
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GROKKING BEYOND THE EUCLIDEAN NORM OF
MODEL PARAMETERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Grokking refers to a delayed generalization following overfitting when optimizing
artificial neural networks with gradient-based methods. In this work, we demon-
strate that grokking can be induced by regularization, either explicit or implicit.
More precisely, we show that when there exists a model with a property P (e.g.,
sparse or low-rank weights) that generalizes on the problem of interest, gradient
descent with a small but non-zero regularization of P (e.g., ℓ1 or nuclear norm
regularization) result in grokking. This extends previous work showing that small
non-zero weight decay induces grokking. Moreover, our analysis shows that over-
parameterization by adding depth makes it possible to grok or ungrok without
explicitly using regularization, which is impossible in shallow cases. We further
show that the ℓ2 norm of the model parameters cannot be used as an indicator of
grokking in a general setting in place of the regularized property P : the ℓ2 norm
grows in many cases where no weight decay is used, but the model generalizes
anyway. We also show that grokking can be amplified through only data selection
(with any other hyperparameter fixed).

1 INTRODUCTION

The optimization of machine learning models today relies entirely on gradient descent (GD). The
reasons behind the ability of such a procedure to converge towards generalizing solutions are still not
fully understood, particularly in over-parameterized regimes. Power et al. (2022) recently observed
an even more surprising feature of this optimization procedure, grokking: the optimization first goes
through a solution that perfectly memorizes the training data, but after a sufficiently long training
time, it suddenly converges on a solution that generalizes.

Many works have shown that grokking can be observed by using a large-scale initialization and a
small (but non-zero) weight decay (Liu et al., 2023a; Lyu et al., 2023). Moreover, some works have
shown that the ℓ2 norm of the weights can be used during optimization as a progression measure for
generalization since it generally decreases during the transition from memorization to generalization
(Liu et al., 2023a; Thilak et al., 2022; Varma et al., 2023). All these theories have left open the
question of whether we always need an ℓ2 regularization to observe generalization or whether the ℓ2
norm of the parameter is always a good predictor of generalization in general. This paper attempts to
answer these questions. We hypothesize that the dynamic of grokking goes beyond the ℓ2 norm, that
is: If there exists a model with a property P (e.g., sparse or low-rank weights) that fits the data, then
GD with a small but non-zero regularization of P (e.g., ℓ1 or nuclear norm regularization) will also
result in grokking, provided the number of training sample is large enough. Moreover, the ℓ2 norm is
no longer guaranteed to decrease with generalization when the property sought is not the ℓ2 norm of
the parameters.

For sparsity, we first focus on a linear teacher-student setup and show that recovery of sparse vectors
using gradient descent and a lasso penalty exhibits a grokking phenomenon, which is impossible
using only the ℓ2 regularization no matter the initialization scale as advocated by previous art (Lyu
et al., 2023; Liu et al., 2023b). We also formally show that the generalization delay is inversely
proportional to the learning rate and the ℓ1 regularization strength and proportional to the ℓ∞ norm of
the parameters at memorization. Moreover, with a deeper over-parametrized model, there is no need
to use ℓ1, i.e., gradient descent is implicitly biased toward such a sparse solution. For the low-rank
structure, we focus on matrix factorization and show that nuclear norm regularization (denoted ℓ∗)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

is needed for generalization in the shallow case, and the delay between memorization and perfect
recovery is inversely proportional to the strength of the ℓ∗ regularization and the learning rate used,
and proportional to the large singular value of the iterate at memorization. This extends previous
works on matrix factorization that show that deeper linear networks can factorize low-rank matrices
without explicit regularization (Arora et al., 2018; 2019). All this holds beyond shallow and/or linear
networks. We show that ℓ1 or ℓ∗ can replace ℓ2 in a more general setting and accelerate generalization,
i.e., reduce grokking. We focus on a nonlinear teacher-student setup, on the algorithmic data setup
(Power et al., 2022) on which grokking was first observed, with different classes of models (MLP,
LSTM), and on image classification with MLP. In a setting where the ℓ2 regularization is not used,
the ℓ2 norm of the model parameters tends to grow during training and after generalization, but
optimization still produces a generalizable solution. We further observe that using ℓ2 can worsen
generalization when the property P differs from the ℓ2 norm and is necessary for generalization.

10 8 10 7 10 6 10 5 10 4 10 3 10 2

1

101

102

103

104

105

106

107

t

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Er
ro

r

t2
||b||

1

||b(t2) b * ||2
1

Figure 1: Generalization step
t2 and recovery error ∥b(t2) −
b∗∥2 as a function of αβ1. We
can see that t2 ∝ ∥b̂∥∞/αβ1

and ∥b(t2) − b∗∥2 ∝ αβ1,
i.e. small αβ1 require longer
time to converge, but do so at
a lower recovery error. The
outlier for small αβ1 is due to
insufficient training (Fig. 12).

Our contributions can be summarized as follows: (i) We show that
grokking can be induced by the interplay between the sparse/low-
rank structure of the solution and the ℓ1 / ℓ∗ regularization used
in training, extending previous results on ℓ2 regularization (Liu
et al., 2023a; Lyu et al., 2023). (ii) For shallow linear networks, we
theoretically characterize the relation between grokking time and
regularization strength, showing that regularization is necessary to
observe grokking on sparse or low-rank solutions. (iii) Moreover, we
empirically show that in deep (non-linear) networks, the sparse/low-
rank structure of the data is enough to have generalization without
explicit regularization. Adding depth makes it possible to grok or
ungrok simply from the implicit regularization of gradient descent.
(iv) Leveraging the notion of coherence, we show that grokking can
be amplified through only data selection (with any other hyperpa-
rameter fixed). (v) We show that ℓ1 or ℓ∗ can replace ℓ2 in a more
general setting and reduce grokking. Moreover, in such a scenario,
and in the shallow sparse/low-rank scenario mentioned above, the ℓ2
cannot be used as an indicator of grokking. (vi) We also show that
other forms of domain-specific regularizers strongly affect the delay
between memorization and generalization.

This paper is organized as follows. We study grokking on sparse
recovery and low-rank matrix factorization in section 2. In section 3, we show how our result extends
beyond sparse recovery and matrix factorization. We then discuss and conclude our work in section 4.

2 GROKKING IN SPARSE RECOVERY AND MATRIX FACTORIZATION

Compressed sensing theory provides the foundation for recovering sparse signals from undersampled
noisy linear measurements. Given N ≪ n measurements y∗ = Fa∗(X) + ξ of a vector a∗ ∈ Rn,
where Fa(X) = Xa and ξ denotes noise, we seek a reconstruction of the form a =

∑n
i=1 b

∗
iΦ:,i =

Φb, with Φ ∈ Rn×n a dictionary and s = ∥b∗∥0 := |{i,b∗
i ̸= 0}| ≪ n. The exact recovery problem

(P0), which involves minimizing ∥b∥0 under the constraint of the form ∥FΦb(X) − y∗∥2 ≤ ϵ,
is NP-hard. Therefore, we focus on the relaxed problem (P1), minimizing ∥b∥1 under the same
constraint, commonly known as Basis Pursuit. We investigate the optimization dynamics of solving
(P1) through gradient descent by formally characterizing grokking time. More precisely, we want to
minimize f(b) = 1

2∥X̃b− y∗∥22 +
β2

2 ∥b∥22 + β1∥b∥1 using gradient descent with a learning rate α.
The subgradient update rule for this problem is given by b(t+1) = b(t)−α

(
Gβ2(b

(t)) + β1h(b
(t))
)

where Gβ2(b) = ∇b
1
2∥X̃b−y∗∥22+β2b and h(b) ∈ ∂∥b∥1 is any subgradient of ∥b∥1. Intuitively,

the training dynamics can be decomposed in two steps: the update b(t) first moves near the least

square solution b̂ :=
(
X̃⊤X̃+ β2In

)†
X̃⊤y∗ leading to memorization. Later in training, h(b)

dominates the update, leading to ∥b(t) − b∗∥∞ ∈ O (αβ1) withing Θ(1/αβ1) additional steps.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Theorem 2.1. Assume α < 2
σmax(X̃⊤X̃)+β2

and 0 < β1 ≪ σmax(X̃
⊤X̃)+β2√
n

. Then, there exists C > 0

and t1 < ∞ such that ∥b(t) − b̂∥2 ≤ 2αβ1n
1/2

1−ρ2
∀t ≥ t1 and ∥b(t) − b∗∥2 ≤ Cαβ1n

1/2 ⇐⇒ t ≥

t1 +∆t where ρ2 := σmax

(
In − α

(
X̃⊤X̃+ β2In

))
and ∆t = Θ

(
∥b̂∥∞
αβ1

)
.

This result in valid for any ℓp norm (p ∈ (0,∞]) such that ρp :=
∥∥∥In − α

(
X̃⊤X̃+ β2In

)∥∥∥
p→p

∈

(0, 1), and under this condition ∥ · ∥2 becomes ∥ · ∥p and n1/2 becomes n1/p. We also show that
f(b(t)) → f(b∗) and ∥b(t)∥1 → ∥b∗∥1 as t → ∞ (Theorems C.3 and C.13). Note that when N is
large enough, X̃b(t) = y∗ (memorization) and ∥b(t)∥1 = ∥b∗∥1 are enough to conclude b(t) = b∗

(generalization). In fact, after memorization, when ∥b(t)∥1 becomes too small, ∥b(t) − b∗∥∞ ≈ 0
(Figure 2) since for problem of interest, the sparse solution b∗ is the minimum ℓ1 solution to
∥X̃b− y∗∥2 ≤ ϵ under the sparsity constraint (section C). The smaller αβ1 is, the longer it takes to
recover b∗, and the smaller is the error ∥b(t) − b∗∥∞ when t → ∞ (Figures 1 and 12).

100 101 102 103 104 105 106
0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

t1 t2

t

0.0

0.2

0.4

0.6

0.8

Gr
ad

ie
nt

s R
at

io

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2
|| 1h(b(t))||2 / ||G 2(b(t))||2

100 101 102 103 104 105 106

Steps (t)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r
t1 t2

0.00

0.25

0.50

0.75

1.00

1.25

1.50

||b
|| 1||Xb(t) y * ||2 / ||y * ||2

||b(t) b * ||2 / ||b * ||2
||b(t)||1
||b * ||1

Figure 2: Gβ2(b
(t)) dominates

β1h(b
(t)) until memorization at t1;

after which β1h(b
(t)) dominates and

make ∥b(t)∥1 converge to ∥b∗∥1 at t2,
and so b(t2) = b∗.

In addition to gradient descent, our results (Section C.7) ex-
tend to other iterative methods for ℓ1 minimization, includ-
ing the projected subgradient method (Section C.7) and
for the proximal gradient descent method (Section C.8).
Contrary to previous findings (Lyu et al., 2023; Liu et al.,
2023a), we observe that in the over-parameterized regime
(N < n), large-scale initialization and ℓ2-regularization
alone do not necessarily induce grokking (Section C.9),
and instead lead to abrupt transitions in generalization er-
ror without converging to optimal solutions when sample
sizes are insufficient. We term this effect “grokking with-
out understanding”, as highlighted in related work (Levi
et al., 2024). Our analysis (Section C.10) demonstrates
that coherence significantly impacts grokking in sparse
recovery, with higher coherence delaying generalization
by limiting the diversity of information captured by mea-
surements. Furthermore, in deep linear networks (Section
C.11), we find that depth L ≥ 2 can implicitly promote
sparsity and generalization, reducing the reliance on ℓ1-
regularization while mitigating generalization delays. Finally, in Section C.12, we extend these
findings to realistic signals, including MNIST images, sinusoidal signals, and sparse polynomials.

For matrix factorization, given a low rank r matrix A∗ ∈ Rn1×n2 , a measurement matrix X ∈
RN×n1n2 ; and the measures y∗ = X vec(A∗) + ξ, and want to minimize f(A) = 1

2∥X vec(A)−
y∗∥22+

β2

2 ∥A∥F +β∗∥A∥∗ using gradient descent. The subgradient update rule is given by A(t+1) =

A(t) − α
(
Gβ2

(A(t)) + β∗h(A
(t))
)

where Gβ2
(A) = ∇A

1
2∥X vecA− y∗∥22 + β2A and h(A) ∈

∂∥A∥∗. Like in sparse recovery with gradient descent, the update A(t) first moves near the least
square solution vec(Â) :=

(
X⊤X+ β2In

)†
X⊤y∗, and later in training, it converges to a solution

with norm σmax

(
A(t)

)
∈ O(αβ∗) (maximum singular value, i.e., operator norm).

Theorem 2.2. Assume α < 2
σmax(X⊤X)+β2

and 0 < β∗ ≪ σmax(X
⊤X)+β2√

min(n1,n2)
. For all p ∈ (0,∞] such

that ρp :=
∥∥In − α

(
X⊤X+ β2In

)∥∥
p→p

∈ (0, 1), there exists t1 < ∞; ∥ vec(A(t))− vec(Â)∥p ≤
2αβ∗n

1/p

1−ρp
∀t ≥ t1 and ∥A(t)∥p ≤ αβ∗n

1/p ⇐⇒ t ≥ t2 := t1 +∆t with ∆t = Θ
(
⌊σmax(Â)

αβ∗
⌋
)

.

In particular, for p = 2, ρ2 ∈ (0, 1) since 0 < α < 2
σmax(X⊤X)+β2

. A choice of larger p means

choosing the learning rate to have ρp ∈ (0, αmax). We also show that f(A(t)) → f(A∗) and
∥A(t)∥1 → ∥A∗∥1 as t → ∞ (Theorems D.4 and D.13). When N is large enough, X vecA(t) = y∗

(memorization) and ∥A(t)∥∗ = ∥A∗∥∗ are enough to conclude A(t) = A∗ (generalization). In
fact, when Gβ2(A) become negligeable compare to β∗h(A), the singular values starts involving as
σ
(t+1)
i ≈ |σ(t)

i − α| (Theorem D.12). This leads to a generalization through a multiscale singular

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

value decay phenomenon (Figure 4). The small singular value after memorization converges to
{σ, 0 ≤ σ < αβ∗}, followed by the next smaller one until the larger one. This process take time
Θ
(
⌊σmax(Â)

αβ∗
⌋
)

. So, the smaller αβ∗, the longer it take to recover A∗, and the smaller is the error

∥A(t) − A∗∥∞ when t → ∞. We also analyze the effect of coherence on grokking in matrix
factorization. For matrix completion, given τ ∈ [0, 1], we select the first τN examples with the
highest values of local coherence and select the remaining (1− τ)N examples uniformly among the
remaining. Unlike compressed sensing, where large values of τ are detrimental to generalization,
here, as τ → 1, performance improves, and the number of examples required to generalize decreases
exponentially, as does the time it takes the models to do so (Figures 45 and Figures 46).

3 BEYONG SPARSE RECOVERY AND LOW-RANK MATRIX FACTORIZATION

In this section, we show that ℓ1, ℓ∗, and domain-specific regularizers can replace ℓ2 in a more
general setting and reduce grokking. Let consider a teacher y∗(x) = B∗ max(A∗x, 0). We i.i.d
sample N inputs output pair {(xi,y

∗(xi))}Ni=1 and optimize the parameters θ = (A,B) of a student
yθ(x) = Bmax(Ax, 0) on them with the loss function Ê(θ) = 1

N

∑N
i=1 ∥yθ(xi)− y∗(xi)∥22 and

different regularizer Ωp(θ) for p ∈ {1, 2, ∗}. For any p ∈ {1, 2, ∗}, the smaller is βp and/or α, the
longer is the delay between memorization and generalization (see Figures 3 for the training curve
with ℓ1, and 47, 48, 49 for more results with ℓ∗/2).

101 103 105

Steps (t)

0

5

10

Lo
ss

= 0.0001
Train
Test

10 7

10 6

10 5

10 4

10 3

10 2

10 110 1

1

101 103 105

Steps (t)

0

5

10

= 0.001
Train
Test

10 7

10 6

10 5

10 4

10 3

10 2

10 110 1

1

(a) ℓ1 Regularization

101 103 105

Steps (t)

0

5

10

Lo
ss

= 0.0001
Train
Test

10 7

10 6

10 5

10 4

10 3

10 2

10 110 1

101 103 105

Steps (t)

0

5

10

= 0.001
Train
Test

10 7

10 6

10 5

10 4

10 3

10 2

10 110 1

(b) Sobolev training

Figure 3: Training and test error two layers ReLU teacher-student, for different values of the learning
rate α and the ℓ1 (resp. Sobolev) coefficient β1. We can see that the smaller is α and or β1, the

longer is the delay between memorization and generalization.

Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019) leverage prior knowledge from
differential equations by incorporating their residuals into the loss function, ensuring that solutions
remain consistent with physical laws. Sobolev training (Czarnecki et al., 2017) generalizes this
idea by incorporating not only input-output pairs but also derivatives of the target function. We
optimizer the student above by adding on the objective function the first order Sobolev penalty
β1

N

∑N
i=1

∥∥∥∂yθ

∂x (xi)− ∂y∗

∂x (xi)
∥∥∥2

F
, where the hyperparameter β1 ensures that the model not only fits

the data but also respects known smoothness constraints or differential structure. We observe that the
smaller αβ, the longer the delay between memorization and generalization (See Figures 3 and 50).

We train a tree layers MLP and a LSMT on the addition modulo p = 97 problem (Power et al., 2022),
and a two layers ReLU MLP trained on MNIST. We observe that ℓ1 and ℓ∗ have the same effect on
grokking as ℓ2, i.e., smaller regularization coefficient (and learning rate) delay generalization (more
details in Sections E.3 and E.4).

4 DISCUSSION AND CONCLUSION

This work extends the understanding of grokking, showing that the transition from memorization to
generalization can be induced not just by ℓ2 regularization but also by sparsity or low-rank structure
regularization or domain-specific regularization. These findings are particularly relevant in practice,
where large-scale initialization is not always feasible, yet grokking still occurs. Our results highlight
that in deep models, gradient descent implicitly drives the model towards solutions with sparse or
low-rank properties, effectively mitigating overfitting (Arora et al., 2018). We also study the impact
of data selection on grokking, and show that grokking can be amplified through only data selection.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

REFERENCES

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit accel-
eration by overparameterization, 2018. URL https://arxiv.org/abs/1802.06509.

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization. CoRR, abs/1905.13655, 2019. URL http://arxiv.org/abs/1905.13655.

Benjamin Aubin, Antoine Maillard, Jean Barbier, Florent Krzakala, Nicolas Macris, and Lenka Zde-
borová. The committee machine: Computational to statistical gaps in learning a two-layers neural
network. CoRR, abs/1806.05451, 2018. URL http://arxiv.org/abs/1806.05451.

B. Barak, Benjamin L. Edelman, Surbhi Goel, S. Kakade, Eran Malach, and Cyril Zhang. Hidden
progress in deep learning: Sgd learns parities near the computational limit. Neural Information
Processing Systems, 2022. doi: 10.48550/arXiv.2207.08799.

M Biehl and H Schwarze. Learning by on-line gradient descent. Journal of Physics A: Mathematical
and General, 28(3):643, feb 1995. doi: 10.1088/0305-4470/28/3/018. URL https://dx.doi.
org/10.1088/0305-4470/28/3/018.

Emmanuel Candes and Benjamin Recht. Exact matrix completion via convex optimization. Commu-
nications of the ACM, 55(6):111–119, 2012.

Emmanuel J Candès and Terence Tao. The power of convex relaxation: Near-optimal matrix
completion. IEEE transactions on information theory, 56(5):2053–2080, 2010.

Emmanuel J Candes, Justin K Romberg, and Terence Tao. Stable signal recovery from incomplete
and inaccurate measurements. Communications on Pure and Applied Mathematics: A Journal
Issued by the Courant Institute of Mathematical Sciences, 59(8):1207–1223, 2006.

Yudong Chen, Srinadh Bhojanapalli, Sujay Sanghavi, and Rachel Ward. Coherent matrix completion.
In Eric P. Xing and Tony Jebara (eds.), Proceedings of the 31st International Conference on
Machine Learning, volume 32 of Proceedings of Machine Learning Research, pp. 674–682,
Bejing, China, 22–24 Jun 2014. PMLR. URL https://proceedings.mlr.press/v32/
chenc14.html.

Wojciech Marian Czarnecki, Simon Osindero, Max Jaderberg, Grzegorz Świrszcz, and Razvan
Pascanu. Sobolev training for neural networks, 2017. URL https://arxiv.org/abs/
1706.04859.

Ingrid Daubechies, Michel Defrise, and Christine De Mol. An iterative thresholding algorithm for
linear inverse problems with a sparsity constraint, 2003. URL https://arxiv.org/abs/
math/0307152.

David L. Donoho. For most large underdetermined systems of linear equations the minimal ℓ1-norm
solution is also the sparsest solution. Communications on Pure and Applied Mathematics, 59(6):
797–829, 2006a. doi: https://doi.org/10.1002/cpa.20132. URL https://onlinelibrary.
wiley.com/doi/abs/10.1002/cpa.20132.

David L. Donoho and Michael Elad. Optimally sparse representation in general (nonorthogonal)
dictionaries via ℓ¡sup¿1¡/sup¿ minimization. Proceedings of the National Academy of
Sciences, 100(5):2197–2202, 2003. doi: 10.1073/pnas.0437847100. URL https://www.pnas.
org/doi/abs/10.1073/pnas.0437847100.

D.L. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):1289–1306,
2006b. doi: 10.1109/TIT.2006.871582.

Andreas Engel and Christian P. L. Van den Broeck. Statistical Mechanics of Learning. Cambridge
University Press, USA, 2001. ISBN 0521773075.

Gauthier Gidel, Francis R. Bach, and Simon Lacoste-Julien. Implicit regularization of discrete
gradient dynamics in deep linear neural networks. CoRR, abs/1904.13262, 2019. URL http:
//arxiv.org/abs/1904.13262.

5

https://arxiv.org/abs/1802.06509
http://arxiv.org/abs/1905.13655
http://arxiv.org/abs/1806.05451
https://dx.doi.org/10.1088/0305-4470/28/3/018
https://dx.doi.org/10.1088/0305-4470/28/3/018
https://proceedings.mlr.press/v32/chenc14.html
https://proceedings.mlr.press/v32/chenc14.html
https://arxiv.org/abs/1706.04859
https://arxiv.org/abs/1706.04859
https://arxiv.org/abs/math/0307152
https://arxiv.org/abs/math/0307152
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.20132
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.20132
https://www.pnas.org/doi/abs/10.1073/pnas.0437847100
https://www.pnas.org/doi/abs/10.1073/pnas.0437847100
http://arxiv.org/abs/1904.13262
http://arxiv.org/abs/1904.13262

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Daniel Gissin, Shai Shalev-Shwartz, and Amit Daniely. The implicit bias of depth: How incremental
learning drives generalization. CoRR, abs/1909.12051, 2019. URL http://arxiv.org/abs/
1909.12051.

Sebastian Goldt, Madhu S Advani, Andrew M Saxe, Florent Krzakala, and Lenka Zdeborová.
Dynamics of stochastic gradient descent for two-layer neural networks in the teacher–student
setup*. Journal of Statistical Mechanics: Theory and Experiment, 2020(12):124010, December
2020. ISSN 1742-5468. doi: 10.1088/1742-5468/abc61e. URL http://dx.doi.org/10.
1088/1742-5468/abc61e.

Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro.
Implicit regularization in matrix factorization. Advances in neural information processing systems,
30, 2017.

Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J. Tibshirani. Surprises in high-
dimensional ridgeless least squares interpolation, 2020. URL https://arxiv.org/abs/
1903.08560.

Noam Levi, Alon Beck, and Yohai Bar-Sinai. Grokking in linear estimators - a solvable model that
groks without understanding. International Conference on Learning Representations, 2024.

Zhiyuan Li, Yuping Luo, and Kaifeng Lyu. Towards resolving the implicit bias of gradient descent
for matrix factorization: Greedy low-rank learning. CoRR, abs/2012.09839, 2020. URL https:
//arxiv.org/abs/2012.09839.

Ziming Liu, Eric J Michaud, and Max Tegmark. Omnigrok: Grokking beyond algorithmic data.
In The Eleventh International Conference on Learning Representations, 2023a. URL https:
//openreview.net/forum?id=zDiHoIWa0q1.

Ziming Liu, Ziqian Zhong, and Max Tegmark. Grokking as compression: A nonlinear complexity
perspective. arXiv preprint arXiv: 2310.05918, 2023b.

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning library
for solving differential equations. SIAM Review, 63(1):208–228, January 2021. ISSN 1095-7200.
doi: 10.1137/19m1274067. URL http://dx.doi.org/10.1137/19M1274067.

Kaifeng Lyu, Jikai Jin, Zhiyuan Li, Simon S. Du, Jason D. Lee, and Wei Hu. Dichotomy of early and
late phase implicit biases can provably induce grokking. arXiv preprint arXiv: 2311.18817, 2023.

William Merrill, Nikolaos Tsilivis, and Aman Shukla. A tale of two circuits: Grokking as competition
of sparse and dense subnetworks. arXiv preprint arXiv: 2303.11873, 2023.

Mohammad Pezeshki, Amartya Mitra, Yoshua Bengio, and Guillaume Lajoie. Multi-scale feature
learning dynamics: Insights for double descent, 2021. URL https://arxiv.org/abs/
2112.03215.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: General-
ization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv: Arxiv-2201.02177,
2022.

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378:686–707, 2019. ISSN 0021-9991. doi: https://
doi.org/10.1016/j.jcp.2018.10.045. URL https://www.sciencedirect.com/science/
article/pii/S0021999118307125.

Holger Rauhut. Compressive Sensing and Structured Random Matrices, pp. 1–92. De Gruyter,
Berlin, New York, 2010. ISBN 9783110226157. doi: doi:10.1515/9783110226157.1. URL
https://doi.org/10.1515/9783110226157.1.

Noam Razin and Nadav Cohen. Implicit regularization in deep learning may not be explainable by
norms. CoRR, abs/2005.06398, 2020. URL https://arxiv.org/abs/2005.06398.

6

http://arxiv.org/abs/1909.12051
http://arxiv.org/abs/1909.12051
http://dx.doi.org/10.1088/1742-5468/abc61e
http://dx.doi.org/10.1088/1742-5468/abc61e
https://arxiv.org/abs/1903.08560
https://arxiv.org/abs/1903.08560
https://arxiv.org/abs/2012.09839
https://arxiv.org/abs/2012.09839
https://openreview.net/forum?id=zDiHoIWa0q1
https://openreview.net/forum?id=zDiHoIWa0q1
http://dx.doi.org/10.1137/19M1274067
https://arxiv.org/abs/2112.03215
https://arxiv.org/abs/2112.03215
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://doi.org/10.1515/9783110226157.1
https://arxiv.org/abs/2005.06398

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

David Saad and Sara Solla. Learning with noise and regularizers in multilayer neural networks. In
M.C. Mozer, M. Jordan, and T. Petsche (eds.), Advances in Neural Information Processing Sys-
tems, volume 9. MIT Press, 1996. URL https://proceedings.neurips.cc/paper_
files/paper/1996/file/e1d5be1c7f2f456670de3d53c7b54f4a-Paper.pdf.

David Saad and Sara A. Solla. On-line learning in soft committee machines. Phys. Rev. E, 52:
4225–4243, Oct 1995a. doi: 10.1103/PhysRevE.52.4225. URL https://link.aps.org/
doi/10.1103/PhysRevE.52.4225.

David Saad and Sara A. Solla. Exact solution for on-line learning in multilayer neural networks.
Phys. Rev. Lett., 74:4337–4340, May 1995b. doi: 10.1103/PhysRevLett.74.4337. URL https:
//link.aps.org/doi/10.1103/PhysRevLett.74.4337.

Vimal Thilak, Etai Littwin, Shuangfei Zhai, Omid Saremi, Roni Paiss, and Joshua Susskind. The
slingshot mechanism: An empirical study of adaptive optimizers and the grokking phenomenon.
arXiv preprint arXiv: Arxiv-2206.04817, 2022.

Ryan Tibshirani. Machine learning 10-725/36-725, convex optimization: Spring 2015, lecture
8: February 9. https://www.stat.cmu.edu/˜ryantibs/convexopt-S15/, 2015.
Course lecture available online.

Vikrant Varma, Rohin Shah, Zachary Kenton, János Kramár, and Ramana Kumar. Explaining
grokking through circuit efficiency. arXiv preprint arXiv: 2309.02390, 2023.

Tomas Vavskevivcius, Varun Kanade, and Patrick Rebeschini. Implicit regularization for optimal
sparse recovery, 2019. URL https://arxiv.org/abs/1909.05122.

100 101 102 103 104 105 106 107

10 4

10 3

10 2

10 1

100

Er
ro

r

t1 t2

t

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Gr
ad

ie
nt

s R
at

io
||Xvec(A(t)) y * ||F / ||y * ||2
||A(t) A * ||F / ||A * ||F
|| * h(A(t))||F / ||G 2(A(t))||F

100 101 102 103 104 105 106 107

10 4

10 3

10 2

10 1

100

Er
ro

r

t1 t2
0.0

2.5

5.0

7.5

10.0

12.5

15.0

||A
|| *

||A(t)|| *

||A * || *

101 103 105 107

Steps (t)

0

100

101

Si
ng

ul
ar

 v
al

ue
s

t1 t2
t

1

2

3

4

5

6

7

8

9

10

Di
m

en
sio

ns
 (n

)

Figure 4: Relative errors, gradient ratio, the norm ∥A(t)∥∗, and evolution of singular values.
Gβ2

(A(t)) dominates β∗h(A
(t)) until memorization. From memorization β∗h(A

(t)) dominates
and make ∥A(t)∥∗ converge to ∥A∗∥∗ at t2, and so A(t2) = A∗. Generalization happened through a
multiscale singular value decay phenomenon.

7

https://proceedings.neurips.cc/paper_files/paper/1996/file/e1d5be1c7f2f456670de3d53c7b54f4a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1996/file/e1d5be1c7f2f456670de3d53c7b54f4a-Paper.pdf
https://link.aps.org/doi/10.1103/PhysRevE.52.4225
https://link.aps.org/doi/10.1103/PhysRevE.52.4225
https://link.aps.org/doi/10.1103/PhysRevLett.74.4337
https://link.aps.org/doi/10.1103/PhysRevLett.74.4337
https://www.stat.cmu.edu/~ryantibs/convexopt-S15/
https://arxiv.org/abs/1909.05122

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

10 6 10 5 10 4 10 3 10 2

*

103

104

105

106

107

t
10 6

10 5

10 4

10 3

10 2

10 1

100

Er
ro

r

t2
||A||2 2

*

||A(t2) A * ||F
*

Figure 5: Generalization step t2 (smaller t such that ∥A(t) −A∗∥2/∥A∗∥F ≤ 10−4) and recovery
error ∥A(t2) − A∗∥2 as a function of αβ∗ (log− log plot). We can see that t2 ∝ ∥Â∥2→2/αβ∗
and ∥A(t2) − A∗∥F ∝ αβ∗, i.e. small αβ∗ require longer time to converge, but do so at a lower
generalization error. The outlier for very small αβ∗ is due to insufficient training (Figure 42).

