X = X(2) •X(1) a selection matrix in RN×n, so that y∗
i = A∗

s(i,1),s(i,2)∀i ∈ [N ]. So, in

this formulation, each X
(k)
i is a sample from the columns of Ink

. Note that under a change of basis
X̃

(k)
i = P(k)X

(k)
i , we have ỹ∗

i =
(
⊗K

k=1P
(k)
)
y∗
i , that is ỹ∗ = y∗ (⊗K

k=1P
(k)
)⊤

. A less standard
formulation of the matrix completion task requires each X

(k)
i to be a sample from an orthonormal

basis, i.e., X(k)
i is a sample from the columns of V(k) ∈ Rnk×nk with V(k)⊤V(k) = Ink

. We
let X(k)

i be the s(i, k)th column of V(k) for a certain s(i, k) ∈ [nk]. Then y∗
i = Ã∗

s(i,1),··· ,s(i,K)

with Ã∗ = A∗ ×1 V
(1) ×2 V

(2). So, any result state of A∗ in the standard formulation where the
measurement vectors are selection vectors is valid for the tensor Ã∗.

If we switch to a tensor A∗ ∈ Rn1×n2×···×nK , we will have N vectors of measurements(
X

(1)
i ,X

(2)
i , · · · ,X(K)

i

)
∈ Rn1 × Rn2 × · · · × RnK ∀i ∈ [N ] and the measures y∗

i =∑
j1,j2,··· ,jK Aj1,··· ,jKX

(1)
i,j1

X
(2)
i,j2

· · ·X(K)
i,jK

=
(
X

(K)
i ⊗X

(K−1)
i ⊗ · · · ⊗X

(1)
i

)⊤
vecc(A), i.e.

y∗ = Xvecc(A∗) with vecc(A∗) = A∗(K...1) ∈ Rn and X = X(K) • X(K−1) • · · · • X(1) ∈
RN×n; n =

∏K
k=1 nk. Standard tensor completion is usually defined as recovering missing

elements of a higher-order tensor from its incomplete observation. This is equivalent to re-
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quiring X
(k)
i to be selection vectors for all k ∈ [K], i.e. X

(k)
i,j = δj,s(i,k) ∀i, j for a cer-

tain s(i, k) ∈ [nk] (X(k)
i is the s(i, k)th vector of the canonical basis of Rnk ). This make

each Xi = ⊗1
k=KX

(k)
i a selection vector in Rn, and X = •1k=KX(k) a selection matrix in

RN×n, so that y∗
i = A∗

s(i,1),··· ,s(i,K)∀i ∈ [N ]. So, in this formulation, each X
(k)
i is a sam-

ple from the columns of Ink
. Note that under a change of basis X̃

(k)
i = P(k)X

(k)
i , we have

ỹ∗
i =

(
⊗K

k=1P
(k)
)
y∗
i , that is ỹ∗ = y∗ (⊗K

k=1P
(k)
)⊤

. A less standard formulation of the tensor
completion task requires each X

(k)
i to be a sample from an orthonormal basis V(k) = {v(nk)

k }k∈[nk]

(i.e. v
(nk)
i

⊤
v
(nk)
j = δij). We let X(k)

i = v
(nk)
s(i,k) ∀i for a certain s(i, k) ∈ [nk]. We can write

v
(nk)
ℓ = P(k)e

(nk)
ℓ with P(k) ≡ V(k) ∈ Rnk×nk the base change matrix from the canonical basis

to V(k), which contains in each column ℓ the coordinate of v(nk)
ℓ in {e(nk)

k }k∈[nk]. So X
(k)
i =

P(k)e
(nk)
s(i,k), and y∗

i =
(
⊗1

k=KX
(k)
i

)⊤
vecc(A∗) =

(
⊗1

k=K

(
P(k)e

(nk)
s(i,k)

))⊤
vecc(A∗) =((

⊗1
k=KP(k)

) (
⊗1

k=Ke
(nk)
s(i,k)

))⊤
vecc(A∗) =

(
⊗1

r=Ke
(nk)
s(i,r)

)⊤ (
⊗1

r=KP(k)
)⊤

vecc(A∗) =(
⊗1

k=Ke
(nk)
s(i,k)

)⊤
vecc

(
Ã∗
)
= Ã∗

s(i,1),··· ,s(i,K) with Ã∗ = A∗ ×1 P
(1) ×2 · · · ×K P(K). So,

any result state of A∗ in the standard formulation where the measurement vectors are selection
vectors is valid for the tensor Ã∗.

Let us assume K = 2 in the following. Assume the target matrix A∗ has rank r. Then it has
r(n1+n2− r) degree of freedom5, and we need to observe at least r(n1+n2− r) entries for perfect
recovery. This bound can be improved by considering the structure of A∗. Let A∗ = U∗Σ∗V∗⊤ be
the full SVD of A∗. As observed above, we are dealing with a compressed sensing problem with
the signal vector a∗ = vecc(A∗) = Φb∗; where b∗ = vecc(Σ∗) ∈ Rn1n2 , which is sparse since
∥b∗∥0 = r ≤ min(n1, n2) ≪ n1n2; and Φ = V∗ ⊗ U∗ ∈ Rn1n2×n1n2 , which has orthonormal
column since Φ⊤Φ =

(
V∗⊤V∗) ⊗ (U∗⊤U∗) = In1n2 . We have X̃ = XΦ = X̃(2) • X̃(1) with

X̃(1) = X(1)U∗ and X̃(2) = X(2)V∗6.

D.3 GENERAL FRAMEWORK

Given a low rank r matrix A∗ ∈ Rn1×n2 , a measurement matrix X ∈ RN×n1n2 ; we aim to solve the
following problem for A ∈ Rn1×n2 ;

(P4) Minimize rank(A) subject to ∥Fvec(A) (X)− y∗∥2 ≤ ϵ (94)

where y∗ = Fvec(A∗) (X) + ξ are the measures and ϵ an upper bound on the size of the error term
ξ ∈ RN , ∥ξ∥2 ≤ ϵ. As in the compressed sensing problem, this is NP-hard. The usual convex
approach for matrix completion is to solve the following problem since the trace norm is a convex
relaxation of the rank,

(P5) Minimize ∥A∥∗ =
∑
i

σi(A) subject to ∥Fvec(A) (X)− y∗∥2 ≤ ϵ (95)

We find the minimum nuclear norm solution since it is equivalent to minimizing the ℓ1 norm of the
corresponding sparse b in the sparse basis (the tensor product of the right and left singular vectors)
for the solution A (low-rank solution). That said, many results obtained for compressed sensing can
be translated to matrix completion. The main difference from standard compressed sensing is that the
sparse basis is optimized jointly (and implicitly) with the signal’s coordinate in that basis.

5The first r columns of U∗ form an orthonormal basis for a r-dimensional subspace of Rn1 (the columns
space of A∗). Specifying this requires r(n1 − r) parameters. Similarly, the first r columns of V∗ form an
orthonormal basis for a r-dimensional subspace of Rn2 (the rows space of A∗), and specifying this requires
r(n2 − r) parameters. The r non-zero singular values are independent parameters. Thus, specifying them
requires r parameters.

