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ABSTRACT

Grokking refers to a delayed generalization following overfitting when optimizing
artificial neural networks with gradient-based methods. In this work, we demon-
strate that grokking can be induced by regularization, either explicit or implicit.
More precisely, we show that when there exists a model with a property P (e.g.,
sparse or low-rank weights) that generalizes on the problem of interest, gradient
descent with a small but non-zero regularization of P (e.g., {1 or nuclear norm
regularization) result in grokking. This extends previous work showing that small
non-zero weight decay induces grokking. Moreover, our analysis shows that over-
parameterization by adding depth makes it possible to grok or ungrok without
explicitly using regularization, which is impossible in shallow cases. We further
show that the /> norm of the model parameters cannot be used as an indicator of
grokking in a general setting in place of the regularized property P: the {5 norm
grows in many cases where no weight decay is used, but the model generalizes
anyway. We also show that grokking can be amplified through only data selection
(with any other hyperparameter fixed).

1 INTRODUCTION

The optimization of machine learning models today relies entirely on gradient descent (GD). The
reasons behind the ability of such a procedure to converge towards generalizing solutions are still not
fully understood, particularly in over-parameterized regimes. |[Power et al.|(2022)) recently observed
an even more surprising feature of this optimization procedure, grokking: the optimization first goes
through a solution that perfectly memorizes the training data, but after a sufficiently long training
time, it suddenly converges on a solution that generalizes.

Many works have shown that grokking can be observed by using a large-scale initialization and a
small (but non-zero) weight decay (Liu et al.| 2023a; Lyu et al.,2023)). Moreover, some works have
shown that the ¢5 norm of the weights can be used during optimization as a progression measure for
generalization since it generally decreases during the transition from memorization to generalization
(Liu et al} 2023a}; Thilak et al., 2022; [Varma et al., 2023)). All these theories have left open the
question of whether we always need an /5 regularization to observe generalization or whether the ¢
norm of the parameter is always a good predictor of generalization in general. This paper attempts to
answer these questions. We hypothesize that the dynamic of grokking goes beyond the £5 norm, that
is: If there exists a model with a property P (e.g., sparse or low-rank weights) that fits the data, then
GD with a small but non-zero regularization of P (e.g., {1 or nuclear norm regularization) will also
result in grokking, provided the number of training sample is large enough. Moreover, the {5 norm is
no longer guaranteed to decrease with generalization when the property sought is not the {5 norm of
the parameters.

For sparsity, we first focus on a linear teacher-student setup and show that recovery of sparse vectors
using gradient descent and a lasso penalty exhibits a grokking phenomenon, which is impossible
using only the /5 regularization no matter the initialization scale as advocated by previous art (Lyu
et al.| 2023} [Liu et al., 2023b). We also formally show that the generalization delay is inversely
proportional to the learning rate and the ¢; regularization strength and proportional to the ., norm of
the parameters at memorization. Moreover, with a deeper over-parametrized model, there is no need
to use /1, i.e., gradient descent is implicitly biased toward such a sparse solution. For the low-rank
structure, we focus on matrix factorization and show that nuclear norm regularization (denoted /,.)
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is needed for generalization in the shallow case, and the delay between memorization and perfect
recovery is inversely proportional to the strength of the ¢, regularization and the learning rate used,
and proportional to the large singular value of the iterate at memorization. This extends previous
works on matrix factorization that show that deeper linear networks can factorize low-rank matrices
without explicit regularization (Arora et al.,2018;2019). All this holds beyond shallow and/or linear
networks. We show that /; or /, can replace /5 in a more general setting and accelerate generalization,
i.e., reduce grokking. We focus on a nonlinear teacher-student setup, on the algorithmic data setup
(Power et al.,|2022) on which grokking was first observed, with different classes of models (MLP,
LSTM), and on image classification with MLP. In a setting where the /2 regularization is not used,
the /5 norm of the model parameters tends to grow during training and after generalization, but
optimization still produces a generalizable solution. We further observe that using ¢ can worsen
generalization when the property P differs from the /5 norm and is necessary for generalization.

Our contributions can be summarized as follows: (i) We show that

grokking can be induced by the interplay between the sparse/low- = BT

rank structure of the solution and the ¢y / ¢, regularization used ~ * o ‘ ‘ 1

in training, extending previous results on {y regularization (Liu | * B ‘

et al,[2023a; [Lyu et al.| [2023). (ii) For shallow linear networks, we " |s m ‘ B

theoretically characterize the relation between grokking time and
regularization strength, showing that regularization is necessary to
observe grokking on sparse or low-rank solutions. (iii) Moreover, we
empirically show that in deep (non-linear) networks, the sparse/low- e
rank structure of the data is enough to have generalization without

explicit regularization. Adding depth makes it possible to grok or Figure 1: Generalization step
ungrok simply from the implicit regularization of gradient descent. ¢, and recovery error ||b(t2) _
(iv) Leveraging the notion of coherence, we show that grokking can p* ||2 as a function of a3;. We
be amplified through only data selection (with any other hyperpa- ., see that ty o ||B||oo /B
rameter fixed). (v) We show that ¢; or £, can replace /5 in a more and Hb(tz) —b*|, x af
general setting and reduce grokking. Moreover, in such a scenario, 2 L
and in the shallow sparse/low-rank scenario mentioned above, the ¢5
cannot be used as an indicator of grokking. (vi) We also show that
other forms of domain-specific regularizers strongly affect the delay
between memorization and generalization.
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i.e. small af3; require longer
time to converge, but do so at
a lower recovery error. The
outlier for small o351 is due to
insufficient training (Fig. [12).
This paper is organized as follows. We study grokking on sparse

recovery and low-rank matrix factorization in section[2] In section[3] we show how our result extends
beyond sparse recovery and matrix factorization. We then discuss and conclude our work in section 4}

2  GROKKING IN SPARSE RECOVERY AND MATRIX FACTORIZATION

Compressed sensing theory provides the foundation for recovering sparse signals from undersampled
noisy linear measurements. Given N < n measurements y* = Fo+(X) + £ of a vector a* € R",
where F,(X) = Xa and £ denotes noise, we seek a reconstruction of the form a = ZZ’:l bi®. ; =
®b, with & € R™*"™ a dictionary and s = ||b*||o := |[{i, b} # 0}| < n. The exact recovery problem
(Py), which involves minimizing ||b||o under the constraint of the form || Fop(X) — y*|2 < €,
is NP-hard. Therefore, we focus on the relaxed problem (P ), minimizing ||b||; under the same
constraint, commonly known as Basis Pursuit. We investigate the optimization dynamics of solving

(Py) through gradient descent by formally characterizing grokking time. More precisely, we want to
minimize f(b) = %HXb -y 3+ % |bl|3 + B1]|b||1 using gradient descent with a learning rate c.
The subgradient update rule for this problem is given by b+ = b(®) —a (Gg, (b®) + B11(b®)))
where G, (b) = V3| Xb —y*||3+ B2b and h(b) € J||b||; is any subgradient of [|b||;. Intuitively,
the training dynamics can be decomposed in two steps: the update b(®*) first moves near the least
square solution b := (XTX + ﬁ2ln>Jr X Ty* leading to memorization. Later in training, h(b)

dominates the update, leading to |[b(Y) — b*||.. € O (a3;) withing © (1/3;) additional steps.
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O
Theorem 2.1. Assume o« < W and 0 < B < L\/ﬁ){)% Then, there exists C > 0
max 2

and t, < oo such that |b®) —bl|y < % Vt >ty and |b) — b*|y < Capfin'/? <=t >

t1 + At where ps := Opax (In -« (XTX + ,Bgln)) and At = © (%)

This result in valid for any ¢, norm (p € (0, 0o]) such that p,, := €

I, —a (XTX + ﬁgln>

p—p
(0,1), and under this condition || - ||o becomes || - ||, and n'/? becomes nl/p. We also show that
F(®) = f(b*) and [b®||; — |[b*||; as t — oo (Theorems|C.3|and|C.13). Note that when N is
large enough, Xb(*) = y* (memorization) and |[b(®||; = ||b*||; are enough to conclude b(*) = b*

(generalization). In fact, after memorization, when ||b(®)||; becomes too small, ||b®) — b*||,
(Figure [2) since for problem of interest, the sparse solution b* is the minimum ¢, solution to

[Xb — y*||2 < € under the sparsity constraint (section . The smaller a3, is, the longer it takes to
recover b*, and the smaller is the error ||b(*) — b*||, when t — oo (Figures|l|and .

In addition to gradient descent, our results (Section|C.7) ex-
tend to other iterative methods for /1 minimization, includ- o * L =
ing the projected subgradient method (Section and e

for the proximal gradient descent method (Section [C.8§). Eoln Eii;ﬂgﬁ;g;/“gQg;)m%
Contrary to previous findings (Lyu et al., 2023} |Liu et al., g
2023a), we observe that in the over-parameterized regime B R R R e X
(N < n), large-scale initialization and ¢5-regularization =]
alone do not necessarily induce grokking (Section [C.9), =S =S
and instead lead to abrupt transitions in generalization er- Sou — W=yl

Rl | il A U 3

ror without converging to optimal solutions when sample =

sizes are insufficient. We term this effect “grokking with- BT I
out understanding”, as highlighted in related work (Levi

et al.l 2024). Our analysis (Section [C.10) demonstrates Figure 2: G, (b(t)) dominates
that coherence significantly impacts grokking in sparse Bih(b®) untl mzemorization at -
recovery, with higher coherence delaying generalization ' . : ®) . L
by limiting the diversity of information captured by mea- after Whl(t:h Bih(b') dominates and
surements. Furthermore, in deep linear networks (Section Make |1 converge to [[b*[1 at £,
[C-TT), we find that depth L > 2 can implicitly promote ~and so b(*2) = b*.

sparsity and generalization, reducing the reliance on ¢;-

regularization while mitigating generalization delays. Finally, in Section we extend these
findings to realistic signals, including MNIST images, sinusoidal signals, and sparse polynomials.

b
Gradients Ratio

115

For matrix factorization, given a low rank r matrix A* € R™*"2 a measurement matrix X €
RN *min2;: and the measures y* = X vec(A*) + £, and want to minimize f(A) = 1| X vec(A) —

Y3+ 2 Alr+ Bl Al using gradient descent. The subgradient update rule is given by A(*+1) =
A® ¢ (GB (A®) + B.h(AM)) where Gg,(A) = Va1 Xvec A —y*||3 + B2A and h(A) €
d||A||.. Like in sparse recovery with gradient descent, the update A(*) first moves near the least
square solution vec(A) = (XTX + 62|n)Jr X Ty*, and later in training, it converges to a solution
with norm o ax (A®) € O(aB,) (maximum singular value, i.e., operator norm).

2 Omax (X X)+8
TheOI‘em 2.2. Assume a < m and 0 < ﬁ* < W For allp (S (0, OO} SMCh
that py = ||l — a (XX + fal,) Hp_)p (A®) —vec(A)|, <

€ (0, 1), there exists t1 < ooy
% Vt >ty and ||AW]|, < afunt/P =t >ty :=t; + At with At = © (L"HMXEAU)

In particular, for p = 2, py € (0,1) since 0 < a < A choice of larger p means

choosing the learning rate to have p, € (0, Qmayx). We also show that f(A®)) — f(A*) and
JA®||, — |A*||; ast — oo (Theoremsand. When N is large enough, X vec A®) = y*
(memorization) and |A()||, = ||A*|. are enough to conclude A®) = A* (generalization). In
fact, when G, (A) become negligeable compare to 3, h(A), the singular values starts involving as

(tH ~ |o; (®) — a (Theorem . This leads to a generalization through a multiscale singular
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value decay phenomenon (Figure ). The small singular value after memorization converges to
{0,0 < 0 < af.}, followed by the next smaller one until the larger one. This process take time

C) (LU“%(A)J ) So, the smaller a3, the longer it take to recover A*, and the smaller is the error

|A® — A*|. whent — co. We also analyze the effect of coherence on grokking in matrix
factorization. For matrix completion, given 7 € [0, 1], we select the first 7N examples with the
highest values of local coherence and select the remaining (1 — 7) N examples uniformly among the
remaining. Unlike compressed sensing, where large values of 7 are detrimental to generalization,
here, as 7 — 1, performance improves, and the number of examples required to generalize decreases
exponentially, as does the time it takes the models to do so (Figures[45]and Figures [46)).

3 BEYONG SPARSE RECOVERY AND LOW-RANK MATRIX FACTORIZATION

In this section, we show that ¢;, ¢,, and domain-specific regularizers can replace {5 in a more
general setting and reduce grokking. Let consider a teacher y*(x) = B* max(A*x,0). We i.i.d
sample NV inputs output pair {(x;, y*(x;))}Y, and optimize the parameters § = (A, B) of a student

yo(x) = B max(Ax, 0) on them with the loss function £(#) = + Zivzl llyo(x:) —y*(x;)||3 and

different regularizer Q,(6) for p € {1,2, «}. For any p € {1, 2, *}, the smaller is 3, and/or «, the
longer is the delay between memorization and generalization (see Figures [3|for the training curve

with £;, and @] for more results with £, /5).
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(a) ¢1 Regularization (b) Sobolev training

Figure 3: Training and test error two layers ReLU teacher-student, for different values of the learning
rate « and the ¢ (resp. Sobolev) coefficient ;. We can see that the smaller is « and or (31, the
longer is the delay between memorization and generalization.

Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019) leverage prior knowledge from
differential equations by incorporating their residuals into the loss function, ensuring that solutions
remain consistent with physical laws. Sobolev training (Czarnecki et al.| [2017)) generalizes this
idea by incorporating not only input-output pairs but also derivatives of the target function. We
optimizer the student above by adding on the objective function the first order Sobolev penalty

N o oy”™
D L CHEE A0S

the data but also respects known smoothness constraints or differential structure. We observe that the
smaller a3, the longer the delay between memorization and generalization (See Figures [3|and [50).

2
, where the hyperparameter 3; ensures that the model not only fits
F

We train a tree layers MLP and a LSMT on the addition modulo p = 97 problem (Power et al., [2022),
and a two layers ReLU MLP trained on MNIST. We observe that ¢; and ¢, have the same effect on
grokking as /5, i.e., smaller regularization coefficient (and learning rate) delay generalization (more

details in Sections[E.3|and [E.4).