A RELATED WORKS

Large initialization and ℓ2 regularization Many studies in the linear teacher-student setup focus
on ℓ2 regularization, and the aim is generally to understand the classical generalization phenomenon
like double descent (Hastie et al., 2020; Pezeshki et al., 2021), but not grokking. The only work
on such models for grokking is Levi et al. (2024). They work on classification setting and show
that the sharp increase in generalization accuracy may not imply a transition from “memorization”
to “understanding” but can be an artifact of the accuracy measure. This aligns with the grokking
without understanding the problem we observe in sparse recovery and low-rank matrix factorization.
Our results are valid with many optimization methods for ℓ1/ℓ∗ minimization problems, such as
subgradient, projected subgradient, and proximal gradient descent.

Grokking and stochasticity Our work also contradicts the hypothesis put forward when grokking
was first observed, namely that grokking may be due to stochasticity or an anomaly in the optimization
(Power et al., 2022; Thilak et al., 2022). Here, our algorithms are all deterministic (up to initialization).

Sparsity Barak et al. (2022) observed grokking on binary sparse parity problem, and Merrill et al.
(2023) show that two subnetworks compete during training on such training, a dense (memorization)
subnetwork, and a sparse (generalization) subnetwork. Since we can build a very sparse network that
generalizes the sparse parity data Merrill et al. (2023), we claim that it is this sparsity that gives the
models trained on this task their grokking nature.

Matrix completion To the best of our knowledge, we are the first to formally study grokking in the
context of sparse recovery and low-rank matrix factorization (the shallow case). Lyu et al. (2023)
show that low-rank matrix completion problems exhibit grokking with large initialization. But we
prove that even on such a simple model, we do not need way decay and large initialization to observe
grokking, but just ℓ1/∗ regularization.

B NOTATIONS, DEFINITIONS, PRELIMINARIES

We will optimize functions of the form f(θ) = Ê(θ) + βΩ(θ), where Ê is the square loss or cross-
entropy loss function of the considered model on the training data, θ the set of model parameters,
and Ω a regularizer applied to θ. It can be the standard ℓp norm or quasi-norm of θ, the sum of the
nuclear norms of each matrix in θ (in this case, we call it ℓ∗), etc. For a vector a ∈ Rn, we consider
the measurement operator Fa(X) = Xa ∈ RN that take N measurement vectors {Xi ∈ Rn}i∈[N] a
return the measures {X⊤

i a}i∈[N].

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

We work in R for compressed sensing and matrix completion, but many of our results extend easily
to C.

• We let e(n)k = [In]:,k be the kth vector of the canonical basis of Rn, e(n)kl = δkl∀l. The
subscript (n) will be omitted when the context will be clear

• ⊙ is Hadamard product. For Q ∈ Rm×n and R ∈ Rm×n, (Q ⊙ R)i,j = Qi,jRi,j

(0 ≤ i < m, 0 ≤ j < p)
• ⊗ is the Kronecker product. For Q ∈ Rm×n and R ∈ Rp×q , (Q⊗R)pr+v,qs+w = QrsRvw

(0 ≤ r < m, 0 ≤ v < p, 0 ≤ s < n and 0 ≤ w < q)

• ◦ is the outer product,
(
a(1) ◦ · · · ◦ a(n)

)
i1,··· ,in

= a
(1)
i1

· · ·a(n)in
∀(i1, · · · , in) ∈ [m1]×

· · · × [mn] for n vectors a(i) ∈ Rmi ∀i ∈ [n].

• σmax /min(A) =
√
λmax /min(A⊤A) is the maximum (resp. minimum) singular value of

a matrix A, with λmax /min the corresponding eigenvalue

• For a vector x ∈ Rn, ∥x∥0 = |{i ∈ [n],xi ̸= 0}|, ∥x∥p = (
∑n

i=1 |xi|p)
1
p ∀p ∈ (0,∞) and

∥x∥∞ = maxi∈[n] |xi|.
We have 1√

n
∥x∥1 ≤ ∥x∥2 ≤ ∥x∥1 and ∥x∥∞ ≤ ∥x∥2 ≤

√
n∥x∥∞.

• For a matrix A ∈ Rm×n, the schatten p-norm of A is ∥A∥p = (
∑

i σi(A)p)
1/p. For

p = 1, this gives the trace/nuclear norm ∥A∥∗ =
∑

i σi(A) = tr
(√

A⊤A
)

. The induce

p → q norm of A is ∥A∥p→q = supx̸=0
∥Ax∥q

∥x∥p
= sup∥x∥p=1 ∥Ax∥q . We have ∥A∥1→1 =

maxj∈[n]

∑m
i=1 |Aij | (maximum absolute column sum), ∥A∥2→2 = ∥A∥2 = σmax(A)

(operator norm, spectral norm, induced 2-norm) and ∥A∥∞→∞ = maxi∈[m]

∑n
j=1 |Aij |

(maximum absolute row sum).

1√
n
∥A∥2→2 ≤ ∥A∥1→1 ≤

√
m∥A∥2→2

1√
m
∥A∥2→2 ≤ ∥A∥∞→∞ ≤

√
n∥A∥2→2

(1)

Definition B.1 (Khatri-Rao and Face-splitting products). For A ∈ Rm×n and B ∈ Rp×n, the
Khatri-Rao product A ⋆B ∈ Rmp×n contains in each column i ∈ [n] the matrix A:,i ⊗B:,i. We
have the formula A ⋆B = (A⊗ 1p)⊙ (1m ⊗B).

For A ∈ Rm×n and B ∈ Rm×p, the face-splitting product A •B ∈ Rm×np contains in each row
i ∈ [m] the matrix Ai,: ⊗ Bi,:. It can be seen as the row-wise Khatri-Rao product, and we have
(A •B) = (A⊤ ⋆B⊤)⊤ =

(
A⊗ 1⊤p

)
⊙ (1⊤n ⊗B).

We will generalize this operator in a higher number of vectors. If we have N vectors A(k) ∈ Rm×nk ,
then

(
A(1) •A(2) • · · · •A(N)

)
i,:

= A
(1)
i,: ⊗A

(3)
i,: ⊗ · · · ⊗A

(N)
i,: ∈ R

∏
k nk .

Definition B.2. A matrix M ∈ Rm×n can be vectorized column-wise, vecc(M)in+j = Mij , or
row-wise vecr(M)jm+i = Mij , where 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1. So vecc(M) =
vec(M) and vecr(M) = vec(M⊤) = K(m,n)vec(M) with vec(M) the vanilla vectorization,
which stack the column of M in a vector.
Definition B.3. A tensor T ∈ Rm×n×p can be vectorized column-wise, vecc(T)kmn+jm+i =
T ijk, or row-wise vecr(T)inp+jm+k = T ijk, where 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1 and
0 ≤ k ≤ p− 1. Note that T can be vectorized in 3! ways1.

Let T (12) = T (1) ∈ Rm×np (mode-1 unfolding of T), T (21) = T (2) ∈ Rn×mp and T (32) =

T ⊤
(3) ∈ Rmn×p. That is

T (32) :=

[| | |
vecc(T ::1) vecc(T ::2) · · · vecc(T ::p)

| | |

]
∈ Rmn×p

1A tensor of order K can be vectorized in K! ways.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

and

T (12) :=

[−vecr(T 1)−
· · ·

−vecr(T p)−

]
∈ Rm×pn

We have

vecc(T) =

|
vecc(T ::1)

|
·
·
·
|

vecc(T ::p)
|

= vecc

(
T (32)

)
:= T (321)

and

vecr(T) =

|
vecr(T 1)

|
·
·
·
|

vecr(T n)
|

= vecr

(
T (12)

)
:= T (123)

For A ∈ Rq×p and B ∈ Rq×m, AT (32) = AT (3) = (T ×3 A)(3) and BT (12) = BT (1) =

(T ×1 B)(1).

If we CP-decompose T = JA,B,CK =
∑R

i=1 A:,i ◦B:,i ◦C:,i, with A ∈ Rm×R, B ∈ Rn×R and
C ∈ Rp×R the three mode loading matrices, then T (1) = A(C ⋆ B)⊤, T (2) = B(A ⋆C)⊤ and
T (3) = C(B ⋆A)⊤.

C SPARSE RECOVERY

C.1 DEFINITIONS AND PRELIMINARIES

Definition C.1 (Restricted Isometry Property (RIP) and Restricted Isometric Constant(RIC)). Let
A ∈ Rm×n and (s, δs) ∈ [n]× (0, 1). The matrix A is said to satisfy the (s, δs)-RIP if

(1− δs)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δs)∥x∥22 (2)

for all s-sparse vector x ∈ Rn (ie ∥x∥0 ≤ s). This is equivalent to saying that for every J ⊂ [n] with
|J | = s

(1− δs)∥x∥22 ≤ ∥A:,Jx∥22 ≤ (1 + δs)∥x∥22 (3)

for every x ∈ Rs; where the submatrix A:,J ∈ Rm×s of A is build by selecting the columns index
in J . This condition is also equivalent to the statement ∥A⊤

:,JA:,J − Is∥2→2 ≤ δs, which is finally
equivalent to Spec

(
A⊤

:,JA:,J

)
⊂ [1− δs, 1 + δs].

We say that A satisfies s-RIP if it satisfies (s, δs)-RIP with some δs ∈ (0, 1). The s-RIC of A is
defined as the infimum δs(A) of all possible δs such that A ∈ Rm×n satisfy the (s, δs)-RIP.

δs(A) = inf
{
δs ∈ (0, 1) | (1− δs)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δs)∥x∥22 ∀x ∈ Rn, ∥x∥0 ≤ s

}
= inf

{
δs ∈ (0, 1) | (1− δs)∥x∥22 ≤ ∥A:,Jx∥22 ≤ (1 + δs)∥x∥22 ∀x ∈ Rs, J ⊂ [n], |J | = s

}
= inf

{
δs ∈ (0, 1) | ∥A⊤

:,JA:,J − Is∥2→2 ≤ δs ∀J ⊂ [n], |J | = s
}

= inf
{
δs ∈ (0, 1) | Spec

(
A⊤

:,JA:,J

)
⊂ [1− δs, 1 + δs] ∀J ⊂ [n], |J | = s

}
10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

So, for all ∀J ⊂ [n] with |J | = s, the condition number of A⊤
:,JA:,J is bounds from above by

1+δs(A)
1−δs(A) , a the one of A:,J by

√
1+δs(A)
1−δs(A) .

We say that a matrix A satisfies the RIP if δs(A) is small for reasonably large s. All the above
definitions extend to any linear map f : Rn → Rm.

Proposition C.1. δs(A) ≤ δs+1(A) for all A ∈ Rm×n and s ∈ [n].

Definition C.2 (Restricted Isometry Property). Let F : Rm×n → Rq be a linear map and (r, δr) ∈
[n]× (0, 1). f is said to satisfy (r, δr)-RIP if for all rank-r matrices X ∈ Rm×n:

(1− δr)∥X∥2F ≤ ∥F(X)∥22 ≤ (1 + δr)∥X∥2F (4)

We say that F satisfies r-RIP if F satisfies (r, δr)-RIP with some δr ∈ (0, 1), and the r-RIC of F is
defined as the infimum δr(F) of all possible δr such that F satisfy the (r, δr)-RIP.

Definition C.3 (Coherence). The coherence between two matrices A ∈ Rq×m and B ∈ Rq×n is

µ(A,B) = max
i∈[m],j∈[n]

|⟨A:,i,B:,j⟩|
∥A:,i∥∥B:,j∥

= max
i∈[m],j∈[n]

|[A⊤B]i,j |
∥A:,i∥∥B:,j∥

(5)

Coherence measures how similar or aligned two matrices or vectors are. Specifically, it measures how
much overlap there is between the columns of A and B. High coherence means they are similar or
aligned, and low coherence (or incoherence) means they are very different. Incoherence is essentially
the opposite of coherence. It refers to a low overlap or low similarity between the columns of A and
B.

The mutual coherence of a matrix A ∈ Rm×n is

µ(A) = max
(i,j)∈[m]×[n],i̸=j

|⟨A:,i,A:,j⟩|
∥A:,i∥∥A:,j∥

= max
(i,j)∈[m]×[n],i̸=j

[A⊤A]i,j
∥A:,i∥∥A:,j∥

(6)

If the coherence is small, then the columns of A are almost mutually orthogonal. A small coherence
is desired in order to have good sparse recovery properties.

We also have the 1-coherence

µ1(A, s) = max
i∈[n]

max
J⊆[n]\i,|J|≤s

∑
j∈J

|⟨A:,i,A:,j⟩|
∥A:,i∥∥A:,j∥

≤ sµ(A)

Example C.1. For the Fourier basis
√
nΦji = e−2πi jin , we have µ1(Φ, s) = sµ(Φ) = s/

√
n

(Rauhut, 2010). Each column in this basis vector corresponds to a specific frequency. For a signal
a∗, if only a few frequency components contribute significantly to a∗, then b∗ = Φ−1a∗, the Fourier
transform of a∗, will be sparse. This Φ is unitary, and its inverse is

√
nΦ−1

ji = e2πi jin .

Proposition C.2. For a matrix A ∈ Rm×n with unit norm columns, µ(A) ≥
√

n−m
m(n−1) and

µ1(A, s) ≥ s
√

n−m
m(n−1) whenever s ≤

√
n− 1 (Rauhut, 2010).

Proposition C.3. For a matrix A ∈ Rm×n with unit norm columns, µ(A) = δ2(A), µ1(A, s) =
maxJ∈[n],|J|≤s+1 ∥A⊤

:,JA:,J − I∥1→1, and δs(A) ≤ µ1(A, s− 1) ≤ (s− 1)µ(A) (Rauhut, 2010).

Proposition C.4 (Connexion between the coherence µ(A,B) and δs(A
⊤B)). Let A ∈ Rq×m,

B ∈ Rq×n and M = A⊤B ∈ Rm×n. We have

max

(
1

m
√
s
,

1

s
√
m

)
∥M:,J∥2→2 ≤ µ(A,B) ≤ min

(√
m,

√
n
)
∥M∥2→2 ∀J ⊂ [n], |J | = s

and √
1− δs(A⊤B) ≤ m+ s

2
µ(A,B) (7)

Proof. For J ⊂ [n] with |J | = s, we have M:,J = A⊤B:,J ∈ Rm×s and Spec
(
M⊤

:,JM:,J

)
⊂

[1− δs, 1 + δs]. This implies ∥M:,J∥22→2 = λmax(M
⊤
:,JM:,J) ∈ [1− δs, 1 + δs].

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Also,

∥M:,J∥1→1 = max
j∈[s]

m∑
i=1

|[M:,J]ij | ≤ mmax
j∈[s]

max
i∈[m]

|[M:,J]ij | = mµ(A,B:,J) ≤ mµ(A,B)

µ(A,B) = max
i∈[m],j∈[n]

|Mi,j | ≤ max
i∈[m],j∈[n]

m∑
k=1

|Mk,j | = max
j∈[n]

m∑
k=1

|Mk,j | = ∥M∥1→1

and

∥M:,J∥∞→∞ = max
i∈[m]

s∑
j=1

|[M:,J]ij | ≤ smax
i∈[m]

max
j∈[s]

|[M:,J]ij | = sµ(A,B:,J) ≤ sµ(A,B)

µ(A,B) = max
i∈[m],j∈[n]

|Mi,j | ≤ max
i∈[m],j∈[n]

n∑
k=1

|Mi,k| = max
i∈[m]

n∑
k=1

|Mi,k| = ∥M∥∞→∞

So

max

(
∥M:,J∥1→1

m
,
∥M:,J∥∞→∞

s

)
≤ µ(A,B) ≤ min (∥M∥1→1, ∥M∥∞→∞) (8)

For C ∈ Rm×n,
1√
n
∥C∥2→2 ≤ ∥C∥1→1 ≤

√
m∥C∥2→2

1√
m
∥C∥2→2 ≤ ∥C∥∞→∞ ≤

√
n∥C∥2→2

(9)

Using 8 and 9, we obtain

max

(
1

m
√
s
,

1

s
√
m

)
∥M:,J∥2→2 ≤ µ(A,B) ≤ min

(√
m,

√
n
)
∥M∥2→2

Combining with ∥M:,J∥22→2 = λmax(M
⊤
:,JM:,J) ∈ [1− δs, 1 + δs] give√

max(m, s)

ms

√
1− δs(A⊤B) ≤ µ(A,B) ≤

√
min (m,n)

√
1 + δn(A⊤B) (10)

Since ∥M:,J∥2→2 ≤ max (∥M:,J∥1→1, ∥M:,J∥∞→∞) (Rauhut, 2010), we also have√
1− δs(A⊤B) ≤ m+ s

2
µ(A,B) (11)

C.2 THE PROBLEM

Compressed sensing theory predicts that sparse signals in high dimensions can be recovered from
undersampled linear measurements. More precisely, given N ≪ n noisy measurements y∗ =
Fa∗(X) + ξ ∈ RN of a vector a∗ ∈ Rn (digital signal, image, etc.), we look for a reconstruction
a ∈ Rn that minimizes ∥Fa(X) − y∗∥2; where Fa(X) = Xa ∈ RN is the measurement operator
that take N measurement vectors {Xi ∈ Rn}i∈[N] a return the measures {X⊤

i a}i∈[N]. Without
further knowledge, this is impossible for N < n. This is why the sparsity of the original signal a∗ is
assumed, i.e., we can write a∗ =

∑n
i=1 b

∗
iΦ:,i = Φb∗ with s = ∥b∗∥0 := |{i,b∗

i ̸= 0}| ≪ n, and
Φ ∈ Rn×n a dictionary (see example C.1 for the Fourier transform). We assume for simplicity that Φ
is an orthonormal matrix, Φ⊤Φ = In (Assumption C.3). In sparse coding, we aim to find a = Φb
under the constraint that ∥b∥0 ≪ n. This can be stated as

(P0) Minimize ∥b∥0 s.t. ∥FΦb(X)− y∗∥2 ≤ ϵ (12)

with ϵ an upper bound on the size of the error term ξ ∈ RN , ∥ξ∥2 ≤ ϵ. This problem is NP-hard, and
the constraint ∥b∥0 is often relaxed to an ℓ1 regularization, and leading to the convex problem

(P1) Minimize ∥b∥1 s.t. ∥FΦb(X)− y∗∥2 ≤ ϵ (13)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

This problem has been well studied in the signal processing literature under the name Basis Pursuit.
It is well known that under certain conditions on the measurement matrix X (e.g., coherence with
respect to Φ) and the sparsity of a∗ in Φ, sufficiently sparse solutions of (P1) are also solutions of
(P0) (Donoho & Elad, 2003; Candes et al., 2006). Many lower bounds on the number of measures
N guaranteeing ∥b− b∗∥2 ≤ ϵ with high probability have also been derived. Such lower bounds
generally have the form N = Ω

(
δ−β (s logα (n/s) + log 1/η)

)
(Rauhut, 2010), where δ capture the

Restricted Isometry Property (RIP, Definition C.1) of X̃ = XΦ and is also related to the coherence
(Definition C.3) of X with respect to Φ (Proposition C.3), η is the percentage of error (i.e. N
guaranteed a recovery with probability at least 1−η), α > 0 and β > 0 are constants. Observe that in
the noiseless setting, we want b such that X̃b = X̃b∗, that is b ∈ b∗ + Null(X̃). Donoho (2006a;b)
show that the nullspace X̃b = 0 has a very special structure for certain X̃ (e.g. incoherent with any
orthonormal basis): when b∗ is sparse, the only element in the affine subspace b∗ + Null(X̃) that
can have a small ℓ1 norm is b∗ itself.

Given the measures y∗ ∈ RN (possibly noisy), the measurement matrix X ∈ RN×n, and the sparse
basis (or dictionary) Φ ∈ Rn×n, we aim to solve the following problem

(P0) Minimize ∥b∥0 s.t. ∥FΦb(X)− y∗∥2 ≤ ϵ (14)

and more precisely, its convex relaxation

(P1) Minimize ∥b∥1 s.t. ∥FΦb(X)− y∗∥2 ≤ ϵ (15)

C.3 ASSUMPTION ON THE SPARSE BASIS

We will assume for simplicity that Φ is an orthonormal matrix, Φ⊤Φ = In. It is common in sparse
coding theory to consider Φ ∈ Rn×m as a dictionary with m columns referred to as atoms: and
saying a∗ is sparse means it can be written as a linear combination of a few of such atoms. But here,
we assume for simplicity that we have a∗ = Φb∗ with b∗ ∈ Rm and Φ ∈ Rn×m a set of m ≤ n
linearly independent vectors (its column). Let Φ⊥ ∈ Rn×(n−m) be the orthogonal complement
of Φ in Rn, Ψ :=

[
Φ Φ⊥] ∈ Rn×n, Φ̃ := Ψ

(
Ψ⊤Ψ

)−1/2
the orthonormal version of Ψ, and

b̃∗ :=
(
Ψ⊤Ψ

)1/2 [b∗

0

]
. We have a∗ = Φ̃b̃∗, with ∥b̃∗∥0 = ∥b∗∥0 since Ψ⊤Ψ is diagonal. So,

assuming Φ orthonormal is without loss of generality.

C.4 THE CONTROLS PARAMETERS

The incoherence between the measurement vectors (line of X) and the sparse basis (column of Φ)
is crucial for successfully recovering a∗ (or equivalently b∗, the sparse representation). If X is
incoherent with Φ, each measurement captures a distinct “view” of a∗, reducing redundancy. This
diversity of information allows for the successful reconstruction of b∗ even with fewer measurements
(e.g., below the Nyquist rate for signals). Achieving low coherence (high incoherence) can be done
by designing X to be a random matrix (e.g., Sub-Gaussian like Gaussian or Bernoulli matrices). Such
random matrices are, with high probability, incoherent with any fixed orthonormal basis (Theorems
C.1 and C.2).
Theorem C.1. Le m ≤ n and Φ ∈ Rn×m with Φ⊤Φ = Im. For any N ≥ 1, α > 0 and β > 1; the

matrix X ∈ RN×n with nαXij
iid∼ N (0, 1) satisfies µ(X⊤,Φ) ≤ 2β

√
ln(nN)

nα with probability at
least 1− 1/(nN)2β

2−1.

Proof. Let σ = n−α. We have X iid∼ N (0, σ2), so [XΦ]ij
iid∼ N (0, σ2) since Φ has normal columns.

This implies P
[∣∣∣[XΦ]ij

∣∣∣ ≥ t
]
≤ exp

(
− t2

2σ2

)
, which in turn implies P

[
maxi,j

∣∣∣[XΦ]ij

∣∣∣ ≥ t
]
≤∑

i,j P
[∣∣∣[XΦ]ij

∣∣∣ ≥ t
]
≤ nN exp

(
− t2

2σ2

)
. Using t = 2β

√
ln(nN)

nα with β > 1, we have t2 =

2
(

1
nα

)2
ln
(

nN
η

)
with η = (nN)1−2β2

, so nN exp
(
− t2

2σ2

)
= η.

We also have the following theorem from Rauhut (2010) about the RIP of such a matrix.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Theorem C.2. Let X ∈ RN×n be a Gaussian or Bernoulli random matrix. Let η, δ ∈ (0, 1) and
assume N ≥ Cδ−2 (s ln (n/s) + ln (1/η)) for a universal constant C > 0. Then, δs(X) ≤ δ with
probability at least 1− η .

In the rest of this section, to control the incoherence, we generate X for a given N by taking the
first N1 = min(⌊τN⌋, n) rows (with 0 ≤ τ ≤ 1, default to 0) from the first columns of Φ and the

elements of the remaining N2 = N−N1 rows iid from N (0, 1/n) so that X̃ = XΦ =

[
Φ⊤

:,:N1

XN1:,:

]
Φ =[

IN1×n

XN1:,:Φ

]
with XN1:,:

iid∼ N (0, 1/n). The higher τ (and so N1), the less incoherence between the

measures (columns of X⊤) and Φ. For a given s, we generate a random vector b∗ iid∼ N (0, 1/n)
such that ∥b∗∥0 ≤ s, and set a∗ = Φb∗. We used Φ = In for simplicity.

The problem (P1) can be solved easily using convex programming library, with relative error
∥b − b∗∥2/∥b∗∥2 of the order of 10−6 (Section C.5, Figures 6 and 7). As s and/or τ increases,
Nmin(s, τ), the number of samples needs for perfect recovery increases. When τ → 1, Nmin(s, τ) →
n for all s.

C.5 CONVEX OPTIMIZATION FORMULATIONS

Consider the problem of recovering b∗ from noiseless measurements:

(P1-noiseless) : min
b

∥b∥1

subject to X̃b = y∗,
(16)

where y∗ = X̃b∗. To rewrite the ℓ1-norm objective linearly, let introduce auxiliary variables
ti for each component bi, and impose −ti ≤ bi ≤ ti, ti ≥ 0, for i = 1, . . . , n. Then, since
∥b∥1 =

∑n
i=1 |bi|, minimizing ∥b∥1 is equivalent to minimizing

∑n
i=1 ti subject to these constraints.

The problem becomes

min
b,t

n∑
i=1

ti

subject to X̃b = y∗,

− ti ≤ bi ≤ ti, i = 1, . . . , n,

ti ≥ 0, i = 1, . . . , n.

(17)

All constraints and the objective function are linear, so this reformulation is a linear program (LP).
Now assume the measurements are noisy y∗ = X̃b∗ + ξ and we allow for a noise tolerance ϵ ≥ 0.
The recovery problem is

(P1-noisy) : min
b

∥b∥1

subject to ∥X̃b− y∗∥2 ≤ ϵ.
(18)

and by introducing the auxiliary variables, it becomes

min
b,t

n∑
i=1

ti

subject to ∥X̃b− y∗∥2 ≤ ϵ,

− ti ≤ bi ≤ ti, i = 1, . . . , n,

ti ≥ 0, i = 1, . . . , n.

(19)

The constraints −ti ≤ bi ≤ ti and ti ≥ 0 are linear, while the constraint ∥X̃b− y∗∥2 ≤ ϵ defines a
second-order (quadratic) cone. Thus, the overall problem is a second-order cone program (SOCP).

We fix n = 102 and solve for different (N, s, τ) the convex problem (P1-noiseless) using the
cvxpy library. As s and/or τ increases, Nmin(s, τ), the number of samples needs for perfect recovery
increases (Figures 6 and 7). When τ converges to 1, Nmin(s, τ) → n for all s. The error in those
figures is the relative recovery error ∥b − b∗∥2/∥b∗∥2. This error is usually of the order of 10−6.
This value gives us a basis for comparison with other methods.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

0.00 0.25 0.50 0.75 1.00

0.4

0.6

0.8

1.0

co
he

re
nc

e

20

40

60

80

N

(a)

0 25 50 75 100
Sparsity level (s)

20

40

60

80

100

N
m

in
 fo

r r
ec

ov
er

y

0.0

0.2

0.4

0.6

0.8

1.0

(b)

Figure 6: (a) Cohence µ(X⊤,Φ) as a function of τ ∈ (0, 1) (b) Minimum number of samples for
perfect recovery (relative recovery error ≤ 10−6) for n = 102 as a function of the sparsity level

s ∈ [n] and coherence parameter τ ∈ (0, 1)

Input : X, Phi, y_star, n, EPSILON
import cvxpy as cp
b = cp.Variable(n)
objective = cp.Minimize(cp.norm(b, p=1))
constraints = [cp.norm(X @ (Phi @ b) - y_star, 2) <= EPSILON]
problem = cp.Problem(objective, constraints)
problem.solve()
b = b.value

C.6 SUBGRADIENT DESCENT

Let y(b) = Fb(X̃) = X̃b. We have y∗ = Fb∗(X̃) + ξ = X̃b∗ + ξ, and want to minimize
f(b) = gβ2

(b) + β1∥b∥1 using gradient descent, where

gβ2
(b) :=

1

2
∥y(b)− y∗∥22 +

β2

2
∥b∥22

=
1

2
b⊤X̃⊤X̃b− y∗⊤X̃b+

1

2
y∗⊤y∗ +

β2

2
b⊤b

=
1

2
b⊤X̃⊤X̃b−

(
b∗⊤X̃⊤ + ξ⊤

)
X̃b+

1

2

(
b∗⊤X̃⊤ + ξ⊤

)(
X̃b∗ + ξ

)
+

β2

2
b⊤b

=

1
2b

⊤
(
X̃⊤X̃+ β2In

)
b−

(
X̃⊤X̃b∗ + X̃⊤ξ

)⊤
b+ 1

2∥X̃b∗ + ξ∥22
1
2 (b− b∗)⊤

(
X̃⊤X̃+ β2In

)
(b− b∗)−

(
X̃⊤ξ − β2b

∗
)⊤

(b− b∗) + 1
2∥ξ∥

2
2 +

β2

2 ∥b∗∥22
(20)

We write F (b) := Gβ2
(b) + β1h(b) with

Gβ2(b) := ∇bgβ2(b) = X̃⊤(y − y∗) + β2b =

(
X̃⊤X̃+ β2In

)
b−

(
X̃⊤X̃b∗ + X̃⊤ξ

)(
X̃⊤X̃+ β2In

)
(b− b∗)−

(
X̃⊤ξ − β2b

∗
)

(21)

and h(b) ∈ ∂∥b∥1 any subgradient of ∥b∥1, that is h(b)i = sign(bi) for bi ̸= 0, and any value in
[+1,−1] for bi = 0. We used h(b) = sign(b) for simplicity and without loss of generality.