6X̃ =
(
X(2) •X(1)

)
(V∗ ⊗U∗) = X̃(2) • X̃(1) since X̃i = (V∗ ⊗U∗)⊤

(
X(2) •X(1)

)
i

=(
V∗⊤ ⊗U∗⊤) (X(2)

i ⊗X
(1)
i

)
=

(
V∗⊤X

(2)
i

)
⊗
(
U∗⊤X

(1)
i

)
=

(
V∗X(2)

)
i
⊗
(
U∗X(1)

)
i
= X̃

(2)
i ⊗X̃

(1)
i
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D.4 THE CONTROL PARAMETERS

In this sub-section, we assume standard matrix completion. But the theories outlined here also apply
to the general framework. The theory gives the minimal number of observations that guarantee A∗ to
be a unique solution to problem (P5) and allow perfect recovery of A∗ with fewer samples (Candès
& Tao, 2010; Candes & Recht, 2012; Chen et al., 2014). Generally, the lower bound on N looks like
N ≥ Cmax(n1, n2)

β
(
rγ logα (max(n1, n2)) + log 1

η

)
where η is the percentage of error (i.e N

guaranteed perfect recovery with probability at least 1− η), α > 0, β > 0, γ > 0 are constant, and
C > 0 a universal constant. For example, in Candes & Recht (2012), (α, β, γ) = (1, 1.2, 1) for small
rank r ≤ max(n1, n2)

0.2, and β = 1.25 for any rank. The term max(n1, n2) log (max(n1, n2))
is due to the coupon collector effect since to recover an unknown matrix, one needs at least one
observation per row and one observation per column (Candes & Recht, 2012).
Definition D.1 (Random orthogonal model (Candes & Recht, 2012)). For a given r, we generate two
orthonormal matrices U∗ ∈ Rn1×r and V∗ ∈ Rn2×r with columns selected uniformly at random
among all families of r orthonormal vectors; and a diagonal matrix Σ∗ with only the first r diagonal
element non-zero (with no assumptions about the singular values), then set A∗ = U∗Σ∗V∗⊤.

Unless otherwise specified, we default the nonzero singular values to 1. We have the following result
about the standard formulation for such matrices under the absence of noise.
Theorem D.1 (Theorem 1.1, Candes & Recht (2012)). Let A∗ ∈ Rn1×n2 be a matrix of rank r
sampled from the random orthogonal model, and put n = max(n1, n2). Suppose we observe N
entries of A∗ with locations sampled uniformly at random. Then there are numerical constants C
and c such that if N ≥ Cn5/4r log (n), the minimizer to the problem (P5) is unique and equal to
A∗ with probability at least 1− c/n3; that is to say, the semidenite program (P5) recovers all the
entries of A∗ with no error. In addition, if r ≤ n1/5, then the recovery is exact with probability at
least 1− c/n3 provided that N ≥ Cn6/5r log (n).

Assume for example A∗ = e
(n1)
k e

(n2)
ℓ for (k, ℓ) ∈ [n1]× [n2]. Even if this matrix ranks at 1, it has

only zeros everywhere except 1 at position (i, j), so we have very little chance of reconstructing it in
a high dimension by observing a portion of its inputs. The only way to guarantee observation of the
input at position (i, j) is to choose measurements coherently with its singular basis e(n2)

k ⊗ e
(n1)
ℓ .

This idea is formulated more generally below.
Definition D.2. Let U be a subspace of Rn of dimension r and PU be the orthogonal projection onto
U . Then, the coherence of U vis-a-vis a basis {u(n)

i }i∈[n] is defined by µ(U) = n
r maxi ∥PUu

(n)
i ∥2.

We have 1 ≤ µ(U) ≤ n/r (Candes & Recht, 2012).

For a matrix A = UΣV⊤ ∈ Rn1×n2 under the compact SVD, the projection on the left singular
value is x → UU⊤x, and ∥UU⊤x∥22 = ∥U⊤x∥22 for all x (similarly for the right singular value).
We have the following definition of coherence, which considers each matrix entry.
Definition D.3 (Local coherence & Leverage score). Let A = UΣV⊤ ∈ Rn1×n2 be the compact
SVD of a matrix A of rank r. The local coherences of A are defined by

µi(A) =
n1

r
∥U⊤e

(n1)
i ∥2 =

n1

r
∥Ui,:∥2 ∀i ∈ [n1]

νj(A) =
n2

r
∥V⊤e

(n2)
j ∥2 =

n2

r
∥Vj,:∥2 ∀j ∈ [n2]

(96)

with µi for row i and νj for row j.

The quantities ∥U⊤e
(n1)
i ∥2 and ∥V⊤e

(n2)
i ∥2 are the leverage score of A (Chen et al., 2014), which

indicate how “aligned” each row or column of the original data matrix is with the principal components
(the columns of U or V). For each row i, µi(A) measures how much this row vector projects onto the
subspace spanned by the first r left singular vectors in U. Rows with high leverage scores contribute
more to the low-rank structure of A and are more “influential” in representing A. Similarly, νj(A)
measures the coherence of each column j in A with respect to the low-rank subspace formed by the
right singular vectors in V. High values indicate columns well-aligned with the principal directions
of A and play a significant role in capturing its structure. Matrices with uniformly low coherence
scores have rows and columns that are evenly influential. In contrast, matrices with high coherence
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scores for certain rows or columns have a few specific rows or columns that dominate the low-rank
structure.

In the general formulation, this definition can be extended to the set from which the measures are
chosen. But in general, it leads back to the standard formulation under the change of basis.
Definition D.4 (Generalize local coherence & Leverage score). We generalize the notion of coherence
to any arbitrary set of vectors U(n1) = {u(n1)

i }i∈[N1] ∈ Rn1×N1 and V(n2) = {v(n2)
j }j∈[N2] ∈

Rn2×N2 , and defined the generalized local coherences as

µi(A) =
n1

r
∥U⊤u

(n1)
i ∥2 ∀i ∈ [N1]

νj(A) =
n2

r
∥V⊤v

(n2)
j ∥2 ∀j ∈ [N2]

(97)

Suppose the sets U(n1) and V(n2) are be orthonormal basis (i.e. (N1, N2) = (n1, n2),

u
(n2)
i

⊤
u
(n2)
k = δik and v(n1)

j

⊤
v
(n1)
l = δjl). We can write u(n1)

i = P(1)e
(n1)
i and v(n2)

j = P(2)e
(n2)
j

with P(k) ∈ Rnk×nk the base change matrix from the canonical basis to U(n1) and V(n2) respectively.
So

µi(A) =
n1

r
∥U⊤P(1)e

(n1)
i ∥2 =

n1

r
∥Ũ⊤e

(n1)
i ∥2 = µi(Ã) ∀i ∈ [N1]

νj(A) =
n2

r
∥V⊤P(2)e

(n2)
j ∥2 =

n2

r
∥Ṽ⊤e

(n2)
j ∥2 = νi(Ã) ∀j ∈ [N2]

(98)

with Ã = A ×1 P(1) ×2 P(2) = P(1)⊤AP(2) = P(1)⊤UΣ
(
P(2)⊤V

)⊤
= ŨΣṼ⊤. That said,

any result stated in the standard formulation for A is valid for Ã under the general orthonormal
formulation.