4 DISCUSSION AND CONCLUSION

This work extends the understanding of grokking, showing that the transition from memorization to
generalization can be induced not just by /5 regularization but also by sparsity or low-rank structure
regularization or domain-specific regularization. These findings are particularly relevant in practice,
where large-scale initialization is not always feasible, yet grokking still occurs. Our results highlight
that in deep models, gradient descent implicitly drives the model towards solutions with sparse or
low-rank properties, effectively mitigating overfitting (Arora et al.,|2018)). We also study the impact
of data selection on grokking, and show that grokking can be amplified through only data selection.
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Gp,(A®) dominates 3.h(A®) until memorization. From memorization 3,h(A (")) dominates
and make || A (||, converge to ||A*||. at t5, and so A(*2) = A*. Generalization happened through a
multiscale singular value decay phenomenon.
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and ||[A2) — A*||p &< af,, i.e. small af3, require longer time to converge, but do so at a lower
generalization error. The outlier for very small o3, is due to insufficient training (Figure .

A RELATED WORKS

Large initialization and ¢, regularization Many studies in the linear teacher-student setup focus
on ¢, regularization, and the aim is generally to understand the classical generalization phenomenon
like double descent (Hastie et al., [2020; [Pezeshki et al.l [2021)), but not grokking. The only work
on such models for grokking is |Levi et al.| (2024)). They work on classification setting and show
that the sharp increase in generalization accuracy may not imply a transition from “memorization”
to “understanding” but can be an artifact of the accuracy measure. This aligns with the grokking
without understanding the problem we observe in sparse recovery and low-rank matrix factorization.
Our results are valid with many optimization methods for ¢;/¢, minimization problems, such as
subgradient, projected subgradient, and proximal gradient descent.

Grokking and stochasticity Our work also contradicts the hypothesis put forward when grokking
was first observed, namely that grokking may be due to stochasticity or an anomaly in the optimization
(Power et al., 2022} Thilak et al.,|2022). Here, our algorithms are all deterministic (up to initialization).

Sparsity [Barak et al.|(2022) observed grokking on binary sparse parity problem, and Merrill et al.
(2023)) show that two subnetworks compete during training on such training, a dense (memorization)
subnetwork, and a sparse (generalization) subnetwork. Since we can build a very sparse network that
generalizes the sparse parity data|Merrill et al.| (2023)), we claim that it is this sparsity that gives the
models trained on this task their grokking nature.

Matrix completion To the best of our knowledge, we are the first to formally study grokking in the
context of sparse recovery and low-rank matrix factorization (the shallow case). [Lyu et al.| (2023)
show that low-rank matrix completion problems exhibit grokking with large initialization. But we
prove that even on such a simple model, we do not need way decay and large initialization to observe
grokking, but just ¢, , regularization.

B NOTATIONS, DEFINITIONS, PRELIMINARIES

We will optimize functions of the form f () = £(6) + 5€(0), where £ is the square loss or cross-
entropy loss function of the considered model on the training data, 6 the set of model parameters,
and (2 a regularizer applied to 6. It can be the standard ¢, norm or quasi-norm of 6, the sum of the
nuclear norms of each matrix in 6 (in this case, we call it /), etc. For a vector a € R", we consider
the measurement operator F,(X) = Xa € RY that take N measurement vectors {X; € R"}iciv) @

return the measures {X;" a};e(n).
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We work in R for compressed sensing and matrix completion, but many of our results extend easily
to C.

* We let e,g") = [I,,]..x be the k" vector of the canonical basis of R, e,(;;) = 0 VI. The
subscript (n) will be omitted when the context will be clear

* © is Hadamard product. For Q € R™*” and R € R™*", (Q ® R);; = Qi ;R
0<i<m,0<j<p

* ® is the Kronecker product. For Q € R™*™ and R € RP*?, (Q®R)pr+v,gs+w = QrsRow
O<r<m,0<v<p0<s<nand0 <w < q)

* o is the outer product, (a(l) 0---0 a(")). = agl) ~.a™ V(i1 ,in) € [M1] X

11, 5ln 1 in

- % [my,] for n vectors al) € R™: Vi € [n].

* Omax /min(A) = \/)\max/min(ATA) is the maximum (resp. minimum) singular value of
amatrix A, with Ay / min the corresponding eigenvalue
1
* Foravector x € R", ||x[jo = [{i € [n],x; # 0}, [|x]l, = (I, [xi|P)? Vp € (0,¢) and
%[00 = maX;en) |-

We have —||x[|1 < [|x[|2 < [[x[l1 and [|x[|oc < [[x[|2 < v/n]|x]|c.
* For a matrix A € R™*", the schatten p-norm of A is ||All, = (3, ai(A)p)I/p. For

p = 1, this gives the trace/nuclear norm ||A |, = >, 0;(A) = tr ( ATA>. The induce

. A
p — gnormof Ais ||A|l,—q = sup,o % = supjx||, =1 |[Ax[lq. We have [|Af151 =
MAax;e () D ieq |Aij| (maximum absolute column sum), [|[Allam2 = [[Allz = omax(A)

(operator norm, spectral norm, induced 2-norm) and [| A [|co—co = maXiem) > |Ajl
(maximum absolute row sum).

1
EHAHQ—Q <[ All=1 € Vml|Afl2-2
1

ﬁ”AHQ—Q <Aoo < V1l All252
Definition B.1 (Khatri-Rao and Face-splitting products). For A € R™*™ and B € RP*", the
Khatri-Rao product A « B € R™P*" contains in each column ¢ € [n] the matrix A.; ® B. ;. We

have the formula AxB = (A ®1,) ® (1, ® B).

For A € R™*™ and B € R™*P, the face-splitting product A e B € R™*™P contains in each row
i € [m] the matrix A;. ® B, .. It can be seen as the row-wise Khatri-Rao product, and we have

(AeB)=(AT+BT) = (A®1]) o (1] ©B).

ey

We will generalize this operator in a higher number of vectors. If we have N vectors A(*) € R™>"k
then (A e A® e...0 AM) =AMV @AY g...0 ALY eRITem,

Definition B.2. A matrix M € R™*™ can be vectorized column-wise, vecc(M);y,+; = M,;, or
row-wise vecr (M) jm+i = M;;, where 0 < i < m—1land0 < j < n —1. So vecc(M) =
vec(M) and vecr(M) = vec(M") = K, ,yvec(M) with vec(M) the vanilla vectorization,
which stack the column of M in a vector.

Definition B.3. A tensor 7 € R™*™*? can be vectorized column-wise, vecc(T ) kmntjm+i =
T ijks or tow-wise vecr(T )inptjm+k = Tijk, Where 0 <4 < m—1and0 < j <n —1and
0 < k < p— 1. Note that T can be vectorized in 3! waysﬂ

Let 712 = T @) € R™*™ (mode-1 unfolding of T), TCY = T2y € R™*™P and TG —
TErg) € R™™*P_ That is

| | |
TG .= |vece(T.1) vece(Tua) -+ vece(T.p)| € RMP

'A tensor of order K can be vectorized in K! ways.
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and
—vecr(T1)—
7'(12) P [ ‘| e Rmxpn
—vecr(Tp)—
We have ) | )
vece(T 1)
|
vecc(T) = : = vecc (7'(32)) = (321
|
vecce(T .p)
L | |
and ) | )
vecr(T1)
|
vecr(T) = ‘ = vecr (7—(12)) = 7123
|
vecr(T,)
L

For A € R*? and B € R™™, AT®? = AT () = (T x3A)y, and BT!? = BT ;) =
(T x1 B) ).

If we CP-decompose T = [A,B, C] = Zf;l A.;oB.;0C.;, with A € R™*E B e R"*® and

C € RP*% the three mode loading matrices, then T (1) = A(CxB)", T2y = B(Ax C)" and
T(g) = C(B * A)T.

C SPARSE RECOVERY

C.1 DEFINITIONS AND PRELIMINARIES

Definition C.1 (Restricted Isometry Property (RIP) and Restricted Isometric Constant(RIC)). Let
A € R™*™ and (s,ds) € [n] x (0,1). The matrix A is said to satisfy the (s, d,)-RIP if

(1= 89)lIxll3 < [[Ax[3 < (1+8,)lIx[3 @
for all s-sparse vector x € R™ (ie ||x||o < s). This is equivalent to saying that for every J C [n] with
|J| =s

(1= 85)lIxI3 < 1A sx[I3 < (1+65) %13 ©)
for every x € R®; where the submatrix A. ; € R™*® of A is build by selecting the columns index
in J. This condition is also equivalent to the statement HALA;’ 7 — ls|l2a—2 < &5, which is finally
equivalent to Spec (AIJA;J) C[1—6s,14 6]

We say that A satisfies s-RIP if it satisfies (s, d;)-RIP with some d; € (0,1). The s-RIC of A is
defined as the infimum d,(A) of all possible d5 such that A € R™*"™ satisfy the (s, d5)-RIP.

s(A) =inf {6, € (0,1) | (1—=6)[x3 < |Ax[3 < (1+0,)[x[3 ¥xeR™ [x[lo < s}
=inf{d, € (0,1) | (1=d,)[x[3 < [[A. x5 < (1+8)[x[3 vxeR*,JCn],|]|=s}
=inf {6, €(0,1) | [AT;A. j—ll2m2 <8 VJCn],|J|=s}
=inf{d, € (0,1) | spec(A A, ) C[1-6,1+6] VJC][n]|J|=s}

10
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So, for all V.J C [n] with |J| = s, the condition number of AT sA. s is bounds from above by

146, 145, (A
T (SEAg,atheoneofA J by 1—6SEA3'

We say that a matrix A satisfies the RIP if d5(A) is small for reasonably large s. All the above
definitions extend to any linear map f : R* — R™.
Proposition C.1. §,(A) < ds41(A) forall A € R™*" and s € [n].

Definition C.2 (Restricted Isometry Property). Let F : R™*™ — RY be a linear map and (7, §,.) €
[n] x (0,1). f is said to satisfy (r, §,)-RIP if for all rank-r matrices X € R™*"™:

(1= 0 IX]E < IFEX)3 < (1+6,) X[ @

We say that F satisfies r-RIP if F satisfies (r, d,-)-RIP with some d,. € (0, 1), and the r-RIC of F is
defined as the infimum J,-(F) of all possible d,- such that F satisfy the (r, d,)-RIP.

Definition C.3 (Coherence). The coherence between two matrices A € R?*"™ and B € R7*"™ is

(A, B.j)| [ATB]i |
w(A,B) = max S et — ) (5)
ictm e 1AL 1B ietml st A TBL;]

Coherence measures how similar or aligned two matrices or vectors are. Specifically, it measures how
much overlap there is between the columns of A and B. High coherence means they are similar or
aligned, and low coherence (or incoherence) means they are very different. Incoherence is essentially
the opposite of coherence. It refers to a low overlap or low similarity between the columns of A and
B.

The mutual coherence of a matrix A € R™*" is
[(Asi A [ATA;

A = max —_— —_—
) = e TAATA — el s TATTAL

(6)

If the coherence is small, then the columns of A are almost mutually orthogonal. A small coherence
is desired in order to have good sparse recovery properties.

‘We also have the 1-coherence
[(A.;, A,

As
Hi(A,5) = iein] IS, \J\<sz A ,zIIIIA ,JI

< su(A)

Example C.1. For the Fourier basis \/n®;; = e 2% we have w1 (@, 8) = su(®) = s/v/n
(Rauhut, |2010). Each column in this basis vector corresponds to a specific frequency. For a signal
a*, if only a few frequency components contribute significantly to a*, then b* = ®~'a*, the Fourier

transform of a*, will be sparse. This ® is unitary, and its inverse is \/ﬁq);il = e2mT,
Proposition C.2. For a matrix A € R™*” with unit norm columns, p(A) > \/% and
M1 (Aa S) Z S

m(n 1) whenever s < v/n — 1 (Rauhut, 2010).
Proposition C.3. For a matrix A € R™*" with unit norm columns, p(A) = d2(A), u1(A,s) =
mMax sepn],g)<s+1 1A ;A7 — 1151, and 65(A) < p1 (A, s — 1) < (s — 1)u(A) (Rauhut, 2010).

Proposition C.4 (Connexion between the coherence p(A,B) and 6,(ATB)). Let A € R?*™,
B € R”"and M = ATB € R™*". We have

1 1 .
max <m\/§’ W) M. sll22 < p(A,B) < min (vV/m,v/n) [M|s2 VJ C [n], |[J|=s

and

_5(ATB) < LS

n(A,B) D

Proof. For J C [n] with |J| = s, we have M. ; = ATB. ; € R™** and spec (M;M. ;) C
[1 — 85,1+ &5]. This implies | M. ;||3_,, = )\maX(MI}M:J) €1 —0ds,14 ds).

11
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Also,
ML glhs1 = maXZ M s]ig] < m max max |[M, /]ij| = mu(A, B.s) < mu(A,B)
A, B) = M, ;| < =M
WAB) = max  [Mi<  max H]ZI e Jl =M1
and
M7 || sos00 = maXZ| Jlij] < s max max |[M. s];;| = su(A,B. ;) < su(A,B)

i€[m] je[s]

MAB)= max [Mi,[< max Z\ Zk|fmaxZ|Mm|f||M||Mo

i€[m],j€n] ’ i€[ml.jeln] £
So M M
max (” :;;Hlﬁla || :,J(L'oo%oo) S M(A,B) S min (||M||1—>17 ||M||oo—>oo) (8)
For C € R™*™,
1
ﬁHCHQ—Q <|ICllis1 < Vm||Cllase2
1 )
ﬁHC”Q—Q < [Cllocso0 < VN[|Cll2-2
Using[8]and[9] we obtain

1
e (L ) IM s < (A B) < i (47, ) M

Combining with [ M. s[13_,5 = Amax(M, ;M. ;) € [1 — 6,1+ &,] give

@ms p(A,B) < Vain (m.m)y/1+6,(ATB)  (10)

Since ||M. j|l2—2 < max (||M. s|l151, M. J|lco—oo) (Rauhut,2010), we also have
m-—+ s

—05(ATB) < (A, B) (11)

C.2 THE PROBLEM

Compressed sensing theory predicts that sparse signals in high dimensions can be recovered from
undersampled linear measurements. More precisely, given N < n noisy measurements y* =
Fa-(X) + € € RN of a vector a* € R™ (digital signal, image, etc.), we look for a reconstruction
a € R" that minimizes || Fa(X) — y*||2; where Fa(X) = Xa € RY is the measurement operator
that take N measurement vectors {X; € R™},c|nj a return the measures {X, a};c(nj. Without
further knowledge, this is impossible for N < n. This is why the sparsity of the original signal a* is
assumed, i.e., we can write a* = > | b¥®. ; = ®b* with s = ||b*[|p := |{i, b} # 0}| < n, and
® € R™*™ a dictionary (see example for the Fourier transform). We assume for simplicity that ®
is an orthonormal matrix, ® ' ® = I,, (Assumption . In sparse coding, we aim to find a = ®b

(Po) Minimize Hb”o S.t. ||]:q>b(X) — y*||2 <e (12)

with € an upper bound on the size of the error term £ € RY, ||¢||2 < e. This problem is NP-hard, and
the constraint ||b|o is often relaxed to an ¢; regularization, and leading to the convex problem

(Py) Minimize ||b||; s.t. || Fob(X) —y*|l2 <€ (13)

12



Under review as a conference paper at ICLR 2025

This problem has been well studied in the signal processing literature under the name Basis Pursuit.
It is well known that under certain conditions on the measurement matrix X (e.g., coherence with
respect to ®) and the sparsity of a* in @, sufficiently sparse solutions of (P;) are also solutions of
(Po) (Donoho & Elad, 2003; (Candes et al., 2006). Many lower bounds on the number of measures
N guaranteeing ||b — b*||2 < e with high probability have also been derived. Such lower bounds
generally have the form N = Q (677 (slog® (n/s) + log 1/n))(Rauhut, 2010), where & capture the
Restricted Isometry Property (RIP, Deﬁnition of X = X® and is also related to the coherence
(Definition [C.3)) of X with respect to @ (Proposition [C.3), 7 is the percentage of error (i.e. N
guaranteed a recovery with probability at least 1 — 1), > 0 and 3 > 0 are constants. Observe that in
the noiseless setting, we want b such that Xb = Xb*, thatis b € b* + Null(X) Donoho| (2006azb))
show that the nullspace Xb =0hasa very special structure for certain X (e. g. incoherent with any
orthonormal basis): when b* is sparse, the only element in the affine subspace b* + Null(X) that
can have a small ¢; norm is b* itself.