Suppose we start at some b(1) := ζb̃(1), with ζ ≥ 0 the initialization scale and b̃(1) iid∼ N (0, 1/n).
Using F(t) := F (b(t)), the subgradient update rule is

b(t+1) = b(t) − αtF
(t) ∀t > 1 (22)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

0 25 50 75 100
Number of measurements (N)

10 6

10 4

10 2

100

Er
ro

r (
 =

 0
.0

)

20

40

60

80

Sp
ar

sit
y

le
ve

l (
s)

1 11 21 31 41 51 61 71 81 91 10
1

11
0

Number of measurements (N)

1
16
31
46
61
76
9196

Sp
ar

sit
y

le
ve

l (
s)

10 6

10 4

10 2

100

Error

0 20 40 60 80 100
Sparsity level (s)

20

40

60

80

100

N
m

in
 fo

r r
ec

ov
er

y

0 25 50 75 100
Number of measurements (N)

10 6

10 4

10 2

100

Er
ro

r (
 =

 0
.2

)

20

40

60

80

Sp
ar

sit
y

le
ve

l (
s)

1 11 21 31 41 51 61 71 81 91 10
1

11
0

Number of measurements (N)

1
16
31
46
61
76
9196

Sp
ar

sit
y

le
ve

l (
s)

10 6

10 4

10 2

100

Error

0 20 40 60 80 100
Sparsity level (s)

20

40

60

80

100

N
m

in
 fo

r r
ec

ov
er

y

0 25 50 75 100
Number of measurements (N)

10 6

10 4

10 2

100

Er
ro

r (
 =

 0
.5

)

20

40

60

80

Sp
ar

sit
y

le
ve

l (
s)

1 11 21 31 41 51 61 71 81 91 10
1

11
0

Number of measurements (N)

1
16
31
46
61
76
9196

Sp
ar

sit
y

le
ve

l (
s)

10 6

10 4

10 2

100

Error

0 20 40 60 80 100
Sparsity level (s)

20

40

60

80

100

N
m

in
 fo

r r
ec

ov
er

y

0 25 50 75 100
Number of measurements (N)

10 6

10 4

10 2

100

Er
ro

r (
 =

 0
.8

)

20

40

60

80

Sp
ar

sit
y

le
ve

l (
s)

1 11 21 31 41 51 61 71 81 91 10
1

11
0

Number of measurements (N)

1
16
31
46
61
76
9196

Sp
ar

sit
y

le
ve

l (
s)

10 6

10 4

10 2

100

Error

0 20 40 60 80 100
Sparsity level (s)

40

60

80

100

N
m

in
 fo

r r
ec

ov
er

y

0 25 50 75 100
Number of measurements (N)

10 7

10 5

10 3

10 1

Er
ro

r (
 =

 1
.0

)

20

40

60

80

Sp
ar

sit
y

le
ve

l (
s)

1 11 21 31 41 51 61 71 81 91 10
1

11
0

Number of measurements (N)

1
16
31
46
61
76
9196

Sp
ar

sit
y

le
ve

l (
s)

10 7

10 5

10 3

10 1

Error

0 20 40 60 80 100
Sparsity level (s)

80

85

90

95

100

N
m

in
 fo

r r
ec

ov
er

y

Figure 7: Relative error ∥b− b∗∥2/∥b∗∥2 as a function of the number of measurements N , the
sparsity level s ∈ [n] and and coherence parameter τ ∈ (0, 1), for n = 102

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

with αt the learning rate at step t. That is, using h(t) = h(b(t)), b(t+1) =
[
In − αt

(
X̃⊤X̃+ β2In

)]
b(t) + αt

(
X̃⊤X̃b∗ + X̃⊤ξ

)
− β1αth

(t)

b(t+1) − b∗ =
[
In − αt

(
X̃⊤X̃+ β2In

)]
(b(t) − b∗) + αt

(
X̃⊤ξ − β2b

∗
)
− β1αth

(t)

(23)

We let f∗ = f(b∗) = β1∥b∗∥1+ β2

2 ∥b∗∥22+∥ξ∥22 and f (t) = f(b(t)). Since the subgradient method
is not a descent method, we let b(t)

best = argminb∈{b(t′),t′≤t} f(b) = argmin
b∈

{
b

(t−1)
best ,b(t)

} f(b)

be the best point found so far at step t, and f
(t)
best = f(b

(t)
best) = min

{
f
(t−1)
best , f (t)

}
. This b(t)

best can be
made η-optimal for an arbitrary precision η if the step rule is chosen appropriately, as the following
theorem shows.

Theorem C.3. If ∥F (b)∥2 ≤ L ∀b and ∥b(1) − b∗∥2 ≤ R, then f
(T)
best − f∗ ≤ R2+L2 ∑T

t=1 α2
t

2
∑T

t=1 αt
.

Proof. By the definition of the subgradient F(T) = F (b(T)) of f at b(T), we have f(b(T)) +(
b∗ − b(T)

)⊤
F(T) ≤ f(b∗), i.e. −

(
b(T) − b∗)⊤ F(T) ≤ −(f (T) − f∗). So

0 ≤ ∥b(T+1) − b∗∥22 = ∥b(T) − αTF
(T) − b∗∥22

= ∥b(T) − b∗∥22 − 2αT

(
b(T) − b∗

)⊤
F(T) + α2

T ∥F(T)∥22

≤ ∥b(T) − b∗∥22 − 2αT

(
f (T) − f∗

)
+ α2

T ∥F(T)∥22

≤ ∥b(1) − b∗∥22 − 2

T∑
t=1

αt

(
f (t) − f∗

)
+

T∑
t=1

α2
t ∥F(t)∥22

(24)

This implies

2(f
(T)
best − f∗)

T∑
t=1

αt ≤ 2

T∑
t=1

αt

(
f (t) − f∗

)
≤ ∥b(1) − b∗∥22 +

T∑
t=1

α2
t ∥F(t)∥2 ≤ R2 + L2

T∑
t=1

α2
t

(25)

The second condition of this theorem can always be satisfied by choosing an initialization appropri-
ately. For example, if ζ = 0, then we can take R = ∥b∗∥2. The second condition will be satisfied if,
for example, f satisfies the Lipschitz condition |f(u)−f(v)| ≤ L∥u−v∥2 for all u, v. But the condi-
tion is satisfied if and only if b (or just the b(t)) is restricted to a bounded domain since F (b) is a linear
function (up to γh(b)). If ∥b∥2 ≤ B ∀b, then ∥F (b)∥2 ≤ ∥X̃⊤X̃ + β2In∥∥b∥2 + ∥X̃⊤X̃b∗ +

X̃⊤ξ∥2 + β1∥h(b)∥2 = ∥X̃⊤X̃ + β2In∥B + ∥X̃⊤X̃b∗ + X̃⊤ξ∥2 + β1
√
n. Note that we always

have ∥b(t+1)∥2 ≤ ∥In − αt

(
X̃⊤X̃+ β2In

)
∥∥b(t)∥2 + αt∥X̃⊤X̃b∗ + X̃⊤ξ∥2 + β1αt∥h(t)∥2 ≤

maxk |1− αt

(
σ2
k(X̃) + β2

)
∥b(t)∥+ αt

(
σ2
max(X̃)∥b∗∥2 + σmax(X̃)∥ξ∥2

)
+ β1αt

√
n.

That said, many step size rules lead to different accuracy.
Corollary C.1. With a constant step size, αt = α

f
(T)
best − f∗ ≤ R2 + L2Tα2

2Tα
−→T→∞ L2α/2 (26)

In that case, we need a small learning rate and longer training time to achieve low errors.

With a square summable but not summable step size rule,
∑

t α
2
t < ∞ and

∑
t αt = ∞, we have

f
(T)
best − f∗ ≤

R2 + L2
∑T

i=1 α
2
i

2
∑T

i=1 αi

−→T→∞ 0 (27)

For example, αt = a/(b+ t), a > 0 and b ≥ 0. This method is common in practice for subgradient
methods.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

To explain grokking in such a setting, we will look at the landscape of the solution. Let X̃ = UΣ
1
2V⊤

under the SVD decomposition, with Σ = diag(σk)k∈[r], where r = rank(X̃) and σmax = σ1 ≥
· · ·σk ≥ σk+1 · · · ≥ σmin = σr > σr+1 = · · · = 0. We assume by default the SVD to be compact,
i.e., U ∈ RN×r and V ∈ Rn×r have orthonormal columns, but we will make precision when we
want it full, i.e., they also orthonormal rows, with that time U ∈ RN×N and V ∈ Rn×n. Using
Σ̃(t) = I − αt (Σ + β2I), the dynamics rewrites b(t+1) = VΣ̃(t)V⊤b(t) + αt

(
VΣV⊤b∗ +VΣ

1
2U⊤ξ

)
− β1αth

(t)

b(t+1) − b∗ = VΣ̃(t)V⊤(b(t) − b∗) + αt

(
VΣ

1
2U⊤ξ − β2b

∗
)
− β1αth

(t)

We assume the step size αt = α satisfies 0 < α < 2
σmax+β2

. In fact, for the dynamical system to

converge, we need Spec
[
In − αt

(
X̃⊤X̃+ β2In

)]
⊂ (−1, 1), that is 0 < αt <

2

λmax(X̃⊤X̃)+β2
=

2

σ2
max(X̃)+β2

= 2
σmax+β2

.

For all p > 0, let define ρp :=
∥∥∥In − αt

(
X̃⊤X̃+ β2In

)∥∥∥
p→p

, so that ρ2 = ∥In −
α (Σ + β2In) ∥2→2 = max{maxk∈[r] |1− α(σk + β2)| , |1− αβ2|} ∈ (0, 1).

C.6.1 MEMORIZATION

We will show that the update first moves to the least square solution of the problem, b̂ =(
X̃⊤X̃+ β2In

)†
X̃⊤y∗ = V (Σ + β2I)−1

(
ΣV⊤b∗ +Σ

1
2U⊤ξ

)
; which is also the min norm

solution for N < n 2. It moves exactly to b̂ (and stay there) for β1 = 0 (Theorem C.6), and very
close for β1 small enough (Theorem C.8). If β1 is too high, the subgradient term h(b) dominates
early, and there is no convergence, i.e., no memorization nor generalization (Theorem C.4). This b̂
can memorize (Theorem C.9) , but cannot generalize for N < n (Theorem C.10).

Theorem C.4 (Oscillatory Behavior for Large β1). Let b(1) ∈ Rn. Consider the subgradient descent
update

b(t+1) = b(t) − αt

(
∇bgβ2

(b(t)) + β1h(b
(t))
)

(28)

with a fixed step size αt = α > 0, where gβ2
(b) = 1

2∥X̃b − y∗∥22 +
β2

2 ∥b∥22 and h(b) ∈ ∂∥b∥1.
If β1 > σmax+β2√

n
then the ℓ1-term dominates the updates, causing the sequence b(t) to exhibit

oscillatory behavior without convergence to a minimizer of f(b) = gβ2
(b) + β1∥b∥1. Consequently,

neither memorization nor generalization is achieved, and both training and test errors oscillate above
a suboptimal level.

Proof. We use lemma C.5 with L = ∥X̃⊤X̃+ β2In∥2→2 = σmax(X̃
⊤X̃) + β2 (operator norm) be

the Lipschitz constant for Gβ2
(b) = ∇bgβ2

(b) = X̃⊤(X̃b − y∗) + β2b =
(
X̃⊤X̃+ β2In

)
b −(

X̃⊤X̃b∗ + X̃⊤ξ
)

, since ∥Gβ2
(u)−Gβ2

(v)∥2 ≤ L∥u− v∥2 for all u, v.

Lemma C.5. Let f(b) = g(b) + β1∥b∥1 be a convex function where g has a Lipschitz continuous
gradient with Lipschitz constant L > 0, i.e., ∥∇g(u)−∇g(v)∥2 ≤ L∥u− v∥2 for all u,v ∈ Rn.
Consider the subgradient descent update

b(t+1) = b(t) − α
(
∇g(b(t)) + β1h(b

(t))
)

(29)

with a fixed step size α > 0, where h(b(t)) ∈ ∂∥b(t)∥1. If β1 > L√
n

then the ℓ1-term dominates

the updates, causing the sequence {b(t)}t>1 to exhibit oscillatory behavior without convergence

2Assume β2 = 0. For N ≥ n, the least square solution is b̂ =
(
X̃⊤X̃

)†
X̃⊤y∗ = VV⊤b∗+VΣ− 1

2U⊤ξ;

and for N < n, the min norm solution is b̂ = X̃⊤
(
X̃X̃⊤

)†
y∗ = VV⊤b∗ +VΣ− 1

2U⊤ξ

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

to a minimizer of f . Consequently, neither memorization nor generalization is achieved, and both
training and test errors oscillate above a suboptimal level.

Proof Sketch. Since g has a Lipschitz continuous gradient with constant L, ∥∇g(b(t))∥2 ≤ L for
all t when b(t) is in a bounded region. Given that ∥h(b(t))∥2 ≈

√
n at the beginning of training, if

β1 > L√
n

, then

β1∥h(b(t))∥2 ≈ β1

√
n > L ≥ ∥∇g(b(t))∥2 (30)

This inequality implies that the update is dominated by the ℓ1-term:

b(t+1) ≈ b(t) − αβ1 h(b
(t)) (31)

with the influence of ∇g(b(t)) becoming negligible. Because h(b(t)) reflects the sign of b(t), the
update effectively pushes the iterates in a direction that primarily depends on sign changes rather
than the curvature or detailed shape of g. This often leads to overshooting and sign flipping in each
coordinate, resulting in oscillations. Consequently, the iterates do not converge to a stable minimizer
of f , and the error metrics (both training and test) oscillate, remaining above some suboptimal
threshold. This behavior indicates that the algorithm fails to memorize training data properly and
cannot generalize well when β1 is excessively large.

Let us focus on reasonable values of β1, starting with β1 = 0.

Theorem C.6. If β1 = 0 and α = αt ∈ (0, 2
σmax+β2

) ∀t, then Gβ2(b
(t)) → 0 as t → ∞; where

Gβ2(b) = 0 ⇐⇒ b = b̂+

(
In −

(
X̃⊤X̃+ β2In

)† (
X̃⊤X̃+ β2In

))
c = b̂+

(
In −VV⊤) c ∀c ∈ Rn

(32)

Also,

∥b(t+1) − b̂∥2 ≤ ρt2∥b(1) − b̂∥2 ∀t ∈ N (33)

Proof. The solutions of Gβ2
(b) = 0 are

(
X̃⊤X̃+ β2In

)
b = X̃⊤y∗(

X̃⊤X̃+ β2In
)
(b− b∗) =

(
X̃⊤ξ − β2b

∗
)

⇐⇒

(
X̃⊤X̃+ β2In

)
b = X̃⊤y∗ = X̃⊤X̃b∗ + X̃⊤ξ = VΣV⊤b∗ +VΣ

1
2U⊤ξ

V (Σ + β2I)V⊤(b− b∗) =
(
VΣ

1
2U⊤ξ − β2b

∗
)

⇐⇒

 b =
(
X̃⊤X̃+ β2In

)†
X̃⊤y∗ +

(
In −

(
X̃⊤X̃+ β2In

)† (
X̃⊤X̃+ β2In

))
c = b̂+

(
In −VV⊤) c ∀c ∈ Rn

b− b∗ =
[
V (Σ + β2I)−1

ΣV⊤ − In
]
b∗ +V (Σ + β2I)−1

Σ
1
2U⊤ξ +

(
In −VV⊤) c ∀c ∈ Rn

(34)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

We know that
z(t+1) = A(t)z(t) +w(t)

=

(
t−i∏
k=t

A(k)

)
z(t−i) +

t−1∑
j=t−i

(
j+1∏
k=t

A(k)

)
w(j) +w(t) ∀i ≤ t

=

(∏1

k=t A
(k)
)
z(1) +

∑t−1
j=1

(∏j+1
k=t A

(k)
)
w(j) +w(t)(∏0

k=t A
(k)
)
z(0) +

∑t−1
j=0

(∏j+1
k=t A

(k)
)
w(j) +w(t)

=

{
Atz(1) +

∑t
j=1 A

t−jw(j)

At+1z(0) +
∑t

j=0 A
t−jw(j) if A(k) = A ∀k

=

 Atz(1) +
(∑t−1

i=0 A
i
)
w

At+1z(0) +
(∑t

i=0 A
i
)
w

if A(k) = A and w(k) = w ∀k

=

{
Atz(1) + (I −A)

†
(I −At)w

At+1z(0) + (I −A)
† (I −At+1

)
w

if A(k) = A and w(k) = w ∀k

(35)

Let A(t) = In − αt

(
X̃⊤X̃+ β2In

)
= VΣ̃(t)V⊤ and w(t) = αtX̃

⊤y∗ =

αt

(
X̃⊤X̃b∗ + X̃⊤ξ

)
= αt

(
VΣV⊤b∗ +VΣ

1
2U⊤ξ

)
; so that b(t+1) = A(t)b(t+1) +w(t) when

β1 = 0. For αt = α, we let A = VΣ̃V⊤ and w = α
(
VΣV⊤b∗ +VΣ

1
2U⊤ξ

)
. As t −→ ∞,

Σ̃t −→ 0. We have
t−1∑
i=0

Ai = In +

t−1∑
i=1

VΣ̃iV⊤

= In −VV⊤ +

t−1∑
i=0

VΣ̃iV⊤

= In −VV⊤ +V diag

(
t−1∑
i=0

σ̃i
k

)
k

V⊤

= In −VV⊤ +V diag

(
1− σ̃t

k

1− σ̃k

)
k

V⊤

= In −VV⊤ +V
(

I − Σ̃
)−1 (

I − Σ̃t
)
V⊤

−→ In −VV⊤ +V
(

I − Σ̃
)−1

V⊤ = In −VV⊤ +
1

α
V (Σ + β2In)

−1
V⊤ as t −→ ∞

(36)

So, as t −→ ∞,

b(t+1) =

(∞∑
i=0

Ai

)
w

= α

(
Ir −VV⊤ +

1

α
V (Σ + β2Ir)

−1
V⊤
)(

VΣV⊤b∗ +VΣ
1
2U⊤ξ

)
= V (Σ + β2I)−1

V⊤
(
VΣV⊤b∗ +VΣ

1
2U⊤ξ

)
+
(
In −VV⊤) c with c = w

= V (Σ + β2I)−1
V⊤

(
VΣV⊤b∗ +VΣ

1
2U⊤ξ

)
= b̂

(37)

We have Ab̂+c = b̂, so b(t+1)−b̂ = A(b(t)−b̂) = At(b(1)−b̂), which implies ∥b(t+1)−b̂∥2 ≤
∥At∥2→2∥b(1) − b̂∥2; with ∥At∥2→2 = σmax(A

t) = σmax(A)t = ρt2.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

We now move to a general case with β1 ≥ 0.
Lemma C.7. For all p > 0 such that ρp < 1, we have

∥b(t) − b̂∥p ≤ ρtp∥b(1) − b̂∥p + αβ1n
1/p

1− ρtp
1− ρp

≤ ρtp∥b(1) − b̂∥p +
αβ1n

1/p

1− ρp
∀t ≥ 1 (38)

In particular,

∥b(t) − b̂∥2 ≤ ρt∥b(1) − b̂∥2 + αβ1

√
n
1− ρt2
1− ρ2

≤ ρt∥b(1) − b̂∥2 +
αβ1

√
n

1− ρ2
∀t ≥ 1 (39)

and

∥b(t) − b̂∥∞ ≤ ρt∞∥b(1) − b̂∥∞ + αβ1
1− ρt∞
1− ρ∞

≤ ρt∞∥b(1) − b̂∥∞ +
αβ1

1− ρ∞
∀t ≥ 1 (40)

Proof. Recall

Gβ2
(b) = X̃⊤(y − y∗) + β2b =

(
X̃⊤X̃+ β2In

)
b−

(
X̃⊤X̃b∗ + X̃⊤ξ

)
(41)

Starting from the update rule

b(t+1) = b(t) − α
(
Gβ2(b

(t)) + β1h
(t)
)

(42)

We have
b(t+1) − b̂ =

(
b(t) − b̂

)
− α

(
Gβ2(b

(t)) + β1h
(t)
)

(43)

Since Gβ2
(b̂) = 0 and Gβ2

is linear,

Gβ2(b
(t)) =

(
X̃⊤X̃+ β2In

)
(b(t) − b̂) (44)

Substituting this back,

b(t+1) − b̂ =
(
b(t) − b̂

)
− α

(
Gβ2

(b(t)) + β1h
(t)
)

=
(
b(t) − b̂

)
− α

((
X̃⊤X̃+ β2In

)
(b(t) − b̂) + β1h

(t)
)

=
[
In − α

(
X̃⊤X̃+ β2In

)](
b(t) − b̂

)
− αβ1h

(t)

(45)

Taking the norm; applying triangle inequality and using ∥h(t)∥p ≤ n1/p give

∥b(t+1) − b̂∥p ≤ ρp∥b(t) − b̂∥p + αβ1n
1/p (46)

Repeatedly applying the recurrence,

∥b(t) − b̂∥p ≤ ρtp∥b(1) − b̂∥p + αβ1n
1/p
(
1 + ρp + · · ·+ ρt−1

p

)
= ρtp∥b(1) − b̂∥p + αβ1n

1/p
1− ρtp
1− ρp

for ρp ̸= 1

≤ ρtp∥b(1) − b̂∥p +
αβ1n

1/p

1− ρp
for ρp < 1

Theorem C.8. Let p > 0 such that ρp < 1. Define

t1 :=

−
ln
(
1 +

(1−ρ)∥b(1)−b̂∥p

αβ1n1/p

)
ln(ρp)

 (47)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Then for all t ≥ t1,

∥b(t) − b̂∥p ≤ 2αβ1n
1/p

1− ρtp
1− ρp

≤ 2
αβ1n

1/p

1− ρp
(48)

and the prediction error for t ≥ t1 is bounded by

∥X̃b(t) − y∗∥p ≤ 2αβ1n
1/p

1− ρtp
1− ρp

∥X̃∥p→p + ∥X̃b̂− y∗∥p

≤ 2
αβ1n

1/p

1− ρp
∥X̃∥p→p + ∥X̃b̂− y∗∥p

(49)

Proof. The definition of t1 ensures that for t ≥ t1,

ρt∥b(1) − b̂∥p ≤ αβ1n
1/p

1− ρtp
1− ρp

(50)

Thus, using lemma C.7, we have for t ≥ t1,

∥b(t) − b̂∥p ≤ 2αβ1n
1/p

1− ρtp
1− ρp

(51)

Using this, we derive the following

∥X̃b(t) − y∗∥p = ∥X̃(b(t) − b̂) + (X̃b̂− y∗)∥p
≤ ∥X̃∥p→p∥b(t) − b̂∥p + ∥X̃b̂− y∗∥p

≤ 2αβ1n
1/p

1− ρtp
1− ρp

∥X̃∥p→p + ∥X̃b̂− y∗∥p for t ≥ t1

(52)

Corollary C.2. Let p > 0 such that ρp < 1. Define

t̃1 :=

−

ln

(
(1−ρ)∥b(1)−b̂∥p

αβ1n1/p

)
ln(ρp)

 if ∥b(1) − b̂∥p > αβ1

1−ρp

0 otherwise

> t1 (53)

Then for all t ≥ t̃1,

∥b(t) − b̂∥p ≤ 2
αβ1n

1/p

1− ρp
(54)

and the prediction error for t ≥ t̃1 is bounded by

∥X̃b(t) − y∗∥p ≤ 2αβ1n
1/p

1− ρp
∥X̃∥p→p + ∥X̃b̂− y∗∥p (55)

Proof. The definition of t̃1 ensures that for t ≥ t̃1,

ρt∥b(1) − b̂∥∞ ≤ αβ1n
1/p

1− ρp
(56)

The rest of the proof follows from lemma C.7.

When the initialization b(1) is close to b̂, it takes less time to memorize since t1 decreases with
∥b(1) − b̂∥p, as well as t̃1 : if ∥b(1) − b̂∥p ≤ αβ1n

1/p

1−ρp
, t̃1 is trivialy 0, otherwise it decreases with

∥b(1) − b̂∥p > αβ1n
1/p

1−ρp
.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

20 40 60 80 100
N

101

102

103

104

105

t

10 4

10 3

10 2

10 1

100
t1 (experiments)
O(t1) (theory)
||Xb(t1) y * ||2 / ||y * ||2
||b() b * ||2 / ||b * ||2

20 40 60 80 100
N

100

101

102

103

104

105

106

10 4

10 3

10 2

10 1

100

Er
ro

r

t2 (experiments)
O(t2) (theory)
||Xb(t1) y * ||2 / ||y * ||2
||b() b * ||2 / ||b * ||2

Figure 8: (Left) t1 compute experimentally (when the relative training error ∥X̃b(t) − y∗∥2/∥y∗∥2
is reach 10−4, see Figure 9) and the upper bound − ln

(
1 +

(1−ρ)∥b(1)−b̂∥p

αβ1n1/p

)
/ ln(ρp) computed in

Theorem C.8, for p = ∞. (Right) Step t2 compute experimentally (when the relative recovery error
∥b(t) − b∗∥2/∥b∗∥2 reach 10−4 for the first time) and the upper bound t1 +∆t. The notation b(∞)

represent the update b(t) at the end of training. The hyperparameters for this figure are
(n, s) = (100, 5), N ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} and (α, β1, β2) = (10−1, 10−5, 0).

100 101 102 103 104 105 106

Steps (t)

10 4

10 3

10 2

10 1

100

Er
ro

r ||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

10

20

30

40

50

60

70

80

90

100

N

Figure 9: Training error ∥X̃b(t) − y∗∥2/∥y∗∥2 and recovery error ∥b(t) − b∗∥2/∥b∗∥2 as a
function of the number of measurements N ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} and the

subgradient descent training steps 0 ≤ t ≤ 2× 106, for (n, s) = (100, 5) and
(α, β1, β2) = (10−1, 10−5, 0).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

When the learning rate α alone becomes smaller, the term αβ1n
1/p

1−ρp
decreases, reducing the

asymptotic error bound. However, a smaller α makes ρp closer to 1 (for example, ρ2 =
max{maxk∈[r] |1− α(σk + β2)| , |1− αβ2|}), which increases t1 and t̃1. This means more iter-
ations are needed to reach the regime where the error stabilizes near its lower bound. Another
alternative for reducing the term αβ1n

1/p

1−ρp
and guaranteeing perfect memorization earlier is to reduce

β1. But we’ll see below that this also increases the generalization delay.

Ideally, if the system, X̃b = y∗ has an exact solution (and with appropriate β2), then X̃b̂ = y∗.
In practice, due to noise in y∗, the regularization with β2, or model mismatch, the solution b̂

might not perfectly reproduce y∗, resulting in a non zero residual ∥X̃b̂− y∗∥2. Note that we have
y∗ = X̃b∗ + ξ = UΣ

1
2V⊤b∗ + ξ, so

y(b̂) = X̃b̂ =

 X̃
(
X̃⊤X̃+ β2In

)†
X̃⊤y∗

UΣ
1
2V⊤V (Σ + β2I)−1

(
ΣV⊤b∗ +Σ

1
2U⊤ξ

)
=

{
X̃
(
X̃⊤X̃+ β2In

)†
X̃⊤y∗

UΣ
1
2 (Σ + β2I)−1

ΣV⊤b∗ +UΣ
1
2 (Σ + β2I)−1

Σ
1
2U⊤ξ

=

{
X̃
(
X̃⊤X̃+ β2In

)†
X̃⊤y∗

UΣ
1
2 (Σ + β2I)−1

ΣV⊤b∗ +U (Σ + β2I)−1
ΣU⊤ξ

and

y(b̂)− y∗ =

[
X̃
(
X̃⊤X̃+ β2In

)†
X̃⊤ − IN

]
y∗

UΣ
1
2

[
(Σ + β2I)−1

Σ− I
]
V⊤b∗ +

[
U (Σ + β2I)−1

ΣU⊤ − IN
]
ξ

=

[
X̃
(
X̃⊤X̃+ β2In

)†
X̃⊤ − IN

]
X̃b∗ +

[
X̃
(
X̃⊤X̃+ β2In

)†
X̃⊤ − IN

]
ξ

UΣ
1
2U⊤

[
U (Σ + β2I)−1

ΣU⊤ − I
]
UV⊤b∗ +

[
U (Σ + β2I)−1

ΣU⊤ − IN
]
ξ

Theorem C.9. Assume E[ξ] = 0 and Cov(ξ) = σ2
ξ IN . Then

Eξ

[
∥X̃b̂− y∗∥22

]
=

r∑
i=1

(
β2σi

σi + β2

)2

(V⊤b∗)2i +

r∑
i=1

(
β2

σi + β2

)2

σ2
ξ + σ2

ξ (N − r) (57)

Proof. We have

b̂ =
(
X̃⊤X̃+ β2In

)†
X̃⊤y∗

= V (Σ + β2I)−1
Σ

1
2U⊤y∗

(58)

Next,

X̃b̂ = UΣ
1
2 (Σ + β2I)−1

Σ
1
2U⊤y∗

= UΣ (Σ + β2I)−1
U⊤y∗

β2=0
= UU⊤y∗

(59)

Now consider the residual

X̃b̂− y∗ = UΣ (Σ + β2Ir)
−1

U⊤y∗ −UU⊤y∗ − (IN −UU⊤)y∗

= U
[
Σ (Σ + β2Ir)

−1 − Ir
]
U⊤y∗ − (IN −UU⊤)y∗

= −β2U(Σ + β2Ir)
−1U⊤y∗ − (IN −UU⊤)y∗ since Σ(Σ + β2Ir)

−1 − Ir = −β2(Σ + β2Ir)
−1

(60)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

The first term, β2U(Σ + β2Ir)−1U⊤y∗, lies in Col(U), while the second term, (IN −UU⊤)y∗,
lies in Col(U)⊥. Thus, they are orthogonal, and

∥X̃b̂− y∗∥22 = ∥β2U(Σ + β2Ir)
−1U⊤y∗∥22 + ∥(IN −UU⊤)y∗∥22 (61)

Let’s start with the second term. Since y∗ = UΣ
1
2V⊤b∗ + ξ,

(IN −UU⊤)y∗ = (IN −UU⊤)UΣ
1
2V⊤b∗ + (IN −UU⊤)ξ

= (IN −UU⊤)ξ
(62)

So

∥(IN −UU⊤)y∗∥22 = ∥(IN −UU⊤)ξ∥22
= ξ⊤(IN −UU⊤)(IN −UU⊤)ξ

= ξ⊤(IN −UU⊤)ξ

(63)

and

Eξ∥(IN −UU⊤)y∗∥22 = Eξ

[
ξ⊤(IN −UU⊤)ξ

]
= tr

(
(IN −UU⊤) Cov(ξ)

)
+ (Eξ)⊤ (IN −UU⊤) (Eξ)

= σ2
ξ tr

(
IN −UU⊤)

= σ2
ξ

(
N − tr(UU⊤)

)
= σ2

ξ

(
N − tr(U⊤U)

)
= σ2

ξ (N − tr(Ir))

= σ2
ξ (N − r)

(64)

For the first term, we have

∥β2U(Σ + β2Ir)
−1U⊤y∗∥22 = ∥β2(Σ + β2Ir)

−1U⊤y∗∥22

=

r∑
i=1

(
β2

σi + β2

)2

(U⊤y∗)2i

=

r∑
i=1

(
β2

σi + β2

)2 (
σ

1
2
i (V

⊤b∗)i + (U⊤ξ)i

)2
since U⊤y∗ = Σ

1
2V⊤b∗ +U⊤ξ

=

r∑
i=1

(
β2

σi + β2

)2 (
σi(V

⊤b∗)2i + 2σ
1
2
i (V

⊤b∗)i(U
⊤ξ)i + (U⊤ξ)2i

)
(65)

Using Eξ[(U
⊤ξ)i] = 0 and Var((U⊤ξ)i) = σ2

ξ , we get

Eξ∥β2U(Σ + β2Ir)
−1U⊤y∗∥22 =

r∑
i=1

(
β2

σi + β2

)2 (
σi(V

⊤b∗)2i + σ2
ξ

)
(66)

This concludes the proof.