Candès & Tao (2010) and Candes & Recht (2012) used mainly an upper bound µ0 on µi

and νi; µ0 ≥ max
(
maxi∈[n1] µi(A

∗),maxi∈[n2] νi(A
∗)
)
, and define a constant µ1 such

that the maxi,j [U
∗V∗⊤]ij = maxi,j

∑
k U

∗
i,kV

∗
j,k ≤ µ1

√
r

n1n2
. Since

∣∣∣∑k U
∗
i,kV

∗
j,k

∣∣∣ ≤√∑
k U

∗2
i,k

√∑
k V

∗2
j,k = ∥U∗

i,:∥2∥V∗
j,:∥2 = r√

n1n2

√
µi(A∗)νj(A∗) ≤ r√

n1n2
µ0 for all i, j; we

can just take µ1 ≥ µ0
√
r. From this, Candes & Recht (2012) show that if the coherence µ0 is low,

few samples are required to recover A∗.
Theorem D.2 (Theorem 1.3, Candes & Recht (2012)). Let A∗ ∈ Rn1×n2 be a matrix of rank r
sampled from the random orthogonal model, and put n = max(n1, n2). Suppose we observe N
entries of A∗ with locations sampled uniformly at random. Then there are numerical constants C
and c such that if N ≥ Cmax

(
µ2
1, µ

1
2
0 µ1, µ0n

1
4

)
nrβ log (n) for some β > 2, the minimizer to the

problem (P5) is unique and equal to A∗ with probability at least 1−c/n3. In addition, if r ≤ n1/5/µ0,
then the recovery is exact with probability at least 1− c/n3 provided that N ≥ Cµ0n

6/5rβ log (n).

Chen et al. (2014) show that sampling the element at position (i, j) with probability pij ∈ Ω(µi + νj)
allows perfect recovery of A∗ with fewer samples, and called such sampling strategies local coherence
sampling.
Theorem D.3 (Theorem 3.2 and Corollary 3.3, Chen et al. (2014)). Let A∗ ∈ Rn1×n2 be
a matrix of rank r with local coherence {µi, νj}i∈[n1],j∈[n2]. There are universal constant
c0, c1, c2 > 0 such that if each element (i, j) is independently observed with probability pij ≥
max

{
min

{
c0

(µi+νj)r log2(n1+n2)
min(n1,n2)

, 1
}
, 1
min(n1,n2)10

}
, then A∗ is the unique optimal solution of

the nuclear minimization problem (P5) with probability at least 1− c1/(n1 + n2)
c2 , for a number of

sample N ∈ O
(
max(n1, n2)r log

2(n1 + n2)
)
.

Given N and τ ∈ [0, 1], to control the coherence,

• For matrix factorization, we select the first N1 = τN examples with the highest values
of µi(A

∗) + νj(A
∗), and select the remaining (1− τ)N examples uniformly among the
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remaining. The positions selected are one-hot encoded in dimensions n1 (for row positions)
and n2 (for column positions) to have X(1) and X(2), respectively.

• For matrix sensing, we generate X(1) (resp. X(2)) by taking the first N1 = min(⌊τN⌋, n1)
(resp. N1 = min(⌊τN⌋, n2)) rows from the first columns of U∗ (resp. V∗) and the elements
of the remaining N2 = N − N1 rows iid from the Gaussian distribution N (0, σ2) with
σ = 1/n1 (resp. σ = 1/n2).

The higher τ (and so N1), the less incoherence between the measures (rows of X = X(2) •X(1))
and Φ = V∗ ⊗U∗.

D.5 LINEAR PROGRAMMING

We fix n1 = n2 = 102 and ξ = 0 (no noise) and solve for different (N, r, τ) the convex problem (P5)
using standard linear programming (we use the cvxpy library). As r and/or τ increases, the number
of samples needs for perfect recovery decreases. The relative recovery error ∥A −A∗∥2/∥A∗∥2
obtained is usually of the order of 10−6 and gives us a basis for comparison with other methods. We
do not include figures to save space.

D.6 SUBGRADIENT DESCENT

We write a for vec(A) and b for vec(Σ) under full SVD A = UΣV⊤ ∈ Rn1×n2 . The matrix is
A∗ = U∗Σ∗V∗⊤ ∈ Rn1×n2 , the signal is a∗ = vec(A∗), the sparse basis is Φ = V∗ ⊗ U∗ ∈
Rn1n2×n1n2 , the sparse coordinates are b∗ = vec(Σ∗). Let y(A) = Fa(X) = X vec(A). We have
y∗ = Fa∗(X)+ ξ = Fb∗(X̃)+ ξ, and want to minimize f(A) = gβ2

(A)+ β∗∥A∥∗ using gradient
descent, where

gβ2(A) :=
1

2
∥y(A)− y∗∥22 +

β2

2
∥A∥F

=
1

2
a⊤X⊤Xa− y∗⊤Xa+

1

2
y∗⊤y∗ +

β2

2
a⊤a

=

{
1
2a

⊤ (X⊤X+ β2In
)
a−

(
X⊤Xa∗ +X⊤ξ

)⊤
a+ 1

2∥Xa∗ + ξ∥22
1
2 (a− a∗)⊤

(
X⊤X+ β2In

)
(a− a∗)−

(
X⊤ξ − β2a

∗)⊤ (a− a∗) + 1
2∥ξ∥

2
2 +

β2

2 ∥a∗∥22
(99)

We write F (A) := Gβ2
(A) + β∗h(A) with

vecGβ2
(A) := ∇agβ2

(A) = X⊤(y − y∗) + β2a =

{ (
X⊤X+ β2In

)
a−

(
X⊤Xa∗ +X⊤ξ

)(
X⊤X+ β2In

)
(a− a∗)−

(
X⊤ξ − β2a

∗)
(100)

and h(A) ∈ ∂∥A∥∗ = {UV⊤ + W, ∥W∥2→2 ≤ 1,U⊤W = 0,WV = 0} any subgradient of
∥A∥∗, with A = UΣV⊤ under the compact SVD 7. We use h(A) = UV⊤ for simplicity and
without loss of generality.

Suppose we start at some A(1) := ζIn1×n2
or A(1) iid∼ ζN (0, 1/n1n2), with ζ ≥ 0 the initialization

scale. Using F(t) := F (A(t)), the subgradient update rule is

A(t+1) = A(t) − αtF
(t) ∀t > 1 (101)

with αt the learning rate at step t. Using a = vecA, we have

a(t+1) = a(t) − αt vecF (A(t))

= a(t) − αt (vecGβ2
(A) + β∗ vec(h(A)))

(102)

That is, using h(t) = vec(h(A(t))),{
a(t+1) =

[
In − αt

(
X⊤X+ β2In

)]
a(t) + αt

(
X⊤Xa∗ +X⊤ξ

)
− β∗αth

(t)

a(t+1) − a∗ =
[
In − αt

(
X⊤X+ β2In

)]
(a(t) − a∗) + αt

(
X⊤ξ − β2a

∗)− β∗αth
(t)

(103)
7The norm ∥A∥∗ is not differentiable everywhere because the singular values of A can be non-differentiable

at points where they have multiplicities (e.g., when the singular values are not distinct).
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We let f∗ = f(A∗) = β∗∥A∗∥∗ + β2

2 ∥a∗∥22 + ∥ξ∥22 and f (t) = f(A(t)). Since the sub-
gradient method is not a descent method, we let A

(t)
best = argminA∈{A(t′),t′≤t} f(A) =

argmin
A∈

{
A

(t−1)
best ,A(t)

} f(A) be the best point found so far at step t, and f
(t)
best = f(A

(t)
best) =

min
{
f
(t−1)
best , f (t)

}
. This A(t)

best can be made η-optimal for an arbitrary precision η if the step rule is
chosen appropriately, as the following theorem shows.
Theorem D.4. Suppose there exists a constant L > 0 such that ∥F (A)∥F ≤ L for all A. Let
A

(t)
best = argmin

1≤t′≤t
f(A(t′)) and f

(t)
best = f(A

(t)
best). Then, for every T ≥ 1, f (T )

best − f(A∗) ≤

∥A(1)−A∗∥2
F+L2 ∑T

t=1 α2
t

2
∑T

t=1 αt
.