Given the measures y* € RY (possibly noisy), the measurement matrix X € RV X" and the sparse
basis (or dictionary) & € R™*™, we aim to solve the following problem

(Po) Minimize Hb”o S.t. ||]:q>b(X) — y*||2 <e (14)
and more precisely, its convex relaxation

(Py) Minimize ||b||; s.t. || Fob(X) —y*|l2 <€ (15)

C.3 ASSUMPTION ON THE SPARSE BASIS

We will assume for simplicity that ® is an orthonormal matrix, ® ' ® = I,,. It is common in sparse
coding theory to consider ® € R™*" as a dictionary with m columns referred to as atoms: and
saying a* is sparse means it can be written as a linear combination of a few of such atoms. But here,
we assume for simplicity that we have a* = ®b* with b* € R™ and ® € R"*™ asetof m < n
linearly independent vectors (its column). Let &+ € R®*(*=™) pe the orthogonal complement

of ®in R", ¥ := [@ @l] e R™xm, b= (\I/T\I')_l/Q the orthonormal version of W, and

b* = (\IIT\I/)1/2 %] We have a* = ®b*, with ||b*|jo = ||b*||o since ¥ ¥ is diagonal. So,

assuming ¢ orthonormal is without loss of generality.

C.4 THE CONTROLS PARAMETERS

The incoherence between the measurement vectors (line of X) and the sparse basis (column of @)
is crucial for successfully recovering a* (or equivalently b*, the sparse representation). If X is
incoherent with ®, each measurement captures a distinct “view” of a*, reducing redundancy. This
diversity of information allows for the successful reconstruction of b* even with fewer measurements
(e.g., below the Nyquist rate for signals). Achieving low coherence (high incoherence) can be done
by designing X to be a random matrix (e.g., Sub-Gaussian like Gaussian or Bernoulli matrices). Such
random matrices are, with high probability, incoherent with any fixed orthonormal basis (Theorems
[CT]and[C.2).

Theorem C.1. Le m < nand ® € R"™ with ®"® = 1,,. Forany N > 1, a > 0 and 8 > 1; the
matrix X € RN*" with n®X,; 7151 N (0,1) satisfies (X, ®) < 25V II;L:N with probability at
least 1 — 1/(nN)28° 1.

Proof. Let o = n~%. We have X ¢ (0, 02), so [X®],; % N(0, o) since ® has normal columns.
This implies P H Xa],,| > X],| > ¢] <
;P H[ o], } < nN exp (—;—) Using t = 23~ ZSN with 3 > 1, we have t? =

2(77/1) ln( )Wlth77—(n]\/')1 26° sonNeXp( %):n,

t} < exp —2) which in turn implies P [maxi, j

We also have the following theorem from [Rauhut| (2010) about the RIP of such a matrix.

13
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Theorem C.2. Let X € RV X" be a Gaussian or Bernoulli random matrix. Let ), € (0,1) and
assume N > C6~2 (sln(n/s) + In (1/n)) for a universal constant C' > 0. Then, §4(X) < § with
probability at least 1 — 1 .

In the rest of this section, to control the incoherence, we generate X for a given IV by taking the
first Ny = min(|7N |,n) rows (with 0 < 7 < 1, default to 0) from the first columns of ® and the

. T
elements of the remaining Ny = N — Ny rows iid from A/(0, 1/n) so that X = X® = [;{Z*Nl} b =
Ny,

[ N ] with X, . w N(0,1/n). The higher 7 (and so Ny), the less incoherence between the
measures (columns of X ) and ®. For a given s, we generate a random vector b* N (0,1/n)
such that ||b*||p < s, and set a* = ®b*. We used ® = |,, for simplicity.

The problem (P;) can be solved easily using convex programming library, with relative error
b — b*||2/||b*||2 of the order of 10~° (Section Figures || and[7). As s and/or 7 increases,
Nmin(s, 7), the number of samples needs for perfect recovery increases. When 7 — 1, Nyin(s,7) —
n for all s.

C.5 CONVEX OPTIMIZATION FORMULATIONS

Consider the problem of recovering b* from noiseless measurements:

(P1l-noiseless) : mgn Ib]|1

. (16)

subjectto  Xb = y*,
where y* = Xb*. To rewrite the /,-norm objective linearly, let introduce auxiliary variables
t; for each component b;, and impose —t; < b; <t;, t; >0, fori=1,...,n. Then, since

bll; = Y7, |b;|, minimizing ||b||; is equivalent to minimizing 3", t, subject to these constraints.
=1 =1
The problem becomes
n
. "
e 2t
i=

subjectto Xb = y*, (17)
—t;<b;<ti, i=1,...,n,
t;, >0, i=1,...,n.
All constraints and the objective function are linear, so this reformulation is a linear program (LP).

Now assume the measurements are noisy y* = Xb* + & and we allow for a noise tolerance € > 0.
The recovery problem is

(P1-noisy) : mbin Ib]|1

- (18)
subjectto  [|Xb — y*||2 <e.
and by introducing the auxiliary variables, it becomes
min t;
bt “
=1
subject to [|Xb — y*||2 <, (19)

_tngzgtw 7::1’""”7
£, >0, i=1,...,n.

The constraints —t; < b; < t; and t; > 0 are linear, while the constraint ||f(b —y*||2 < e defines a
second-order (quadratic) cone. Thus, the overall problem is a second-order cone program (SOCP).

We fix n = 102 and solve for different (IV, s, 7) the convex problem (P1-noiseless) using the
cvxpy library. As s and/or 7 increases, Ny (s, 7), the number of samples needs for perfect recovery
increases (Figures @ and . When 7 converges to 1, Nyin(s,7) — n for all s. The error in those
figures is the relative recovery error ||b — b*||2/||b*||2. This error is usually of the order of 10~°.
This value gives us a basis for comparison with other methods.

14
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Figure 6: (a) Cohence p(X ", ®) as a function of 7 € (0, 1) (b) Minimum number of samples for
perfect recovery (relative recovery error < 10~9) for n = 102 as a function of the sparsity level
s € [n] and coherence parameter 7 € (0, 1)

# Input : X, Phi, y_star, n, EPSILON
import cvxpy as cp
b = cp.Variable (n)

objective = cp.Minimize (cp.norm(b, p=1))
constraints = [cp.norm(X @ (Phi @ b) - y_star, 2) <= EPSILON]
problem = cp.Problem(objective, constraints)

problem.solve ()
b = b.value

C.6 SUBGRADIENT DESCENT

Let y(b) = F,(X) = Xb. We have y* = Fp,-(X) + £ = Xb* + &, and want to minimize
f(b) = g, (b) + B1]|b||1 using gradient descent, where
1 * 52

95,(0) = 3 ly(0) — y*3 + 2 b3

B2
2

11573 > - 1 - .
— 5b"X"Xb - (lo*TxT + gT) Xb + 3 (b*TXT n gT) (Xb* " 5) "

1 1ot -1
= ibTXTXb —y*TXb + 5y*Ty* +Zbp'b

Ba

Zp'b
2

1pT (XTX + Bgln) b— (XTXb* + XTg)T b+ 1|Xb* + €2
3
(20)
We write F'(b) := G, (b) + S1h(b) with
XTX + Boln) b~ (XTXb" + X 7€)
XTX + Bol,) (b — b*) — (XTg - ﬂzb*)
(21)

Gp,(b) == Vpgp,(b) =XT(y —y*) + B2b =

and h(b) € 0||b||y any subgradient of ||b||1, that is h(b); = sign(b;) for b; # 0, and any value in
[+1, —1] for b; = 0. We used h(b) = sign(b) for simplicity and without loss of generality.

Suppose we start at some b() := ¢b()), with ¢ > 0 the initialization scale and b(") N(0,1/n).

Using F(Y) := F(b(")), the subgradient update rule is
bt =p® — ,F® v >1 (22)

15

P - T
(b=b)T (XTX+ faln) (b—b") — (XT€ = 2b7)  (b—b) + 1[€ll3 + %|b]

2
2
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Figure 7: Relative error ||b — b*||2/||b*||2 as a function of the number of measurements N, the
sparsity level s € [n] and and coherence parameter 7 € (0, 1), for n = 102
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with oy the learning rate at step ¢. That is, using h®*) = h(b(®),
b+ — [ln — (XTX + len)} b® + o (XTXb* + XTg) — Biah®

b —b* = [1, — oy (XX + ol ) | (0 = b%) + ay (XT€ = B2b7) — Bragh®
(23)

We let f* = f(b*) = B1||b*|li + 2 ||b*[|3+[|€]|3 and f® = f(b®). Since the subgradient method
is not a descent method, we let bgt = arg minbe{b(t,) <t} f(b) = arg minbe{b“‘” b<t>} f(b)

be the best point found so far at step ¢, and f(t) f(b(t) ) = min { (tfl), f® } This b"). can be

best best best best
made n-optimal for an arbitrary precision 7 if the step rule is chosen appropriately, as the following
theorem shows.

Theorem C.3. If |F(b)|» < L Vb and |[b®) —b*||y < R, then f{*) — f* < R;LE#
t=1 Xt

Proof. By the definition of the subgradient F(T) = F(bM™) of f at b, we have f(b(™) +
(b —b<T)) FT) < f(b*),ie. — (bT) — b*) F) < —(fM) — ). So

0 < BT —b*|3 = [b® —arFT) —b*||3

:
= [T = b3 — 2ar (BT = 1) FT) + o} [FD|3

< b = b* 3 = 207 (FD = f*) + oFFD3 @9
T T
<D b3 =23 (O - ) + Y a2
t=1 t=1
This implies
T T T T
best Z Z (f(t *> < ||b(1) _b*”§+zat2”F(t)H2 < R2+LQZO‘?
= = t=1 tfl(zs)
O

The second condition of this theorem can always be satisfied by choosing an initialization appropri-
ately. For example, if { = 0, then we can take R = ||b*||2. The second condition will be satisfied if,
for example, f satisfies the Lipschitz condition | f (u) — f(v)| < L|ju—v]||2 for all u, v. But the condi-
tion is satisfied if and only if b (or just the b(*)) is restricted to a bounded domain since F(b) is a linear
function (up to vh(b)). If [bllz < B Vb, then [F(b)l2 < [XTX + Bl | bz + X Xb* +
X2+ Bil|h(b)|2 = [|XTX + Baly||B + |XTXb* + XT¢||5 4 S1/n. Note that we always
have [[bD > < [, — v (XTX + Bl ) 16O + 0K TXb* + XT€]s + fro ] <

max |1 = a; (03(X) + 82) [BD)| + ar (02,0 (Kb 2 + Omax (K [€]l2) + Bre /.

That said, many step size rules lead to different accuracy.

Corollary C.1. With a constant step size, a; = «

R? + I?Ta?
2T«

In that case, we need a small learning rate and longer training time to achieve low errors.

= "<

best

— e LPa/2 (26)
With a square summable but not summable step size rule, >, a7 < oo and Y, oy = 0o, we have
R2 + L2 27 L a2

221 1011

For example, oy = a/(b+ 1), a > 0 and b > 0. This method is common in practice for subgradient
methods.

T *
-1 <

—T—o00 0 27

17
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To explain grokking in such a setting, we will look at the landscape of the solution. Let X = UszV’
under the SVD decomposition, with ¥ = diag(o)re[r), Where 7 = rank(X) and opax = 01 >
“e Ok 2 Ok41 > Omin = 0p > 0p41 = -+~ = 0. We assume by default the SVD to be compact,
ie., U e RY*" and V € R™*" have orthonormal columns, but we will make precision when we
want it full, i.e., they also orthonormal rows, with that time U € RNXN and V e R»x7, Using
S = I — oy (X 4 Bal), the dynamics rewrites

b+) — VEOVTHO 4 ¢, (Vszb* + VE%UTg) — Bia;h®
b+ b = VEOVT (b — b*) + o (VE%UTg - ﬂQb*) — Byazh®

We assume the step size a; = « satisfies 0 < o < %% In fact, for the dynamical system to
< TX : 2 _
converge, we need Spec [In — (X X + 62In)} C (=1,1),thatis 0 < oy < (X XV
2 _ 2
02 (X)+B2 ~ OmaxtBz’
For all p > 0, let define p, = ||l, — (XTX + ﬁgln) , so that po = |, —
pP—p

o (2 + Baly) l2—2 = max{maxy¢c[, |1 — a(op + B2)],[1 — afal} € (0,1).
C.6.1 MEMORIZATION

We will show that the update first moves to the least square solution of the problem, b =
~ . T~
(XTX + Bgln) XTy* = V(S 4+ Bol)! (EVTb* n Z%UTg); which is also the min norm

solution for N < n [} It moves exactly to b (and stay there) for 81 = 0 (Theorem , and very
close for 31 small enough (Theorem [C.8). If 3 is too high, the subgradient term /(b) dominates

early, and there is no convergence, i.e., no memorization nor generalization (Theorem . This b
can memorize (Theorem|[C.9) , but cannot generalize for N < n (Theorem [C.10).