The expression

Eξ

[
∥X̃b̂− y∗∥22

]
=

r∑
i=1

(
β2σi

σi + β2

)2

(V⊤b∗)2i +

r∑
i=1

(
β2

σi + β2

)2

σ2
ξ + σ2

ξ (N − r) (67)

offers insights into how various factors influence the prediction quality X̃b̂.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Signal-to-Noise Ratio (SNR) ∥b∗∥2/σξ When ∥b∗∥2 is large compared to σξ (high SNR), the
signal component (V⊤b∗)2i in the first sum becomes significant, and the bias introduced by regular-
ization interacts more strongly with the true signal, so the first term largely determines the expected

residual. Otherwise, the noise terms
∑r

i=1

(
β2

σi+β2

)2
σ2
ξ +σ2

ξ (N−r) dominate the expected residual.
In this case, noise largely drives the error, and recovering the signal becomes more challenging.

Effect of the Regularization Parameter β2 If β2 ≪ σi for most i, then β2

σi+β2
≈ β2

σi
and

β2σi

σi+β2
≈ β2

σi
. The bias and the noise contribution for dominant singular modes are both reduced,

resulting in lower expected residual error. If β2 ≫ σi, then β2

σi+β2
≈ 1 and β2σi

σi+β2
≈ σi. Over-

regularization increases bias and noise contributions, generally raising the expected residual. So β2

controls the bias-variance tradeoff: increasing β2 reduces variance but increases bias. The optimal β2

minimizes the overall expected residual.

Dependence on X̃ and its Rank. The rank r of X̃ appears explicitly in the term σ2
ξ (N − r). If

X̃ is full rank (i.e., r = N when N ≤ n), then the term σ2
ξ (N − r) vanishes, eliminating the noise

component in the nullspace of X̃⊤. For rank-deficient X̃ (r < N), σ2
ξ (N − r) accounts for noise in

directions orthogonal to the column space of X̃. This part of the noise cannot be captured or reduced
by the model, setting a lower bound on the residual error.

In practice, we run the experiment for different training data X̃, then average the results. However,
taking the expectation over the distribution of X̃ (e.g., assuming X̃ij

iid∼ N (0, 1/n)) involves (i)
Averaging over the singular values {σi} of X̃, which, in large dimensions, follow the Marchenko-
Pastur law; (ii) Considering the distribution of singular vectors U and V, which tend to be uniformly
distributed over appropriate spheres. Explicit calculation of EX̃,ξ

[
∥X̃b̂− y∗∥22

]
requires integrating

the above expression with respect to the joint distribution of singular values and vectors, which is
complex. In high-dimensional asymptotics, one typically replaces sums over singular values with
integrals against the Marchenko-Pastur density and assumes uniformity in the projections (V⊤b∗)2i ,
but this does not generally yield a closed-form expression. Instead, one uses approximations or
numerical simulations to understand behavior under these conditions.

So b̂ can memorize. But can it generalize? We have

b̂− b∗ =

(
X̃⊤X̃+ β2In

)†
X̃⊤

(
X̃b∗ + ξ

)
− b∗

V (Σ + β2I)−1
(
ΣV⊤b∗ +Σ

1
2U⊤ξ

)
− b∗

=

[(

X̃⊤X̃+ β2In
)†

X̃⊤X̃− In

]
b∗ +

(
X̃⊤X̃+ β2In

)†
X̃⊤ξ[

V (Σ + β2I)−1
ΣV⊤ − In

]
b∗ +V (Σ + β2I)−1

Σ
1
2U⊤ξ

Theorem C.10. For N < n,

∥b̂− b∗∥22 ≥ ∥(In −VV⊤)b∗∥22 (68)

In particular, if b∗ has a nonzero component orthogonal to Col(V), then b̂ cannot perfectly generalize
to b∗.

Proof. Consider the regularized least-squares estimator

b̂ =
(
X̃⊤X̃+ β2In

)†
X̃⊤y∗

= V (Σ + β2I)−1
Σ

1
2U⊤y∗

(69)

We have VV⊤b̂ = b̂, i.e. b̂ ∈ Col(V). Let decompose b∗ into two orthogonal components:

b∗ = VV⊤b∗ + (In −VV⊤)b∗ = b∥ + b⊥, (70)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

where
b∥ := VV⊤b∗ ∈ Col(V), and b⊥ := (In −VV⊤)b∗ ∈ Col(V)⊥ (71)

Since b̂ ∈ Col(V),
VV⊤(b̂− b∥) = b̂− b∥ (72)

and VV⊤b⊥ = 0 by orthogonality. Thus, we can express the error as

b̂− b∗ = b̂− (b∥ + b⊥)

= (b̂− b∥)− b⊥
(73)

Because b̂− b∥ ∈ Col(V) and b⊥ lies in the orthogonal complement of Col(V), these two vectors
are orthogonal. Hence,

∥b̂− b∗∥22 = ∥b̂− b∥∥22 + ∥b⊥∥22
≥ ∥b⊥∥22
= ∥(In −VV⊤)b∗∥22.

(74)

The theorem above shows that unless (In −VV⊤)b∗ = 0, i.e., b∗ ∈ Col(V), the error ∥b̂− b∗∥2
remains strictly positive. For N < n, V has rank r < n, so in general b∗ will have a nonzero
orthogonal component b⊥, implying that b̂ cannot fully generalize to b∗

For β2 = 0 (i.e., no ℓ2 regularization), b̂ = VV⊤b∗ +VΣ− 1
2U⊤ξ. This solution memorizes the

training data since y(b̂) − y∗ =
(
UU⊤ − IN

)
ξ, so that ∥y(b̂) − y∗∥22 = ξ

(
IN −UU⊤) ξ ≤

∥ξ∥22 ≤ ϵ2. We have b̂− b∗ =
(
VV⊤ − In

)
b∗ +VΣ− 1

2U⊤ξ, so

∥b̂− b∗∥22 = b∗⊤ (VV⊤ − In
) (

VV⊤ − In
)
b∗ + 2b∗⊤ (VV⊤ − In

)
VΣ− 1

2U⊤ξ + ξ⊤UΣ− 1
2V⊤VΣ− 1

2U⊤ξ

= b∗⊤ (In −VV⊤)b∗ + ξ⊤UΣ−1U⊤ξ

For N < n, X̃ is necessary column rank deficient, that is In −VV⊤ > 0. In that case, b̂ can not be
generalized, since ∥b̂−b∗∥2

2

∥b∗∥2
2

≥ 1 + ξ⊤UΣ−1U⊤ξ
∥b∗∥2

2
. For N ≥ n, b̂ can generalize if X̃ is full rank (e.g.,

if τ = 0, i.e. full random Gaussian X, then X̃ is full rank with high probability), has small condition
number σmax

σmin
, and the signal to noise ratio ∥b∗∥2/σξ is big enough.

C.6.2 GENERALIZATION

We now turn our attention to the generalization delay. Based on the analysis up to Theorem C.8,
we now analyze the subsequent “generalization” phase, during which the iterate b(t) transitions
from memorizing the training data (b(t) ≈ b̂) to converging toward the sparse ground truth b∗. We
focus on quantifying the additional number of iterations ∆t required for this phase and bounding the
generalization error ∥b(t) − b∗∥∞ as t → ∞.

Lemma C.11. Given α > 0 and b(1) ∈ R, let b(t+1) = b(t) − αh(b(t)) for all t ≥ 1, where
h(b) ∈ ∂|b|.

1. A point b is stationary for this dynamical system if and only if |b| ≤ α.

2. We have |b(t)| ≤ α if and only if t > ⌊ |b(1)|
α ⌋.

3. In particular, for h(b) = sign(b) ∀b ∈ R, if b(1)/α ∈ Z, then b(t) = 0 for all t > ⌊ |b(1)|
α ⌋.

Proof. Let first consider the simple case h(b) = sign(b), so that b(t+1) = b(t) − α sign(b(t)).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

• If b(t) ∈ {0, α,−α}, then b(t+∆) = 0 for all ∆ > 0.

• If b(t) ∈ (0, α), then b(t+1) = b(t) −α ∈ (−α, 0), and b(t+2) = b(t+1) +α = b(t) ∈ (0, α),
and so on.

• If b(t) ∈ (−α, 0), then b(t+1) = b(t)+α ∈ (0, α), and b(t+2) = b(t+1)−α = b(t) ∈ (−α, 0),
and so on.

• If b(t) > α (resp. b(t) < −α), it will be decreased (resp. increase) by α until b(t) ∈ (0, α]
(resp. b(t) ∈ [−α, 0)), and we get back to the previous cases. In that case, |b(t+1)| =
|b(t)| − α = |b(1)| − tα ≤ α =⇒ t+ 1 ≥ |b(1)|

α .

Let k = ⌊ |b(1)|
α ⌋. Assume b(1) ≥ 0, then kα ≤ b(1) < (k + 1)α, so that (k − t + 1)α ≤ b(t) <

(k− t+ 2)α. Letting k− t+ 1 = 0, we obtain t = k+ 1 and 0 ≤ b(t) < α, so that |b(t+∆)| < α for
all ∆ > 0. If b(1) ≤ 0, then −(k + 1)α < b(1) ≤ −kα, so that (t− k − 2)α < b(t) ≤ (t− k − 1)α.
Letting t− k − 1 = 0, we obtain t = k + 1 and −α < b(t) ≤ 0, so that |b(t+∆)| < α for all ∆ > 0.
This achieves the proof for h(b) = sign(b).

Now consider the general dynamic b(t+1) = b(t) − αh(b(t)). If b(1) ̸= 0 (the case b(1) = 0 is trivial),
then the dynamic is b(t+1) = b(t) −α sign(b(t)) as long as |b(t)| ≥ α, after which it will just oscillate
in the ball {b, |b| ≤ α} indefinitely. In fact, a fixed point b must satisfy b = b− αh(b); i.e. h(b) = 0.
The only case where 0 ∈ ∂|b| is b = 0 or when it lies in the interval where the subgradient can be
0. However, for any b such that |b| ≤ α, it is possible to choose h(b) (for instance, h(b) = b/α)
such that b = b − αh(b), making b a fixed point. Conversely, if |b| > α, then |h(b)| = 1 and
|b− αh(b)| = ||b| − α| > 0, so b is not a fixed point.

In practice, we work with the subgradient h(b) = sign(b), the one provided by automatic differentia-
tion in many optimization libraries, like Pytorch.

Theorem C.12. Given α > 0 and b(1) ∈ Rn, let b(t+1) = b(t) − αh(b(t)) for all t ≥ 1, where
h(b) ∈ ∂∥b∥1.

1. A point b is stationary for this dynamical system if and only if |bi| ≤ α ∀i ∈ [n]. As a
consequence, ∥b∥p ≤ αn1/p ∀p ∈ [1,∞].

2. We have ∥b(t)∥∞ ≤ α if and only if t > ⌊∥b(1)∥∞
α ⌋.

3. In particular, for h(b) = sign(b) ∀b ∈ Rn, we have ∥b(t)∥0 =
∣∣∣{i | b(1)

i /α ∈ Z
}∣∣∣ for all

t > ⌊∥b(1)∥∞
α ⌋.

Proof. By applying the Lemma C.11 coordinate wise the proof is immediat.

Recall we have

b(t+1) = b(t) − α
(
Gβ2(b

(t)) + β1h(b
(t))
)

(75)

with

Gβ2(b) = X̃⊤(y−y∗)+β2b =
(
X̃⊤X̃+ β2In

)
b−
(
X̃⊤X̃b∗ + X̃⊤ξ

)
= β2b

∗−X̃⊤ξ for b = b∗

(76)

and h(b) ∈ ∂∥b∥1. From Theorem C.8, for all t ≥ t1 =

−
ln

(
1+

(1−ρ)∥b(1)−b̂∥p
αβ1n1/p

)
ln(ρp)

, and for all

p satisfying ρp ∈ (0, 1) (e.g p = 2); we have ∥b(t) − b̂∥p ≤ 2αβ1n
1/p 1−ρt

p

1−ρp
≤ 2αβ1n

1/p

1−ρp
, where

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

b̂ =
(
X̃⊤X̃+ β2In

)†
X̃⊤y∗ is the the least square solution of the problem. So

∥Gβ2
(b(t))∥p = ∥Gβ2

(b(t))−Gβ2
(b̂)∥p since Gβ2

(b̂) = 0

≤ ∥X̃⊤X̃+ β2In∥p→p∥b(t) − b̂∥p

≤ 2αβ1n
1/p∥X̃⊤X̃+ β2In∥p→p

1− ρtp
1− ρp

≤ 2αβ1n
1/p

1− ρp
∥X̃⊤X̃+ β2In∥p→p

(77)

So, this gradient can be made much smaller than the subgradient term by choosing αβ1 sufficiently
small. This bound also writes

∥Gβ2
(b(t))∥2 ≤ 2αβ1

√
n(σmax(X̃

⊤X̃) + β2)
1− ρt2
1− ρ2

≤ 2αβ1
√
n

1− ρ2
(σmax(X̃

⊤X̃) + β2)

≤ 2β1

√
n(1− ρt2)

σmax(X̃
⊤X̃) + β2

σmin(X̃⊤X̃) + β2

≤ 2β1

√
n
σmax + β2

σmin + β2
if X̃ is full rank

(78)

The last line follows from the fact that if X̃ is full rank, then ρ2 = 1− α(σmin(X̃
⊤X̃) + β2), so that

1− ρ2 = α(σmin(X̃
⊤X̃) + β2).

Let I := {i ∈ [n] | b∗i ̸= 0} be the support of b∗. Since b∗ is s-sparse, s = |I| ≪ n. After time t1,
the contribution of the gradient Gβ2 to the update of b(t)

i is dominated by the ℓ1–regularization term.
Specifically, for each i ∈ [n], the update rule approximates

b
(t+1)
i ≈ b

(t)
i − αβ1h(b

(t)
i) (79)

By Theorem C.12, this lead to ∥b(t)∥p ≤ αn1/p ∀p ∈ [1,∞] for (and only for) t ≥ t2 := t1 +⌊
∥b(1)∥∞

αβ1

⌋
.

For i ∈ I in particular, if |b(t1)
i | ≫ |b∗

i |, then using the approximate dynamics b
(t+1)
i ≈ b

(t)
i −

αβ1h(b
(t)
i − b∗

i), we can conclude also that |b(t)
i − b∗

i | ≤ αβ1 for (and only for) t ≥ t2.

Note that when ∥b(t)∥1 becomes too small, b(t) ≈ b∗ since for problem of interest, the sparse
solution b∗ is the unique minimizer of ∥X̃b− y∗∥2 under the sparsity constraint s = ∥b∗∥0 ≪ n

(and the RIP assumptions on X̃). Our argument here is that the additional number of steps it takes
to reach this small ℓ1-norm solution is ∆t = Θ

(
∥b̂∥∞
αβ1

)
, so that the smaller β1 is (for α fixed), the

longer it take to recover b∗, and the smaller is the error ∥b(t) − b∗∥∞ when t → ∞. If β2 is choose
such that ∥b̂∥∞ ≪ αβ1, then b(t) will get stuck near b̂, and there will be no generalization after
memorization. So a bad choice of a non-zero β2 can be detrimental to generalization (it is better to
not use β2 on that problem unless the initialization scale is nontrivial).

By carefully choosing α and β1, one can balance the speed of generalization (smaller ∆t) with the
accuracy of recovery (smaller ∥b(t) − b∗∥∞). Appropriate step rule also guaranteed the converge of
∥b(t)∥1 to ∥b∗∥1.
Theorem C.13. For all T ∈ N∗, we have

min
1≤t≤T

(
∥b(t)∥1 − ∥b∗∥1

)
≤

∥b(1) − b∗∥22 +
(
max1≤t≤T ∥∇bf(b

(t))∥22
)∑T

t=1 α
2
t

2β1

∑T
t=1 αt

+
∥ξ∥22 + β2∥b∗∥22

2β1
.

(80)

Proof. We have f(b(t)) = 1
2∥X̃b(t) − y∗∥22 + β2

2 ∥b(t)∥22 + β1∥b(t)∥1 and f(b∗) = 1
2∥X̃b∗ −

y∗∥22 +
β2

2 ∥b∗∥22 + β1∥b∗∥1 = 1
2∥ξ∥

2
2 +

β2

2 ∥b∗∥22 + β1∥b∗∥1. So for any t,

f(b(t))− f(b∗) = 1
2∥X̃b(t) − y∗∥22 +

β2

2

(
∥b(t)∥22 − ∥b∗∥22

)
+ β1

(
∥b(t)∥1 − ∥b∗∥1

)
− 1

2∥ξ∥
2
2

≥ β1

(
∥b(t)∥1 − ∥b∗∥1

)
− 1

2∥ξ∥
2
2 −

β2

2
∥b∗∥22

(81)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Since
1

2
∥X̃b(t) − y∗∥22 ≥ 0 and

β2

2

(
∥b(t)∥22 − ∥b∗∥22

)
≥ −β2

2
∥b∗∥22 (82)

Rearranging equation equation 81 yields

∥b(t)∥1 − ∥b∗∥1 ≤ f(b(t))− f(b∗)

β1
+

∥ξ∥22 + β2∥b∗∥22
2β1

. (83)

By Theorem C.3, when ∥b(1) − b∗∥2 ≤ R and ∥F (b(t))∥2 ≤ L ∀t ≤ T ,

min
1≤t≤T

(
f(b(t))− f(b∗)

)
≤

R2 + L2
∑T

t=1 α
2
t

2
∑T

t=1 αt

(84)

Substituting this into equation 83 gives

min
1≤t≤T

(
∥b(t)∥1 − ∥b∗∥1

)
≤

R2 + L2
∑T

t=1 α
2
t

2β1

∑T
t=1 αt

+
∥ξ∥22 + β2∥b∗∥22

2β1
. (85)

So, when
∑

t α
2
t < ∞ and

∑
t αt = ∞ (e.g. αt = a/(b + t), a > 0 and b ≥ 0), ∥b(t)∥1 →

∥b∗∥1 → 0 as T → ∞, for β2 = 0 in the noiseless setting.

C.6.3 OPTIMIZATION LANDSCAPE

We will look at the landscape of the solution. Let I := {i ∈ [n] | b∗i ̸= 0} be the support of b∗;
u(t) = ∥b(t)

I ∥2 and v(t) = ∥b(t)
[n]\I∥2 be the norms of b(t) restraint on its indexes in I (resp, outside

I).

Figure 10 shows how b(t) first converge to the least square solution (memorization), and from least
square solution to b∗ (N large enough) or a suboptimal solution (N too small). After memorization,
when N is large enough, v(t) converge to zero while u(t) converge to the norm of b∗. This is because
the components of b(t) that are not in I are shrunk at each training step until they all reach 0 (Figure
11). This convergence is impossible if β1 = 0 (even if β2 ̸= 0).

C.6.4 ADDITIONNAL EXPERIMENTS

We optimize the noiseless problem (ξ = 0) using the subgradient descent method with
(n, s,N, ζ, β2) = (102, 5, 30, 10−6, 0) for different values of α and β1. As expected, larger α
and/or β1 lead to fast convergence and do so at a suboptimal value of the test error (Figure 12).

We optimize the noiseless problem (ξ = 0) using the subgradient descent method with
(n, ζ, α, β1, β2) = (102, 10−6, 10−1, 10−5, 0), for different values of s and N . See Figures 13,
14, 15 and 16).

C.7 PROJECTED SUBGRADIENT

To ensure memorization, we can use the projected subgradient for problem (P1) of minimizing ∥b∥1
subject to the constraint Fb(X̃) = X̃b = y∗, where at each step the update (using now just β1h(b)
as gradient, not the whole F (b)) is projected onto the constraint set. In our case, the update write

b(t+1) = Π
(
b(t) − αtβ1h(b

(t))
)

with Π(b) = b − X̃⊤
(
X̃X̃⊤

)†
(X̃b − y∗) = P (b− b∗) +

b∗ + X̃⊤
(
X̃X̃⊤

)†
ξ the projection of b on the set {b, X̃b = y∗}, P = In − X̃⊤

(
X̃X̃⊤

)−1

X̃.

So b(t+1) − b∗ = P
(
b(t) − b∗) − αtβ2Ph(b(t)) + X̃⊤

(
X̃X̃⊤

)†
ξ3. We can also keep

3For a fat and full rank X̃ (rank(X̃) = N ≤ n), if we start at b(1) such that X̃b(1) = y∗, for example, the

min norm solution b(1) = X̃⊤
(
X̃X̃⊤

)−1

y∗, then P
(
b(t) − b∗

)
= b(t) − b∗ − X̃⊤

(
X̃X̃⊤

)†
ξ ∀t ≥ 1,

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
u(t)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

v(
t)

t0t1t2

t3

t4

t0

t1t2
t3

t4

t0

t1t2

t3

t4

t0

t1
t2

t3

t4

t0

t1

t2

t3

t4

t0

t1

t2

t3t4

t0

t1

t2

t3t4

t0

t1

t2

t3t4

t0
t1

t2

t3t4

t0

t1

t2

t3t4

b (least square)
b * (optimum)
t0 = 6
t1 = 41
t2 = 265
t3 = 71900
t4 = 999900

10

20

30

40

50

60

70

80

90

100

N

Figure 10: From initialization to least square solution (memorization), and from least square solution
to b∗ (N large enough) or a suboptimal solution (N too small). The steps t1 and t2 are different

from those introduced above to measure memorization and generalization (respectively). They are
just a means of tracing the evolution of training here. Here N ∈ {20, 30, 40, 50, 60, 70}, for

(n, s) = (100, 5) and (α, β1, β2) = (10−1, 10−5, 0).

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
0

Dimensions (n)

101

102

103104
105

106
St

ep
s (

t)

0.00

0.05

0.10

0.15

0.20

b
*

Figure 11: Convergence of b(t)
i to b∗

i for each i ∈ [n]. Here (n, s,N) = (100, 5, 30) and
(α, β1, β2) = (10−1, 10−5, 0).

track of the best minimum ℓ1 solution during training, b
(t)
best = argminb∈{b(t′),t′≤t} ∥b∥1 =

argmin
b∈

{
b

(t−1)
best ,b(t)

} ∥b∥1. Using this, we can show that the ℓ1 optimal gap of this method enjoys

the same bound given above for the non-projected case without the requirement ∥F (b)∥2 ≤ L ∀b,
with the rescale learning rate α̃t = β1αt; and the bound

√
n on the subgradient, ∥h(b)∥22 ≤ n ∀b.

Note that we have f∗ = f(b∗) = β1∥b∗∥1+ β2

2 ∥b∗∥22+ ∥ξ∥22, and after one step of training (t > 1),
f (t) = f(b(t)) = β1∥b(t)∥1 + β2

2 ∥b(t)∥22 since y(b(t)) = y∗.

Theorem C.14. Let α̃t = β1αt. If ∥b(1) − b∗∥2 ≤ R, then ∥b(t)
best∥1 − ∥b∗∥1 ≤ R2+n

∑T
t=1 α̃2

t

2
∑T

t=1 α̃t
.

Proof. We have

0 ≤ ∥b(T+1) − b∗∥22 = ∥Π
(
b(T) − αTβ1 · h(b(T))

)
− b∗∥22

≤ ∥b(T) − b∗ − αTβ1 · h(b(T))∥22
= ∥b(T) − b∗∥22 − 2αTβ1(b

(T) − b∗)⊤h(b(T)) + β2
1α

2
T ∥h(b(T))∥22

≤ ∥b(T) − b∗∥22 − 2β1αT

(
∥b(T)∥1 − ∥b∗∥1

)
+ β2

1α
2
T ∥h(b(T))∥22 (by the definition of h)

≤ ∥b(1) − b∗∥22 − 2β1

T∑
t=1

αt

(
∥b(t)∥1 − ∥b∗∥1

)
+ β2

1

T∑
t=1

α2
t ∥h(b(t))∥22

and the update simplifies to b(t+1) = b(t) − αtβ2Ph(b(t)). In general, even if we don’t start at b(1) satisfying
X̃b(1) = y∗, as soon as X̃b(t0) = y∗ for a certain t1 (memorization), the next updates have the previous form.
Note that P⊤ = P and P⊤P = P2 = P.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

101 103 105 107

10 4

10 3

10 2

10 1

100

Er
ro

r

= 0.005

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

10 6

10 5

10 4

10 3

10 2

10 1

1

101 103 105 107
10 5

10 4

10 3

10 2

10 1

100
= 0.01

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

10 6

10 5

10 4

10 3

10 2

10 1

1

101 103 105 107
10 5

10 4

10 3

10 2

10 1

100

Er
ro

r

= 0.0275

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

10 6

10 5

10 4

10 3

10 2

10 1

1
101 103 105 107

10 5

10 4

10 3

10 2

10 1

100
= 0.055

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

10 6

10 5

10 4

10 3

10 2

10 1

1

101 103 105 107

Steps (t)

10 5

10 4

10 3

10 2

10 1

100

Er
ro

r

= 0.0825

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

10 6

10 5

10 4

10 3

10 2

10 1

1

101 103 105 107

Steps (t)

10 5

10 4

10 3

10 2

10 1

100
= 0.1

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

10 6

10 5

10 4

10 3

10 2

10 1

1

Figure 12: Training error ∥X̃b(t) − y∗∥2/∥y∗∥2 and recovery error ∥b(t) − b∗∥2/∥b∗∥2 as a
function of the learning rate α and the ℓ1-regularization coefficient β1. Here (n, s,N) = (100, 5, 30)

100 101 102 103 104 105 106

Steps (t)

10 4

10 3

10 2

10 1

100

Er
ro

r

s=1

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

10
20
30
40
50
60
70
80
90
100

N

100 101 102 103 104 105 106

Steps (t)

10 4

10 3

10 2

10 1

100

Er
ro

r

s=5

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

10
20
30
40
50
60
70
80
90
100

N

100 101 102 103 104 105 106

Steps (t)

10 4

10 3

10 2

10 1

100

Er
ro

r

s=10

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

10
20
30
40
50
60
70
80
90
100

N

100 101 102 103 104 105 106

Steps (t)

10 4

10 3

10 2

10 1

100

Er
ro

r

s=15

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

10
20
30
40
50
60
70
80
90
100

N

Figure 13: Training error ∥X̃b(t) − y∗∥2/∥y∗∥2 and recovery error ∥b(t) − b∗∥2/∥b∗∥2 as a
function of the sparsity level s ∈ {1, 5, 10, 15} and the measurements N ∈ {10, 20, . . . 100}. Here

(n, α, β1, β2) = (102, 10−1, 10−5, 0), with the subgradient descent

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

20 40 60 80 100
N

101

102

103

104

105

t

s=1

10 4

10 3

10 2

10 1

100

Er
ro

r

t1 (experiments)
O(t1) (theory)
||Xb(t1) y * ||2 / ||y * ||2
||b() b * ||2 / ||b * ||2

20 40 60 80 100
N

101

102

103

104

105

t

s=5

10 4

10 3

10 2

10 1

100

Er
ro

r

t1 (experiments)
O(t1) (theory)
||Xb(t1) y * ||2 / ||y * ||2
||b() b * ||2 / ||b * ||2

20 40 60 80 100
N

101

102

103

104

105

t

s=10

10 4

10 3

10 2

10 1

100

Er
ro

r

t1 (experiments)
O(t1) (theory)
||Xb(t1) y * ||2 / ||y * ||2
||b() b * ||2 / ||b * ||2

20 40 60 80 100
N

101

102

103

104

105

t

s=15

10 4

10 3

10 2

10 1

100

Er
ro

r

t1 (experiments)
O(t1) (theory)
||Xb(t1) y * ||2 / ||y * ||2
||b() b * ||2 / ||b * ||2

Figure 14: On the left axis, the memorization step t1 compute experimentally (smaller t such that
∥X̃b(t) − y∗∥2/∥y∗∥2 ≤ 10−4) and the upper bound − ln

(
1 + (1−ρ)∥b(1)−b̂∥∞

αβ1

)
/ ln(ρ)

computed in Theorem C.8. On the right axis, the error ∥X̃b(t1) − y∗∥2/∥y∗∥2 at step t1 and the
recovery error ∥b(∞) − b∗∥2/∥b∗∥2 at the end of training. Here

(n, α, β1, β2) = (102, 10−1, 10−5, 0), with the subgradient descent.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

20 40 60 80 100
N

10 4

6 × 10 5

2 × 10 4

||X
b(t 1

)
y

* |
| 2

/
||y

* |
| 2

s=1
s=5
s=10
s=15

20 40 60 80 100
N

10 4

10 3

10 2

10 1

100

||b
(t 2

)
b

* |
| 2

/
||b

* |
| 2

s=1
s=5
s=10
s=15

20 40 60 80 100
N

101

102

103

104

105

t 1

s=1
s=5
s=10
s=15

20 40 60 80 100
N

100

101

102

103

104

105

106

t 2

s=1
s=5
s=10
s=15

Figure 15: Training error ∥X̃b(t1) − y∗∥2/∥y∗∥2 at memorization, recovery error
∥b(t2) − b∗∥2/∥b∗∥2 at generalization, memorization step t1 (smaller t such that
∥X̃b(t) − y∗∥2/∥y∗∥2 ≤ 10−4), and generalization step (smaller t such that

∥b(t) − b∗∥2/∥b∗∥2 ≤ 10−4 or the maximum training step). Here
(n, α, β1, β2) = (102, 10−1, 10−5, 0), with the subgradient descent

20 40 60 80 100
N

101

102

103

104

105

t

t1 (experiments)
O(t1) (theory)

1

5

10

15

s

Figure 16: Memorization step t1 compute experimentally (smaller t such that
∥X̃b(t) − y∗∥2/∥y∗∥2 ≤ 10−4) and the upper bound computed in Theorem C.8. Here

(n, α, β1, β2) = (102, 10−1, 10−5, 0), with the subgradient descent.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

=⇒ 2β1

(
T∑

t=1

αt

)
min
t≤T

(
∥b(t)∥1 − ∥b∗∥1

)
≤ 2β1

T∑
t=1

αt

(
∥b(t)∥1 − ∥b∗∥1

)
≤ R2 + β2

1

T∑
t=1

α2
t ∥h(b(t))∥22

⇐⇒ min
t≤T

(
∥b(t)∥1 − ∥b∗∥1

)
≤

R2 + β2
1

∑T
t=1 α

2
t ∥h(b(t))∥22

2β1

∑T
t=1 αt

=
R2 + β2

1n
∑T

t=1 α
2
t

2β1

∑T
t=1 αt

We optimize the noiseless problem (ξ = 0) using the projected subgradient descent method with
(n, ζ, α, β1, β2) = (102, 10−6, 10−1, 10−5, 0), for different values of s and N . We observe a
grokking-like pattern similar to the subgradient case (Figures 17, 18, 19 and 20). Here, one step of
training is enough to get zero training error. This further shows that generalization is driven by β1.