Proof. Similar to Theorem C.3

That said, many step size rules lead to different accuracy.
Corollary D.1. With a constant step size, αt = α,

f
(T )
best − f∗ ≤ ∥A(1) −A∗∥2F + L2Tα2

2Tα
−→T→∞ L2α/2 (104)

With a square summable but not summable step size rule,
∑

t α
2
t < ∞ and

∑
t αt = ∞, we have

f
(T )
best − f∗ ≤

∥A(1) −A∗∥2F + L2
∑T

i=1 α
2
i

2
∑T

i=1 αi

−→T→∞ 0 (105)

As in section C.6,

• We let X = UΣ
1
2V⊤ under the compact SVD decomposition, with Σ = diag(σk)k∈[r],

where r = rank(X) and σmax = σ1 ≥ · · ·σk ≥ σk+1 · · · ≥ σmin = σr > σr+1 = · · · = 0

• We assume the step size αt = α satisfies 0 < α < 2
σmax+β2

.

• We define ρp :=
∥∥In − αt

(
X⊤X+ β2In

)∥∥
p→p

for all p > 0.

D.6.1 MEMORIZATION

We will show that the update first moves to the least square solution of the problem, â = vec Â =(
X⊤X+ β2In

)†
X⊤y∗ = V (Σ + β2I)−1

(
ΣV⊤b∗ +Σ

1
2U⊤ξ

)
(Theorem TODO). If β∗ is too

high, the subgradient term h(A) dominates early, and there is no convergence, i.e., no memorization
nor generalization (Theorem D.5). This â can memorize (Theorem TODO), but cannot generalize for
N < n (Theorem TODO).
Theorem D.5 (Oscillatory Behavior for Large β∗). Let A(1) ∈ Rn1×n2 full rank. Consider the
subgradient descent update

A(t+1) = A(t) − αt

(
∇Agβ2

(A(t)) + β∗h(A
(t))
)

(106)

with a fixed step size αt = α > 0, where gβ2
(A) = 1

2∥X vecA − y∗∥22 +
β2

2 ∥A∥2F and h(A) ∈
∂∥A∥∗. If β∗ > σmax+β2√

min(n1,n2)
then the ℓ∗-term dominates the updates, causing the sequence b(t) to

exhibit oscillatory behavior without convergence to a minimizer of f(A) = gβ2(A) + β∗∥A∥1.

Proof. We use lemma D.6 with L = ∥X̃⊤X̃+β2In∥2→2 = σmax(X̃
⊤X̃)+β2 (operator norm) be the

Lipschitz constant for vecGβ2(A) = vec∇Agβ∗(A) = X⊤(Xa−y∗)+β∗a =
(
X⊤X+ β2In

)
a−(

X⊤Xa∗ +X⊤ξ
)
, since ∥ vecGβ2

(U)− vecGβ2
(V)∥2 ≤ L∥ vecU− vecV∥2 for all U, V.

When the data-fitting gradient ∇Agβ2
(A(t)) is negligible, the singular direction of β∗h(A

(t)) (which
depends on the singular vectors of A(t)) can flip across iterations in a way that prevents stable
convergence (see Theorem D.12).
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Lemma D.6. Let f(A) = g(A) + β1∥A∥∗ be a convex function from Rn1×n2 to R where g has a
Lipschitz continuous gradient with Lipschitz constant L > 0, i.e., ∥∇g(U)−∇g(V)∥F ≤ L∥U−V∥F
for all U,V ∈ Rn1×n2 . Consider the subgradient descent update

A(t+1) = A(t) − α
(
∇g(A(t)) + β∗h(A

(t))
)

(107)

with a fixed step size α > 0, where h(A(t)) ∈ ∂∥A(t)∥∗. If β1 > L√
min(n1,n2)

then the ℓ∗-term

dominates the updates, causing the sequence {A(t)}t>1 to exhibit oscillatory behavior without
convergence to a minimizer of f . Consequently, neither memorization nor generalization is achieved,
and both training and test errors oscillate above a suboptimal level.

Proof Sketch. Since g has a Lipschitz continuous gradient with constant L, ∥∇g(A(t))∥F ≤
L for all t when A(t) is within a suitable bounded region. The subgradient h(A(t)) of
∥A(t)∥∗ satisfy ∥h(A(t))∥∗ ≈

√
min(n1, n2) at the beginning of training (full rank matrix), so

∥h(A(t))∥F ≥ ∥h(A(t))∥∗/ rank(h(A(t))) ≈
√
min(n1, n2)/min(n1, n2) =

√
min(n1, n2). If

β∗ > L√
min(n1,n2)

, then

β∗∥h(A(t))∥F > β∗
√

min(n1, n2) > L ≥ ∥∇g(A(t))∥F (108)
This inequality implies that the update is dominated by the ℓ∗-term:

A(t+1) ≈ A(t) − αβ∗h(A
(t)) (109)

with the influence of ∇g(A(t)) becoming negligible, making the iterates swing sharply depending on
the current singular-vector configuration (see Theorem D.12). This “over-regularization” effect is
akin to the ℓ1 case in vector problems, where too large causes step-to-step sign flipping. In the matrix
setting, it induces rank-structure flipping or oscillations.

Lemma D.7. For all p > 0 such that ρp < 1, we have

∥a(t) − â∥p ≤ ρtp∥a(1) − â∥p + αβ∗n
1/p

1− ρtp
1− ρp

≤ ρtp∥a(1) − â∥p +
αβ∗n

1/p

1− ρp
∀t ≥ 1 (110)

In particular,

∥a(t) − â∥2 ≤ ρt∥a(1) − â∥2 + αβ∗
√
n
1− ρt2
1− ρ2

≤ ρt∥a(1) − â∥2 +
αβ∗

√
n

1− ρ2
∀t ≥ 1 (111)

and

∥a(t) − â∥∞ ≤ ρt∞∥a(1) − â∥∞ + αβ∗
1− ρt∞
1− ρ∞

≤ ρt∞∥a(1) − â∥∞ +
αβ∗

1− ρ∞
∀t ≥ 1 (112)

Proof. The proof is similar to C.7, using tha fact that ∥ vec(h(A(t))∥p ≤ (n1n2)
1/p = n1/p for all

and p > 0 (Lemma D.11)

Theorem D.8. Let p > 0 such that ρp < 1. Define

t1 :=

−
ln
(
1 +

(1−ρ)∥a(1)−â∥p

αβ∗n1/p

)
ln(ρp)

 (113)

Then for all t ≥ t1,

∥a(t) − â∥p ≤ 2αβ∗n
1/p

1− ρtp
1− ρp

≤ 2
αβ∗n

1/p

1− ρp
(114)

and the prediction error for t ≥ t1 is bounded by

∥X̃a(t) − y∗∥p ≤ 2αβ∗n
1/p

1− ρtp
1− ρp

∥X∥p→p + ∥Xâ− y∗∥p

≤ 2
αβ∗n

1/p

1− ρp
∥X∥p→p + ∥Xâ− y∗∥p

(115)
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Proof. The proof is similar to C.8.