Theorem C.4 (Oscillatory Behavior for Large 3;). Let b(") € R™. Consider the subgradient descent
update

b+ — p®) _ o (ng[32 (b(t)) + Blh(b(t))> (28)

with a fixed step size oy = o > 0, where gg,(b) = 3 IXb — y*||3 + %\\b”% and h(b) € 9||bl|1.
If g1 > %\/;52 then the (1-term dominates the updates, causing the sequence b") to exhibit

oscillatory behavior without convergence to a minimizer of f(b) = gg,(b) + B1||bll1. Consequently,
neither memorization nor generalization is achieved, and both training and test errors oscillate above
a suboptimal level.

Proof. We use lemmawith L= HXTX + Balnla—2 = Omax (XTX) + (3 (operator norm) be
the Lipschitz constant for Gg, (b) = Vigs,(b) = X (Xb — y*) + b = (XTX + ﬂgln) b —
(XTXb* + XTf), since |G g, (1) — G, (v)||2 < L|ju — v||2 for all u, v.

O

Lemma C.5. Let f(b) = g(b) + 51||b||l1 be a convex function where g has a Lipschitz continuous
gradient with Lipschitz constant L > 0, i.e., |[Vg(u) — Vg(v)|l2 < L|ju — v||2 for all u,v € R™.
Consider the subgradient descent update

b+ — ) _ (Vg(b(t)) + Blh(b(t))> 29)

with a fixed step size a > 0, where h(b®)) € 9|[b®|,. If B; > \LF then the {1-term dominates

n

the updates, causing the sequence {b(t)}t>1 to exhibit oscillatory behavior without convergence

N Nt~
2Assume B2 = 0. For N > n, the least square solution is b = (XTX) XTy*=VV'b* —|—VE_%UT§;

~ ~ ~ ~ T
and for N < 7, the min norm solution is b = X (XXT) v =VVTb* +VE-3UT¢

18
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to a minimizer of f. Consequently, neither memorization nor generalization is achieved, and both
training and test errors oscillate above a suboptimal level.

Proof Sketch. Since g has a Lipschitz continuous gradient with constant L, || Vg(b®)||y < L for
all t when b® is in a bounded region. Given that ||2(b(®)|5 ~ \/n at the beginning of training, if
£ > % then

Bullh(bD)|lz ~ pr1vn > L = [Vg(bW)]ly (30)
This inequality implies that the update is dominated by the ¢;-term:
b+ ~ b® — By h(b®) (31)

with the influence of Vg(b(*)) becoming negligible. Because h(b(*)) reflects the sign of b(*), the
update effectively pushes the iterates in a direction that primarily depends on sign changes rather
than the curvature or detailed shape of g. This often leads to overshooting and sign flipping in each
coordinate, resulting in oscillations. Consequently, the iterates do not converge to a stable minimizer
of f, and the error metrics (both training and test) oscillate, remaining above some suboptimal
threshold. This behavior indicates that the algorithm fails to memorize training data properly and
cannot generalize well when (3, is excessively large.

Let us focus on reasonable values of 31, starting with 8; = 0.

Theorem C.6. If 51 = 0and o = a; € (0 2

) m) Vi, then G g, (b(t)) — 0ast — oo; where

N [ t e~ R
G (b) =0<=b=b+ (In _ (XTX + @ln) (XTX n Bgln>> c=b+(l,-VVT)c VceR"
(32)
Also,

U+ — by < ph|b™ — by VteN (33)

Proof. The solutions of G, (b) = 0 are

XTX 4 Bl ) b=XTy*
XTX + foly ) (b —b*) = (XTg - 52b*)
(XTX + ﬁzln) b=XTy* =X TXb*+XT¢=VEVTb* + VE3UT¢
T VE+ANVIbob) = (VE%UTg - 52b*)
b= (X"X+ 5zln)TXTy* + (In - (XTX+ 62In)T (XX + Bgln)> c=b+(l,-VVT)c veeRn
b=b" = [V(S+ 50 SV — 1| b + V(S + &) SHUTE+ (I, - VVT)e VeeR"
(34)

19
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‘We know that
2D — A5 4 (®)

t—i t—1 J+1
(H A(k)) 7= 4 Z (H A(k)> w@) +w®) v <t
j=t—i \k=t

[Tt A® ) 20 + 32500 (TR AW ) wl) 4wl

HZ: A Z(o)+zt_;l HJ+1 1) wl) 4+ w®
Alg (1)+Z At—iw() (35)

if AF) —
{ At+1z(0)+z At=dw) it AV = A Vk
(S

}Xt+1z +><§:i:0[X{)VV

Atz 4 (1 - A) (I-AYYw
At+150) 1 (= A)T (| _ At+1) W

if AW = Aandw® =w V&

ifA®) = Aandw® =w VEk

Let A = 1, — o (XTX+/1L) = VEOVT and wl) = oXTy =
- (XTXb* n XTg) _— (VZVTb* + VE%UTg); s0 that b)) — AMBEHD 4 w(®) when

B =0.Foray = a, welet A = VEVT and w = « (VZVTb* +V2%UT5). Ast —s oo,

»t — 0. We have
t—1 t—1
S A=1,+) VIVT
=0 =1
t—1
—VVTiy vevT
=0

=0

t—1
=1, - VVT 4+ Vdiag (Z 5,@) v’
k

— Ok

=1, —VV' + Vdiag (1_0’2) v’
k
—1, —VVT+V(| )_1(I—it)VT

N\ —1 1 _
—>In—VVT+V(I—Z) V=1, —VVT 4+ V(24 Bol) ' VT ast — o0
(0%

(36)
So,ast —» oo,
t+1) <§E:sz>
—a (IT VT4 v g VT> (VEVTb* + VE%UTg)
(6%
37

=V(E+a) VT (VEVTD 4+ VEHUTE) + (1 - VVT ) cwithe = w

=V (E+BN)IVT (VZVTb* + Vz%UTg)

I
o>

We have Ab+c = b, sob(+D) —b = A(b(Y) —b) = Af(b() —b), which implies ||b(+1) —b||, <
[A[|2-52[Ib™) — b|2: with [|Af]l22 = Tmax(A") = omax(A)" = ph. O
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We now move to a general case with 81 > 0.
Lemma C.7. Forall p > 0 such that p, < 1, we have

. . 1-pt . 1/p
B~ Bll, < b6 — bll, + a7 < 0 b, + Ty g
1—pp 1—pp
In particular,
. . 1— pt R
[b® = Bil2 < 6O — B> +afying—2 < o b0 — b, + O{ﬁlf V=1 (39)
— P2 — P2
and
- - — pt 1 " ap1
B = Bl < B0 = bl + 0 722 < L[ ~ bl + 12— W= 1 @0)
Proof. Recall
Gp,(b) =X (y —y*) + fob = (XTX + ﬁ2|n> b- (XTXb* T XT&) (41)
Starting from the update rule
b+ — p® _ Q(G 5,(b®) + ﬂlhm) (42)
We have
bt _p = (b(t) - b) —a (Gﬁz (b®) 4 ﬂlh“)) 43)
Since G'g, (b) = 0 and G'g, is linear,
G (b®) = (XX + Bal, ) (b® — b) (44)

Substituting this back,

b+ _ = (b<t> - 6) —a (052 (b®) + Blh(t))

(b(t) - B) —a ((XTX n 52|n) (b® —b) + ﬁlh(t)) (45)

[In -« (XTX + ,32|n)} (b(t) _ B) — afn®

Taking the norm; applying triangle inequality and using |[h(V||, < nl/P give
g pplying g q y g p g
bt —p||, < o b® — b, + aﬁlnl/” (46)
p p p
Repeatedly applying the recurrence,

b —bll, < pplIb™ —bll, +afin'/? (L +py+ -+ ")

. 1—pt
= p‘;”b(l) - b, + aﬂlnl/p?; for p, # 1
p
~ aﬂlnl/p
< DD — B, + S for p, < 1
— Py
O
Theorem C.8. Let p > 0 such that p, < 1. Define
(1—p) bV —B]|,
In (1 + o )
t1 = |— (47)

In(pp)
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Then for all t > t4,

R 1—pt 1/p

[b® —bl|, < 208,n1/r- L2 < 92010
1—-pp 1—pp

and the prediction error for t > t1 is bounded by

(48)

~ . 1—pt ~ A .
XD —y*, < 208n"/P— pp 1X[lp—p + XD =y |,
P

1/p
<o ”

(49)
X Xb — y*
1-p, 1Xlp—p + |l ¥l
Proof. The definition of ¢; ensures that for ¢t > ¢,

tn(l) T 1/p L — Py
p'Ib* = b, < afin

50
— (50)
Thus, using lemma|[C.7] we have for ¢ > ¢4,
. 1—pt
Ib® — b|, < 2apnt/r-—LP 51)
~— Pp
Using this, we derive the following
XD —y* ||, = XY = b) + (Xb - )|,
< 1% [D®) = Bllp + XD~ 37l 2
1—pt .
< 2aBn!/P - pp [X[p—p + [[ X — y*[|, fort > ¢
p
O
Corollary C.2. Let p > 0 such that p, < 1. Define
1n<<1fp>ub<1>fﬁup>
_ _ apnl/P h(1) _h aB
t1 = In(pp) lbe pr > 1*/’113 >t (53)
otherwise
Then for all t > t,

1
Ib® —bl|, < QM
and the prediction error for t > t, is bounded by

(54)
Pp
~ . 208 nt/P =~ .
%60 -7, < 2B 4 D -y 55)

p
Proof. The definition of #; ensures that for t > 7},

~ aﬁ nl/p

L (56)
~
The rest of the proof follows from lemmal|C.7]

apfint/?
[ =B, > e

O
When the initialization b(?) is close to B, it takes less time to memorize since t; decreases with
1) _§ Foeq 1) _§
b b||,. as well as ¢; : if ||b b|l, < T
1=pp ~

t is trivialy O, otherwise it decreases with
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aﬂln

When the learning rate « alone becomes smaller, the term decreases, reducing the

asymptotic error bound. However, a smaller a makes p, closer to 1 (for example, p; =

max{maxye[,] |1 — (o + B2)], |1 — afBa|}), which increases 1 and ¢1. This means more iter-
ations are needed to reach the regime where the error stabilizes near its lower bound. Another
aﬁln

alternative for reducing the term ” and guaranteeing perfect memorization earlier is to reduce

(1. But we’ll see below that this also increases the generalization delay.

Ideally, if the system, Xb = y* has an exact solution (and with appropriate [32), then Xb = y*.
In practice, due to noise in y*, the regularization with 35, or model mismatch, the solution b
might not perfectly reproduce y*, resulting in a non zero residual | Xb — y*||2. Note that we have
y* =Xb* +£=UzV b* +£, so0

Ve < T W L T %
v _xb_d X (X X+ﬂgln> Xily 1
USEVTV (S + Bol) (szb* + ZfUTg)
_ { X (XX 4 fol,) KTy
U2 (B4 Bol) 'SV b* £ US2 (B4 Bol) ' 22U
- { X (XTX + 52|n)TXTy*
UX: (24 6) ' EVIb* 4+ U (S 4+ 6l) ' SUTE
) { (XTX+ﬂ2I ) X —|N} y*
ok [ (S48l s '} VTb* 4 [U (S+ ) 2UT - |N] ¢
[x (XX + 1) X7 - |N} Xb* + [x (XX + 1) X7 - |N} ¢
UsiuT [U (S +Bel) ' sUT — '} UVTb* + [U (S + B ' 2UT - |N] ¢

Theorem C.9. Assume E[¢] = 0 and Cov(§) = ngN Then
—\oi+ b2 ‘ —\oi+p5

Proof. We have

2
) ag + U?(N —-r) (57)
2

~ O T .
b= XTX—i—ﬁQIn) XTy*

(58)
=V (S +8NH) e uTy
Next,
Xb=US? (S+ ) ' S3UTy”
—US(D+81) Uy (59)
Bz::0 UUTy*

Now consider the residual
Xb-y =US(S+Bl,) ' Uy —UUy" — (Iy - UU)y"
—U[2(E+8) " = |T} UTy* — (Iy — UUT)y*
= =B U(E+ Bol,)"'UTy* — (Iy = UU T )y* since S(X + fol,) ™! — 1, = —fo(S + fal,) !
(60)

24
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The first term, B2 U(X + B2l,.) "1 U Ty*, lies in Col(U), while the second term, (Iy — UU T )y*
lies in Col(U)+. Thus, they are orthogonal, and

IXb — y* (I3 = [|82U(S + Bal,) " UTy" |5+ [[(Iy = UU)y*|I3 61)

Let’s start with the second term. Since y* = Ux:V'b* + £,

(Iy = UUN)y* = (Iy —UUNUZ2V b* + (Iy — UUT )¢

= (Ily - UU")¢ ©2
So
[(x = UUNy*[3 = [|(In = UUT)E|3
=¢ (v —UU")(Iy —UUT )¢ (63)
=& (Iv-UU")¢
and

Eell(Iv —UUT)y*|3 =E¢ [¢" (Iv —UUT)¢]
=tr ((Iy —UUT) Cov(€)) + (E¢)" (Iy — UUT) (EE)
=oitr(Iy —UUT)
=of (N —tr(UUT")) (64)

r)”
— i ( B2 )2 (U%(VTb*)i + (UTS)Z-)Z since UTy* = 24V Th* + UT¢
i=1
) (:(V T2+ 20 (VTB),(UTE) + (UTE)2)

(65)
Using E¢[(UT¢);] = 0 and Var((U"¢);) = oZ, we get
—1y7T o *(2 - B2 ? T1*\2 2
EelfUE+51) Uy 3= (g ) (VD) +0P) (66)
i=1 N ¢
This concludes the proof. O

The expression

T R B2 \? T . B \?
e 16—y ] = 3 (2% ) e () et @

i=1

offers insights into how various factors influence the prediction quality Xb.
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Signal-to-Noise Ratio (SNR) ||b*|2/0: When ||b*||5 is large compared to o¢ (high SNR), the
signal component (V" b*)? in the first sum becomes significant, and the bias introduced by regular-
ization interacts more strongly with the true signal, so the first term largely determines the expected

B2
oi+pB2

In this case, noise largely drives the error, and recovering the signal becomes more challenging.

2
residual. Otherwise, the noise terms » ._, ( ) O'g + O'g (N —r) dominate the expected residual.