100 101 102 103 104 105 106

Steps (t)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

s=1

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

10
20
30
40
50
60
70
80
90
100

N

100 101 102 103 104 105 106

Steps (t)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

s=5

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

10
20
30
40
50
60
70
80
90
100

N

100 101 102 103 104 105 106

Steps (t)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

s=10

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

10
20
30
40
50
60
70
80
90
100

N

100 101 102 103 104 105 106

Steps (t)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

s=15

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

10
20
30
40
50
60
70
80
90
100

N
Figure 17: Training error ∥X̃b(t) − y∗∥2/∥y∗∥2 and recovery error ∥b(t) − b∗∥2/∥b∗∥2 as a

function of the sparsity level s ∈ {1, 5, 10, 15} and the measurements N ∈ {10, 20, . . . 100}. Here
(n, α, β1, β2) = (102, 10−1, 10−5, 0), with the projected subgradient descent

C.8 PROXIMAL GRADIENT DESCENT AND ITERATIVE SOFT-THRESHOLDING ALGORITHM

We have
b− αGβ2

(b) = argmin
c

gβ2
(b) + (c− b)⊤Gβ2

(b) +
1

2α
∥c− b∥22

So

b− αF (b) ≈ argmin
c

gβ2
(b) + (c− b)⊤Gβ2

(b) +
1

2α
∥c− b∥22 + β1∥c∥1

= argmin
c

1

2α

[
∥αGβ2

(b)∥22 + 2α(c− b)⊤Gβ2
(b) + ∥c− b∥22

]
+ β1∥c∥1

= argmin
c

1

2α
∥c− (b− αGβ2(b)) ∥22 + β1∥c∥1

= Πα (b− αGβ2
(b))

with Πα the proximal mapping for c → β1∥c∥1,

Πα(b) = argmin
c

1

2α
∥c− b∥22 + β1∥c∥1

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

20 40 60 80 100
N

100

101

102

103

104

105

t

s=1

10 14

10 11

10 8

10 5

10 2

Er
ro

r

t1 (experiments)
O(t1) (theory)
||Xb(t1) y * ||2 / ||y * ||2
||b() b * ||2 / ||b * ||2

20 40 60 80 100
N

100

101

102

103

104

105

t

s=5

10 14

10 11

10 8

10 5

10 2

Er
ro

r

t1 (experiments)
O(t1) (theory)
||Xb(t1) y * ||2 / ||y * ||2
||b() b * ||2 / ||b * ||2

20 40 60 80 100
N

100

101

102

103

104

105

t

s=10

10 14

10 11

10 8

10 5

10 2

Er
ro

r
t1 (experiments)
O(t1) (theory)
||Xb(t1) y * ||2 / ||y * ||2
||b() b * ||2 / ||b * ||2

20 40 60 80 100
N

100

101

102

103

104

105

t

s=15

10 14

10 11

10 8

10 5

10 2

Er
ro

r

t1 (experiments)
O(t1) (theory)
||Xb(t1) y * ||2 / ||y * ||2
||b() b * ||2 / ||b * ||2

Figure 18: On the left axis, the memorization step t1 compute experimentally (smaller t such that
∥X̃b(t) − y∗∥2/∥y∗∥2 ≤ 10−4) and the upper bound − ln

(
1 + (1−ρ)∥b(1)−b̂∥∞

αβ1

)
/ ln(ρ)

computed in Theorem C.8. On the right axis, the error ∥X̃b(t1) − y∗∥2/∥y∗∥2 at step t1 and the
recovery error ∥b(∞) − b∗∥2/∥b∗∥2 at the end of training. Here

(n, α, β1, β2) = (102, 10−1, 10−5, 0), with the projected subgradient descent.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

20 40 60 80 100
N

10 16

||X
b(t 1

)
y

* |
| 2

/
||y

* |
| 2

s=1
s=5
s=10
s=15

20 40 60 80 100
N

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

||b
(t 2

)
b

* |
| 2

/
||b

* |
| 2

s=1
s=5
s=10
s=15

20 40 60 80 100
N

10 1

100

101

t 1

s=1
s=5
s=10
s=15

20 40 60 80 100
N

100

101

102

103

104

105

106

t 2
s=1
s=5
s=10
s=15

Figure 19: Training error ∥X̃b(t1) − y∗∥2/∥y∗∥2 at memorization, recovery error
∥b(t2) − b∗∥2/∥b∗∥2 at generalization, memorization step t1 (smaller t such that
∥X̃b(t) − y∗∥2/∥y∗∥2 ≤ 10−4), and generalization step (smaller t such that

∥b(t) − b∗∥2/∥b∗∥2 ≤ 10−4 or the maximum training step). Here
(n, α, β1, β2) = (102, 10−1, 10−5, 0), with the projected subgradient descent

20 40 60 80 100
N

100

101

102

103

104

105

t

t1 (experiments)
O(t1) (theory)

1

5

10

15

s

Figure 20: Memorization step t1 compute experimentally (smaller t such that
∥X̃b(t) − y∗∥2/∥y∗∥2 ≤ 10−4) and the upper bound computed in Theorem C.8. Here

(n, α, β1, β2) = (102, 10−1, 10−5, 0), with the projected subgradient descent.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Using

Qα(b) =
b−Πα (b− αGβ2

(b))

α
The proximal update writes

b(t+1) = Παt

(
b(t) − αtGβ2

(b(t))
)

= b(t) − αt

b(t) −Παt

(
b(t) − αtGβ2(b

(t))
)

αt

= b(t) − αtQαt
(b(t))

This form appears similar to the standard gradient descent update but is not the most interesting in
this context.

Πα(b) = argmin
c

1

2α
∥c− b∥22 + β1∥c∥1

= argmin
c

1

2
∥c− b∥22 + αβ1∥c∥1

= Sαβ1
(b)

with Sγ(b) = sign(b)⊙max(|b| − γ, 0) the soft-thresholding operator4,

Sγ(b)i =

{
bi − γ if bi > γ
0 if − γ ≤ bi ≤ γ
bi + γ if bi < −γ

The final form of the update, known as the Iterative soft-thresholding algorithm (ISTA) (Daubechies
et al., 2003), is then

b(t+1) = Sαtβ1

(
b(t) − αtGβ2

(b(t))
)

∀t > 1 (86)

with

Gβ2(b) := ∇bgβ2(b) = X̃⊤(y − y∗) + β2b =

(
X̃⊤X̃+ β2In

)
b−

(
X̃⊤X̃b∗ + X̃⊤ξ

)(
X̃⊤X̃+ β2In

)
(b− b∗)−

(
X̃⊤ξ − β2b

∗
)

Theorem C.15. Let L = ∥X̃⊤X̃+β2In∥2→2 = σmax(X̃
⊤X̃)+β2 (operator norm) be the Lipschitz

constant for Gβ2
, |Gβ2

(u) − Gβ2
(v)| ≤ L∥u − v∥2 for all u, v. If ∥b(1) − b∗∥2 ≤ R and

αt = α ≤ 1/L, then f (T) − f∗ ≤ R2

2αT for the ISTA.

Proof. We applied a standard bound on proximal gradient descent (Tibshirani, 2015) for a function
of the form f = g + h : Rn → R. Such result state that the proximal gradient descent with fixed step
size αt ≤ 1/L satisfies f (T) − f∗ ≤ ∥b(1)−b∗∥2

2

2αT when g is convex, differentiable, dom(g) = Rn,
∇g is Lipschitz continuous with constant L > 0; and h is convex and its proximal map Πα can be
evaluated.

We optimize the noiseless problem (ξ = 0) using the soft-thresholding algorithm (ISTA) with
(n, ζ, α, β1, β2) = (102, 10−6, 10−1, 10−5, 0), for different values of s and N . We observe a
grokking-like pattern similar to the subgradient case (Figures 21, 22, 23 and 24).

C.9 GROKKING WITHOUT UNDERSTANDING

We start the optimization at b(1) iid∼ ζN (0, 1/n) with ζ ≥ 0 the initialization scale. With a small
initialization, β1 is sufficient for generalization to happen, provided N is large enough and β2 is not
very large (if it is chosen so that ∥b̂∥∞ ≪ αβ1, it may be possible to not generalize, see section
C.6.2). If the scale at initialization is large, β2 is necessary to generalize, but is it sufficient? That is,
can we generalize to the problem studied here with β1 = 0 and β2 > 0?

4On complex numbers, the soft-thresholding operator Sγ(b) = sign(b)⊙max(|b| − γ, 0) only shrinks the
magnitude and keeps the phase fixed.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

100 101 102 103 104 105 106

Steps (t)

10 4

10 3

10 2

10 1

100

Er
ro

r

s=1

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

10
20
30
40
50
60
70
80
90
100

N

100 101 102 103 104 105 106

Steps (t)

10 4

10 3

10 2

10 1

100

Er
ro

r

s=5

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

10
20
30
40
50
60
70
80
90
100

N

100 101 102 103 104 105 106

Steps (t)

10 4

10 3

10 2

10 1

100

Er
ro

r

s=10

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

10
20
30
40
50
60
70
80
90
100

N
100 101 102 103 104 105 106

Steps (t)

10 4

10 3

10 2

10 1

100

Er
ro

r

s=15

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

10
20
30
40
50
60
70
80
90
100

N

Figure 21: Training error ∥X̃b(t) − y∗∥2/∥y∗∥2 and recovery error ∥b(t) − b∗∥2/∥b∗∥2 as a
function of the sparsity level s ∈ {1, 5, 10, 15} and the measurements N ∈ {10, 20, . . . 100}. Here

(n, α, β1, β2) = (102, 10−1, 10−5, 0), with the soft-thresholding algorithm (ISTA)

As shown above, the answer to this question is no (Figures 25 and 26). But what we want to illustrate
here is a phenomenon that contradicts previous art (Liu et al., 2023a; Lyu et al., 2023), namely that in
the over-parametrized regime (N < n in our case), large initialization and non-zero weight decay do
not always lead to grokking. What happens is that, because of the large initialization, a more or less
abrupt transition is observed in the generalization error during training, corresponding to a transition
in the ℓ2 norm of the model parameters. But this can not be called grokking because the model only
converges to a sub-optimal solution. What’s more, this transition appears even if the problem posed
admits no solution, e.g., sparse recovery or matrix completion with a number N of examples far
below the theoretical limit required for the solution to the problem posed to be the optimal solution
(by any method whatsoever). This transition appears abrupt just because the training error is large at
the beginning of training since the model’s outputs are large. When its ℓ2 norm becomes small, its
outputs also become small, leading to a transition in error. In figure 25, without visualization of the
error on a logarithmic scale, it looks like grokking has occurred, whereas this is not the case. Figure
26 futher shows the non convergence of b(t) to b∗ : every components of b(t) are almost 0 at the end
of training.

We call this phenomenon “grokking without understanding” like Levi et al. (2024) who illustrated it
in the case of linear classification. They show that the sharp increase in generalization accuracy may
often not imply a transition from “memorization” to “understanding” but can be an artifact of the
accuracy measure. But in our case, we are not using any significant scale at initialization (we focus
on 0 ≤ ζ ≤ 10−5) and are not dealing with the generalization measure problem since our test error is
directly the recovery error in the function space, not the accuracy.

We hypothesize that the interplay between large initialization and small non-zero weight decay that
leads to grokking as predicted (provably) by Lyu et al. (2023) does not hold in our setting because
our model violates they Assumption 3.2. Let yb(x̃) = b⊤x̃ denote our model.

• Assumption 3.1 (Lyu et al., 2023): For all x̃ ∈ Rn, the function b → yb(x̃) is L-
homogeneous with L = 1, because ycb(x̃) = cLyb(x̃) for all c > 0.

• Assumption 3.2 (Lyu et al., 2023): for ζ = 0, yb(1)(x̃) = 0 for all x̃ (there is generalization
in this case with ℓ1), but if ζ > 0 (for instance ζ large), this is (almost surely) no longer true.
So, this assumption is violated (with high probability).

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

20 40 60 80 100
N

101

102

103

104

105

t

s=1

10 4

10 3

10 2

10 1

100

Er
ro

r

t1 (experiments)
O(t1) (theory)
||Xb(t1) y * ||2 / ||y * ||2
||b() b * ||2 / ||b * ||2

20 40 60 80 100
N

101

102

103

104

105

t

s=5

10 4

10 3

10 2

10 1

100

Er
ro

r

t1 (experiments)
O(t1) (theory)
||Xb(t1) y * ||2 / ||y * ||2
||b() b * ||2 / ||b * ||2

20 40 60 80 100
N

101

102

103

104

105

t

s=10

10 4

10 3

10 2

10 1

100

Er
ro

r

t1 (experiments)
O(t1) (theory)
||Xb(t1) y * ||2 / ||y * ||2
||b() b * ||2 / ||b * ||2

20 40 60 80 100
N

101

102

103

104

105

t

s=15

10 4

10 3

10 2

10 1

100

Er
ro

r

t1 (experiments)
O(t1) (theory)
||Xb(t1) y * ||2 / ||y * ||2
||b() b * ||2 / ||b * ||2

Figure 22: On the left axis, the memorization step t1 compute experimentally (smaller t such that
∥X̃b(t) − y∗∥2/∥y∗∥2 ≤ 10−4) and the upper bound − ln

(
1 + (1−ρ)∥b(1)−b̂∥∞

αβ1

)
/ ln(ρ)

computed in Theorem C.8. On the right axis, the error ∥X̃b(t1) − y∗∥2/∥y∗∥2 at step t1 and the
recovery error ∥b(∞) − b∗∥2/∥b∗∥2 at the end of training. Here

(n, α, β1, β2) = (102, 10−1, 10−5, 0), with the soft-thresholding algorithm (ISTA).

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

20 40 60 80 100
N

10 4

4 × 10 5

6 × 10 5

||X
b(t 1

)
y

* |
| 2

/
||y

* |
| 2

s=1
s=5
s=10
s=15

20 40 60 80 100
N

10 4

10 3

10 2

10 1

100

||b
(t 2

)
b

* |
| 2

/
||b

* |
| 2

s=1
s=5
s=10
s=15

20 40 60 80 100
N

101

102

103

104

105

t 1

s=1
s=5
s=10
s=15

20 40 60 80 100
N

100

101

102

103

104

105

106

t 2

s=1
s=5
s=10
s=15

Figure 23: Training error ∥X̃b(t1) − y∗∥2/∥y∗∥2 at memorization, recovery error
∥b(t2) − b∗∥2/∥b∗∥2 at generalization, memorization step t1 (smaller t such that
∥X̃b(t) − y∗∥2/∥y∗∥2 ≤ 10−4), and generalization step (smaller t such that

∥b(t) − b∗∥2/∥b∗∥2 ≤ 10−4 or the maximum training step). Here
(n, α, β1, β2) = (102, 10−1, 10−5, 0), with the soft-thresholding algorithm (ISTA)

20 40 60 80 100
N

101

102

103

104

105

t

t1 (experiments)
O(t1) (theory)

1

5

10

15

s

Figure 24: Memorization step t1 compute experimentally (smaller t such that
∥X̃b(t) − y∗∥2/∥y∗∥2 ≤ 10−4) and the upper bound computed in Theorem C.8. Here

(n, α, β1, β2) = (102, 10−1, 10−5, 0), with the ISTA.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

• Assumption 3.8 (Lyu et al., 2023): The NTK (Neural Tangent Kernel) features of training
samples {∇byb(X̃i)}i∈[N] are linearly independent (almost surely). In fact, ∇byb(x̃) =

x̃ ∀x̃. In the over-parametrized regime N < n, If X ∈ RN×n has entries independent and
identically distributed from a normal distribution, then the NTK features {X̃i}i∈[N] are
linearly independent with high probability (because the rank of X̃ = ΦX is N with high
probability), so this assumption is verified.

100 101 102 103 104 105 106 107 108

Steps (t)

0

10

20

30

Er
ro

r

t1 0

2

4

6

8

10

||b
|| 2||Xb(t) y * ||2 / ||y * ||2

||b(t) b * ||2 / ||b * ||2
||b(t)||2
||b * ||2

100 101 102 103 104 105 106 107 108

Steps (t)

0

10

20

30

t1 0

20

40

60

80

||b
|| 1||Xb(t) y * ||2 / ||y * ||2

||b(t) b * ||2 / ||b * ||2
||b(t)||1
||b * ||1

101 103 105 107

Steps (t)

10 4

10 2

100

Er
ro

r

t1

100

101

||b
|| 2

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2
||b(t)||2
||b * ||2

101 103 105 107

Steps (t)

10 4

10 2

100

t1 100

101

102

||b
|| 1

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2
||b(t)||1
||b * ||1

Figure 25: The figures show the relative errors and the the norm ∥b(t)∥2 (left) and ∥b(t)∥1 for
β1 = 0 and β1 ̸= 0. Here (n, s,N) = (100, 5, 30) and (α, β1) = (10−1, 0); with large

initialization scale ζ = 101 and small weights decay β2 = 10−5. Without visualization of the error
on a logarithmic scale (top), it looks like grokking has occurred, whereas this is not the case (bottom).

C.10 IMPACT OF COHERENCE ON GROKKING: AMPLIFYING GROKKING THROUGH DATA
SELECTION

Above, we introduce the parameter τ ∈ [0, 1] that control the incoherence between the measures
{Xi}i∈[N] and the sparse basis (dictionary) {Φ:,j}j∈[n]. τ = 0 correspond to a full random gaussian
X, and correspond to the maximum incoherence, while τ = 1 correspond to Xi ∈ {Φ:,j}j∈[n] for all
i ∈ [N], and correspond minimum incoherence (coherence of 1). We also experimentally observe that
when using convex programming on the problem (P1), Nmin(s, τ), the number of samples needed for
perfect recovery increases as s and/or τ increases. When τ → 1, Nmin(s, τ) → n for all s (Section
C.5).

Here, we also observe that the generalization time and the generalization delay increase with τ while
the generalization error decreases with it (Figures 27 and 28 and 29). For N < n, when τ → 1, the
generalization time t2 → ∞. This is because each measurement captures a single view (component)
of b∗, and this makes it impossible to find the optimal b∗ by solving the equation XΦb = y∗ (by
any method whatsoever). On the other hand, as τ → 0, X becomes completely random, and every
measurement captures a distinct “view” of a∗, giving the best possible generalization time for the
data size considered. The error ∥b(t2) − b∗∥2/∥b∗∥2 at generalization (t2) as a function of N and τ
has the same shape as in the convex programming (Figures 6 and 7).

C.11 DEEP SPARSE RECOVERY: THE EFFECT OF OVERPARAMETRIZATION

Let now use the parameterization b = ⊙L
k=1Bk ∈ Rn, with B ∈ RL×n. This corresponds to a linear

network with L layers, where each hidden layer has the parameter diag(Bk) ∈ Rn×n—with this,
increasing L leads to overparameterization without altering the expressiveness of the function class
b → Fb(x) = x⊤b, since the model remains linear with respect to the input x. Unlike the shallow

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
0

Dimensions (n)

100

107

108

St
ep

s (
t)

0.0

0.5

1.0

1.5

2.0

2.5

b
*

Figure 26: Non convergence of b(t) to b∗ for β1 = 0 and β1 ̸= 0. Here (n, s,N) = (100, 5, 30) and
(α, β1) = (10−1, 0); with large initialization scale ζ = 101 and small weights decay β2 = 10−5.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

101 103 105 107

Steps (t)

10 4

10 3

10 2

10 1

100
Er

ro
r

N=10

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

101 103 105 107

Steps (t)

10 4

10 3

10 2

10 1

100

Er
ro

r

N=20

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

101 103 105 107

Steps (t)

10 4

10 3

10 2

10 1

100

Er
ro

r

N=30

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

101 103 105 107

Steps (t)

10 4

10 3

10 2

10 1

100

Er
ro

r

N=40

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

101 103 105 107

Steps (t)

10 4

10 3

10 2

10 1

100

Er
ro

r

N=50

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

101 103 105 107

Steps (t)

10 4

10 3

10 2

10 1

100

Er
ro

r

N=60

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

101 103 105 107

Steps (t)

10 4

10 3

10 2

10 1

100

Er
ro

r

N=70

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

101 103 105 107

Steps (t)

10 4

10 3

10 2

10 1

100

Er
ro

r

N=80

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

101 103 105 107

Steps (t)

10 4

10 3

10 2

10 1

100

Er
ro

r

N=90

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

101 103 105 107

Steps (t)

10 4

10 3

10 2

10 1

100

Er
ro

r

N=100

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Figure 27: Training and error ∥X̃b(t) − y∗∥2/∥y∗∥2 and recovery error ∥b(t) − b∗∥2/∥b∗∥2 as a
function of the number of sample N and the coherence parameter τ ∈ [0, 1]. Here

(n, s, α, β1, β2, ζ) = (102, 5, 10−1, 10−5, 0, 10−6).

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
100

101

102

103

104

105

106

t

N=10

10 4

10 3

10 2

10 1

100

Er
ro

r

t1
t2

||Xb(t1) y * ||2 / ||y * ||2
||b(t2) b * ||2 / ||b * ||2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

101

102

103

104

105

106

t

N=20

10 4

10 3

10 2

10 1

100

Er
ro

r

t1
t2

||Xb(t1) y * ||2 / ||y * ||2
||b(t2) b * ||2 / ||b * ||2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
101

102

103

104

105

106

t

N=30

10 4

10 3

10 2

10 1

Er
ro

r

t1
t2

||Xb(t1) y * ||2 / ||y * ||2
||b(t2) b * ||2 / ||b * ||2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
101

102

103

104

105

106

t

N=40

10 4

10 3

10 2

10 1

Er
ro

r

t1
t2

||Xb(t1) y * ||2 / ||y * ||2
||b(t2) b * ||2 / ||b * ||2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

101

102

103

104

105

t

N=50

10 4

10 3

10 2

10 1

100

Er
ro

r

t1
t2

||Xb(t1) y * ||2 / ||y * ||2
||b(t2) b * ||2 / ||b * ||2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

101

102

103

104

105

t

N=60

10 4

10 3

10 2

10 1

100

Er
ro

r

t1
t2

||Xb(t1) y * ||2 / ||y * ||2
||b(t2) b * ||2 / ||b * ||2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
101

102

103

104

105

t

N=70

10 4

10 3

10 2

10 1

Er
ro

r

t1
t2

||Xb(t1) y * ||2 / ||y * ||2
||b(t2) b * ||2 / ||b * ||2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

102

103

104

105

t

N=80

10 4

10 3

10 2

10 1

Er
ro

r

t1
t2

||Xb(t1) y * ||2 / ||y * ||2
||b(t2) b * ||2 / ||b * ||2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
102

103

104

105

t

N=90

10 4

10 3

Er
ro

r

t1
t2

||Xb(t1) y * ||2 / ||y * ||2
||b(t2) b * ||2 / ||b * ||2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
102

103

104

t

N=100

10 4

6 × 10 5

2 × 10 4

Er
ro

r

t1
t2

||Xb(t1) y * ||2 / ||y * ||2
||b(t2) b * ||2 / ||b * ||2

Figure 28: Training and error ∥X̃b(t1) − y∗∥2/∥y∗∥2 and recovery error ∥b(t2) − b∗∥2/∥b∗∥2
(along with t1 and t2, the memorization and the generalization step) as a function of the number of

sample N and the coherence parameter τ ∈ [0, 1]. Here
(n, s, α, β1, β2, ζ) = (102, 5, 10−1, 10−5, 0, 10−6).

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

20 40 60 80 100
N

10 4

||X
b(t 1

)
y

* |
| 2

/
||y

* |
| 2

= 0.0
= 0.1
= 0.2
= 0.3
= 0.4
= 0.5
= 0.6
= 0.7
= 0.8
= 0.9
= 1.0

20 40 60 80 100
N

10 4

10 3

10 2

10 1

100

||b
(t 2

)
b

* |
| 2

/
||b

* |
| 2

= 0.0
= 0.1
= 0.2
= 0.3
= 0.4
= 0.5
= 0.6
= 0.7
= 0.8
= 0.9
= 1.0

20 40 60 80 100
N

102

103

104

105

106

t 1

= 0.0
= 0.1
= 0.2
= 0.3
= 0.4
= 0.5
= 0.6
= 0.7
= 0.8
= 0.9
= 1.0

20 40 60 80 100
N

100

101

102

103

104

105

106

t 2

= 0.0
= 0.1
= 0.2
= 0.3
= 0.4
= 0.5
= 0.6
= 0.7
= 0.8
= 0.9
= 1.0

Figure 29: Training and error ∥X̃b(t1) − y∗∥2/∥y∗∥2 and recovery error ∥b(t2) − b∗∥2/∥b∗∥2
(along with t1 and t2, the memorization and the generalization step) as a function of the number of

sample N and the coherence parameter τ ∈ [0, 1]. Here
(n, s, α, β1, β2, ζ) = (102, 5, 10−1, 10−5, 0, 10−6).

case (L = 1), there is no need for ℓ1 (β1 = 0) to generalize when L ≥ 2 (and the initialization scale
is small), as the experiments of this section suggest. With depth, the update for the whole iterate
(which is now replaced by a product of matrices and a vector) is similar to the shallow case but with a
preconditioner in front of the gradient. This preconditioner makes it possible to recover the sparse
signal without any regularization.

We have y(b) = Fb(X̃) = X̃b and y∗ = Fb∗(X̃) + ξ = X̃b∗ + ξ, and want to minimize
f(b) = gβ2

(b) + β1∥B∥1 using gradient descent, where

gβ2
(b) :=

1

2
∥y(b)− y∗∥22 +

β2

2
∥B∥2F

=
1

2
b⊤X̃⊤X̃b− y∗⊤X̃b+

1

2
y∗⊤y∗ +

β2

2
∥B∥2F

=
1

2
b⊤X̃⊤X̃b−

(
X̃⊤X̃b∗ + X̃⊤ξ

)⊤
b+

β2

2
∥B∥2F +

1

2
∥X̃b∗ + ξ∥22

(87)

Let G(b) :=
∂gβ2

(b)

∂b = X̃⊤(y(b) − y∗) = X̃⊤X̃(b − b∗) − X̃⊤ξ. The gradient for each Bi is

Gβ2
(Bi) :=

∂gβ2
(b)

∂Bi
= ∂b

∂Bi

∂gβ2
(b)

∂b + β2Bi = diag(
∏

k ̸=i Bk)G(b) + β2Bi, and the update rule
for each Bi is

B
(t+1)
i = B

(t)
i − αGβ2

(B
(t)
i)− αβ1h(B

(t)
i)

= (1− αβ2)B
(t)
i − α diag(

∏
k ̸=i

B
(t)
k)G(b(t))− αβ1h(B

(t)
i) (88)

where h(Bi) ∈ ∂∥Bi∥1 any subgradient of ∥Bi∥1, h(Bi)k = sign(Bik) for Bik ̸= 0, and any
value in [+1,−1] for Bik = 0. We start the optimization at B(1)

i
iid∼ ζN (0, 1/n) with ζ ≥ 0 the

initialization scale.

Without ovaparametrization (L = 1), the gradient update for b writes

b(t+1) = b(t) − αGβ2
(b(t))− αβ1h(b

(t))

= (1− αβ2)b
(t) − α

(
G(b(t)) + β1h(b

(t))
) (89)

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

As we show above, for s = ∥b∗∥0 ≪ n and N < n, without ℓ1 regularization (β1 = 0), we don’t
have perfect recovery. Here, the update is unconditioned and progresses uniformly in all directions.
So without ℓ1-regularization, there is no mechanism to enforce sparsity, and perfect recovery of b∗ is
impossible.

For L = 2, let c := B2
1 +B2

2. If β1 = 0, then

b(t+1) = B
(t+1)
1 ⊙B

(t+1)
2

=
(
(1− αβ2)B

(t)
1 − α diag(B

(t)
2)G(b(t))

)
⊙
(
(1− αβ2)B

(t)
2 − α diag(B

(t)
1)G(b(t))

)
= (1− αβ2)

2b(t) − α(1− αβ2) diag(B
(t)
1 ⊙B

(t)
1 +B

(t)
2 ⊙B

(t)
2)G(b(t)) + α2 diag(b(t))G(b(t))2

= (1− αβ2)
2b(t) − α(1− αβ2)c

(t) ⊙G(b(t)) + α2b(t) ⊙G(b(t))2

≈ (1− 2αβ2)b
(t) − αc(t) ⊙G(b(t)) for α → 0

(90)
and

c(t+1) = B
(t+1)
1 ⊙B

(t+1)
1 +B

(t+1)
2 ⊙B

(t+1)
2

= (1− αβ2)
2B

(t)
1 ⊙B

(t)
1 − 2α(1− αβ2) diag(B

(t)
1 ⊙B

(t)
2)G(b(t)) + α2 diag(B

(t)
2 ⊙B

(t)
2)G(b(t))2

+ (1− αβ2)
2B

(t)
2 ⊙B

(t)
2 − 2α(1− αβ2) diag(B

(t)
2 ⊙B

(t)
1)G(b(t)) + α2 diag(B

(t)
1 ⊙B

(t)
1)G(b(t))2

= (1− αβ2)
2c(t) − 4α(1− αβ2)b

(t) ⊙G(b(t)) + α2c(t) ⊙G(b(t))2

≈ (1− 2αβ2)c
(t) − 4αb(t) ⊙G(b(t)) for α → 0

(91)

The depth adds the preconditioning P(t) = (1− αβ2) diag(c
(t)) in front of the update for b. This

preconditioning mechanism seems to implicitly favor sparsity and, thus, a perfect recovery after
memorization since a sparse solution for the problem of interest is necessary b∗ when N is large
enough (with respect to s = ∥b∗∥0 and n). In fact, when c

(t)
i goes to zero (which is the case when

b
(t)
i is also small), the update becomes b

(t+1)
i ≈ (1 − 2αβ2)b

(t)
i , and thus push b

(t+1)
i to 0 at a

geometric rate of O(1− 2αβ2). Otherwise, c(t)i (large) will amplify the gradient so that c(t)i G(b(t))i
dominates the update, which pushes b(t) towards b∗ (as the gradient G(b(t)) points towards a small
error b(t) − b∗ direction, particularly for full rank X̃ and high signal to ratio regime).