Corollary D.2. Let p > 0 such that ρp < 1. Define

t̃1 :=


−

ln

(
(1−ρ)∥a(1)−â∥p

αβ∗n1/p

)
ln(ρp)

 if ∥a(1) − â∥p > αβ∗
1−ρp

0 otherwise

> t1 (116)

Then for all t ≥ t̃1,

∥a(t) − â∥p ≤ 2
αβ∗n

1/p

1− ρp
(117)

and the prediction error for t ≥ t̃1 is bounded by

∥X̃a(t) − y∗∥p ≤ 2αβ∗n
1/p

1− ρp
∥X̃∥p→p + ∥X̃â− y∗∥p (118)

Proof. The proof is similar to C.2

Theorem D.9. Assume E[ξ] = 0 and Cov(ξ) = σ2
ξ IN . Then

Eξ

[
∥Xâ− y∗∥22

]
=

r∑
i=1

(
β2σi

σi + β2

)2

(V⊤a∗)2i +

r∑
i=1

(
β2

σi + β2

)2

σ2
ξ + σ2

ξ (N − r) (119)

Proof. The proof is similar to C.9

Theorem D.10. For N < n,

∥â− a∗∥22 ≥ ∥(In −VV⊤)a∗∥22 (120)

In particular, if a∗ has a nonzero component orthogonal to Col(V), then â cannot perfectly generalize
to a∗.

Proof. The proof is similar to C.10

Lemma D.11. Let A ∈ Rn1×n2 . We have ∥ vec(H)∥p ≤ (n1n2)
1/p for all H ∈ ∂∥A∥∗ and p > 0.

Proof. Let H ∈ ∂∥A∥∗. Then ∥H∥2→2 ≤ 1. So by the definition of the spectral (operator) norm,
we have ∥H∥2→2 = supx ̸=0

∥Hx∥2

∥x∥2
= σmax(H) ≤ 1. Taking x = e

(n2)
j , the j-th standard basis

vector in Rn2 , we obtain ∥H:,j∥2 = ∥He
(n2)
j ∥2 ≤ 1; which implied Hij ≤ ∥H:,j∥2 ≤ 1. So

∥ vec(H)∥p =
(∑n1

i=1

∑n2

j=1 |Hij |p
)1/p

≤ (n1n2)
1/p.

D.6.2 GENERALIZATION

We now turn our attention to the generalization delay. We analyse how the iterate A(t) transitions
from memorizing the training data (A(t) ≈ Â) to converging toward the low rank ground truth A∗.
We focus on quantifying the additional number of iterations ∆t required for this phase and bounding
the generalization error ∥A(t) −A∗∥∞ as t → ∞.

Theorem D.12. Given α > 0 and A(1) = U(1)Σ(1)V(1)⊤ ∈ Rn1×n2 (compact SVD) with Σ =

diag
(
σ
(1)
1 , . . . , σ

(1)
r1

)
, let

A(t+1) = A(t) − αU(t)V(t)⊤ = U(t)
(
Σ(t) − αIrt

)
V(t)⊤for all t ≥ 1 (121)

where rt = rank(A(t)).
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1. A point A is stationary for this dynamical system if and only if ∥A∥2→2 = σmax(A) < α.

2. ∥A(t)∥2→2 < α if and only if t > ⌊∥A(1)∥2→2

α ⌋.

3. For all t > ⌊∥A(1)∥2→2

α ⌋, rt =
∣∣∣{i | σ

(1)
i /α ∈ Z}

∣∣∣.
Proof. Equation 121 writes

A(t+1) = U(t+1)Σ(t+1)V(t+1)⊤ =

rt+1∑
i=1

σ
(t+1)
i U

(t+1)
:,i V

(t+1)⊤
:,i

=

rt∑
i=1

(σ
(t)
i − α)U

(t)
:,i V

(t)⊤
:,i

=

rt∑
i=1

|σ(t)
i − α| · sign(σ(t)

i − α)U
(t)
:,i V

(t)⊤
:,i

(122)

This implies
σ
(t+1)
i = |σ(t)

i − α| ∀i ∈ [r1] (123)

So starting at σ(1)
i , each σi decay at each step by α until σ∗ := σ

(t)
i ∈ [0, α), and start oscillating

between σ∗
i and α− σ∗

i . It starts doing so when t > ti := ⌊σ
(1)
i

α ⌋. We take t = maxi ti.

Like in section C.6.2, after t1 :=

−
ln

(
1+

(1−ρ)∥a(1)−â∥p
αβ∗n1/p

)
ln(ρp)

, ∥a(t) − â∥p ≤ 2αβ∗n
1/p 1−ρt

p

1−ρp
≤

2αβ∗n
1/p

1−ρp
(Theorem D.8) and

∥ vecGβ2
(A(t))∥p = ∥ vecGβ2

(A(t))− vecGβ2
(Â)∥p since Gβ2

(Â) = 0

≤ ∥X⊤X+ β2In∥p→p∥ vecA(t) − vec Â∥p

≤ 2αβ∗n
1/p∥X⊤X+ β2In∥p→p

1− ρtp
1− ρp

≤ 2αβ∗n
1/p

1− ρp
∥X⊤X+ β2In∥p→p

(124)

So, this gradient can be made much smaller than the subgradient term by choosing αβ∗ sufficiently
small. After time t1, the contribution of the gradient Gβ2

to the update of A(t) is dominated by the
ℓ∗–regularization term. Specifically, the update rule approximates

A(t+1) ≈ A(t) − αβ∗U
(t)V(t)⊤ (125)

By theorem D.12, this converge to a solution with operator norm bound by αβ∗ after additional
∆t = Θ

(
⌊σmax(Â)

αβ∗
⌋
)

steps. Note that when ∥A(t)∥∗ becomes too small, A(t) ≈ A∗ since for
problem of interest, the minimum nuclear norm solution that fits the data is A∗ under the low-
rank constraint r = rank(A) ≪ min(n1, n2) (and the coherence assumptions on X with respect
to the eigenbasis of A∗). The smaller αβ∗, the longer it take to recover A∗, and the smaller
is the error ∥A(t) − A∗∥∞ when t → ∞. Like in linear sparse recovery, if β2 is choose such
that σmax(Â) ≪ αβ∗, then A(t) will get stuck near Â, and there will be no generalization after
memorization. So, a bad choice of a non-zero β2 can be detrimental to generalization (it is better to
not use β2 on that problem unless the initialization scale is nontrivial).