Effect of the Regularization Parameter 8> If 5o < o; for most i, then U,‘jfﬁQ ~ % and

ffé‘z ~ @ The bias and the noise contribution for dominant singular modes are both reduced,

resulting in lower expected residual error. If 55 > o, then E’fﬁ 1 and B’fé ~ o;. Over-
regularization increases bias and noise contributions, generally raising the expected residual. So 5,
controls the bias-variance tradeoff: increasing 5 reduces variance but increases bias. The optimal S35

minimizes the overall expected residual.

Dependence on X and its Rank. The rank r of X appears explicitly in the term ag(N —r). If
X is full rank (i.e., 7 = N when N < n), then the term ag(N — r) vanishes, eliminating the noise
component in the nullspace of X T. For rank-deficient X (r < N), ag(N — 1) accounts for noise in
directions orthogonal to the column space of X. This part of the noise cannot be captured or reduced
by the model, setting a lower bound on the residual error.

In practice, we run the experiment for different training data X, then average the results. However,
taking the expectation over the distribution of X (e.g., assuming Xij N (0,1/n)) involves (i)

Averaging over the singular values {o;} of X, which, in large dimensions, follow the Marchenko-
Pastur law; (ii) Considering the distribution of singular vectors U and V, which tend to be uniformly

distributed over appropriate spheres. Explicit calculation of Ex , [HXB —y* H%} requires integrating

the above expression with respect to the joint distribution of singular values and vectors, which is
complex. In high-dimensional asymptotics, one typically replaces sums over singular values with
integrals against the Marchenko-Pastur density and assumes uniformity in the projections (V' b*)?,
but this does not generally yield a closed-form expression. Instead, one uses approximations or
numerical simulations to understand behavior under these conditions.

So b can memorize. But can it generalize? We have
"~ T~ -
b (XTX+ﬂ2In> X7 (Xb* +£) -
V(Z 4 Bl)7! (EVTb* + E%UTg) ~b

< T W [ T~ < T W T T
(XTX+851,) XTX— 1| b+ (XX + 651, ) XT¢
V(S+ 8N 'SV — |n} b*+ V(S +81) ' 82UT¢
Theorem C.10. For N < n,

b —b*[15 > [|(1, = VVT)b*|3 (68)

In particular, if b* has a nonzero component orthogonal to Col(V), then b cannot perfectly generalize
to b*.

Proof. Consider the regularized least-squares estimator

~ O T oo
b= (XTX n Bgln> XTy*

(69)
=V(S+4)2uTy
We have VV b = b, ie. b € Col(V). Let decompose b* into two orthogonal components:
b*=VV'b*+(I,—-VV)b*=b+b_, (70)
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where
b :=VV'b* € Col(V), and b, :=(l, — VVT)b* € Col(V)* (71)

Since b € Col(V),
VVT(b—bj)=b-b (72)

and VV 'b = 0 by orthogonality. Thus, we can express the error as
E)*b* :E)*(bH +bl)

A 73
=(b—=by)—b, 7

Because b — b € Col(V) and b lies in the orthogonal complement of Col(V'), these two vectors
are orthogonal. Hence,

b —b*|3 = [Ib—by|3+bL]3
> b3 (74)
= [(I, = VV b |j3.

\%

O

The theorem above shows that unless (I,, — VV T )b* = 0, i.e., b* € Col(V), the error ||b — b*||
remains strictly positive. For N < n, V has rank < n, so in general b* will have a nonzero

orthogonal component b | , implying that b cannot fully generalize to b*

For 85 = 0 (i.e., no /o regularlzatlon) b=VV'b*+VE- UTE . This solution memorizes the
training data since y(b) (UUT In) &, sothat [|[y(b) —y*[3 = £ (In —UUT) € <
[€]12 < €. We have b — b* =(VVT —1,)b* + VE=3UTE, s0

Ib=b*3 =T (VVT — 1) (VVT — 1) b+ 2b"T (VW' —1,) VE U g + £ USHVIVE-iUTe
=b*" (I, -VV)b*+£'US'U'¢

For N < n, X is necessary column rank deficient, that is I,, — VVT > 0. In that case, b can not be

N * |12 — ~ -~
Hlﬂ;l)”z,‘l"‘ >1+ %. For N > n, b can generalize if X is full rank (e.g.,
2 2

if 7 = 0, i.e. full random Gaussian X, then X is full rank with high probability), has small condition
number Z=2x_ and the signal to noise ratio ||b*||2 /o is big enough.

generalized, since

C.6.2 GENERALIZATION

‘We now turn our attention to the generalization delay. Based on the analysis up to Theorem
we now analyze the subsequent “generalization” phase, during which the iterate b®) transitions

from memorizing the training data (b®) ~ b) to converging toward the sparse ground truth b*. We
focus on quantifying the additional number of iterations At required for this phase and bounding the
generalization error |b(®) — b*||,, as t — oco.

Lemma C.11. Given o > 0 and bV € R, let bH+D) = b — ah(b®) for all t > 1, where
h(b) € 9|b).

1. A point b is stationary for this dynamical system if and only if |b| < .
e
2. We have || < avif and only if t > L%J

3. In particular, for h(b) = sign(b) Vb € R, if bV Ja € Z, then b)) = 0 for all t > L%J
Proof. Let first consider the simple case h(b) = sign(b), so that b+ = p() — o sign(b(®).
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o If b® € {0, o, —a}, then b(*+2) = 0 for all A > 0.

« If 6™ € (0, ), then b+ = p() — o € (—a,0), and b2 = ptHD o =) € (0, ),
and so on.

s Ifb® € (—a,0), then b+ = b+ € (0,), and b+ = bt —q = ) € (—q,0),
and so on.

o If b® > « (resp. bY) < —q), it will be decreased (resp. increase) by a until b*) € (0, ]
(resp. b®) € [—a,0)), and we get back to the previous cases. In that case, [b(*T1)| =
PO —a=pV| —ta<a=1t+1> @

Let k = L@J Assume b(1) > 0, then ko < bV < (k + 1)a, so that (k — t + 1)a < b <
(k—t+2)a. Letting k —t + 1 = 0, we obtain t = k+ 1 and 0 < b¥) < a, so that [b(*T2)| < « for
all A > 0. If o™ < 0, then —(k + 1) < bV < —ka, so that (t — k — 2)a < b® < (t —k — 1)a.
Lettingt — k — 1 = 0, we obtain t = k + 1 and —a < b(¥) <0, so that [p(*+2)| < o forall A > 0.
This achieves the proof for h(b) = sign(b).

Now consider the general dynamic b“+1) = b() — ah(b®). If b1 £ 0 (the case bV = 0 is trivial),
then the dynamic is b(**1) = b() — o sign(b®)) as long as [b(*)| > , after which it will just oscillate
in the ball {b, |b| < o} indefinitely. In fact, a fixed point b must satisfy b = b — ah(b); i.e. h(b) = 0.
The only case where 0 € d|b| is b = 0 or when it lies in the interval where the subgradient can be
0. However, for any b such that |b| < a, it is possible to choose h(b) (for instance, h(b) = b/«)

such that b = b — ah(b), making b a fixed point. Conversely, if |b| > «, then |h(b)] = 1 and
|b — ah(b)| = ||b| — «| > 0, so b is not a fixed point.

In practice, we work with the subgradient h(b) = sign(b), the one provided by automatic differentia-
tion in many optimization libraries, like Pytorch. O

Theorem C.12. Given o > 0 and b)) € R", let b+1) = b®) — ah(b®) for all t > 1, where
h(b) € 9||b]1.

1. A point b is stationary for this dynamical system if and only if |b;| < a Vi € [n]. Asa
consequence, ||bl|, < an'/? ¥p € [1, 0.

2. We have |b"| o < aifand only if t > L%J

3. In particular, for h(b) = sign(b) ¥Yb € R, we have ||b® ||y = HZ b /o e Z}‘for all

t> L%]
Proof. By applying the Lemma [C.TT|coordinate wise the proof is immediat. O

Recall we have
b+ = b — o (G, (b)) + B11(b®)) (75)
with
G, (b) = X (y—y*)+B:b = (XTX T 52|n) b (XTxb* n XTg) — Byb*—X ¢ forb = b*
(76)

and h(b) € J|/b||;. From Theorem|C.8 for allt > t; = |— ln?il';l/p , and for all

M b
1n(1+“ p) M —b,

. . ~ _ ot /
p satisfying p, € (0,1) (e.g p = 2); we have ||b*) —b|, < 2a61n1/p17722 < % , where
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. o~ T~
b= (XTX + ﬂQIn) X Ty* is the the least square solution of the problem. So

G, (b )|, = |G, (b)) — Gy, (B) ||, since G, (b) =0
< ”XTX + ﬁQIan—wa(t) - BH

1—
< 200 7| XX + Balallprp;—2 ”P (77)

< 2051 n/P
- 1-
So, this gradient can be made much smaller than the subgradient term by choosing 3; sufficiently
small. This bound also writes
20814/n

1G5, (D)2 < 2081 v/ (0max (X x>+5> i
= p2 1—p2

< 28,v/n(1 — pg)(;za:((;(T;) igj < 2ﬂ1ﬁ% if X is full rank

The last line follows from the fact that if X is full rank, then p2 =1 — a(omin (XTX) + fB2), so that
1— P2 = a(amin(XTX) + 62)

Let I := {i € [n] | bf # 0} be the support of b*. Since b* is s-sparse, s = |I| < n. After time ¢,

the contribution of the gradient G/, to the update of bgt) is dominated by the ¢;-regularization term.
Specifically, for each i € [n], the update rule approximates

b ~ bl — apih(b?) (79)
By Theorem [C.12] this lead to |[b®)||, < an!/? Vp € [1, 0] for (and only for) t > ty := t; +
6™ ||
5=
For i € I in particular, if \bl(-tl)\ > |b}|, then using the approximate dynamics bg”l) ~ bl(-t) -
aﬁlh(bgt) — b}), we can conclude also that |b£t) — b}| < af; for (and only for) t > to.

||XTX + 62|anﬁp

(Omax (XTX) + 62)

(78)

Note that when ||b(!)||; becomes too small, b(!) ~ b* since for problem of interest, the sparse
solution b* is the unique minimizer of || Xb — y*||2 under the sparsity constraint llo < n
(and the RIP assumptions on X). Our argument here is that the additional number of steps it takes

HE‘A“) so that the smaller 53, is (for « fixed), the

longer it take to recover b*, and the smaller is the error Hb — b*||o when t — oco. If B3 is choose
such that ||b||s < a1, then b(®) will get stuck near b, and there will be no generalization after
memorization. So a bad choice of a non-zero 32 can be detrimental to generalization (it is better to
not use [, on that problem unless the initialization scale is nontrivial).

to reach this small #;-norm solution is At = © (

By carefully choosing « and 31, one can balance the speed of generalization (smaller At) with the
accuracy of recovery (smaller |b®) — b*||.,). Appropriate step rule also guaranteed the converge of
@)1 to [[b*|:.

Theorem C.13. For all T € N*, we have

b(l) — b* 2 \V/ b(t) b*
min (||b(t)||1 _ ||b*H1) < || ||2 + (maxlgtST H bf( )” )Zt 1at _|_||€H2 +ﬁ2H ||2

1<t<T 260 S 261
(80)

Proof. We have f(b®) = 3[IXb(") —y*[3 + Z|[b@ 3 + £1[b@ |1 and f(b*) = 5| Xb" —
y¥I3 + Z D)3 + Bulbrll = 311€]13 + Z[b*[I3 + B1lb*|1. So for any ¢,

* v * 62 * *
) = f(b%) = LIXb® —y* 3 + 2 (6O = [b*3) + 8 (1D — Ib* 1) = 311113

* ﬂ? *
> B (1601 = b7l ) — 311€13 — 1B
(81)
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Since . 5 5
v * 2 * 2 *
SIXBO — 33> 0 and 22 (O3~ b ) > 22 b73 (52

Rearranging equation equation [81]yields

J(b19) = F(b%) €3+ Aallb3

b®|ly — [[b*|; < 83
B = [y < £ - (83
By Theorem|C.3} when |[b() — b*||l; < Rand [|F(b®)|, <L Vt<T,
, . R2+125F o2
min (£(b®) - f(b")) < PR (84)
1sir 251
Substituting this into equation [83] gives
. i} R2 4+ L2 T_ o2 2 4 b*||2
min (Hb(t)”1 — b ||1) < %:tfl i €113 + Bl ||2 (85)
1<t<T 2613, v 264
O

So, when }~,a? < coand >,y = 0 (e.g. oy = a/(b+1t),a > 0and b > 0), [bD|; —
[[b*|ls = 0as T — oo, for B2 = 0 in the noiseless setting.

C.6.3 OPTIMIZATION LANDSCAPE

We will look at the landscape of the solution. Let I := {i € [n] | b} # 0} be the support of b*;
u(t) = ||b§t) |l2 and v(¢) = ”bfi)]\I”? be the norms of b(*) restraint on its indexes in I (resp, outside
I).

Figure shows how b(® first converge to the least square solution (memorization), and from least

square solution to b* (/V large enough) or a suboptimal solution (V too small). After memorization,
when N is large enough, v(t) converge to zero while u(t) converge to the norm of b*. This is because

the components of b(*) that are not in I are shrunk at each training step until they all reach 0 (Figure
[LT). This convergence is impossible if 81 = 0 (even if 83 # 0).

C.6.4 ADDITIONNAL EXPERIMENTS

We optimize the noiseless problem (£ = 0) using the subgradient descent method with
(n,s,N,(,B2) = (10%,5,30,107°,0) for different values of o and 3. As expected, larger o
and/or 31 lead to fast convergence and do so at a suboptimal value of the test error (Figure [12).

We optimize the noiseless problem (£ = 0) using the subgradient descent method with
(n, ¢, a, B, B2) = (102,1075,10~1,107°,0), for different values of s and N. See Figures

[T4] T3] and [T6).

C.7 PROJECTED SUBGRADIENT

To ensure memorization, we can use the projected subgradient for problem (P;) of minimizing ||b||;

subject to the constraint Fy,(X) = Xb = y*, where at each step the update (using now just 3, (b)
as gradient, not the whole F'(b)) is projected onto the constraint set. In our case, the update write

- "~ T .
b+ = 11 (b(®) — a, B, A(b®)) with TI(b) = b — X" (XXT) (Xb —y*) = P(b—b*) +
- ~ . T - - "~ -1 _
b* + X7 (XXT) ¢ the projection of b on the set {b,Xb = y*}, P =1, - X T (XXT) X.