We optimize the noiseless problem (ξ = 0) using the subgradient descent method with
(n, s, ζ, α, β1, β2) = (102, 30, 10−2, 10−1, 10−5, 0), for different values of N and L ∈ {1, 2, 3, 4}.
Here, initializing B too close to the origin (initialization scale ζ → 0) leads b to not change during
training. The model is able to recover the true signal b∗, and the generalization delay becomes
extremely small (compared to the shallow case with β1 ̸= 0) for L = 2 and disappears (ungrokking)
for L > 2 (Figure 30). As L becomes larger, the phase transition to generalization becomes extremely
abrupt. The loss decreases in a staircase fashion, with more or less long plateaus of suboptimal
generalization error during training. This type of behavior is generally observed in the optimization of
Soft Committee Machines (Biehl & Schwarze, 1995; Saad & Solla, 1995b;a; 1996; Engel & Broeck,
2001; Aubin et al., 2018; Goldt et al., 2020), which are two-layer linear or non-linear teacher-student
systems, with the output layer of the student fixed to that of the teacher during training.

Also, for a fixed number N of measure, the test error decreases with L, showing that depth helps
to find the signal with a smaller number of measures, albeit with a longer training time (Figures 31
and 32). So, the depth seems to have the same effect on generalization as β1. This is in accord with
the result of Arora et al. (2018) in the context of matrix factorization. They show that introducing
depth effectively turns gradient descent into a shallow (single-layer) training process equipped with
a built-in preconditioning mechanism. This mechanism biases updates toward directions already
explored by the optimization, serving as an acceleration technique that fuses momentum with adaptive
step sizes. Furthermore, they demonstrate that depth-based overparameterization can substantially
speed up training, even in straightforward convex tasks like linear regression under with ℓp loss,
p > 2.

Note that for L ≥ 2, using a large scale initialization and a small but non-zero ℓ2 regularization
β2 results in grokking (Figures 34, 35 and 33), unlike the case of L = 1 that gives the “grokking

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

100 101 102 103 104 105 106

Steps (t)

0.0

0.2

0.4

0.6

0.8

1.0
Er

ro
r

N=10

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

1

2

3

4

L

100 101 102 103 104 105 106

Steps (t)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

N=20

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

1

2

3

4

L

100 101 102 103 104 105 106

Steps (t)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

N=30

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

1

2

3

4

L
100 101 102 103 104 105 106

Steps (t)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

N=40

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

1

2

3

4

L

100 101 102 103 104 105 106

Steps (t)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

N=50

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

1

2

3

4

L

100 101 102 103 104 105 106

Steps (t)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

N=60

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

1

2

3

4

L

100 101 102 103 104 105 106

Steps (t)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

N=70

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

1

2

3

4

L

100 101 102 103 104 105 106

Steps (t)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

N=80

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

1

2

3

4

L

100 101 102 103 104 105 106

Steps (t)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

N=90

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

1

2

3

4

L

100 101 102 103 104 105 106

Steps (t)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

N=100

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

1

2

3

4

L

Figure 30: Training and error ∥X̃b(t) − y∗∥2/∥y∗∥2 and recovery error ∥b(t) − b∗∥2/∥b∗∥2 as a
function of the number of sample N and the depth L ∈ {1, 2, 3, 4}. Here

(n, s, α, β1, β2) = (102, 5, 10−1, 0, 0); with small initialization scale ζ = 10−6 for L = 1 and
ζ = 10−2 for L > 1.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

1 2 3 4
L

100

101

102

103

104

105

106

t

N=10

10 16

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

Er
ro

r

t1
t2

||Xb(t1) y * ||2 / ||y * ||2
||b(t2) b * ||2 / ||b * ||2

1 2 3 4
L

100

101

102

103

104

105

106

t

N=20

10 16

10 13

10 10

10 7

10 4

10 1

Er
ro

r

t1
t2

||Xb(t1) y * ||2 / ||y * ||2
||b(t2) b * ||2 / ||b * ||2

1 2 3 4
L

101

102

103

104

105

106

t

N=30

10 16

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

Er
ro

r

t1
t2

||Xb(t1) y * ||2 / ||y * ||2
||b(t2) b * ||2 / ||b * ||2

1 2 3 4
L

101

102

103

104

105

106

t

N=40

10 16

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

Er
ro

r

t1
t2

||Xb(t1) y * ||2 / ||y * ||2
||b(t2) b * ||2 / ||b * ||2

1 2 3 4
L

101

102

103

104

105

106

t

N=50

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

Er
ro

r

t1
t2

||Xb(t1) y * ||2 / ||y * ||2
||b(t2) b * ||2 / ||b * ||2

1 2 3 4
L

102

103

104

105

106

t

N=60

10 16

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

Er
ro

r

t1
t2

||Xb(t1) y * ||2 / ||y * ||2
||b(t2) b * ||2 / ||b * ||2

1 2 3 4
L

102

103

104

105

106

t

N=70

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

Er
ro

r

t1
t2

||Xb(t1) y * ||2 / ||y * ||2
||b(t2) b * ||2 / ||b * ||2

1 2 3 4
L

103

104

105

106

t

N=80

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

Er
ro

r

t1
t2

||Xb(t1) y * ||2 / ||y * ||2
||b(t2) b * ||2 / ||b * ||2

1 2 3 4
L

104

105

106

t

N=90

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

Er
ro

r

t1
t2

||Xb(t1) y * ||2 / ||y * ||2
||b(t2) b * ||2 / ||b * ||2

1 2 3 4
L

105

106

t

N=100

10 6

10 5

10 4

10 3

10 2

10 1

Er
ro

r

t1
t2

||Xb(t1) y * ||2 / ||y * ||2
||b(t2) b * ||2 / ||b * ||2

Figure 31: Training and error ∥X̃b(t1) − y∗∥2/∥y∗∥2 and recovery error ∥b(t2) − b∗∥2/∥b∗∥2
(along with t1 and t2, the memorization and the generalization step) as a function of the number of
sample N and the depth L ∈ {1, 2, 3, 4}. Here (n, s, α, β1, β2) = (102, 5, 10−1, 0, 0); with small

initialization scale ζ = 10−6 for L = 1 and ζ = 10−2 for L > 1.

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

20 40 60 80 100
N

10 17

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

||X
b(t 1

)
y

* |
| 2

/
||y

* |
| 2

L=1
L=2
L=3
L=4

20 40 60 80 100
N

10 4

10 3

10 2

10 1

100

||b
(t 2

)
b

* |
| 2

/
||b

* |
| 2

L=1
L=2
L=3
L=4

20 40 60 80 100
N

103

104

105

106

t 1

L=1
L=2
L=3
L=4

20 40 60 80 100
N

100

101

102

103

104

105

106

t 2

L=1
L=2
L=3
L=4

Figure 32: Training and error ∥X̃b(t1) − y∗∥2/∥y∗∥2 and recovery error ∥b(t2) − b∗∥2/∥b∗∥2
(along with t1 and t2, the memorization and the generalization step) as a function of the number of
sample N and the depth L ∈ {1, 2, 3, 4}. Here (n, s, α, β1, β2) = (102, 5, 10−1, 0, 0); with small

initialization scale ζ = 10−6 for L = 1 and ζ = 10−2 for L > 1. The growth (as a function of N)
in the test error for L = 4 is simply due to the fact that we did not optimize long enough for it to

decrease.

without understanding” phenomenon (Section C.9). In this regime of large intialisation and small
non-zero weight decay, when L increases, the number of steps required for the model to move from
memorization to generalization is reduced (grokking acceleration), and the generalization error at
the end of training is considerably lower (Figure 33). Lyu et al. (2023) used a similar setup to show
that an interplay between large initialization and small nonzero weights decay gives rise to grokking
with the diagonal linear network y(x) =

(
u⊙L − v⊙L

)⊤
x in the context of binary classification,

but there did not study the impact of L on the generalization delay, but focus on characterizing how
sharp is the transition from memorization to generalization as a function of the initialization scale
and the weight decay coefficient, and how long it takes for this transition to occurs. This diagonal
linear network is also often used for sparse recovery problems (Vavskevivcius et al., 2019), but the
focus is generally on its ability to recover the optimal solution, and not grokking.

C.12 REALISTIC SIGNALS

C.12.1 RECOVERY OF AN IMAGE

We consider a 8× 8 digit 0 from the MNIST dataset, n = 82 = 64. The image is normalized to have
values in [0, 1], and the values below 0.5 are set to zero, leading to a sparsity level s = 22 (34.38% of
n). The evaluation of the errors is shown in Figures 36, and the evolution of the reconstructed image
as a function of the training steps are shown in Figure 37.

C.12.2 RECOVERY OF A SINUSOIDAL SIGNAL

We construct a sparse real-valued signal a∗ ∈ Rn from a set of sinusoidal components defined by
their frequencies, amplitudes, and phases. For that, we first define the sparse frequency-domain
representation b∗ ∈ Cn as b∗(k) = Ake

iφk · 1 (k ∈ F) where F ⊂ {0, 1, . . . , n− 1} is the set of
selected frequency indices with |F| = s; Ak ∈ R+ the amplitude of the sinusoid at frequency index
k; φk ∈ [0, 2π) the phase of the sinusoid at frequency index k; and i the imaginary unit (i2 = −1).
The real-valued time-domain signal a∗ ∈ Rn is obtained by applying the inverse discrete Fourier

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

101 103 105 107

Steps (t)

10 4

10 2

100
Er

ro
r

N=20

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

1

2

3

4

L

101 103 105 107

Steps (t)

10 4

10 2

100

Er
ro

r

N=40

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

1

2

3

4

L

101 103 105 107

Steps (t)

10 4

10 2

100

Er
ro

r

N=60

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

1

2

3

4

L
101 103 105 107

Steps (t)

10 4

10 2

100

Er
ro

r

N=80

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2

1

2

3

4

L

Figure 33: Training and error ∥X̃b(t) − y∗∥2/∥y∗∥2 and recovery error ∥b(t) − b∗∥2/∥b∗∥2 as a
function of the number of sample N and the depth L ∈ {1, 2, 3, 4}. Here (n, s) = (102, 5) and

(α, β1) = (10−1, 0); with large initialization scale ζ = 100 and small weights decay β2 = 10−5.

1 2 3 4
L

102

103

104

105

106

107

t

N=20

10 5

10 4

10 3

10 2

10 1

100

Er
ro

r

t1
t2

||Xb(t1) y * ||2 / ||y * ||2
||b(t2) b * ||2 / ||b * ||2

1 2 3 4
L

103

104

105

106

107

t

N=40

10 5

10 4

10 3

10 2

10 1

100
Er

ro
r

t1
t2

||Xb(t1) y * ||2 / ||y * ||2
||b(t2) b * ||2 / ||b * ||2

1 2 3 4
L

103

104

105

106

t

N=60

10 5

10 4

10 3

10 2

10 1

100

Er
ro

r

t1
t2

||Xb(t1) y * ||2 / ||y * ||2
||b(t2) b * ||2 / ||b * ||2

1 2 3 4
L

104

105

106

t

N=80

10 4

10 3

10 2

10 1

Er
ro

r

t1
t2

||Xb(t1) y * ||2 / ||y * ||2
||b(t2) b * ||2 / ||b * ||2

Figure 34: Training and error ∥X̃b(t1) − y∗∥2/∥y∗∥2 and recovery error ∥b(t2) − b∗∥2/∥b∗∥2
(along with t1 and t2, the memorization and the generalization step) as a function of the number of

sample N and the depth L ∈ {1, 2, 3, 4}. Here (n, s) = (102, 5) and (α, β1) = (10−1, 0); with
large initialization scale ζ = 100 and small weights decay β2 = 10−5.

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

20 30 40 50 60 70 80
N

10 5

10 4

||X
b(t 1

)
y

* |
| 2

/
||y

* |
| 2

L=1
L=2
L=3
L=4

20 30 40 50 60 70 80
N

10 4

10 3

10 2

10 1

100

||b
(t 2

)
b

* |
| 2

/
||b

* |
| 2

L=1
L=2
L=3
L=4

20 30 40 50 60 70 80
N

102

103

104

105

106

t 1

L=1
L=2
L=3
L=4

20 30 40 50 60 70 80
N

107

2 × 106

3 × 106

4 × 106

6 × 106

t 2

L=1
L=2
L=3
L=4

Figure 35: Training and error ∥X̃b(t1) − y∗∥2/∥y∗∥2 and recovery error ∥b(t2) − b∗∥2/∥b∗∥2
(along with t1 and t2, the memorization and the generalization step) as a function of the number of

sample N and the depth L ∈ {1, 2, 3, 4}. Here (n, s) = (102, 5) and (α, β1) = (10−1, 0); with
large initialization scale ζ = 100 and small weights decay β2 = 10−5.

100 101 102 103 104 105 106 107

Steps (t)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

t1 t2

t

0.0

0.2

0.4

0.6

0.8

Gr
ad

ie
nt

s R
at

io

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2
|| 1h(b(t))||2 / ||G 2(b(t))||2

100 101 102 103 104 105 106 107

Steps (t)

0.0

0.2

0.4

0.6

0.8

1.0

t1 t2
0

5

10

15

||b
|| 1||Xb(t) y * ||2 / ||y * ||2

||b(t) b * ||2 / ||b * ||2
||b(t)||1
||b * ||1

Figure 36: Reconstruction of a 8× 8 digit from the MNIST dataset. The figures show the relative
errors, gradient ratio, and the norm ∥b(t)∥1 (right). Gβ2

(b(t)) dominates β1h(b
(t)) until

memorization, i.e. ∥β1h(b
(t))∥/∥Gβ2(b

(t))∥ ≪ 1 for all t ≤ t1. From memorization β1h(b
(t))

dominates and make ∥b(t)∥1 converge to ∥b∗∥1 at t2, and so b(t2) = b∗.

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

0 : 1.0 - 1.0 1 : 0.79 - 0.91 2 : 0.65 - 0.84 3 : 0.54 - 0.8 4 : 0.46 - 0.76

7 : 0.32 - 0.7 11 : 0.23 - 0.66 16 : 0.17 - 0.63 24 : 0.12 - 0.6 37 : 0.08 - 0.58

55 : 0.06 - 0.56 82 : 0.04 - 0.55 123 : 0.03 - 0.54 184 : 0.01 - 0.54 275 : 0.01 - 0.54

412 : 0.0 - 0.54 616 : 0.0 - 0.54 920 : 0.0 - 0.54 2100 : 0.0 - 0.54 38600 : 0.0 - 0.52

106500 : 0.0 - 0.5 208000 : 0.0 - 0.46 359600 : 0.0 - 0.42 586100 : 0.0 - 0.37 924500 : 0.0 - 0.3

1430100 : 0.0 - 0.21 2185400 : 0.0 - 0.09 2722400 : 0.0 - 0.0 3313900 : 0.0 - 0.0 5000000 : 0.0 - 0.0

Step : Train error - Test error

Figure 37: Reconstruction of a 8× 8 digit from the MNIST dataset. The figure shows the evolution
of the reconstructed image with the training step t.

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2025

transform to b∗, scaled by a factor n to ensure consistent normalization:

a∗(t) = n · Re

(
1

n

n−1∑
k=0

b∗[k]ei2π kt
n

)
=
∑
k∈F

Ak cos

(
2πk

n
t+ φk

)
for t = 0, . . . , n− 1 (92)

We use (n, s) = (100, 5), F = {10, 25, 40, 75, 95}, A = [1.0, 0.8, 1.2, 1.5, 0.5] and φ =
[0, π/4, 3π/8, 3π/4, π] (Figure 38). The evaluation of the errors is shown in Figures 39, and the
evolution of the reconstructed signal as a function of the training steps is shown in Figure 40.

0 20 40 60 80 100
Time Index

0.2

0.1

0.0

0.1

0.2

Am
pl

itu
de

Original Sparse Signal (a *)

0 20 40 60 80 100
Frequency Index

0.0

0.2

0.4

0.6

0.8

1.0

M
ag

ni
tu

de

Original Sparse Frequency Coefficients (b *)

Figure 38: Reconstruction of a sinusoidal signal a∗(t) =
∑

k∈F Ak cos
(
2πk
n t+ φk

)
with a sparse

representation b∗(k) = Ake
iφk · 1 (k ∈ F), where (n, s) = (100, 5), F = {10, 25, 40, 75, 95},

A = [1.0, 0.8, 1.2, 1.5, 0.5] and φ = [0, π/4, 3π/8, 3π/4, π].

100 101 102 103 104 105 106 107

Steps (t)

10 5

10 4

10 3

10 2

10 1

100

Er
ro

r

t1 t2

t

0

20000

40000

60000

80000

Gr
ad

ie
nt

s R
at

io

||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2
|| 1h(b(t))||2 / ||G 2(b(t))||2

100 101 102 103 104 105 106 107

Steps (t)

10 5

10 4

10 3

10 2

10 1

100

t1 t2
0

2

4

6

8

||b
|| 1||Xb(t) y * ||2 / ||y * ||2

||b(t) b * ||2 / ||b * ||2
||b(t)||1
||b * ||1

Figure 39: Reconstruction of a sinusoidal signal. The figures show the relative errors, gradient ratio,
and the norm ∥b(t)∥1 (right). Gβ2(b

(t)) dominates β1h(b
(t)) until memorization, i.e.

∥β1h(b
(t))∥/∥Gβ2

(b(t))∥ ≪ 1 for all t ≤ t1. From memorization β1h(b
(t)) dominates and make

∥b(t)∥1 converge to ∥b∗∥1 at t2, and so b(t2) = b∗.

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100

2

1

0

1

2

3
1e 7 0 : 1.0 - 1.0

0 20 40 60 80 100

0.05

0.00

0.05

1 : 0.52 - 0.87

0 20 40 60 80 100

0.10

0.05

0.00

0.05

0.10

3 : 0.29 - 0.79

0 20 40 60 80 100

0.15

0.10

0.05

0.00

0.05

0.10

0.15
6 : 0.18 - 0.75

0 20 40 60 80 100
0.2

0.1

0.0

0.1

12 : 0.1 - 0.73

0 20 40 60 80 100
0.2

0.1

0.0

0.1

24 : 0.05 - 0.71

0 20 40 60 80 100
0.2

0.1

0.0

0.1

45 : 0.02 - 0.71

0 20 40 60 80 100
0.2

0.1

0.0

0.1

86 : 0.0 - 0.71

0 20 40 60 80 100
0.2

0.1

0.0

0.1

145 : 0.0 - 0.71

0 20 40 60 80 100
0.2

0.1

0.0

0.1

165 : 0.0 - 0.71

0 20 40 60 80 100
0.2

0.1

0.0

0.1

311 : 0.0 - 0.71

0 20 40 60 80 100
0.2

0.1

0.0

0.1

588 : 0.0 - 0.71

0 20 40 60 80 100
0.2

0.1

0.0

0.1

12200 : 0.0 - 0.66

0 20 40 60 80 100
0.2

0.1

0.0

0.1

0.2
111400 : 0.0 - 0.36

0 20 40 60 80 100
0.2

0.1

0.0

0.1

0.2

249700 : 0.0 - 0.0

0 20 40 60 80 100
0.2

0.1

0.0

0.1

0.2

299100 : 0.0 - 0.0

0 20 40 60 80 100
0.2

0.1

0.0

0.1

0.2

654000 : 0.0 - 0.0

0 20 40 60 80 100
0.2

0.1

0.0

0.1

0.2

1325600 : 0.0 - 0.0

0 20 40 60 80 100
0.2

0.1

0.0

0.1

0.2

2596100 : 0.0 - 0.0

0 20 40 60 80 100
0.2

0.1

0.0

0.1

0.2

5000000 : 0.0 - 0.0

Step : Train error - Test error

Figure 40: Reconstruction of a sinusoidal signal. The figure shows the evolution of the reconstructed
image with the training step t.

C.12.3 RECOVERY OF SPARSE POLYNOMIAL

We consider a polynomial p∗ : Rm → R define by p∗(x) = x⊤M∗x+m∗⊤x = (x⊗x)⊤ vecM∗+
m∗⊤x = a∗⊤q(x) with a∗ = [vec(M∗) m∗] ∈ Rm(m+1) and q(x) = [x⊗ x x] ∈ Rm(m+1).

To well define p∗, we make M∗ upper triangular (M∗
ij = 0 for j < i) so that p∗(x) =∑m

i=1

∑m
j=i M

∗
ijxixj +

∑m
i=1 m

∗
ixi. This function has n = (m+1)m

2 +m = (m+3)m
2 parameters,

and write p∗(x) = a∗⊤q(x) with a∗ = [M∗
11,M

∗
12, . . . ,M

∗
1m,M∗

22, . . . ,M
∗
mm m∗

1, . . . ,m
∗
m] ∈

Rn and
q(x) =

[
x2
1,x1x2, . . . ,x1xm,

x2
2,x2x3, . . . ,x2xm,

. . . ,

x2
m,x1,x2, . . . ,xm

]
∈ Rn

(93)

We sample s ≪ n of the n parameters iid from N (0, 1/n) and set the remaining to 0. Also,
x

iid∼ N (0, 1/n).

There are two ways to have grokking on this problem :

• We can iid sample N inputs output pair {(xi, p
∗(xi))}Ni=1 and optimize the parameters of

a student p(x) =
∑n

i=1

∑n
j=i Mijxixj +

∑n
i=1 mixi on them (see Section E.1 for more

details).

• Or we consider that we are dealing with a compressed sensing problem, with the sparse
signal a∗ ∈ Rn and the measurements given by q(x) ∈ Rn for all x ∈ Rm. We optimized
this version and observed grokking (Figure 41).

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2025

100 101 102 103 104 105 106

Steps (t)

10 1

100

Er
ro

r

0.0

0.2

0.4

0.6

Gr
ad

ie
nt

s R
at

io||Xb(t) y * ||2 / ||y * ||2
||b(t) b * ||2 / ||b * ||2
|| 1h(b(t))||2 / ||G 2(b(t))||2

100 101 102 103 104 105 106

Steps (t)

10 1

100

0.00

0.05

0.10

0.15

||b
|| 1||Xb(t) y * ||2 / ||y * ||2

||b(t) b * ||2 / ||b * ||2
||b(t)||1
||b * ||1

Figure 41: Reconstruction of a sparse polynomial p∗(x) =
∑m

i=1

∑m
j=i M

∗
ijxixj +

∑m
i=1 m

∗
ixi.

D TENSOR FACTORIZATION

D.1 MATRIX SENSING

Matrix sensing seeks to recover a low rank matrix A∗ ∈ Rn1×n2 from N measurement matri-
ces {Xi ∈ Rn1×n2}i∈[N] and measures y∗ =

(
tr(X⊤

i A
∗)
)
i∈[N]

. We have y∗
i = tr(X⊤

i A
∗) =

vec(Xi)
⊤ vec(A∗) = Fvec(A∗)(vec(Xi)). This gives us a compressed sensing problem, with the sig-

nal vector vec(A∗) ∈ Rn1n2 and the measurement matrix X = [vec(Xi)]i∈[N] ∈ RN×n1n2 . In fact,
under full SVD A∗ = U∗Σ∗V∗⊤, we have a∗ = vec(A∗) = Φb∗; where b∗ = vec(Σ∗) ∈ Rn1n2 ,
which is sparse since ∥b∗∥0 = rank(A∗) ≤ min(n1, n2) ≪ n1n2; and Φ = V∗ ⊗ U∗ ∈
Rn1n2×n1n2 , which has orthonormal column since Φ⊤Φ =

(
V∗⊤V∗) ⊗ (U∗⊤U∗) = In1n2

. We
have X̃ = XΦ.

D.2 MATRIX COMPLETION

For a matrix completion problem with matrix A∗ ∈ Rn1×n2 , we have N measurement vectors(
X

(1)
i ,X

(2)
i

)
∈ Rn1 × Rn2 and measures y∗

i = X
(1)⊤
i A∗X

(2)
i =

(
X

(2)
i ⊗X

(1)
i

)⊤
vec(A∗) =

Fvec(A∗)

(
X

(2)
i ⊗X

(1)
i

)
, i.e. y∗ =

(
X(2) •X(1)

)
vec(A∗) = Fvec(A∗)

(
X(2) •X(1)

)
. This gives

us a compressed sensing problem, with the signal vector vec(A∗) ∈ Rn1n2 and the measurement
matrix X = X(2) •X(1) ∈ RN×n1n2 . Standard matrix completion is usually defined as recovering
missing elements of a higher-order tensor from its incomplete observation. This is equivalent to
requiring X

(k)
i to be selection vectors for all k ∈ [2], i.e. X(k)

i is the s(i, k)th vector of the canonical
basis of Rnk for a certain s(i, k) ∈ [nk]. This make each Xi = X

(2)
i ⊗X

(1)
i a selection vector in

Rn, and X = X(2) •X(1) a selection matrix in RN×n, so that y∗
i = A∗

s(i,1),s(i,2)∀i ∈ [N]. So, in

this formulation, each X
(k)
i is a sample from the columns of Ink

. Note that under a change of basis
X̃

(k)
i = P(k)X

(k)
i , we have ỹ∗

i =
(
⊗K

k=1P
(k)
)
y∗
i , that is ỹ∗ = y∗ (⊗K

k=1P
(k)
)⊤

. A less standard
formulation of the matrix completion task requires each X

(k)
i to be a sample from an orthonormal

basis, i.e., X(k)
i is a sample from the columns of V(k) ∈ Rnk×nk with V(k)⊤V(k) = Ink

. We
let X(k)

i be the s(i, k)th column of V(k) for a certain s(i, k) ∈ [nk]. Then y∗
i = Ã∗

s(i,1),··· ,s(i,K)

with Ã∗ = A∗ ×1 V
(1) ×2 V

(2). So, any result state of A∗ in the standard formulation where the
measurement vectors are selection vectors is valid for the tensor Ã∗.

If we switch to a tensor A∗ ∈ Rn1×n2×···×nK , we will have N vectors of measurements(
X

(1)
i ,X

(2)
i , · · · ,X(K)

i

)
∈ Rn1 × Rn2 × · · · × RnK ∀i ∈ [N] and the measures y∗

i =∑
j1,j2,··· ,jK Aj1,··· ,jKX

(1)
i,j1

X
(2)
i,j2

· · ·X(K)
i,jK

=
(
X

(K)
i ⊗X

(K−1)
i ⊗ · · · ⊗X

(1)
i

)⊤
vecc(A), i.e.

y∗ = Xvecc(A∗) with vecc(A∗) = A∗(K...1) ∈ Rn and X = X(K) • X(K−1) • · · · • X(1) ∈
RN×n; n =

∏K
k=1 nk. Standard tensor completion is usually defined as recovering missing

elements of a higher-order tensor from its incomplete observation. This is equivalent to re-

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2025

quiring X
(k)
i to be selection vectors for all k ∈ [K], i.e. X

(k)
i,j = δj,s(i,k) ∀i, j for a cer-

tain s(i, k) ∈ [nk] (X(k)
i is the s(i, k)th vector of the canonical basis of Rnk). This make

each Xi = ⊗1
k=KX

(k)
i a selection vector in Rn, and X = •1k=KX(k) a selection matrix in

RN×n, so that y∗
i = A∗

s(i,1),··· ,s(i,K)∀i ∈ [N]. So, in this formulation, each X
(k)
i is a sam-

ple from the columns of Ink
. Note that under a change of basis X̃

(k)
i = P(k)X

(k)
i , we have

ỹ∗
i =

(
⊗K

k=1P
(k)
)
y∗
i , that is ỹ∗ = y∗ (⊗K

k=1P
(k)
)⊤

. A less standard formulation of the tensor
completion task requires each X

(k)
i to be a sample from an orthonormal basis V(k) = {v(nk)

k }k∈[nk]

(i.e. v
(nk)
i

⊤
v
(nk)
j = δij). We let X(k)

i = v
(nk)
s(i,k) ∀i for a certain s(i, k) ∈ [nk]. We can write

v
(nk)
ℓ = P(k)e

(nk)
ℓ with P(k) ≡ V(k) ∈ Rnk×nk the base change matrix from the canonical basis

to V(k), which contains in each column ℓ the coordinate of v(nk)
ℓ in {e(nk)

k }k∈[nk]. So X
(k)
i =

P(k)e
(nk)
s(i,k), and y∗

i =
(
⊗1

k=KX
(k)
i

)⊤
vecc(A∗) =

(
⊗1

k=K

(
P(k)e

(nk)
s(i,k)

))⊤
vecc(A∗) =((

⊗1
k=KP(k)

) (
⊗1

k=Ke
(nk)
s(i,k)

))⊤
vecc(A∗) =

(
⊗1

r=Ke
(nk)
s(i,r)

)⊤ (
⊗1

r=KP(k)
)⊤

vecc(A∗) =(
⊗1

k=Ke
(nk)
s(i,k)

)⊤
vecc

(
Ã∗
)
= Ã∗

s(i,1),··· ,s(i,K) with Ã∗ = A∗ ×1 P
(1) ×2 · · · ×K P(K). So,

any result state of A∗ in the standard formulation where the measurement vectors are selection
vectors is valid for the tensor Ã∗.

Let us assume K = 2 in the following. Assume the target matrix A∗ has rank r. Then it has
r(n1+n2− r) degree of freedom5, and we need to observe at least r(n1+n2− r) entries for perfect
recovery. This bound can be improved by considering the structure of A∗. Let A∗ = U∗Σ∗V∗⊤ be
the full SVD of A∗. As observed above, we are dealing with a compressed sensing problem with
the signal vector a∗ = vecc(A∗) = Φb∗; where b∗ = vecc(Σ∗) ∈ Rn1n2 , which is sparse since
∥b∗∥0 = r ≤ min(n1, n2) ≪ n1n2; and Φ = V∗ ⊗ U∗ ∈ Rn1n2×n1n2 , which has orthonormal
column since Φ⊤Φ =

(
V∗⊤V∗) ⊗ (U∗⊤U∗) = In1n2 . We have X̃ = XΦ = X̃(2) • X̃(1) with

X̃(1) = X(1)U∗ and X̃(2) = X(2)V∗6.

D.3 GENERAL FRAMEWORK

Given a low rank r matrix A∗ ∈ Rn1×n2 , a measurement matrix X ∈ RN×n1n2 ; we aim to solve the
following problem for A ∈ Rn1×n2 ;

(P4) Minimize rank(A) subject to ∥Fvec(A) (X)− y∗∥2 ≤ ϵ (94)

where y∗ = Fvec(A∗) (X) + ξ are the measures and ϵ an upper bound on the size of the error term
ξ ∈ RN , ∥ξ∥2 ≤ ϵ. As in the compressed sensing problem, this is NP-hard. The usual convex
approach for matrix completion is to solve the following problem since the trace norm is a convex
relaxation of the rank,

(P5) Minimize ∥A∥∗ =
∑
i

σi(A) subject to ∥Fvec(A) (X)− y∗∥2 ≤ ϵ (95)

We find the minimum nuclear norm solution since it is equivalent to minimizing the ℓ1 norm of the
corresponding sparse b in the sparse basis (the tensor product of the right and left singular vectors)
for the solution A (low-rank solution). That said, many results obtained for compressed sensing can
be translated to matrix completion. The main difference from standard compressed sensing is that the
sparse basis is optimized jointly (and implicitly) with the signal’s coordinate in that basis.