Generalization appends through a multiscale singular value decay phenomenon. The small singular
value after memorization converges to {σ, 0 ≤ σ < αβ∗}, followed by the next smaller one until
the larger one. So, for N < n1n2, if we just regularize the Frobenius norm (standard ℓ2) without
regularizing the nuclear norm (ℓ∗), we can’t reach the optimal solution. On the other hand, when N
is large enough, regularizing the nuclear norm is sufficient.
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By carefully choosing α and β1, one can balance the speed of generalization (smaller ∆t) with the
accuracy of recovery (smaller ∥b(t) − b∗∥∞). Appropriate step rule also guaranteed the converge of
∥b(t)∥1 to ∥b∗∥1.

Theorem D.13. For all T ∈ N∗, we have

min
1≤t≤T

(
∥A(t)∥∗ − ∥A∗∥∗

)
≤

∥A(1) −A∗∥2F +
(
max1≤t≤T ∥∇Af(A(t))∥2F

)∑T
t=1 α

2
t

2β∗
∑T

t=1 αt

+
∥ξ∥22 + β2∥A∗∥2F

2β∗
(126)

Proof. The proof is similar to C.13

So, when
∑

t α
2
t < ∞ and

∑
t αt = ∞ (e.g. αt = a/(b + t), a > 0 and b ≥ 0), ∥A(t)∥1 →

∥A∗∥1 → 0 as T → ∞, for β2 = 0 in the noiseless setting.

D.6.3 ADDITIONNAL EXPERIMENTS

We optimize the noiseless matrix completion problem using the subgradient descent method with
(n1, n2, r,N, ζ, β2) = (10, 10, 2, 70, 10−6, 0) for different values of α and β∗. As expected, larger α
and/or β∗ lead to fast convergence and do so at a suboptimal value of the test error (Figure 42).
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Figure 42: Training error ∥X vecA(t) − y∗∥2/∥y∗∥2 and recovery error ∥A(t) −A∗∥F/∥A∗∥F as a
function of the learning rate α and the ℓ∗-regularization coefficient β∗. Here

(n1, n2, r,N) = (10, 10, 2, 70)

D.7 PROJECTED SUBGRADIENT

To ensure memorization, we can use the projected subgradient for problem (P5) of minimizing
∥A∥∗ subject to the constraint FvecA(X) = X vecA = y∗, where at each step the update (using
now just β∗h(A) as gradient) is projected onto the constraint set. In our case, the update write
A(t+1) = Π

(
A(t) − αtβ∗h(A

(t))
)

with Π the projection on the set {A,X vecA = y∗}. Figure 43
shows the results for a matrix sensing problem.

100 101 102 103 104 105 106

Steps (t)

10 14

10 11

10 8

10 5

10 2

t1 t2

0

5

10

15

||A
|| *||Xvec(A(t)) y * ||F / ||y * ||2

||A(t) A * ||F / ||A * ||F
||A(t)|| *

||A * || *

100 101 102 103 104 105 106

Steps (t)

0

100

Si
ng

ul
ar

 v
al

ue
s

t1 t2
t

1

2

3

4

5

6

7

8

9

10

Di
m

en
sio

ns
 (n

)

Figure 43: Relative errors, norm ∥A(t)∥∗, and evolution of singular value for the projected
subgradient method. Gβ2

(A(t)) dominates β∗h(A
(t)) until memorization. From memorization

β∗h(A
(t)) dominates and make ∥A(t)∥1 converge to ∥A∗∥1 at t2, and so A(t2) = A∗. Here
(n1, n2, r,N) = (10, 10, 2, 70) and (ζ, α, β∗, β2) = (10−6, 10−1, 10−4, 0).
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D.8 PROXIMAL GRADIENT DESCENT AND ITERATIVE SOFT-THRESHOLDING ALGORITHM

Similar to what we derive in section C.8, we have A− αF (A) = Πα (A− αGβ2
(A)) where Πα is

the proximal mapping for B → β∗∥B∥∗, Πα(A) = argminB
1
2α∥B−A∥2F + β∗∥B∥∗ = Sαβ∗(A)

with Sγ(A) = Umax(Σ − γ, 0)V⊤ the soft-thresholding operator for A = UΣV⊤ under SVD,
where max(Σ− γ, 0)ij = δij max(Σij − γ, 0). The final form of the update is then

A(t+1) = Sαtβ∗

(
A(t) − αtGβ2(A

(t))
)

∀t > 1 (127)

Figure 44 shows the results for a matrix sensing problem.
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Figure 44: Gradient Ratio, relative errors, norm ∥A(t)∥∗, and evolution of singular value for the
Proximal Gradient Descent. Gβ2(A

(t)) dominates β∗h(A
(t)) until memorization. From

memorization β∗h(A
(t)) dominates and make ∥A(t)∥1 converge to ∥A∗∥1 at t2, and so A(t2) = A∗.

Here (n1, n2, r,N) = (10, 10, 2, 70) and (ζ, α, β∗, β2) = (10−6, 10−1, 10−4, 0).

D.9 GROKKING WITHOUT UNDERSTANDING

Like in section C.9, there is no grokking for N < n when β∗ ̸= 0, no matter the value of β2 and
the initialization scale ζ ≥ 0, A(1) iid∼ ζN (0, 1/n). With a small initialization, β1 is sufficient
for generalization to happen, provided N is large enough and β2 is not very large. If the scale at
initialization is large, β2 is necessary to generalize, but it is not sufficient: because of the large
initialization, a transition is observed in the generalization error during training, corresponding to a
transition in the ℓ2 norm of the model parameters, but not the recovery error.

D.10 IMPACT OF COHERENCE ON GROKKING: AMPLIFYING GROKKING THROUGH DATA
SELECTION

Above, we introduce the parameter τ ∈ [0, 1] that control the incoherence between the measures
{Xi}i∈[N ] and the sparse basis (dictionary) {Φ:,j}j∈[n], with Φ = V∗ ⊗ U∗ ∈ Rn1n2×n1n2 and
X = X(2) •X(1) ∈ RN×n1n2 . Unlike compressed sensing (Section C.10), where large values of τ
are detrimental to generalization, here, as τ → 1, performance improves, and the number of examples
required to generalize decreases exponentially, as does the time it takes the models to do so (Figures
45 and Figures 46). Note that here, for matrix completion, for a fixed τ , we select the first τN
examples with the highest values of µi(A

∗) + νj(A
∗), and select the remaining (1− τ)N examples

at random, uniformly.