- ~ - 1
So b+ _ p* — P (b(t) _ b*) _ atﬁgPh(b(t)) + XT (XXT) We can also keep

3For a fat and full rank X (rank(f{) = N < n), if we start at b(*) such that Xb") = y", for example, the
- N1 - o\t
min norm solution b = X T (XXT) y*, then P (b(t) - b*) —b® _p*—XT (XXT) eVt > 1,
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Figure 10: From initialization to least square solution (memorization), and from least square solution
to b* (N large enough) or a suboptimal solution (/N too small). The steps ¢; and ¢, are different
from those introduced above to measure memorization and generalization (respectively). They are
just a means of tracing the evolution of training here. Here N € {20, 30, 40, 50, 60, 70}, for
(n,s) = (100, 5) and (c, 81, B2) = (1071,1075,0).
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Figure 11: Convergence of b( ) to b for each i € [n]. Here (n, s, N) = (100, 5, 30) and
(a ﬁ1,52> (10 1 10_5 0)

track of the best minimum ¢; solution during training, bt(,ggt = argmin, (b0 <t} IIblly =

arg min |bl|1. Using this, we can show that the ¢; optimal gap of this method enjoys

be{bll M bt} |
the same bound given above for the non-projected case without the requirement || F'(b)|2 < L Vb,
with the rescale learning rate &; = (31ay; and the bound /7 on the subgradient, ||h(b)||3 < n Vb.
Note that we have f* = f(b*) = 1 ||b*[|1 + 22|/b*||3 + ||£||3, and after one step of training (¢ > 1),
fO = F0) = B [bO 1 + Z[BO3 since y (b)) = y*.

2 T ~2
Theorem C.14. Let &y = Biay. If b — b*||y < R, then |b{") ||, — [|b*[|; < Ftige=rde,

22?:1 at
Proof. We have
0 < b7+ — b7 I3 = |11 (b — azpy - h(bT)) - b*|3
< b™ —b* —arp - h(b (T))H%
= BT = b3 = 2078, (™) — ) Th(bT)) + Za [h(bT)]3

< [b® —b*|2 - 28107 (||b(T)H1 - Hb*||1) 322 |h(bD)|2 (by the definition of h)

T T
< b b7 =260 D e (IO = 71 ) + 52 0 [1(b0) 3
t=1

t=1

and the update simplifies to b+ = b®) — atﬁzPh(b(t)). In general, even if we don’t start at b'") satisfying
Xb® = y”, as soon as Xbto) = y™ for a certain t; (memorization), the next updates have the previous form.
Note that PT = Pand PP = P? = P.
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Figure 12: Training error | Xb® — y*||5/|ly*||2 and recovery error |[b®) — b*||3/||b*||2 as a
function of the learning rate « and the /1 -regularization coefficient 8;. Here (n, s, N) = (100, 5, 30)
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Figure 13: Training error | Xb® — y*||5/[ly*||2 and recovery error |[b®) — b*||3/||b*||2 as a
function of the sparsity level s € {1, 5,10, 15} and the measurements N € {10, 20, ...100}. Here
(n,a, B1,B2) = (102,107, 107>, 0), with the subgradient descent
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Figure 14: On the left axis, the memorization step ¢; compute experimentally (smaller ¢ such that
[Xb® —y*||2/|ly*[l2 < 10~*) and the upper bound — In (1 +

apy

(1=p)b) bl

) /(o)

computed in Theorem On the right axis, the error || Xb(*1) — y*||5/[ly*||2 at step ¢; and the
recovery error ||b(°) — b*||5/||b*|| at the end of training. Here
(n,, B1,B82) = (10%2,1071,107°,0), with the subgradient descent.
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Figure 15: Training error | Xb(*) — y*||5/||y* |2 at memorization, recovery error
[b(*2) — b*||5/||b*||2 at generalization, memorization step ¢, (smaller ¢ such that
[Xb® —y*|la/[ly*[l2 < 10~%), and generalization step (smaller ¢ such that
[b® —b*||/||b*||2 < 10~* or the maximum training step). Here
(n,a, B1,B2) = (102,107, 107>, 0), with the subgradient descent
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Figure 16: Memorization step ¢; compute experimentally (smaller ¢ such that

[Xb® — y*|la/|ly*|l2 < 10~*) and the upper bound computed in Theorem Here
(n,a, B1, B2) = (10%2,1071,107°,0), with the subgradient descent.
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We optimize the noiseless problem (£ = 0) using the projected subgradient descent method with
(n, ¢, a, B, B2) = (102,1076,1071,107°,0), for different values of s and N. We observe a
grokking-like pattern similar to the subgradient case (Figures|[T7] [T8] [T9]and 20). Here, one step of
training is enough to get zero training error. This further shows that generalization is driven by f3;.
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Figure 17: Training error | Xb® — y*||5/|ly*||2 and recovery error |[b®) — b*||3/||b*||2 as a
function of the sparsity level s € {1, 5,10, 15} and the measurements N € {10, 20, ...100}. Here
(n,a, B1, B2) = (10%,1071,107°,0), with the projected subgradient descent

C.8 PROXIMAL GRADIENT DESCENT AND ITERATIVE SOFT-THRESHOLDING ALGORITHM

We have 1
b —aGpg,(b) = arggningﬁz (b) + (¢ —b) "G, (b) + salle— blf3
So

. 1
b— aF(b) ~ argmingg, (b) + (¢ — b) Gay (b) + 5[l — bl}3 + il
[
o1
—argmin 5 [laGp, (b3 +2a(c — b) G (b) + llo = bF] + Bullel

1
= argmin e = (b — aG, (b)) I3 + Al
— T, (b~ alg, (b))

with I1,, the proximal mapping for ¢ — (1]|c|1,

1
I, (b) = arg min ——||lc — b||3 + Bi[c[|x
c 2«
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Figure 18: On the left axis, the memorization step ¢; compute experimentally (smaller ¢ such that

[Xb® — y*|la/|ly*|l2 < 10~*) and the upper bound — In (1 + 0=plb bl

) /1n(p)

aB

computed in Theorem On the right axis, the error || Xb(1) — y*||5/[ly*||2 at step ¢, and the
recovery error ||b(°) — b*||5/||b*||2 at the end of training. Here
(n,, B1,B82) = (102,107,107, 0), with the projected subgradient descent.
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Figure 19: Training error | Xb(*) — y*||5/||y* |2 at memorization, recovery error
|[bt2) — b*||5/||b*||2 at generalization, memorization step ¢, (smaller ¢ such that
=¥y ll2/|l¥*ll2 £ 107%), and generalization step (smaller ¢ such that
Xb(t) — y* * 10%),and g lizati p (small h th
[b® — b*|2/||b*||2 < 10~* or the maximum training step). Here
(n,a, B1, B2) = (102,107,105, 0), with the projected subgradient descent
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Figure 20: Memorization step ¢; compute experimentally (smaller ¢ such that

[Xb® — y*|lo/|ly*|l2 < 10~*) and the upper bound computed in Theorem Here
(n,, B1, B2) = (10%2,1071,107°,0), with the projected subgradient descent.
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Using
b — I, (b — aGp, (b))
«

Qor(b) =
The proximal update writes
b+ = 11, (b<t> — &G, (b<t>))
b® —1II,, (b®) — G, (b®))

Qg

= b(t) — O

—pb® — 2 Qa, (b(t))

This form appears similar to the standard gradient descent update but is not the most interesting in
this context.

1
IT,(b) = argmin — [[c — b||3 + B1]lc[y
c 2«

.1
= argmin Slle = b[3 + aBifc|y

= Sap. (b)
with S, (b) = sign(b) ® max(|b| — v, 0) the soft-thresholding operatoxﬂ

b, —~v ifb; >~
S’v(b)i_{o if —y<b; <y
b+ ifb; < —v
The final form of the update, known as the Iterative soft-thresholding algorithm (ISTA) (Daubechies
et al., [2003)), is then

bt = 5, 4 (b(t) — ;G (b(t))) vt > 1 (86)
with
) XTX + Bol, ) b — (XTXb* + XTg)
Gp,(b) := Vipgs,(b) = X" (y —y*) + Bob = L .
XTX + faln) (b — b*) — (XT!;“ - ng*)

Theorem C.15. Let L = HXTX—i_ﬁQInHQHQ = amaX(XTX) + B2 (operator norm) be the Lipschitz
constant for Gg,, |Gp,(0) — Gp,(v)| < L|ju — V|2 for all u, v. If |b®) —b*|ls < R and
a; = a < 1/L, then fT) — f* < 22 for the ISTA.

Proof. We applied a standard bound on proximal gradient descent (Tibshirani, 2015) for a function
of the form f = g + h : R™ — R. Such result state that the proximal gradient descent with fixed step

eY)
size oy < 1/ satisfies f(T) — f* < w when g is convex, differentiable, dom(g) = R™,
Vg is Lipschitz continuous with constant L > 0; and h is convex and its proximal map II,, can be

evaluated. O

We optimize the noiseless problem (§ = 0) using the soft-thresholding algorithm (ISTA) with
(n, ¢, B1,B82) = (102,1076,1071,1075,0), for different values of s and N. We observe a
grokking-like pattern similar to the subgradient case (Figures and 24).

C.9 GROKKING WITHOUT UNDERSTANDING

We start the optimization at b(*) i ¢N(0,1/n) with ¢ > 0 the initialization scale. With a small
initialization, (31 is sufficient for generalization to happen, provided N is large enough and (35 is not
very large (if it is chosen so that ||b|. < /31, it may be possible to not generalize, see section
. If the scale at initialization is large, 35 is necessary to generalize, but is it sufficient? That is,
can we generalize to the problem studied here with 81 = 0 and 8 > 0?

*On complex numbers, the soft-thresholding operator S.,(b) = sign(b) ® max(|b| — v, 0) only shrinks the
magnitude and keeps the phase fixed.
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Figure 21: Training error | Xb® — y*||5/|ly*||2 and recovery error |[b®) — b*||5/||b*||2 as a
function of the sparsity level s € {1,5,10,15} and the measurements N € {10, 20, ...100}. Here
(n,a, B, B2) = (102,1071,1075,0), with the soft-thresholding algorithm (ISTA)

As shown above, the answer to this question is no (Figures[25]and [26). But what we want to illustrate
here is a phenomenon that contradicts previous art (Liu et al.|[2023a} Lyu et al.,2023)), namely that in
the over-parametrized regime (N < n in our case), large initialization and non-zero weight decay do
not always lead to grokking. What happens is that, because of the large initialization, a more or less
abrupt transition is observed in the generalization error during training, corresponding to a transition
in the /5 norm of the model parameters. But this can not be called grokking because the model only
converges to a sub-optimal solution. What’s more, this transition appears even if the problem posed
admits no solution, e.g., sparse recovery or matrix completion with a number N of examples far
below the theoretical limit required for the solution to the problem posed to be the optimal solution
(by any method whatsoever). This transition appears abrupt just because the training error is large at
the beginning of training since the model’s outputs are large. When its {5 norm becomes small, its
outputs also become small, leading to a transition in error. In figure[23] without visualization of the
error on a logarithmic scale, it looks like grokking has occurred, whereas this is not the case. Figure
futher shows the non convergence of b(*) to b* : every components of b(*) are almost 0 at the end
of training.

We call this phenomenon “grokking without understanding” like |Levi et al.[(2024) who illustrated it
in the case of linear classification. They show that the sharp increase in generalization accuracy may
often not imply a transition from “memorization” to “understanding” but can be an artifact of the
accuracy measure. But in our case, we are not using any significant scale at initialization (we focus
on 0 < ¢ < 107°) and are not dealing with the generalization measure problem since our test error is
directly the recovery error in the function space, not the accuracy.

We hypothesize that the interplay between large initialization and small non-zero weight decay that
leads to grokking as predicted (provably) by [Lyu et al.|(2023) does not hold in our setting because
our model violates they Assumption 3.2. Let y,(x) = b' x denote our model.

» Assumption 3.1 (Lyu et al., 2023): For all X € R", the function b — yp(X) is L-
homogeneous with L = 1, because y.p(X) = cFyp (%) for all ¢ > 0.

* Assumption 3.2 (Lyu et al.l[2023)): for { = 0, yp,1) (X) = 0 for all X (there is generalization

in this case with ¢1), but if ¢ > 0 (for instance ¢ large), this is (almost surely) no longer true.
So, this assumption is violated (with high probability).
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Figure 22: On the left axis, the memorization step ¢; compute experimentally (smaller ¢ such that
~ 1 N
[Xb® — y*|l2/|ly*|l2 < 10~*) and the upper bound — In (1 + M) /1n(p)

apy

computed in Theorem On the right axis, the error || Xb(*1) — y*||5/[ly*||2 at step ¢; and the

recovery error ||b(°) — b*||5/||b*|| at the end of training. Here
(n,a, B1,B2) = (10%2,1071,107>,0), with the soft-thresholding algorithm (ISTA).
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Figure 23: Training error | Xb(*) — y*||5/||y* |2 at memorization, recovery error
|b*2) — b*||5/|/b*||2 at generalization, memorization step ¢; (smaller ¢ such that
[Xb® — y*||lo/|ly*|l2 < 10~%), and generalization step (smaller ¢ such that
[b® —b*||/||b*||2 < 10~* or the maximum training step). Here
(n,, B1,B82) = (10%,1071,107°,0), with the soft-thresholding algorithm (ISTA)
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Figure 24: Memorization step ¢; compute experimentally (smaller ¢ such that

[Xb® — y*|la/|ly*|l2 < 10~*) and the upper bound computed in Theorem Here
(n,a, Br, B2) = (102,10~1,107°,0), with the ISTA.
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* Assumption 3.8 (Lyu et al.,[2023)): The NTK (Neural Tangent Kernel) features of training
samples {beb(Xi)}ie[ ) are linearly independent (almost surely). In fact, Vpyp(X) =
% Vx. In the over-parametrized regime N < n, If X € RV*" has entries independent and
identically distributed from a normal distribution, then the NTK features {Xi}ie[ N7 are

linearly independent with high probability (because the rank of X = X is N with high
probability), so this assumption is verified.
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Figure 25: The figures show the relative errors and the the norm ||b(®) ||, (left) and ||b(*)||; for
B1 = 0and 8 # 0. Here (n,s, N) = (100, 5,30) and (o, 31) = (1071,0); with large
initialization scale ¢ = 10! and small weights decay 3, = 10~°. Without visualization of the error
on a logarithmic scale (top), it looks like grokking has occurred, whereas this is not the case (bottom).

C.10 IMPACT OF COHERENCE ON GROKKING: AMPLIFYING GROKKING THROUGH DATA
SELECTION

Above, we introduce the parameter 7 € [0, 1] that control the incoherence between the measures
{X}ic[n] and the sparse basis (dictionary) {®. ;} e[, 7 = 0 correspond to a full random gaussian
X, and correspond to the maximum incoherence, while 7 = 1 correspond to X; € {®. ;} ¢, for all
i € [N], and correspond minimum incoherence (coherence of 1). We also experimentally observe that
when using convex programming on the problem (P ), Nyin(s, 7), the number of samples needed for
perfect recovery increases as s and/or 7 increases. When 7 — 1, Nyin(s, 7) — n for all s (Section
C3).