5The first r columns of U∗ form an orthonormal basis for a r-dimensional subspace of Rn1 (the columns
space of A∗). Specifying this requires r(n1 − r) parameters. Similarly, the first r columns of V∗ form an
orthonormal basis for a r-dimensional subspace of Rn2 (the rows space of A∗), and specifying this requires
r(n2 − r) parameters. The r non-zero singular values are independent parameters. Thus, specifying them
requires r parameters.

6X̃ =
(
X(2) •X(1)

)
(V∗ ⊗U∗) = X̃(2) • X̃(1) since X̃i = (V∗ ⊗U∗)⊤

(
X(2) •X(1)

)
i

=(
V∗⊤ ⊗U∗⊤) (X(2)

i ⊗X
(1)
i

)
=

(
V∗⊤X

(2)
i

)
⊗
(
U∗⊤X

(1)
i

)
=

(
V∗X(2)

)
i
⊗
(
U∗X(1)

)
i
= X̃

(2)
i ⊗X̃

(1)
i

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2025

D.4 THE CONTROL PARAMETERS

In this sub-section, we assume standard matrix completion. But the theories outlined here also apply
to the general framework. The theory gives the minimal number of observations that guarantee A∗ to
be a unique solution to problem (P5) and allow perfect recovery of A∗ with fewer samples (Candès
& Tao, 2010; Candes & Recht, 2012; Chen et al., 2014). Generally, the lower bound on N looks like
N ≥ Cmax(n1, n2)

β
(
rγ logα (max(n1, n2)) + log 1

η

)
where η is the percentage of error (i.e N

guaranteed perfect recovery with probability at least 1− η), α > 0, β > 0, γ > 0 are constant, and
C > 0 a universal constant. For example, in Candes & Recht (2012), (α, β, γ) = (1, 1.2, 1) for small
rank r ≤ max(n1, n2)

0.2, and β = 1.25 for any rank. The term max(n1, n2) log (max(n1, n2))
is due to the coupon collector effect since to recover an unknown matrix, one needs at least one
observation per row and one observation per column (Candes & Recht, 2012).
Definition D.1 (Random orthogonal model (Candes & Recht, 2012)). For a given r, we generate two
orthonormal matrices U∗ ∈ Rn1×r and V∗ ∈ Rn2×r with columns selected uniformly at random
among all families of r orthonormal vectors; and a diagonal matrix Σ∗ with only the first r diagonal
element non-zero (with no assumptions about the singular values), then set A∗ = U∗Σ∗V∗⊤.

Unless otherwise specified, we default the nonzero singular values to 1. We have the following result
about the standard formulation for such matrices under the absence of noise.
Theorem D.1 (Theorem 1.1, Candes & Recht (2012)). Let A∗ ∈ Rn1×n2 be a matrix of rank r
sampled from the random orthogonal model, and put n = max(n1, n2). Suppose we observe N
entries of A∗ with locations sampled uniformly at random. Then there are numerical constants C
and c such that if N ≥ Cn5/4r log (n), the minimizer to the problem (P5) is unique and equal to
A∗ with probability at least 1− c/n3; that is to say, the semidenite program (P5) recovers all the
entries of A∗ with no error. In addition, if r ≤ n1/5, then the recovery is exact with probability at
least 1− c/n3 provided that N ≥ Cn6/5r log (n).

Assume for example A∗ = e
(n1)
k e

(n2)
ℓ for (k, ℓ) ∈ [n1]× [n2]. Even if this matrix ranks at 1, it has

only zeros everywhere except 1 at position (i, j), so we have very little chance of reconstructing it in
a high dimension by observing a portion of its inputs. The only way to guarantee observation of the
input at position (i, j) is to choose measurements coherently with its singular basis e(n2)

k ⊗ e
(n1)
ℓ .

This idea is formulated more generally below.
Definition D.2. Let U be a subspace of Rn of dimension r and PU be the orthogonal projection onto
U . Then, the coherence of U vis-a-vis a basis {u(n)

i }i∈[n] is defined by µ(U) = n
r maxi ∥PUu

(n)
i ∥2.

We have 1 ≤ µ(U) ≤ n/r (Candes & Recht, 2012).

For a matrix A = UΣV⊤ ∈ Rn1×n2 under the compact SVD, the projection on the left singular
value is x → UU⊤x, and ∥UU⊤x∥22 = ∥U⊤x∥22 for all x (similarly for the right singular value).
We have the following definition of coherence, which considers each matrix entry.
Definition D.3 (Local coherence & Leverage score). Let A = UΣV⊤ ∈ Rn1×n2 be the compact
SVD of a matrix A of rank r. The local coherences of A are defined by

µi(A) =
n1

r
∥U⊤e

(n1)
i ∥2 =

n1

r
∥Ui,:∥2 ∀i ∈ [n1]

νj(A) =
n2

r
∥V⊤e

(n2)
j ∥2 =

n2

r
∥Vj,:∥2 ∀j ∈ [n2]

(96)

with µi for row i and νj for row j.

The quantities ∥U⊤e
(n1)
i ∥2 and ∥V⊤e

(n2)
i ∥2 are the leverage score of A (Chen et al., 2014), which

indicate how “aligned” each row or column of the original data matrix is with the principal components
(the columns of U or V). For each row i, µi(A) measures how much this row vector projects onto the
subspace spanned by the first r left singular vectors in U. Rows with high leverage scores contribute
more to the low-rank structure of A and are more “influential” in representing A. Similarly, νj(A)
measures the coherence of each column j in A with respect to the low-rank subspace formed by the
right singular vectors in V. High values indicate columns well-aligned with the principal directions
of A and play a significant role in capturing its structure. Matrices with uniformly low coherence
scores have rows and columns that are evenly influential. In contrast, matrices with high coherence

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2025

scores for certain rows or columns have a few specific rows or columns that dominate the low-rank
structure.

In the general formulation, this definition can be extended to the set from which the measures are
chosen. But in general, it leads back to the standard formulation under the change of basis.
Definition D.4 (Generalize local coherence & Leverage score). We generalize the notion of coherence
to any arbitrary set of vectors U(n1) = {u(n1)

i }i∈[N1] ∈ Rn1×N1 and V(n2) = {v(n2)
j }j∈[N2] ∈

Rn2×N2 , and defined the generalized local coherences as

µi(A) =
n1

r
∥U⊤u

(n1)
i ∥2 ∀i ∈ [N1]

νj(A) =
n2

r
∥V⊤v

(n2)
j ∥2 ∀j ∈ [N2]

(97)

Suppose the sets U(n1) and V(n2) are be orthonormal basis (i.e. (N1, N2) = (n1, n2),

u
(n2)
i

⊤
u
(n2)
k = δik and v(n1)

j

⊤
v
(n1)
l = δjl). We can write u(n1)

i = P(1)e
(n1)
i and v(n2)

j = P(2)e
(n2)
j

with P(k) ∈ Rnk×nk the base change matrix from the canonical basis to U(n1) and V(n2) respectively.
So

µi(A) =
n1

r
∥U⊤P(1)e

(n1)
i ∥2 =

n1

r
∥Ũ⊤e

(n1)
i ∥2 = µi(Ã) ∀i ∈ [N1]

νj(A) =
n2

r
∥V⊤P(2)e

(n2)
j ∥2 =

n2

r
∥Ṽ⊤e

(n2)
j ∥2 = νi(Ã) ∀j ∈ [N2]

(98)

with Ã = A ×1 P(1) ×2 P(2) = P(1)⊤AP(2) = P(1)⊤UΣ
(
P(2)⊤V

)⊤
= ŨΣṼ⊤. That said,

any result stated in the standard formulation for A is valid for Ã under the general orthonormal
formulation.

Candès & Tao (2010) and Candes & Recht (2012) used mainly an upper bound µ0 on µi

and νi; µ0 ≥ max
(
maxi∈[n1] µi(A

∗),maxi∈[n2] νi(A
∗)
)
, and define a constant µ1 such

that the maxi,j [U
∗V∗⊤]ij = maxi,j

∑
k U

∗
i,kV

∗
j,k ≤ µ1

√
r

n1n2
. Since

∣∣∣∑k U
∗
i,kV

∗
j,k

∣∣∣ ≤√∑
k U

∗2
i,k

√∑
k V

∗2
j,k = ∥U∗

i,:∥2∥V∗
j,:∥2 = r√

n1n2

√
µi(A∗)νj(A∗) ≤ r√

n1n2
µ0 for all i, j; we

can just take µ1 ≥ µ0
√
r. From this, Candes & Recht (2012) show that if the coherence µ0 is low,

few samples are required to recover A∗.
Theorem D.2 (Theorem 1.3, Candes & Recht (2012)). Let A∗ ∈ Rn1×n2 be a matrix of rank r
sampled from the random orthogonal model, and put n = max(n1, n2). Suppose we observe N
entries of A∗ with locations sampled uniformly at random. Then there are numerical constants C
and c such that if N ≥ Cmax

(
µ2
1, µ

1
2
0 µ1, µ0n

1
4

)
nrβ log (n) for some β > 2, the minimizer to the

problem (P5) is unique and equal to A∗ with probability at least 1−c/n3. In addition, if r ≤ n1/5/µ0,
then the recovery is exact with probability at least 1− c/n3 provided that N ≥ Cµ0n

6/5rβ log (n).

Chen et al. (2014) show that sampling the element at position (i, j) with probability pij ∈ Ω(µi + νj)
allows perfect recovery of A∗ with fewer samples, and called such sampling strategies local coherence
sampling.
Theorem D.3 (Theorem 3.2 and Corollary 3.3, Chen et al. (2014)). Let A∗ ∈ Rn1×n2 be
a matrix of rank r with local coherence {µi, νj}i∈[n1],j∈[n2]. There are universal constant
c0, c1, c2 > 0 such that if each element (i, j) is independently observed with probability pij ≥
max

{
min

{
c0

(µi+νj)r log2(n1+n2)
min(n1,n2)

, 1
}
, 1
min(n1,n2)10

}
, then A∗ is the unique optimal solution of

the nuclear minimization problem (P5) with probability at least 1− c1/(n1 + n2)
c2 , for a number of

sample N ∈ O
(
max(n1, n2)r log

2(n1 + n2)
)
.

Given N and τ ∈ [0, 1], to control the coherence,

• For matrix factorization, we select the first N1 = τN examples with the highest values
of µi(A

∗) + νj(A
∗), and select the remaining (1− τ)N examples uniformly among the

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2025

remaining. The positions selected are one-hot encoded in dimensions n1 (for row positions)
and n2 (for column positions) to have X(1) and X(2), respectively.

• For matrix sensing, we generate X(1) (resp. X(2)) by taking the first N1 = min(⌊τN⌋, n1)
(resp. N1 = min(⌊τN⌋, n2)) rows from the first columns of U∗ (resp. V∗) and the elements
of the remaining N2 = N − N1 rows iid from the Gaussian distribution N (0, σ2) with
σ = 1/n1 (resp. σ = 1/n2).

The higher τ (and so N1), the less incoherence between the measures (rows of X = X(2) •X(1))
and Φ = V∗ ⊗U∗.

D.5 LINEAR PROGRAMMING

We fix n1 = n2 = 102 and ξ = 0 (no noise) and solve for different (N, r, τ) the convex problem (P5)
using standard linear programming (we use the cvxpy library). As r and/or τ increases, the number
of samples needs for perfect recovery decreases. The relative recovery error ∥A −A∗∥2/∥A∗∥2
obtained is usually of the order of 10−6 and gives us a basis for comparison with other methods. We
do not include figures to save space.

D.6 SUBGRADIENT DESCENT

We write a for vec(A) and b for vec(Σ) under full SVD A = UΣV⊤ ∈ Rn1×n2 . The matrix is
A∗ = U∗Σ∗V∗⊤ ∈ Rn1×n2 , the signal is a∗ = vec(A∗), the sparse basis is Φ = V∗ ⊗ U∗ ∈
Rn1n2×n1n2 , the sparse coordinates are b∗ = vec(Σ∗). Let y(A) = Fa(X) = X vec(A). We have
y∗ = Fa∗(X)+ ξ = Fb∗(X̃)+ ξ, and want to minimize f(A) = gβ2

(A)+ β∗∥A∥∗ using gradient
descent, where

gβ2(A) :=
1

2
∥y(A)− y∗∥22 +

β2

2
∥A∥F

=
1

2
a⊤X⊤Xa− y∗⊤Xa+

1

2
y∗⊤y∗ +

β2

2
a⊤a

=

{
1
2a

⊤ (X⊤X+ β2In
)
a−

(
X⊤Xa∗ +X⊤ξ

)⊤
a+ 1

2∥Xa∗ + ξ∥22
1
2 (a− a∗)⊤

(
X⊤X+ β2In

)
(a− a∗)−

(
X⊤ξ − β2a

∗)⊤ (a− a∗) + 1
2∥ξ∥

2
2 +

β2

2 ∥a∗∥22
(99)

We write F (A) := Gβ2
(A) + β∗h(A) with

vecGβ2
(A) := ∇agβ2

(A) = X⊤(y − y∗) + β2a =

{ (
X⊤X+ β2In

)
a−

(
X⊤Xa∗ +X⊤ξ

)(
X⊤X+ β2In

)
(a− a∗)−

(
X⊤ξ − β2a

∗)
(100)

and h(A) ∈ ∂∥A∥∗ = {UV⊤ + W, ∥W∥2→2 ≤ 1,U⊤W = 0,WV = 0} any subgradient of
∥A∥∗, with A = UΣV⊤ under the compact SVD 7. We use h(A) = UV⊤ for simplicity and
without loss of generality.

Suppose we start at some A(1) := ζIn1×n2
or A(1) iid∼ ζN (0, 1/n1n2), with ζ ≥ 0 the initialization

scale. Using F(t) := F (A(t)), the subgradient update rule is

A(t+1) = A(t) − αtF
(t) ∀t > 1 (101)

with αt the learning rate at step t. Using a = vecA, we have

a(t+1) = a(t) − αt vecF (A(t))

= a(t) − αt (vecGβ2
(A) + β∗ vec(h(A)))

(102)

That is, using h(t) = vec(h(A(t))),{
a(t+1) =

[
In − αt

(
X⊤X+ β2In

)]
a(t) + αt

(
X⊤Xa∗ +X⊤ξ

)
− β∗αth

(t)

a(t+1) − a∗ =
[
In − αt

(
X⊤X+ β2In

)]
(a(t) − a∗) + αt

(
X⊤ξ − β2a

∗)− β∗αth
(t)

(103)
7The norm ∥A∥∗ is not differentiable everywhere because the singular values of A can be non-differentiable

at points where they have multiplicities (e.g., when the singular values are not distinct).

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2025

We let f∗ = f(A∗) = β∗∥A∗∥∗ + β2

2 ∥a∗∥22 + ∥ξ∥22 and f (t) = f(A(t)). Since the sub-
gradient method is not a descent method, we let A

(t)
best = argminA∈{A(t′),t′≤t} f(A) =

argmin
A∈

{
A

(t−1)
best ,A(t)

} f(A) be the best point found so far at step t, and f
(t)
best = f(A

(t)
best) =

min
{
f
(t−1)
best , f (t)

}
. This A(t)

best can be made η-optimal for an arbitrary precision η if the step rule is
chosen appropriately, as the following theorem shows.
Theorem D.4. Suppose there exists a constant L > 0 such that ∥F (A)∥F ≤ L for all A. Let
A

(t)
best = argmin

1≤t′≤t
f(A(t′)) and f

(t)
best = f(A

(t)
best). Then, for every T ≥ 1, f (T)

best − f(A∗) ≤

∥A(1)−A∗∥2
F+L2 ∑T

t=1 α2
t

2
∑T

t=1 αt
.

Proof. Similar to Theorem C.3

That said, many step size rules lead to different accuracy.
Corollary D.1. With a constant step size, αt = α,

f
(T)
best − f∗ ≤ ∥A(1) −A∗∥2F + L2Tα2

2Tα
−→T→∞ L2α/2 (104)

With a square summable but not summable step size rule,
∑

t α
2
t < ∞ and

∑
t αt = ∞, we have

f
(T)
best − f∗ ≤

∥A(1) −A∗∥2F + L2
∑T

i=1 α
2
i

2
∑T

i=1 αi

−→T→∞ 0 (105)

As in section C.6,

• We let X = UΣ
1
2V⊤ under the compact SVD decomposition, with Σ = diag(σk)k∈[r],

where r = rank(X) and σmax = σ1 ≥ · · ·σk ≥ σk+1 · · · ≥ σmin = σr > σr+1 = · · · = 0

• We assume the step size αt = α satisfies 0 < α < 2
σmax+β2

.

• We define ρp :=
∥∥In − αt

(
X⊤X+ β2In

)∥∥
p→p

for all p > 0.

D.6.1 MEMORIZATION

We will show that the update first moves to the least square solution of the problem, â = vec Â =(
X⊤X+ β2In

)†
X⊤y∗ = V (Σ + β2I)−1

(
ΣV⊤b∗ +Σ

1
2U⊤ξ

)
(Theorem TODO). If β∗ is too

high, the subgradient term h(A) dominates early, and there is no convergence, i.e., no memorization
nor generalization (Theorem D.5). This â can memorize (Theorem TODO), but cannot generalize for
N < n (Theorem TODO).
Theorem D.5 (Oscillatory Behavior for Large β∗). Let A(1) ∈ Rn1×n2 full rank. Consider the
subgradient descent update

A(t+1) = A(t) − αt

(
∇Agβ2

(A(t)) + β∗h(A
(t))
)

(106)

with a fixed step size αt = α > 0, where gβ2
(A) = 1

2∥X vecA − y∗∥22 +
β2

2 ∥A∥2F and h(A) ∈
∂∥A∥∗. If β∗ > σmax+β2√

min(n1,n2)
then the ℓ∗-term dominates the updates, causing the sequence b(t) to

exhibit oscillatory behavior without convergence to a minimizer of f(A) = gβ2(A) + β∗∥A∥1.

Proof. We use lemma D.6 with L = ∥X̃⊤X̃+β2In∥2→2 = σmax(X̃
⊤X̃)+β2 (operator norm) be the

Lipschitz constant for vecGβ2(A) = vec∇Agβ∗(A) = X⊤(Xa−y∗)+β∗a =
(
X⊤X+ β2In

)
a−(

X⊤Xa∗ +X⊤ξ
)
, since ∥ vecGβ2

(U)− vecGβ2
(V)∥2 ≤ L∥ vecU− vecV∥2 for all U, V.

When the data-fitting gradient ∇Agβ2
(A(t)) is negligible, the singular direction of β∗h(A

(t)) (which
depends on the singular vectors of A(t)) can flip across iterations in a way that prevents stable
convergence (see Theorem D.12).

62

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2025

Lemma D.6. Let f(A) = g(A) + β1∥A∥∗ be a convex function from Rn1×n2 to R where g has a
Lipschitz continuous gradient with Lipschitz constant L > 0, i.e., ∥∇g(U)−∇g(V)∥F ≤ L∥U−V∥F
for all U,V ∈ Rn1×n2 . Consider the subgradient descent update

A(t+1) = A(t) − α
(
∇g(A(t)) + β∗h(A

(t))
)

(107)

with a fixed step size α > 0, where h(A(t)) ∈ ∂∥A(t)∥∗. If β1 > L√
min(n1,n2)

then the ℓ∗-term

dominates the updates, causing the sequence {A(t)}t>1 to exhibit oscillatory behavior without
convergence to a minimizer of f . Consequently, neither memorization nor generalization is achieved,
and both training and test errors oscillate above a suboptimal level.

Proof Sketch. Since g has a Lipschitz continuous gradient with constant L, ∥∇g(A(t))∥F ≤
L for all t when A(t) is within a suitable bounded region. The subgradient h(A(t)) of
∥A(t)∥∗ satisfy ∥h(A(t))∥∗ ≈

√
min(n1, n2) at the beginning of training (full rank matrix), so

∥h(A(t))∥F ≥ ∥h(A(t))∥∗/ rank(h(A(t))) ≈
√
min(n1, n2)/min(n1, n2) =

√
min(n1, n2). If

β∗ > L√
min(n1,n2)

, then

β∗∥h(A(t))∥F > β∗
√

min(n1, n2) > L ≥ ∥∇g(A(t))∥F (108)
This inequality implies that the update is dominated by the ℓ∗-term:

A(t+1) ≈ A(t) − αβ∗h(A
(t)) (109)

with the influence of ∇g(A(t)) becoming negligible, making the iterates swing sharply depending on
the current singular-vector configuration (see Theorem D.12). This “over-regularization” effect is
akin to the ℓ1 case in vector problems, where too large causes step-to-step sign flipping. In the matrix
setting, it induces rank-structure flipping or oscillations.

Lemma D.7. For all p > 0 such that ρp < 1, we have

∥a(t) − â∥p ≤ ρtp∥a(1) − â∥p + αβ∗n
1/p

1− ρtp
1− ρp

≤ ρtp∥a(1) − â∥p +
αβ∗n

1/p

1− ρp
∀t ≥ 1 (110)

In particular,

∥a(t) − â∥2 ≤ ρt∥a(1) − â∥2 + αβ∗
√
n
1− ρt2
1− ρ2

≤ ρt∥a(1) − â∥2 +
αβ∗

√
n

1− ρ2
∀t ≥ 1 (111)

and

∥a(t) − â∥∞ ≤ ρt∞∥a(1) − â∥∞ + αβ∗
1− ρt∞
1− ρ∞

≤ ρt∞∥a(1) − â∥∞ +
αβ∗

1− ρ∞
∀t ≥ 1 (112)

Proof. The proof is similar to C.7, using tha fact that ∥ vec(h(A(t))∥p ≤ (n1n2)
1/p = n1/p for all

and p > 0 (Lemma D.11)

Theorem D.8. Let p > 0 such that ρp < 1. Define

t1 :=

−
ln
(
1 +

(1−ρ)∥a(1)−â∥p

αβ∗n1/p

)
ln(ρp)

 (113)

Then for all t ≥ t1,

∥a(t) − â∥p ≤ 2αβ∗n
1/p

1− ρtp
1− ρp

≤ 2
αβ∗n

1/p

1− ρp
(114)

and the prediction error for t ≥ t1 is bounded by

∥X̃a(t) − y∗∥p ≤ 2αβ∗n
1/p

1− ρtp
1− ρp

∥X∥p→p + ∥Xâ− y∗∥p

≤ 2
αβ∗n

1/p

1− ρp
∥X∥p→p + ∥Xâ− y∗∥p

(115)

63

3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2025

Proof. The proof is similar to C.8.

Corollary D.2. Let p > 0 such that ρp < 1. Define

t̃1 :=

−

ln

(
(1−ρ)∥a(1)−â∥p

αβ∗n1/p

)
ln(ρp)

 if ∥a(1) − â∥p > αβ∗
1−ρp

0 otherwise

> t1 (116)

Then for all t ≥ t̃1,

∥a(t) − â∥p ≤ 2
αβ∗n

1/p

1− ρp
(117)

and the prediction error for t ≥ t̃1 is bounded by

∥X̃a(t) − y∗∥p ≤ 2αβ∗n
1/p

1− ρp
∥X̃∥p→p + ∥X̃â− y∗∥p (118)

Proof. The proof is similar to C.2

Theorem D.9. Assume E[ξ] = 0 and Cov(ξ) = σ2
ξ IN . Then

Eξ

[
∥Xâ− y∗∥22

]
=

r∑
i=1

(
β2σi

σi + β2

)2

(V⊤a∗)2i +

r∑
i=1

(
β2

σi + β2

)2

σ2
ξ + σ2

ξ (N − r) (119)

Proof. The proof is similar to C.9

Theorem D.10. For N < n,

∥â− a∗∥22 ≥ ∥(In −VV⊤)a∗∥22 (120)

In particular, if a∗ has a nonzero component orthogonal to Col(V), then â cannot perfectly generalize
to a∗.

Proof. The proof is similar to C.10

Lemma D.11. Let A ∈ Rn1×n2 . We have ∥ vec(H)∥p ≤ (n1n2)
1/p for all H ∈ ∂∥A∥∗ and p > 0.

Proof. Let H ∈ ∂∥A∥∗. Then ∥H∥2→2 ≤ 1. So by the definition of the spectral (operator) norm,
we have ∥H∥2→2 = supx ̸=0

∥Hx∥2

∥x∥2
= σmax(H) ≤ 1. Taking x = e

(n2)
j , the j-th standard basis

vector in Rn2 , we obtain ∥H:,j∥2 = ∥He
(n2)
j ∥2 ≤ 1; which implied Hij ≤ ∥H:,j∥2 ≤ 1. So

∥ vec(H)∥p =
(∑n1

i=1

∑n2

j=1 |Hij |p
)1/p

≤ (n1n2)
1/p.

D.6.2 GENERALIZATION

We now turn our attention to the generalization delay. We analyse how the iterate A(t) transitions
from memorizing the training data (A(t) ≈ Â) to converging toward the low rank ground truth A∗.
We focus on quantifying the additional number of iterations ∆t required for this phase and bounding
the generalization error ∥A(t) −A∗∥∞ as t → ∞.

Theorem D.12. Given α > 0 and A(1) = U(1)Σ(1)V(1)⊤ ∈ Rn1×n2 (compact SVD) with Σ =

diag
(
σ
(1)
1 , . . . , σ

(1)
r1

)
, let

A(t+1) = A(t) − αU(t)V(t)⊤ = U(t)
(
Σ(t) − αIrt

)
V(t)⊤for all t ≥ 1 (121)

where rt = rank(A(t)).

64

3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

Under review as a conference paper at ICLR 2025

1. A point A is stationary for this dynamical system if and only if ∥A∥2→2 = σmax(A) < α.

2. ∥A(t)∥2→2 < α if and only if t > ⌊∥A(1)∥2→2

α ⌋.

3. For all t > ⌊∥A(1)∥2→2

α ⌋, rt =
∣∣∣{i | σ

(1)
i /α ∈ Z}

∣∣∣.
Proof. Equation 121 writes

A(t+1) = U(t+1)Σ(t+1)V(t+1)⊤ =

rt+1∑
i=1

σ
(t+1)
i U

(t+1)
:,i V

(t+1)⊤
:,i

=

rt∑
i=1

(σ
(t)
i − α)U

(t)
:,i V

(t)⊤
:,i

=

rt∑
i=1

|σ(t)
i − α| · sign(σ(t)

i − α)U
(t)
:,i V

(t)⊤
:,i

(122)

This implies
σ
(t+1)
i = |σ(t)

i − α| ∀i ∈ [r1] (123)

So starting at σ(1)
i , each σi decay at each step by α until σ∗ := σ

(t)
i ∈ [0, α), and start oscillating

between σ∗
i and α− σ∗

i . It starts doing so when t > ti := ⌊σ
(1)
i

α ⌋. We take t = maxi ti.

Like in section C.6.2, after t1 :=

−
ln

(
1+

(1−ρ)∥a(1)−â∥p
αβ∗n1/p

)
ln(ρp)

, ∥a(t) − â∥p ≤ 2αβ∗n
1/p 1−ρt

p

1−ρp
≤

2αβ∗n
1/p

1−ρp
(Theorem D.8) and

∥ vecGβ2
(A(t))∥p = ∥ vecGβ2

(A(t))− vecGβ2
(Â)∥p since Gβ2

(Â) = 0

≤ ∥X⊤X+ β2In∥p→p∥ vecA(t) − vec Â∥p

≤ 2αβ∗n
1/p∥X⊤X+ β2In∥p→p

1− ρtp
1− ρp

≤ 2αβ∗n
1/p

1− ρp
∥X⊤X+ β2In∥p→p

(124)

So, this gradient can be made much smaller than the subgradient term by choosing αβ∗ sufficiently
small. After time t1, the contribution of the gradient Gβ2

to the update of A(t) is dominated by the
ℓ∗–regularization term. Specifically, the update rule approximates

A(t+1) ≈ A(t) − αβ∗U
(t)V(t)⊤ (125)

By theorem D.12, this converge to a solution with operator norm bound by αβ∗ after additional
∆t = Θ

(
⌊σmax(Â)

αβ∗
⌋
)

steps. Note that when ∥A(t)∥∗ becomes too small, A(t) ≈ A∗ since for
problem of interest, the minimum nuclear norm solution that fits the data is A∗ under the low-
rank constraint r = rank(A) ≪ min(n1, n2) (and the coherence assumptions on X with respect
to the eigenbasis of A∗). The smaller αβ∗, the longer it take to recover A∗, and the smaller
is the error ∥A(t) − A∗∥∞ when t → ∞. Like in linear sparse recovery, if β2 is choose such
that σmax(Â) ≪ αβ∗, then A(t) will get stuck near Â, and there will be no generalization after
memorization. So, a bad choice of a non-zero β2 can be detrimental to generalization (it is better to
not use β2 on that problem unless the initialization scale is nontrivial).

Generalization appends through a multiscale singular value decay phenomenon. The small singular
value after memorization converges to {σ, 0 ≤ σ < αβ∗}, followed by the next smaller one until
the larger one. So, for N < n1n2, if we just regularize the Frobenius norm (standard ℓ2) without
regularizing the nuclear norm (ℓ∗), we can’t reach the optimal solution. On the other hand, when N
is large enough, regularizing the nuclear norm is sufficient.

65

3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

Under review as a conference paper at ICLR 2025

By carefully choosing α and β1, one can balance the speed of generalization (smaller ∆t) with the
accuracy of recovery (smaller ∥b(t) − b∗∥∞). Appropriate step rule also guaranteed the converge of
∥b(t)∥1 to ∥b∗∥1.

Theorem D.13. For all T ∈ N∗, we have

min
1≤t≤T

(
∥A(t)∥∗ − ∥A∗∥∗

)
≤

∥A(1) −A∗∥2F +
(
max1≤t≤T ∥∇Af(A(t))∥2F

)∑T
t=1 α

2
t

2β∗
∑T

t=1 αt

+
∥ξ∥22 + β2∥A∗∥2F

2β∗
(126)

Proof. The proof is similar to C.13

So, when
∑

t α
2
t < ∞ and

∑
t αt = ∞ (e.g. αt = a/(b + t), a > 0 and b ≥ 0), ∥A(t)∥1 →

∥A∗∥1 → 0 as T → ∞, for β2 = 0 in the noiseless setting.

D.6.3 ADDITIONNAL EXPERIMENTS

We optimize the noiseless matrix completion problem using the subgradient descent method with
(n1, n2, r,N, ζ, β2) = (10, 10, 2, 70, 10−6, 0) for different values of α and β∗. As expected, larger α
and/or β∗ lead to fast convergence and do so at a suboptimal value of the test error (Figure 42).