D.11 DEEP MATRIX FACTORIZATION: THE EFFECT OF OVERPARAMETRIZATION

Let now use the parameterization A =
∏L

k=1 Ak, with A1 ∈ Rn1×d, AL ∈ Rd×n2 , and Ai ∈ Rd×d

for all i ∈ (1, L). This corresponds to a linear network with L layers, where each hidden layer
has the parameter Ak—with this, increasing L leads to overparameterization without altering the
expressiveness of the function class A → FA(x) = x⊤ vecA, since the model remains linear with
respect to the input x. Like in compressed sensing, there is no need for ℓ∗ (β∗ = 0) to generalize
when L ≥ 2 (and the initialization scale is small), unlike the shallow case (L = 1). This is an
observation already made and proven in previous art. (Gunasekar et al., 2017; Arora et al., 2019;
Gidel et al., 2019; Gissin et al., 2019; Razin & Cohen, 2020; Li et al., 2020). Gunasekar et al. (2017);
Arora et al. (2019) show increasing L implicitly bias A toward a low-rank solution, which oftentimes
leads to more accurate recovery for sufficiently large N . In fact, with depth, the update for the
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Figure 45: Training and error ∥X vecA(t) − y∗∥2/∥y∗∥2 and recovery error ∥A(t) −A∗∥2/∥A∗∥F
as a function of the number of sample N and the coherence parameter τ ∈ [0, 1]. Here

(n1, n2, r, α, β1, β2, ζ) = (10, 10, 2, 10−1, 10−5, 0, 10−6).
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Figure 46: Training and error ∥X vecA(t1) − y∗∥2/∥y∗∥2 and recovery error
∥A(t2) −A∗∥2/∥A∗∥F (along with t1 and t2, the memorization and the generalization step) as a

function of the number of sample N and the coherence parameter τ ∈ [0, 1]. Here
(n1, n2, r, α, β1, β2, ζ) = (10, 10, 2, 10−1, 10−5, 0, 10−6).
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whole iterate is similar to the shallow case but with a preconditioner in front of the gradient (like in
section C.11). This preconditioner makes it possible to recover the low-rank matrix signal without
any regularization and with fewer samples than in the shallow case (Arora et al., 2018; 2019). It
is also shown specifically for this problem that initializing the model very far from the origin and
using a small (but non-zero) weight decay leads to grokking (Lyu et al., 2023), i.e., the model first
memorizes the observed entries, then after a long training period, converges to the sought matrices
provided the number of such observe entries is large enough.

We have y(A) = FvecA(X) = X vecA and y∗ = FvecA∗(X) + ξ = X vecA∗ + ξ, and want to
minimize f(A) = gβ2

(A) + β∗
∑

k ∥Ak∥∗ using gradient descent, where

gβ2
(A) :=

1

2
∥y(A)− y∗∥22 +

β2

2

∑
k

∥Ak∥2F (128)

Let vecG(A) :=
∂gβ2

(A)

∂ vecA = X⊤(y(A)− y∗) = X⊤X(vecA− vecA∗)−X⊤ξ. The gradient for
each Ak is

Gβ2
(Ak) :=

∂gβ2(A)

∂Ak

=

 G(A)(A2 · · · AL)
⊤ + β2Ak for k = 1

(A1 · · · Ak−1)
⊤G(A)(Ak+1 · · · AL)

⊤ + β2Ak for k ∈ (1, L)
(A1 · · · AL−1)

⊤G(A) + β2Ak for k = L
(Lemma D.14)

(129)
And the update rule for each Ak is

A(t+1)
k = A(t)

k − αGβ2(A
(t)
k )− αβ∗h(A(t)

k )

= (1− αβ2)A(t)
k − α

(∏
i<k

A(t)
i

)⊤

G(A(t))

(∏
i>k

A(t)
i

)⊤

− αβ∗h(A(t)
k )

(130)

where h(Ak) ∈ ∂∥Ak∥∗. We start the optimization at A(1)
k

iid∼ ζN (0, 1/n) with ζ ≥ 0 the
initialization scale.
Lemma D.14. Let f(A1, · · · ,AL) = g(A) ∈ R with A =

∏L
k=1 Ak ∈ Rd0×dL , where Ak ∈

Rdk−1×dk for all k ∈ [L]. We have

∂f(A)

∂Ak
=

(∏
i<k

Ai

)⊤
∂g(A)

∂A

(∏
i>k

Ai

)⊤

=


∂g(A)
∂A (A2 · · · AL)

⊤ for k = 1

(A1 · · · Ak−1)
⊤ ∂g(A)

∂A (Ak+1 · · · AL)
⊤ for k ∈ (1, L)

(A1 · · · AL−1)
⊤ ∂g(A)

∂A for k = L

(131)

Proof. We have

Rd0dL ∋ vecA =


(
(A2 · · · AL)

⊤ ⊗ Id0

)
vecA1 for k = 1(

(Ak+1 · · · AL)
⊤ ⊗ (A1 · · · Ak−1)

)
vecAk for k ∈ (1, L)

(IdL
⊗ (A1 · · · AL−1)) vecAL for k = L

(132)

So

Rd0dL×dk−1dk ∋ ∂ vecA

∂ vecAk
=

 (A2 · · · AL)
⊤ ⊗ Id0

∈ RdLd0×d1d0 for k = 1
(Ak+1 · · · AL)

⊤ ⊗ (A1 · · · Ak−1) ∈ RdLd0×dkdk−1 for k ∈ (1, L)
IdL

⊗ (A1 · · · AL−1) vecAL ∈ RdLd0×dLdL−1 for k = L
(133)

For Q ∈ Rd0×dL ,(
∂ vecA

∂ vecAk

)⊤

vecQ =


((A2 · · · AL)⊗ Id0) vecQ for k = 1(
(Ak+1 · · · AL)⊗ (A1 · · · Ak−1)

⊤) vecQ for k ∈ (1, L)

(IdL
⊗ (A1 · · · AL−1))

⊤
vecQ for k = L

=

 vec
(
Q(A2 · · · AL)

⊤) for k = 1
vec
(
(A1 · · · Ak−1)

⊤Q(Ak+1 · · · AL)
⊤) for k ∈ (1, L)

vec
(
(A1 · · · AL−1)

⊤Q
)

for k = L

(134)
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So

∂g(A)

∂ vecAk
=

(
∂ vecA

∂ vecAk

)⊤
∂g(A)

∂ vecA
=

(
∂ vecA

∂ vecAk

)⊤

vec
∂g(A)

∂A

=


vec
(

∂g(A)
∂A (A2 · · · AL)

⊤
)

for k = 1

vec
(
(A1 · · · Ak−1)

⊤ ∂g(A)
∂A (Ak+1 · · · AL)

⊤
)

for k ∈ (1, L)

vec
(
(A1 · · · AL−1)

⊤ ∂g(A)
∂A

)
for k = L

(135)

E BEYONG SPARSE RECOVERY AND MATRIX FACTORIZATION

We will optimize functions of the form f(θ) = Ê(θ) + βΩ(θ), where Ê is the square loss or cross-
entropy loss function of the considered model on the training data, θ the set of model parameters, and
Ω a regularizer applied to θ. It can be the standard ℓp norm or quasi-norm of θ, the sum of the nuclear
norms of each matrix in θ (in this case, we call it ℓ∗), etc. By normal initialization for a parameter
A ∈ Rn1×n2 , we mean A(0) iid∼ N (0, 1/n1).

E.1 NON LINEAR TEACHER-STUDENT

We consider a teacher y∗(x) = B∗g(A∗x) from Rd to Rc with r hidden neurons (A∗ ∈ Rr×d

and B∗ ∈ Rc×r); where g(x) = max(x, 0) and x,A∗, rB∗ iid∼ N (0, 1). We i.i.d sample N
inputs output pair Dtrain = {(xi,y

∗(xi))}Ni=1 and optimize the parameters θ = (A,B) of a student
yθ(x) = Bg(Ax) on them, starting from normal initialization, with the loss function Ê(θ) =
1
N

∑N
i=1 ∥yθ(xi)− y∗(xi)∥22 and different regularizer Ωp(θ) for p ∈ {1, 2, ∗}.