Here, we also observe that the generalization time and the generalization delay increase with 7 while
the generalization error decreases with it (Figures and@ and @]) For N < n, when 7 — 1, the
generalization time o — oo. This is because each measurement captures a single view (component)
of b*, and this makes it impossible to find the optimal b* by solving the equation X®b = y* (by
any method whatsoever). On the other hand, as 7 — 0, X becomes completely random, and every
measurement captures a distinct “view” of a*, giving the best possible generalization time for the
data size considered. The error |[b(*2) — b*||5/||b*||2 at generalization (¢,) as a function of N and 7
has the same shape as in the convex programming (Figures [6]and[7).

C.11 DEEP SPARSE RECOVERY: THE EFFECT OF OVERPARAMETRIZATION

Let now use the parameterization b = ©£_ B, € R", with B € RL*™, This corresponds to a linear
network with L layers, where each hidden layer has the parameter diag(By) € R™*"—with this,
increasing L leads to overparameterization without altering the expressiveness of the function class
b — F,(x) = x b, since the model remains linear with respect to the input x. Unlike the shallow
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Figure 26: Non convergence of b(*) to b* for 8; = 0 and 8; # 0. Here (n,s, N) = (100, 5, 30) and
(a, B1) = (1071, 0); with large initialization scale ¢ = 10! and small weights decay 3, = 1075.
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Figure 28: Training and error | Xb(*1) — y*||5/|ly*||2 and recovery error [|[b(*2) — b*||y/|b*|2
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sample N and the coherence parameter 7 € [0, 1]. Here
(n7 S, &,y /Bla /827 C) = (102a 5a 10_17 10_5) 07 10_6)'

46



Under review as a conference paper at ICLR 2025

M=t
W — 1=04 :]/Av

— 1=05

— 1=0.6
— 1=07
=08

116 =b"[I2 / 116" |I2

I

108

S, "
105 — 1=00 10
— t02 N\ 10°

— 1=03

_.\§N§L
| |
[
o o
v o
y
53

fi
— 1=0.6 10? /I — 1=0.6
100 — t=07 ﬂ — t=07
7=0.8 10! — =08
=09 I =09
102 T=1.0 100 =10
| |
20 40 60 80 100 20 40 60 80 100
N N
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case (L = 1), there is no need for ¢; (8, = 0) to generalize when L > 2 (and the initialization scale
is small), as the experiments of this section suggest. With depth, the update for the whole iterate
(which is now replaced by a product of matrices and a vector) is similar to the shallow case but with a
preconditioner in front of the gradient. This preconditioner makes it possible to recover the sparse
signal without any regularization.

We have y(b) = F»(X) = Xb and y* = Fp-(X) + £ = Xb* + £, and want to minimize
f(b) = gp,(b) + £1]|B||1 using gradient descent, where

1 * ﬂQ
98, (b) := 5||y(b> -yl + EI\BIIE
| - 1
= 5bTXTXb —y*"Xb + 5y*Ty"‘ + %HBH% (87)

1 B B ~ ~ ~ T 1 ~
— ngXTXb - (XTXb* + XTg) b+ %HBHE + §||Xb* + &2

Let G(b) := %ﬁb) = XT(y(b) —y*) = X"X(b — b*) — XT¢. The gradient for each B; is

Gp,(B;) = aggé(ib) — %%&b) + 2B, = diag([[;; Bx)G(b) + 2B, and the update rule
for each B,; is

B = BY _ a@s,(BY) — afih(BY)

= (1 - ap)BY — adiag([[ BY)G(b®) — apih(BY) (88)
ki
where h(B;) € 0||B;||1 any subgradient of ||B;||1, h(B;)r = sigp(Bik) for By, # 0, and any
value in [+1, —1] for B;, = 0. We start the optimization at B{") % ¢A/(0,1/n) with ¢ > 0 the
initialization scale.
Without ovaparametrization (L = 1), the gradient update for b writes

bt = b® — Gy, (bY) — afh(bD)

=(1- aﬁz)b(t) — o (G(b(t)) + 51h(b(t))) &
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As we show above, for s = ||b*||p < n and N < n, without ¢; regularization (8; = 0), we don’t
have perfect recovery. Here, the update is unconditioned and progresses uniformly in all directions.
So without /1 -regularization, there is no mechanism to enforce sparsity, and perfect recovery of b* is
impossible.

For L = 2, let ¢ := B? + B3. If 3; = 0, then
pt+) — Bgt+1) o Bét+1)

= (1= ap2)BYY — adiagBY)GBD)) © ((1 - apa)BY — adiag(B{)G(bY))

= (1—afB)*b® — (1 — afy) diagB © B + BY @ B{)G(b®) + a2 diag(b)G(b™)?
= (1—af2)?b® — a(1 — aBy)c® © G(b®) + o?b® © G(b®)?
~ (

1 —2a82)b" — ac® © G(b®) for a — 0
(90)

ir(lin _ B§t+1) ® B§t+1) + Bg“) ® Bgt“)
= (1 - aB)’B{” © BY - 2a(1 - afy) diag(B{" ® BY)G(b®) + a2 diag(B’ © BY)G(b®)?
+ (1 —ap)*BY o BYY — 20(1 — aB,) diag(BY © B{")G(b®) + o2 diag(B{” @ B{")G(b1)2
= (1 —aB)?c® —4a(1 — afy)b® © G(b?) 4+ a?c © G(b®")?

~ (1 —2aB2)c® — 4ab® © G(bW) for a — 0
O

The depth adds the preconditioning P(Y) = (1 — a/85) diag(c*)) in front of the update for b. This
preconditioning mechanism seems to implicitly favor sparsity and, thus, a perfect recovery after
memorization since a sparse solution for the problem of interest is necessary b* when N is large

enough (with respect to s = ||b*||o and n). In fact, when ! goes to zero (which is the case when

bgt) is also small), the update becomes bgtH) ~ (1- 2a52)b§t), and thus push bEtH) to0ata
geometric rate of O(1 — 2a/3;). Otherwise, cz(-t) (large) will amplify the gradient so that cgt)G (b®);
dominates the update, which pushes b(*) towards b* (as the gradient G (b(*)) points towards a small
error b(®) — b* direction, particularly for full rank X and high signal to ratio regime).

We optimize the noiseless problem (§ = 0) using the subgradient descent method with
(n,s,¢,a,B1, B2) = (10%,30,1072,10~%,107°,0), for different values of N and L € {1,2,3,4}.
Here, initializing B too close to the origin (initialization scale { — 0) leads b to not change during
training. The model is able to recover the true signal b*, and the generalization delay becomes
extremely small (compared to the shallow case with 3, # 0) for L = 2 and disappears (ungrokking)
for L > 2 (Figure[30). As L becomes larger, the phase transition to generalization becomes extremely
abrupt. The loss decreases in a staircase fashion, with more or less long plateaus of suboptimal
generalization error during training. This type of behavior is generally observed in the optimization of
Soft Committee Machines (Biehl & Schwarze, |1995; [Saad & Solla, [1995bja; |1996; |[Engel & Broeck,
2001} |Aubin et al.| 2018 |Goldt et al.| 2020), which are two-layer linear or non-linear teacher-student
systems, with the output layer of the student fixed to that of the teacher during training.

Also, for a fixed number N of measure, the test error decreases with L, showing that depth helps
to find the signal with a smaller number of measures, albeit with a longer training time (Figures 3]
and[32). So, the depth seems to have the same effect on generalization as (1. This is in accord with
the result of |Arora et al.| (2018)) in the context of matrix factorization. They show that introducing
depth effectively turns gradient descent into a shallow (single-layer) training process equipped with
a built-in preconditioning mechanism. This mechanism biases updates toward directions already
explored by the optimization, serving as an acceleration technique that fuses momentum with adaptive
step sizes. Furthermore, they demonstrate that depth-based overparameterization can substantially
speed up training, even in straightforward convex tasks like linear regression under with £, loss,
p> 2.

Note that for L > 2, using a large scale initialization and a small but non-zero ¢ regularization
B2 results in grokking (Figures and [33)), unlike the case of L = 1 that gives the “grokking
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Figure 30: Training and error || Xb(®) — y*||5/||y*||2 and recovery error |b®) — b*||5/[|b*||2 as a
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Figure 31: Training and error || Xb(1) — y*||5/|ly*||2 and recovery error |[b(*2) — b*||5/||b*||2
(along with ¢; and t,, the memorization and the generalization step) as a function of the number of
sample N and the depth L € {1,2,3,4}. Here (n, s, a, B1, B2) = (102,5,1071,0,0); with small
initialization scale ( = 107 % for L = 1and ¢ = 1072 for L > 1.
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Figure 32: Training and error || Xb(*1) — y*||5/[ly*||2 and recovery error |[b(*2) — b*||5/|/b*||2
(along with t; and t,, the memorization and the generalization step) as a function of the number of
sample N and the depth L € {1,2,3,4}. Here (n, s, o, B1, B2) = (102,5,1071,0,0); with small
initialization scale ( = 107° for L = 1 and ¢ = 1072 for L > 1. The growth (as a function of N)
in the test error for L = 4 is simply due to the fact that we did not optimize long enough for it to
decrease.

without understanding” phenomenon (Section[C.9). In this regime of large intialisation and small
non-zero weight decay, when L increases, the number of steps required for the model to move from
memorization to generalization is reduced (grokking acceleration), and the generalization error at
the end of training is considerably lower (Figure [33). [Lyu et al (2023) used a similar setup to show
that an interplay between large initialization and small nonzero weights decay gives rise to grokking

with the diagonal linear network y(x) = (u®L — VQL) " x in the context of binary classification,
but there did not study the impact of L on the generalization delay, but focus on characterizing how
sharp is the transition from memorization to generalization as a function of the initialization scale
and the weight decay coefficient, and how long it takes for this transition to occurs. This diagonal
linear network is also often used for sparse recovery problems (Vavskevivcius et al.,[2019), but the
focus is generally on its ability to recover the optimal solution, and not grokking.

C.12 REALISTIC SIGNALS
C.12.1 RECOVERY OF AN IMAGE

We consider a 8 x 8 digit 0 from the MNIST dataset, n = 82 = 64. The image is normalized to have
values in [0, 1], and the values below 0.5 are set to zero, leading to a sparsity level s = 22 (34.38% of
n). The evaluation of the errors is shown in Figures and the evolution of the reconstructed image
as a function of the training steps are shown in Figu@@

C.12.2 RECOVERY OF A SINUSOIDAL SIGNAL

We construct a sparse real-valued signal a* € R™ from a set of sinusoidal components defined by
their frequencies, amplitudes, and phases. For that, we first define the sparse frequency-domain
representation b* € C™ as b*(k) = Apel¥* - 1(k € F) where F C {0,1,...,n — 1} is the set of
selected frequency indices with | F| = s; A, € R™ the amplitude of the sinusoid at frequency index
k; o € [0, 27) the phase of the sinusoid at frequency index k; and i the imaginary unit (i* = —1).
The real-valued time-domain signal a* € R is obtained by applying the inverse discrete Fourier
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Figure 33: Training and error || Xb(®) — y*||o/||y*||2 and recovery error |b®) — b*||5/[[b*||2 as a
function of the number of sample N and the depth L € {1,2,3,4}. Here (n, s) = (10%,5) and
(o, B1) = (1071, 0); with large initialization scale ¢ = 10° and small weights decay 3, = 1075.
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Figure 34: Training and error || Xb(*) — y*||5/|ly* |2 and recovery error ||b(*2) — b*||5/||b*||2
(along with ¢; and t2, the memorization and the generalization step) as a function of the number of
sample N and the depth L € {1,2,3,4}. Here (n,s) = (102,5) and («a, 81) = (1071, 0); with
large initialization scale ( = 10° and small weights decay 3, = 10~°.

52



Under review as a conference paper at ICLR 2025

/0 100 e
— =2 R L o L R R NN R R Rt
N0 L=3 o~
P L=4 10t
= — 1 ] |2
~ - - L=1
= _~ 102 -—- L=2
= --- =3
|>‘ L |= L=4
Z 107 !
< = 1073
£ | —1 5]
‘g // 2
/ 1ol 77 I N i i o st SR
203040 50 60 70 80 200 30 405060 70 80
N N
T
— 107 — — L=1]
106 — L=2
— L=3
L=4
105 ox100
\\
G 104 "TA 10 \
10° /_ L=1 ><
=T —_—L=2 T
LT — L=3 X0t /
107 L=4 | / |
| |
20 30 40 50 60 70 80 20 30 40 50 60 7 80
N N

Figure 35: Training and error || Xb(1) — y*||5/[ly*||2 and recovery error |[b(*2) — b*||2/|/b*||
(along with ¢; and to, the memorization and the generalization step) as a function of the number of
sample N and the depth L € {1,2,3,4}. Here (n, s) = (102,5) and (a, £1) = (1071, 0); with
large initialization scale ¢ = 10° and small weights decay 3, = 107°.
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Figure 36: Reconstruction of a 8 x 8 digit from the MNIST dataset. The figures show the relative
errors, gradient ratio, and the norm ||b(®||; (right). G 5,(b®)) dominates 3;1(b(")) until
memorization, i.e. ||31h(b®)]||/||Gs,(b®")|| < 1 for all ¢ < ¢;. From memorization 3;h(b*))
dominates and make ||b(®)||; converge to ||b*||; at t5, and so b(*2) = b*,
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Step : Train error - Test error

0:1.0-1.0 1:0.79-0.91 2:0.65-0.84 3:0.54-0.8 4:0.46-0.76
7:0.32-0.7 11:0.23-0.66 16:0.17 - 0.63 24:0.12-0.6 37:0.08-0.58

55:0.06 - 0.56 82:0.04-0.55 123:0.03-0.54 184 :0.01-0.54 275:0.01-0.54

- r -
u

412 :0.0-0.54 616 :0.0-0.54 920:0.0-0.54 2100:0.0-0.54 38600 : 0.0 -0.52

106500:0.0-0.5 208000:0.0-0.46  359600:0.0-0.42 586100:0.0-0.37 924500:0.0- 0.3

1430100:0.0-0.21 2185400:0.0-0.09 2722400:0.0-0.0 3313900:0.0-0.0 5000000:0.0-0.0

Figure 37: Reconstruction of a 8 x 8 digit from the MNIST dataset. The figure shows the evolution
of the reconstructed image with the training step ¢.
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transform to b*, scaled by a factor n to ensure consistent normalization:

n—1

1 {27 kt 27k
“(t) =n-R 75 b*[k]ei?™ :E A ¢ fort=0,...,n—1 (92
a*(t)=n e<nk_0 [k]e ) kcos(n —Hpk) or n 92)

keF

[0,7/4, 37 /8, 37 /4, 7] (Figure 38). The evaluation of the errors is shown in Figures [39] and the

We use (n,s) = (100,5), F = {10,25,40,75,95}, A = [1.0,0.8,1.2,1.5,0.5] and ¢ =
39
evolution of the reconstructed signal as a function of the training steps is shown in Figure 40
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Figure 38: Reconstruction of a sinusoidal signal a*(t) = >, . » Ay cos (%t + gak) with a sparse
representation b*(k) = Agel?* - 1 (k € F), where (n, s) = (100, 5), F = {10, 25,40, 75,95},
A=11.0,0.8,1.2,1.5,0.5] and ¢ = [0, 7/4, 37 /8,37 /4, ].
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Figure 39: Reconstruction of a sinusoidal signal. The figures show the relative errors, gradient ratio,
and the norm ||b(")||; (right). G5, (b)) dominates 3,h(b®)) until memorization, i.e.
|B1h(b®)||/]|Gp,(b1)|| < 1 for all ¢ < t,. From memorization 3;h(b®)) dominates and make
[b®)||; converge to ||b*||; at to, and so b(*2) = b*.
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Figure 40: Reconstruction of a sinusoidal signal. The figure shows the evolution of the reconstructed
image with the training step ¢.