101 103 105 107

Steps (t)

10 5

10 3

10 1

Er
ro

r

= 0.01

||Xvec(A(t)) y * ||2 / ||y * ||2
||A(t) A * ||F / ||A * ||F

10 6

10 5

10 4

10 3

10 2

10 1

*

101 103 105 107

Steps (t)

10 5

10 3

10 1

= 0.05

||Xvec(A(t)) y * ||2 / ||y * ||2
||A(t) A * ||F / ||A * ||F

10 6

10 5

10 4

10 3

10 2

10 1

*

101 103 105 107

Steps (t)

10 5

10 3

10 1

= 0.1

||Xvec(A(t)) y * ||2 / ||y * ||2
||A(t) A * ||F / ||A * ||F

10 6

10 5

10 4

10 3

10 2

10 1

*

Figure 42: Training error ∥X vecA(t) − y∗∥2/∥y∗∥2 and recovery error ∥A(t) −A∗∥F/∥A∗∥F as a
function of the learning rate α and the ℓ∗-regularization coefficient β∗. Here

(n1, n2, r,N) = (10, 10, 2, 70)

D.7 PROJECTED SUBGRADIENT

To ensure memorization, we can use the projected subgradient for problem (P5) of minimizing
∥A∥∗ subject to the constraint FvecA(X) = X vecA = y∗, where at each step the update (using
now just β∗h(A) as gradient) is projected onto the constraint set. In our case, the update write
A(t+1) = Π

(
A(t) − αtβ∗h(A

(t))
)

with Π the projection on the set {A,X vecA = y∗}. Figure 43
shows the results for a matrix sensing problem.

100 101 102 103 104 105 106

Steps (t)

10 14

10 11

10 8

10 5

10 2

t1 t2

0

5

10

15

||A
|| *||Xvec(A(t)) y * ||F / ||y * ||2

||A(t) A * ||F / ||A * ||F
||A(t)|| *

||A * || *

100 101 102 103 104 105 106

Steps (t)

0

100

Si
ng

ul
ar

 v
al

ue
s

t1 t2
t

1

2

3

4

5

6

7

8

9

10

Di
m

en
sio

ns
 (n

)

Figure 43: Relative errors, norm ∥A(t)∥∗, and evolution of singular value for the projected
subgradient method. Gβ2

(A(t)) dominates β∗h(A
(t)) until memorization. From memorization

β∗h(A
(t)) dominates and make ∥A(t)∥1 converge to ∥A∗∥1 at t2, and so A(t2) = A∗. Here
(n1, n2, r,N) = (10, 10, 2, 70) and (ζ, α, β∗, β2) = (10−6, 10−1, 10−4, 0).

66

3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617

Under review as a conference paper at ICLR 2025

D.8 PROXIMAL GRADIENT DESCENT AND ITERATIVE SOFT-THRESHOLDING ALGORITHM

Similar to what we derive in section C.8, we have A− αF (A) = Πα (A− αGβ2
(A)) where Πα is

the proximal mapping for B → β∗∥B∥∗, Πα(A) = argminB
1
2α∥B−A∥2F + β∗∥B∥∗ = Sαβ∗(A)

with Sγ(A) = Umax(Σ − γ, 0)V⊤ the soft-thresholding operator for A = UΣV⊤ under SVD,
where max(Σ− γ, 0)ij = δij max(Σij − γ, 0). The final form of the update is then

A(t+1) = Sαtβ∗

(
A(t) − αtGβ2(A

(t))
)

∀t > 1 (127)

Figure 44 shows the results for a matrix sensing problem.

100 101 102 103 104 105 106

10 4

10 3

10 2

10 1

100

Er
ro

r

t1 t2

t

0.00

0.25

0.50

0.75

1.00

1.25

Gr
ad

ie
nt

s R
at

io

||Xvec(A(t)) y * ||2 / ||y * ||2
||A(t) A * ||F / ||A * ||F
|| * h(A(t))||F / ||G 2(A(t))||F

100 101 102 103 104 105 106

Steps (t)

10 4

10 3

10 2

10 1

100

t1 t2 0

5

10

15

||A
|| *||Xvec(A(t)) y * ||F / ||y * ||2

||A(t) A * ||F / ||A * ||F
||A(t)|| *

||A * || *

101 103 105

0

100

Si
ng

ul
ar

 v
al

ue
s

t1 t2
t

1

2

3

4

5

6

7

8

9

10

Di
m

en
sio

ns
 (n

)

Figure 44: Gradient Ratio, relative errors, norm ∥A(t)∥∗, and evolution of singular value for the
Proximal Gradient Descent. Gβ2(A

(t)) dominates β∗h(A
(t)) until memorization. From

memorization β∗h(A
(t)) dominates and make ∥A(t)∥1 converge to ∥A∗∥1 at t2, and so A(t2) = A∗.

Here (n1, n2, r,N) = (10, 10, 2, 70) and (ζ, α, β∗, β2) = (10−6, 10−1, 10−4, 0).

D.9 GROKKING WITHOUT UNDERSTANDING

Like in section C.9, there is no grokking for N < n when β∗ ̸= 0, no matter the value of β2 and
the initialization scale ζ ≥ 0, A(1) iid∼ ζN (0, 1/n). With a small initialization, β1 is sufficient
for generalization to happen, provided N is large enough and β2 is not very large. If the scale at
initialization is large, β2 is necessary to generalize, but it is not sufficient: because of the large
initialization, a transition is observed in the generalization error during training, corresponding to a
transition in the ℓ2 norm of the model parameters, but not the recovery error.

D.10 IMPACT OF COHERENCE ON GROKKING: AMPLIFYING GROKKING THROUGH DATA
SELECTION

Above, we introduce the parameter τ ∈ [0, 1] that control the incoherence between the measures
{Xi}i∈[N] and the sparse basis (dictionary) {Φ:,j}j∈[n], with Φ = V∗ ⊗ U∗ ∈ Rn1n2×n1n2 and
X = X(2) •X(1) ∈ RN×n1n2 . Unlike compressed sensing (Section C.10), where large values of τ
are detrimental to generalization, here, as τ → 1, performance improves, and the number of examples
required to generalize decreases exponentially, as does the time it takes the models to do so (Figures
45 and Figures 46). Note that here, for matrix completion, for a fixed τ , we select the first τN
examples with the highest values of µi(A

∗) + νj(A
∗), and select the remaining (1− τ)N examples

at random, uniformly.

D.11 DEEP MATRIX FACTORIZATION: THE EFFECT OF OVERPARAMETRIZATION

Let now use the parameterization A =
∏L

k=1 Ak, with A1 ∈ Rn1×d, AL ∈ Rd×n2 , and Ai ∈ Rd×d

for all i ∈ (1, L). This corresponds to a linear network with L layers, where each hidden layer
has the parameter Ak—with this, increasing L leads to overparameterization without altering the
expressiveness of the function class A → FA(x) = x⊤ vecA, since the model remains linear with
respect to the input x. Like in compressed sensing, there is no need for ℓ∗ (β∗ = 0) to generalize
when L ≥ 2 (and the initialization scale is small), unlike the shallow case (L = 1). This is an
observation already made and proven in previous art. (Gunasekar et al., 2017; Arora et al., 2019;
Gidel et al., 2019; Gissin et al., 2019; Razin & Cohen, 2020; Li et al., 2020). Gunasekar et al. (2017);
Arora et al. (2019) show increasing L implicitly bias A toward a low-rank solution, which oftentimes
leads to more accurate recovery for sufficiently large N . In fact, with depth, the update for the

67

3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671

Under review as a conference paper at ICLR 2025

101 103 105 107

Steps (t)

10 5

10 3

10 1

Er
ro

r

N=70

||Xvec(A(t)) y * ||2 / ||y * ||2
||A(t) A * ||F / ||A * ||F

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 1 2 3 4 5
Steps (t) 1e6

10 5

10 3

10 1

Er
ro

r

N=70

||Xvec(A(t)) y * ||2 / ||y * ||2
||A(t) A * ||F / ||A * ||F

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Figure 45: Training and error ∥X vecA(t) − y∗∥2/∥y∗∥2 and recovery error ∥A(t) −A∗∥2/∥A∗∥F
as a function of the number of sample N and the coherence parameter τ ∈ [0, 1]. Here

(n1, n2, r, α, β1, β2, ζ) = (10, 10, 2, 10−1, 10−5, 0, 10−6).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
102

103

104

105

106

t

N=70

10 6

10 5

10 4

10 3

10 2

10 1
Er

ro
r

t1
t2

||Xvec(A(t1)) y * ||F / ||y * ||2
||A(t2) A * ||F / ||A * ||F

Figure 46: Training and error ∥X vecA(t1) − y∗∥2/∥y∗∥2 and recovery error
∥A(t2) −A∗∥2/∥A∗∥F (along with t1 and t2, the memorization and the generalization step) as a

function of the number of sample N and the coherence parameter τ ∈ [0, 1]. Here
(n1, n2, r, α, β1, β2, ζ) = (10, 10, 2, 10−1, 10−5, 0, 10−6).

68

3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725

Under review as a conference paper at ICLR 2025

whole iterate is similar to the shallow case but with a preconditioner in front of the gradient (like in
section C.11). This preconditioner makes it possible to recover the low-rank matrix signal without
any regularization and with fewer samples than in the shallow case (Arora et al., 2018; 2019). It
is also shown specifically for this problem that initializing the model very far from the origin and
using a small (but non-zero) weight decay leads to grokking (Lyu et al., 2023), i.e., the model first
memorizes the observed entries, then after a long training period, converges to the sought matrices
provided the number of such observe entries is large enough.

We have y(A) = FvecA(X) = X vecA and y∗ = FvecA∗(X) + ξ = X vecA∗ + ξ, and want to
minimize f(A) = gβ2

(A) + β∗
∑

k ∥Ak∥∗ using gradient descent, where

gβ2
(A) :=

1

2
∥y(A)− y∗∥22 +

β2

2

∑
k

∥Ak∥2F (128)

Let vecG(A) :=
∂gβ2

(A)

∂ vecA = X⊤(y(A)− y∗) = X⊤X(vecA− vecA∗)−X⊤ξ. The gradient for
each Ak is

Gβ2
(Ak) :=

∂gβ2(A)

∂Ak

=

 G(A)(A2 · · · AL)
⊤ + β2Ak for k = 1

(A1 · · · Ak−1)
⊤G(A)(Ak+1 · · · AL)

⊤ + β2Ak for k ∈ (1, L)
(A1 · · · AL−1)

⊤G(A) + β2Ak for k = L
(Lemma D.14)

(129)
And the update rule for each Ak is

A(t+1)
k = A(t)

k − αGβ2(A
(t)
k)− αβ∗h(A(t)

k)

= (1− αβ2)A(t)
k − α

(∏
i<k

A(t)
i

)⊤

G(A(t))

(∏
i>k

A(t)
i

)⊤

− αβ∗h(A(t)
k)

(130)

where h(Ak) ∈ ∂∥Ak∥∗. We start the optimization at A(1)
k

iid∼ ζN (0, 1/n) with ζ ≥ 0 the
initialization scale.
Lemma D.14. Let f(A1, · · · ,AL) = g(A) ∈ R with A =

∏L
k=1 Ak ∈ Rd0×dL , where Ak ∈

Rdk−1×dk for all k ∈ [L]. We have

∂f(A)

∂Ak
=

(∏
i<k

Ai

)⊤
∂g(A)

∂A

(∏
i>k

Ai

)⊤

=

∂g(A)
∂A (A2 · · · AL)

⊤ for k = 1

(A1 · · · Ak−1)
⊤ ∂g(A)

∂A (Ak+1 · · · AL)
⊤ for k ∈ (1, L)

(A1 · · · AL−1)
⊤ ∂g(A)

∂A for k = L

(131)

Proof. We have

Rd0dL ∋ vecA =

(
(A2 · · · AL)

⊤ ⊗ Id0

)
vecA1 for k = 1(

(Ak+1 · · · AL)
⊤ ⊗ (A1 · · · Ak−1)

)
vecAk for k ∈ (1, L)

(IdL
⊗ (A1 · · · AL−1)) vecAL for k = L

(132)

So

Rd0dL×dk−1dk ∋ ∂ vecA

∂ vecAk
=

 (A2 · · · AL)
⊤ ⊗ Id0

∈ RdLd0×d1d0 for k = 1
(Ak+1 · · · AL)

⊤ ⊗ (A1 · · · Ak−1) ∈ RdLd0×dkdk−1 for k ∈ (1, L)
IdL

⊗ (A1 · · · AL−1) vecAL ∈ RdLd0×dLdL−1 for k = L
(133)

For Q ∈ Rd0×dL ,(
∂ vecA

∂ vecAk

)⊤

vecQ =

((A2 · · · AL)⊗ Id0) vecQ for k = 1(
(Ak+1 · · · AL)⊗ (A1 · · · Ak−1)

⊤) vecQ for k ∈ (1, L)

(IdL
⊗ (A1 · · · AL−1))

⊤
vecQ for k = L

=

 vec
(
Q(A2 · · · AL)

⊤) for k = 1
vec
(
(A1 · · · Ak−1)

⊤Q(Ak+1 · · · AL)
⊤) for k ∈ (1, L)

vec
(
(A1 · · · AL−1)

⊤Q
)

for k = L

(134)

69

3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779

Under review as a conference paper at ICLR 2025

So

∂g(A)

∂ vecAk
=

(
∂ vecA

∂ vecAk

)⊤
∂g(A)

∂ vecA
=

(
∂ vecA

∂ vecAk

)⊤

vec
∂g(A)

∂A

=

vec
(

∂g(A)
∂A (A2 · · · AL)

⊤
)

for k = 1

vec
(
(A1 · · · Ak−1)

⊤ ∂g(A)
∂A (Ak+1 · · · AL)

⊤
)

for k ∈ (1, L)

vec
(
(A1 · · · AL−1)

⊤ ∂g(A)
∂A

)
for k = L

(135)

E BEYONG SPARSE RECOVERY AND MATRIX FACTORIZATION

We will optimize functions of the form f(θ) = Ê(θ) + βΩ(θ), where Ê is the square loss or cross-
entropy loss function of the considered model on the training data, θ the set of model parameters, and
Ω a regularizer applied to θ. It can be the standard ℓp norm or quasi-norm of θ, the sum of the nuclear
norms of each matrix in θ (in this case, we call it ℓ∗), etc. By normal initialization for a parameter
A ∈ Rn1×n2 , we mean A(0) iid∼ N (0, 1/n1).

E.1 NON LINEAR TEACHER-STUDENT

We consider a teacher y∗(x) = B∗g(A∗x) from Rd to Rc with r hidden neurons (A∗ ∈ Rr×d

and B∗ ∈ Rc×r); where g(x) = max(x, 0) and x,A∗, rB∗ iid∼ N (0, 1). We i.i.d sample N
inputs output pair Dtrain = {(xi,y

∗(xi))}Ni=1 and optimize the parameters θ = (A,B) of a student
yθ(x) = Bg(Ax) on them, starting from normal initialization, with the loss function Ê(θ) =
1
N

∑N
i=1 ∥yθ(xi)− y∗(xi)∥22 and different regularizer Ωp(θ) for p ∈ {1, 2, ∗}.

For any p ∈ {1, 2, ∗}, the smaller is αβ, the longer is the delay between memorization and general-
ization. See Figures 47, 48 and 49 for an experiment with (d, r, c,N) = (100, 500, 2, 102).

101 103 105
0.0

2.5

5.0

7.5

10.0

12.5

Lo
ss

= 0.0001
Train
Test

10 7

10 6

10 5

10 4

10 3

10 2

10 110 1

101 103 105
0.0

2.5

5.0

7.5

10.0

12.5
= 0.00055

Train
Test

10 7

10 6

10 5

10 4

10 3

10 2

10 110 1

101 103 105
0.0

2.5

5.0

7.5

10.0

12.5
= 0.001

Train
Test

10 7

10 6

10 5

10 4

10 3

10 2

10 110 1

101 103 105

Steps (t)

0.0

2.5

5.0

7.5

10.0

12.5

Lo
ss

= 0.0055
Train
Test

10 7

10 6

10 5

10 4

10 3

10 2

10 110 1

101 103 105

Steps (t)

0

20

40

60
= 0.01

Train
Test

10 7

10 6

10 5

10 4

10 3

10 2

10 110 1

101 103 105

Steps (t)

0

500

1000

1500

2000
= 0.055

Train
Test

10 7

10 6

10 5

10 4

10 3

10 2

10 110 1

Figure 47: Training and test error two layers ReLU teacher-student with ℓ1 regularization, for
different values of the learning rate α and the ℓ1 coefficient β. We can see that the smaller is αβ, the

longer is the delay between memorization and generalization.

E.2 DOMAIN SPECIFIC REGULARIZATION

Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019) leverage prior knowledge from
differential equations by incorporating their residuals into the loss function, ensuring that solutions

70

3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833

Under review as a conference paper at ICLR 2025

101 103 105
0

5

10

15

Lo
ss

= 0.0001
Train
Test

10 7

10 6

10 5

10 4

10 3

10 2

10 110 1

101 103 105
0

5

10

15
= 0.00055

Train
Test

10 7

10 6

10 5

10 4

10 3

10 2

10 110 1

101 103 105
0

5

10

15
= 0.001

Train
Test

10 7

10 6

10 5

10 4

10 3

10 2

10 110 1

101 103 105

Steps (t)

0

5

10

15

Lo
ss

= 0.0055
Train
Test

10 7

10 6

10 5

10 4

10 3

10 2

10 110 1

101 103 105

Steps (t)

0

10

20

30

40

50
= 0.01

Train
Test

10 7

10 6

10 5

10 4

10 3

10 2

10 110 1

101 103 105

Steps (t)

0

500

1000

1500

= 0.055
Train
Test

10 7

10 6

10 5

10 4

10 3

10 2

10 110 1

Figure 48: Training and test error two layers ReLU teacher-student with ℓ2 regularization, for
different values of the learning rate α and the ℓ2 coefficient β. We can see that the smaller is αβ, the

longer is the delay between memorization and generalization.

101 103 105
0.0

2.5

5.0

7.5

10.0

12.5

Lo
ss

= 0.0001
Train
Test

10 7

10 6

10 5

10 4

10 3

10 2

10 110 1

101 103 105
0.0

2.5

5.0

7.5

10.0

12.5
= 0.00055

Train
Test

10 7

10 6

10 5

10 4

10 3

10 2

10 110 1

101 103 105
0.0

2.5

5.0

7.5

10.0

12.5
= 0.001

Train
Test

10 7

10 6

10 5

10 4

10 3

10 2

10 110 1

101 103 105

Steps (t)

0.0

2.5

5.0

7.5

10.0

12.5

Lo
ss

= 0.0055
Train
Test

10 7

10 6

10 5

10 4

10 3

10 2

10 110 1

101 103 105

Steps (t)

0

10

20

30

40

50
= 0.01

Train
Test

10 7

10 6

10 5

10 4

10 3

10 2

10 110 1

101 103 105

Steps (t)

0

500

1000

1500

= 0.055
Train
Test

10 7

10 6

10 5

10 4

10 3

10 2

10 110 1

Figure 49: Training and test error two layers ReLU teacher-student with ℓ∗ regularization, for
different values of the learning rate α and the ℓ∗ coefficient β. We can see that the smaller is αβ, the

longer is the delay between memorization and generalization.

71

3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887

Under review as a conference paper at ICLR 2025

remain consistent with physical laws. Sobolev training (Czarnecki et al., 2017) generalizes this idea
by incorporating not only input-output pairs but also derivatives of the target function. More precisely,

given input-output pairs {(xi,y
∗(xi)}i∈[N] along with known derivatives

{
∂ky∗(x)

∂xk

∣∣∣
x=xi

}
i∈[N]

for k ∈ [K], the goal is to train a neural network yθ(x) that approximates both the output and its
derivatives. The loss function extends the standard mean squared error (MSE) to include Sobolev
penalties:

f(θ) =
1

N

N∑
i=1

∥yθ(xi)− y∗(xi)∥2︸ ︷︷ ︸
data loss

+
β

N

K∑
k=1

N∑
i=1

∥∥∥∥∂kyθ

∂xk
(xi)−

∂ky∗

∂xk
(xi)

∥∥∥∥2
F︸ ︷︷ ︸

Sobolev penalty

(136)

The hyperparameter β controls the contribution of the derivative alignment term. This penalty ensures
that the model not only fits the data but also respects known smoothness constraints or differential
structure, which is crucial in physics-based applications (Lu et al., 2021). We consider the two layers
feed forward teacher y∗(x) = B∗g(A∗x) of Section E.1, and optimize the parameters θ = (A,B) of
a student yθ(x) = Bg(Ax) using the sobolev objectify for K = 1, ∂y∗(x)

∂x = B∗ diag (g′(A∗x))A∗.
For any p ∈ {1, 2, ∗}, the smaller is αβ, the longer is the delay between memorization and general-
ization. See Figure 50 for an experiment with (d, r, c,N) = (100, 500, 2, 102).

101 103 105
0

5

10

Lo
ss

= 0.0001
Train
Test

10 7

10 6

10 5

10 4

10 3

10 2

10 110 1

101 103 105
0

5

10

= 0.00055
Train
Test

10 7

10 6

10 5

10 4

10 3

10 2

10 110 1

101 103 105
0

5

10

= 0.001
Train
Test

10 7

10 6

10 5

10 4

10 3

10 2

10 110 1

101 103 105

Steps (t)

0

5

10

Lo
ss

= 0.0055
Train
Test

10 7

10 6

10 5

10 4

10 3

10 2

10 110 1

101 103 105

Steps (t)

0

20

40

= 0.01
Train
Test

10 7

10 6

10 5

10 4

10 3

10 2

10 110 1

101 103 105

Steps (t)

0

500

1000

1500

2000
= 0.055

Train
Test

10 7

10 6

10 5

10 4

10 3

10 2

10 110 1

Figure 50: Training and test error two layers ReLU teacher-student with Sobolev training, for
different values of the learning rate α and the ℓ1 coefficient β. We can see that the smaller is αβ, the

longer is the delay between memorization and generalization.

E.3 ALGORITHMIC DATASET

Consider a binary mathematical operator ◦ on S = Z/pZ for some prime integer p. We want to
predict y∗(x) = x1◦x2 given x = (x1, x2) ∈ S2. The dataset D = {(x, y∗(x))|x ∈ S2} is randomly
partitioned into two disjoint and non-empty sets Dtrain and Dval, the training and the validation dataset
respectively8. Let rtrain = |Dtrain|/|D| be the training data fraction.

For MLP, the logits for x = (x1, x2) are given by y(x1, x2) = b(2) +
W(2)g

(
b(1) +W(1)

(
E⟨x1⟩ ◦ E⟨x2⟩

))
, where ⟨x1⟩ stands for the token corresponding to

x1, and E is the embedding matrix for all the symbols in S, g the activation function.
θ =

(
E,W(1),b(1),W(2),b(2)

)
∈ Rp×d1 × Rd2×d1 × Rd2 × Rp×d2 × Rp are the learnable

8It can be necessary in some contexts to consider the symmetric nature of ◦, so that |D| = p(p+ 1)/2 if ◦ is
symmetric (and we consider x1 ◦ x2 and x2 ◦ x1 as the same operation), and p2 otherwise.

72

3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941

Under review as a conference paper at ICLR 2025

parameter, with d1 the embedding dimension. For the LSTM, we treat a problem as a sequence
classification problem, i.e., the sequence of tokens ⟨x1⟩⟨◦⟩⟨x2⟩⟨=⟩ is given to the model and its task
is to predict y∗(x1, x2).

We consider addition modulo p = 97 with rtrain = 40%. For MLP and LSTM, ℓ1 and ℓ∗ have the
same effect on grokking as ℓ2. For any p ∈ {1, 2, ∗}, the smaller is αβ, the longer is the delay
between memorization and generalization. See Figures 51, 52, 53, 54, 55 and 56.

101 103

Steps (t)

0.00

0.25

0.50

0.75

1.00

Er
ro

r

= 0.001

Train
Test 10 8

10 7

10 6

10 5

101 103

Steps (t)

0.00

0.25

0.50

0.75

1.00
= 0.01

Train
Test 10 8

10 7

10 6

10 5

101 103

Steps (t)

0.00

0.25

0.50

0.75

1.00
= 0.1

Train
Test

10 8

10 7

10 6

10 5

Figure 51: Training and test error (1− Accuray) of a Multi-layer perceptron trained on the
algorithmic dataset with ℓ1 regularization for different values of the learning rate α and the ℓ1

coefficient β. We can see that the smaller is αβ, the longer is the delay between memorization and
generalization.

101 103

Steps (t)

0.00

0.25

0.50

0.75

1.00

Er
ro

r

= 0.001

Train
Test

10 7

10 6

10 5

101 103

Steps (t)

0.00

0.25

0.50

0.75

1.00
= 0.01

Train
Test

10 7

10 6

10 5

101 103

Steps (t)

0.00

0.25

0.50

0.75

1.00
= 0.1

Train
Test

10 7

10 6

10 5

Figure 52: Training and test error (1− Accuray) of a Multi-layer perceptron trained on the
algorithmic dataset with ℓ2 regularization for different values of the learning rate α and the ℓ2

coefficient β. We can see that the smaller is αβ, the longer is the delay between memorization and
generalization.

101 103

Steps (t)

0.00

0.25

0.50

0.75

1.00

Er
ro

r

= 0.001

Train
Test 10 7

10 6

10 5

10 4

101 103

Steps (t)

0.00

0.25

0.50

0.75

1.00
= 0.01

Train
Test

10 7

10 6

10 5

10 4

101 103

Steps (t)

0.00

0.25

0.50

0.75

1.00
= 0.1

Train
Test

10 7

10 6

10 5

10 4

Figure 53: Training and test error (1− Accuray) of a Multi-layer perceptron trained on the
algorithmic dataset with ℓ∗ regularization for different values of the learning rate α and the ℓ∗

coefficient β. We can see that the smaller is αβ, the longer is the delay between memorization and
generalization.

E.4 IMAGE CLASSIFICATION

We optimize the parameters θ = (A,B) of a model yθ(x) = Bg(Ax) on N = 1000 samples of the
MNIST dataset. Figure 57 show the results for ℓ1 : the result for ℓ2 and ℓ∗ are similar.

73

3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995

Under review as a conference paper at ICLR 2025

101 103

Steps (t)

0.00

0.25

0.50

0.75

1.00

Er
ro

r

= 0.001

Train
Test 10 8

10 7

10 6

10 5

101 103

Steps (t)

0.00

0.25

0.50

0.75

1.00
= 0.01

Train
Test

10 8

10 7

10 6

10 5

101 103

Steps (t)

0.00

0.25

0.50

0.75

1.00
= 0.1

Train
Test

10 8

10 7

10 6

10 5

Figure 54: Training and test error (1− Accuray) of a Long Short Term Memory trained on the
algorithmic dataset with ℓ1 regularization for different values of the learning rate α and the ℓ1

coefficient β. We can see that the smaller is αβ, the longer is the delay between memorization and
generalization.

101 103

Steps (t)

0.00

0.25

0.50

0.75

1.00

Er
ro

r

= 0.001

Train
Test

10 7

10 6

10 5

101 103

Steps (t)

0.00

0.25

0.50

0.75

1.00
= 0.01

Train
Test

10 7

10 6

10 5

101 103

Steps (t)

0.00

0.25

0.50

0.75

1.00
= 0.1

Train
Test

10 7

10 6

10 5

Figure 55: Training and test error (1− Accuray) of a Long Short Term Memory trained on the
algorithmic dataset with ℓ2 regularization for different values of the learning rate α and the ℓ2

coefficient β. We can see that the smaller is αβ, the longer is the delay between memorization and
generalization.

101 103

Steps (t)

0.00

0.25

0.50

0.75

1.00

Er
ro

r

= 0.001

Train
Test 10 7

10 6

10 5

10 4

101 103

Steps (t)

0.00

0.25

0.50

0.75

1.00
= 0.01

Train
Test

10 7

10 6

10 5

10 4

101 103

Steps (t)

0.00

0.25

0.50

0.75

1.00
= 0.1

Train
Test 10 7

10 6

10 5

10 4

Figure 56: Training and test error (1− Accuray) of a Long Short Term Memory trained on the
algorithmic dataset with ℓ∗ regularization for different values of the learning rate α and the ℓ∗

coefficient β. We can see that the smaller is αβ, the longer is the delay between memorization and
generalization.

101 103

Steps (t)

0.00

0.25

0.50

0.75

Er
ro

r

= 0.001

Train
Test

10 8

10 7

10 6

10 5

10 4

10 3

101 103

Steps (t)

0.00

0.25

0.50

0.75

= 0.005

Train
Test

10 8

10 7

10 6

10 5

10 4

10 3

101 103

Steps (t)

0.00

0.25

0.50

0.75

1.00 = 0.01

Train
Test

10 8

10 7

10 6

10 5

10 4

10 3

Figure 57: Training and test error (1− Accuray) of a Multi-layer perceptron trained on MNIST
with ℓ1 regularization for different values of the learning rate α and the ℓ1 coefficient β. We can see

that the smaller is αβ, the longer is the delay between memorization and generalization.

74

	Introduction
	Grokking in Sparse Recovery and Matrix Factorization
	Beyong Sparse Recovery and Low-Rank Matrix Factorization
	Discussion and Conclusion
	Related Works
	Notations, Definitions, Preliminaries
	Sparse Recovery
	Definitions and Preliminaries
	The Problem
	Assumption on the sparse basis
	The controls parameters
	Convex Optimization Formulations
	Subgradient Descent
	Memorization
	Generalization
	Optimization landscape
	Additionnal experiments

	Projected subgradient
	Proximal Gradient Descent and Iterative soft-thresholding algorithm
	Grokking without understanding
	Impact of Coherence on Grokking: Amplifying Grokking through Data Selection
	Deep Sparse Recovery: The Effect of Overparametrization
	Realistic signals
	Recovery of an image
	Recovery of a sinusoidal signal
	Recovery of sparse polynomial

	Tensor Factorization
	Matrix Sensing
	Matrix Completion
	General framework
	The control parameters
	Linear programming
	Subgradient descent
	Memorization
	Generalization
	Additionnal experiments

	Projected subgradient
	Proximal Gradient Descent and Iterative soft-thresholding algorithm
	Grokking without understanding
	Impact of Coherence on Grokking: Amplifying Grokking through Data Selection
	Deep Matrix Factorization: The Effect of Overparametrization

	Beyong Sparse Recovery and Matrix Factorization
	Non linear Teacher-Student
	Domain Specific Regularization
	Algorithmic dataset
	Image Classification