For any p ∈ {1, 2, ∗}, the smaller is αβ, the longer is the delay between memorization and general-
ization. See Figures 47, 48 and 49 for an experiment with (d, r, c,N) = (100, 500, 2, 102).
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Figure 47: Training and test error two layers ReLU teacher-student with ℓ1 regularization, for
different values of the learning rate α and the ℓ1 coefficient β. We can see that the smaller is αβ, the

longer is the delay between memorization and generalization.

E.2 DOMAIN SPECIFIC REGULARIZATION

Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019) leverage prior knowledge from
differential equations by incorporating their residuals into the loss function, ensuring that solutions
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Figure 48: Training and test error two layers ReLU teacher-student with ℓ2 regularization, for
different values of the learning rate α and the ℓ2 coefficient β. We can see that the smaller is αβ, the

longer is the delay between memorization and generalization.
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Figure 49: Training and test error two layers ReLU teacher-student with ℓ∗ regularization, for
different values of the learning rate α and the ℓ∗ coefficient β. We can see that the smaller is αβ, the

longer is the delay between memorization and generalization.
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remain consistent with physical laws. Sobolev training (Czarnecki et al., 2017) generalizes this idea
by incorporating not only input-output pairs but also derivatives of the target function. More precisely,

given input-output pairs {(xi,y
∗(xi)}i∈[N ] along with known derivatives

{
∂ky∗(x)

∂xk

∣∣∣
x=xi

}
i∈[N ]

for k ∈ [K], the goal is to train a neural network yθ(x) that approximates both the output and its
derivatives. The loss function extends the standard mean squared error (MSE) to include Sobolev
penalties:

f(θ) =
1

N

N∑
i=1

∥yθ(xi)− y∗(xi)∥2︸ ︷︷ ︸
data loss

+
β

N

K∑
k=1

N∑
i=1

∥∥∥∥∂kyθ

∂xk
(xi)−

∂ky∗

∂xk
(xi)

∥∥∥∥2
F︸ ︷︷ ︸

Sobolev penalty

(136)

The hyperparameter β controls the contribution of the derivative alignment term. This penalty ensures
that the model not only fits the data but also respects known smoothness constraints or differential
structure, which is crucial in physics-based applications (Lu et al., 2021). We consider the two layers
feed forward teacher y∗(x) = B∗g(A∗x) of Section E.1, and optimize the parameters θ = (A,B) of
a student yθ(x) = Bg(Ax) using the sobolev objectify for K = 1, ∂y∗(x)

∂x = B∗ diag (g′(A∗x))A∗.
For any p ∈ {1, 2, ∗}, the smaller is αβ, the longer is the delay between memorization and general-
ization. See Figure 50 for an experiment with (d, r, c,N) = (100, 500, 2, 102).
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Figure 50: Training and test error two layers ReLU teacher-student with Sobolev training, for
different values of the learning rate α and the ℓ1 coefficient β. We can see that the smaller is αβ, the

longer is the delay between memorization and generalization.

E.3 ALGORITHMIC DATASET

Consider a binary mathematical operator ◦ on S = Z/pZ for some prime integer p. We want to
predict y∗(x) = x1◦x2 given x = (x1, x2) ∈ S2. The dataset D = {(x, y∗(x))|x ∈ S2} is randomly
partitioned into two disjoint and non-empty sets Dtrain and Dval, the training and the validation dataset
respectively8. Let rtrain = |Dtrain|/|D| be the training data fraction.

For MLP, the logits for x = (x1, x2) are given by y(x1, x2) = b(2) +
W(2)g

(
b(1) +W(1)

(
E⟨x1⟩ ◦ E⟨x2⟩

))
, where ⟨x1⟩ stands for the token corresponding to

x1, and E is the embedding matrix for all the symbols in S, g the activation function.
θ =

(
E,W(1),b(1),W(2),b(2)

)
∈ Rp×d1 × Rd2×d1 × Rd2 × Rp×d2 × Rp are the learnable

8It can be necessary in some contexts to consider the symmetric nature of ◦, so that |D| = p(p+ 1)/2 if ◦ is
symmetric (and we consider x1 ◦ x2 and x2 ◦ x1 as the same operation), and p2 otherwise.
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parameter, with d1 the embedding dimension. For the LSTM, we treat a problem as a sequence
classification problem, i.e., the sequence of tokens ⟨x1⟩⟨◦⟩⟨x2⟩⟨=⟩ is given to the model and its task
is to predict y∗(x1, x2).

We consider addition modulo p = 97 with rtrain = 40%. For MLP and LSTM, ℓ1 and ℓ∗ have the
same effect on grokking as ℓ2. For any p ∈ {1, 2, ∗}, the smaller is αβ, the longer is the delay
between memorization and generalization. See Figures 51, 52, 53, 54, 55 and 56.
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Figure 51: Training and test error (1− Accuray ) of a Multi-layer perceptron trained on the
algorithmic dataset with ℓ1 regularization for different values of the learning rate α and the ℓ1

coefficient β. We can see that the smaller is αβ, the longer is the delay between memorization and
generalization.
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Figure 52: Training and test error (1− Accuray ) of a Multi-layer perceptron trained on the
algorithmic dataset with ℓ2 regularization for different values of the learning rate α and the ℓ2

coefficient β. We can see that the smaller is αβ, the longer is the delay between memorization and
generalization.
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Figure 53: Training and test error (1− Accuray ) of a Multi-layer perceptron trained on the
algorithmic dataset with ℓ∗ regularization for different values of the learning rate α and the ℓ∗

coefficient β. We can see that the smaller is αβ, the longer is the delay between memorization and
generalization.

E.4 IMAGE CLASSIFICATION

We optimize the parameters θ = (A,B) of a model yθ(x) = Bg(Ax) on N = 1000 samples of the
MNIST dataset. Figure 57 show the results for ℓ1 : the result for ℓ2 and ℓ∗ are similar.
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Figure 54: Training and test error (1− Accuray ) of a Long Short Term Memory trained on the
algorithmic dataset with ℓ1 regularization for different values of the learning rate α and the ℓ1

coefficient β. We can see that the smaller is αβ, the longer is the delay between memorization and
generalization.

101 103

Steps (t)

0.00

0.25

0.50

0.75

1.00

Er
ro

r

= 0.001

Train
Test

10 7

10 6

10 5

101 103

Steps (t)

0.00

0.25

0.50

0.75

1.00
= 0.01

Train
Test

10 7

10 6

10 5

101 103

Steps (t)

0.00

0.25

0.50

0.75

1.00
= 0.1

Train
Test

10 7

10 6

10 5

Figure 55: Training and test error (1− Accuray ) of a Long Short Term Memory trained on the
algorithmic dataset with ℓ2 regularization for different values of the learning rate α and the ℓ2

coefficient β. We can see that the smaller is αβ, the longer is the delay between memorization and
generalization.
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Figure 56: Training and test error (1− Accuray ) of a Long Short Term Memory trained on the
algorithmic dataset with ℓ∗ regularization for different values of the learning rate α and the ℓ∗

coefficient β. We can see that the smaller is αβ, the longer is the delay between memorization and
generalization.
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Figure 57: Training and test error (1− Accuray ) of a Multi-layer perceptron trained on MNIST
with ℓ1 regularization for different values of the learning rate α and the ℓ1 coefficient β. We can see

that the smaller is αβ, the longer is the delay between memorization and generalization.
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