C.12.3 RECOVERY OF SPARSE POLYNOMIAL

We consider a polynomial p* : R™ — R define by p*(x) = x ' M*x+m*'x = (x®x) " vec M* +
m*Tx = a*T¢(x) with a* = [vec(M*) m*] € Rt and ¢(x) = [x ®x x| € Rm(m+1),
To well define p*, we make M* upper triangular (Mj; = 0 for j < 1) so that p*(x) =
doimy 2o Mxix; + 30" mix;. This function has n = W +m= % parameters,
and write p*(x) = a* T ¢(x) with a* = [M;, M3y, ..., M, , Mg, ..., M, mj,...,m%] €
R™ and
q(X) = [X%7X1X27 sy X1Xmy,
2
X9, X2X3, ..., X2Xm, (93)

2 n
xm,xl,xQ,...,xm] €eR

We sample s < n of the n parameters iid from A(0,1/n) and set the remaining to 0. Also,
x YN (0,1/n).
There are two ways to have grokking on this problem :

* We can iid sample N inputs output pair {(x;, p*(x;))}; and optimize the parameters of
n n n .
astudent p(x) = > ;= >0, My;xix; + 3 0;_; m;X; on them (see Sectlonfor more

details).

* Or we consider that we are dealing with a compressed sensing problem, with the sparse
signal a* € R™ and the measurements given by ¢g(x) € R™ for all x € R™. We optimized
this version and observed grokking (Figure {T).
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Figure 41: Reconstruction of a sparse polynomial p*(x) = > i, 37" Mfixix; 4+ 31" mfx;.

D TENSOR FACTORIZATION

D.1 MATRIX SENSING

Matrix sensing seeks to recover a low rank matrix A* € R™*"2 from N measurement matri-
ces {X; € R™*"2},.(yy and measures y* = (tr(XiTA*))iE[N]. We have y; = tr(X/ A*) =
vee(X;) T vec(A*) = Frec(ar)(vec(X;)). This gives us a compressed sensing problem, with the sig-
nal vector vec(A*) € R™" and the measurement matrix X = [vec(X;)];e(ny € RV*™ "2, In fact,
under full SVD A* = U*X*V*T, we have a* = vec(A*) = ®b*; where b* = vec(X*) € R™1"2,
which is sparse since ||b*||p = rank(A*) < min(ni,n2) < ning; and & = V* @ U* €
Rmim2xmin2 which has orthonormal column since @'® = (V*TV*) @ (U*TU*) = I,,,p,,. We
have X = X.

D.2 MATRIX COMPLETION

For a matrix completion problem with matrix A* € R™*"2 we have N measurement vectors
) %@ : ‘ (DT pxx (@ @ o xM) " .
(XZ- , X, ) € R™ x R™ and measures y; = X;’ A*X;” = (Xz ® X, ) vec(A*) =

Free(a®) (X§2) ® X§1)>, ie. y* = (X@ e XM) vec(A*) = Free(as) (X o X1)). This gives
us a compressed sensing problem, with the signal vector vec(A*) € R™"2 and the measurement
matrix X = X(?) ¢ X(1) ¢ RN*m172 Standard matrix completion is usually defined as recovering
missing elements of a higher-order tensor from its incomplete observation. This is equivalent to
requiring ng) to be selection vectors for all k € [2], i.e. ng) is the s(i, k)™ vector of the canonical
basis of R™* for a certain s(i, k) € [ny]. This make each X; = XEQ) ® XV a selection vector in

R”, and X = X(?) ¢ X(1) a selection matrix in RV*™, so that y} = A1) st € [N]. So, in

this formulation, each ng) is a sample from the columns of |,,, . Note that under a change of basis
XM = POXP we have 37 = (0, P®)) yr, thatis 3* = y* (®§:1P(k’))T. A less standard
formulation of the matrix completion task requires each ng) to be a sample from an orthonormal
basis, i.e., Xl(-k) is a sample from the columns of V(¥) ¢ R™ 7 with VIR TV = | We
let ng) be the s(i, k)™ column of V(¥) for a certain s(i, k) € [ng]. Then y; = A* (1) sik)
with A* = A* x; V) x5, V) So, any result state of A* in the standard formulation where the
measurement vectors are selection vectors is valid for the tensor A*.

If we switch to a tensor A* € RM*n2xxXnx e will have N vectors of measurements
(Xgl),Xl(?),--- 7XEK)) € R™ x R™ x --- x R"™® Vi € [N] and the measures y; =
Zj17j2:"' JK Ajla"' ,jKXz(’,l])lxz('?J')2 e XS’IJ{i = (Xz('K) ® Xz('Kil) ®-® X§1)>T Vecc(A)’ ie.
y* = Xvecc(A*) with vecc(A*) = A*E-D c R and X = X(K) ¢ X(K-1) o ... e X(1) ¢
RNxn: p = Hle ng. Standard tensor completion is usually defined as recovering missing
elements of a higher-order tensor from its incomplete observation. This is equivalent to re-
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)

quiring X( to be selection vectors for all & € [K], i.e. X(k) = 0js@i,k) Vi, Jj for a cer-

tain s(i,k) € [ng] ( X( ) is the s(i, k)" vector of the canonical basis of R"*). This make

each X; = ®k:KXZ(-k) a selection vector in R”, and X = e} . X¥) a selection matrix in

(k)

RN*n | 5o that y; = A;‘(“) sl K)Vi € [N]. So, in this formulation, each X;"’ is a sam-

ple from the columns of |,,. Note that under a change of basis Xik) = P(k)XEk), we have
= (@K, P®) yr, thatis §* = y* (®f:1P(k))T. A less standard formulation of the tensor
completion task requires each X(k) to be a sample from an orthonormal basis V(¥) = {v,ink)} k€[n]

(i.e. vgn’“) ("’“ = 5;;). Welet X = (?k,)c) Vi for a certain s(i, k) € [ng]. We can write

vim) = P(k)eén’“) with P(*) = V(¥ ¢ Rm+X7 the base change matrix from the canonical basis

to V(*), which contains in each column ¢ the coordinate of vé”’“) in {e,(cn’“)}ke[nk]. So ng) =

P(k)e(”k) and v = ®1 X(k) T A*) = 1 P(k) (nk) T A*) =
s(i,k)’ Yi k=K vecc(A”) Op=x €5(4,k) vecc(A)

n T . ne) \ T T .
((@L:KPUC)) (®,1€:Kei(i'f,)€))> vecc(A*) = (®}, Kei(k))) (®L_xP®) vecc(A*) =
T - - -
(®,1€=Keg?ik])€)) vecc (A*) = A% (i,1), s(i,K) With A" = A x; PW xy - xx PE) So,
any result state of A* in the standard formulation where the measurement vectors are selection
vectors is valid for the tensor A*.

Let us assume K = 2 in the following. Assume the target matrix A* has rank r. Then it has
r(ny +ng — r) degree of freedonﬂ and we need to observe at least r(nq +ny — r) entries for perfect
recovery. This bound can be improved by considering the structure of A*. Let A* = U*S*V*T be
the full SVD of A*. As observed above, we are dealing with a compressed sensing problem with
the signal vector a* = vecc(A*) = ®b*; where b* = vecc(X*) € R™"2, which is sparse since
[[b*]lo = 7 < min(ng, n2) < ning; and @ = V* @ U* € R™"2X™"2 which has orthonormal
column since @7 ® = (V*TV*) @ (U*TU*) = l,,,,,. We have X = X& = X o X with
X® = XOU* and X@ = X@)VH

D.3 GENERAL FRAMEWORK

Given a low rank r matrix A* € R"1*"2_ 3 measurement matrix X € RVX"172; we aim to solve the
following problem for A € R™t*"2;

(P4) Minimize rank(A) subject to || Frec(a) (X) —y*ll2 <€ (94)

where y* = Fiecax) (X) + £ are the measures and ¢ an upper bound on the size of the error term
¢ € RY, < e. As in the compressed sensing problem, this is NP-hard. The usual convex
approach for matrix completion is to solve the following problem since the trace norm is a convex
relaxation of the rank,

(P5) Minimize ||A ||, = ZJZ-(A) subject to || Frec(a) (X) —y*[l2 <€ 95)

We find the minimum nuclear norm solution since it is equivalent to minimizing the ¢; norm of the
corresponding sparse b in the sparse basis (the tensor product of the right and left singular vectors)
for the solution A (low-rank solution). That said, many results obtained for compressed sensing can
be translated to matrix completion. The main difference from standard compressed sensing is that the
sparse basis is optimized jointly (and implicitly) with the signal’s coordinate in that basis.

5The first 7 columns of U* form an orthonormal basis for a r-dimensional subspace of R™* (the columns
space of A™). Specifying this requires r(n1 — r) parameters. Similarly, the first » columns of V* form an
orthonormal basis for a r-dimensional subspace of R™? (the rows space of A*), and specifying this requires
r(nz — r) parameters. The r non-zero singular values are independent parameters. Thus, specifying them
requires 7 parameters.

X = (X(Q) OX(I)) (V'eU") = X® o XM since X; = (vr ®U*) (X(Q) oX(l))i =
(VT oUT) (XEQ) ® Xﬁ”) _ (V*TXEQ))QQ(U*TXEI)) ( ) (U X 1>)Z =X@Pex®
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D.4 THE CONTROL PARAMETERS

In this sub-section, we assume standard matrix completion. But the theories outlined here also apply
to the general framework. The theory gives the minimal number of observations that guarantee A* to
be a unique solution to problem (Ps) and allow perfect recovery of A* with fewer samples (Candés
& Tao| 2010; |Candes & Recht, 2012 |Chen et al.,2014). Generally, the lower bound on NV looks like

N > Cmax(ny,ns)? (7’" log® (max(ni,n2)) + log %) where 7) is the percentage of error (i.e N

guaranteed perfect recovery with probability at least 1 — 7)), a > 0, 8 > 0, v > 0 are constant, and
C > 0 a universal constant. For example, in/Candes & Recht (2012), («, 8,v) = (1, 1.2, 1) for small
rank r < max(ny,n9)%2, and 8 = 1.25 for any rank. The term max(ny, nz) log (max(ny,ns))
is due to the coupon collector effect since to recover an unknown matrix, one needs at least one
observation per row and one observation per column (Candes & Recht, [2012).

Definition D.1 (Random orthogonal model (Candes & Recht, [2012)). For a given r, we generate two
orthonormal matrices U* € R™*" and V* € R™*" with columns selected uniformly at random
among all families of r orthonormal vectors; and a diagonal matrix 2* with only the first » diagonal
element non-zero (with no assumptions about the singular values), then set A* = U*X*V* T,

Unless otherwise specified, we default the nonzero singular values to 1. We have the following result
about the standard formulation for such matrices under the absence of noise.

Theorem D.1 (Theorem 1.1, (Candes & Recht (2012)). Let A* € R™*"™2 be a matrix of rank r
sampled from the random orthogonal model, and put n = max(ni,ns). Suppose we observe N
entries of A* with locations sampled uniformly at random. Then there are numerical constants C'
and ¢ such that if N > Cn®/*rlog (n), the minimizer to the problem (Ps) is unique and equal to
A* with probability at least 1 — c/n?; that is to say, the semidenite program (Ps) recovers all the
entries of A* with no error. In addition, if r < n'/®, then the recovery is exact with probability at
least 1 — c¢/n® provided that N > Cn®/®rlog (n).

Assume for example A* = e\ e{" for (k, ) € [n1] x [ns]. Even if this matrix ranks at 1, it has
only zeros everywhere except 1 at position (4, j), so we have very little chance of reconstructing it in

a high dimension by observing a portion of its inputs. The only way to guarantee observation of the

input at position (4, ) is to choose measurements coherently with its singular basis e,(cM) ® egnl).

This idea is formulated more generally below.

Definition D.2. Let U be a subspace of R™ of dimension r and Py be the orthogonal projection onto
(n) 12

)

U. Then, the coherence of U vis-a-vis a basis {ugn)}ie[n] is defined by ;4(U) = * max; [|[Pyu
We have 1 < pu(U) < n/r (Candes & Recht, [2012).

For a matrix A = UXVT € R™*"2 under the compact SVD, the projection on the left singular
value is x — UU 'x, and |[UU "x||2 = ||U "x||2 for all x (similarly for the right singular value).
We have the following definition of coherence, which considers each matrix entry.

Definition D.3 (Local coherence & Leverage score). Let A = ULV T € R™"*"2 be the compact
SVD of a matrix A of rank r. The local coherences of A are defined by

ny n ni .
pi(A) = “HOTe™|P = XU Vi€ ] o6

N2 g n2 .
vi(A) = ZIVTel™|? = Z2[V,.[? V) € [nl

with p; for row ¢ and v; for row j.

The quantities ||UTez(»"1) ||? and ||VTe,E"2) ||? are the leverage score of A (Chen et al., 2014), which
indicate how “aligned” each row or column of the original data matrix is with the principal components
(the columns of U or V). For each row i, p;(A) measures how much this row vector projects onto the
subspace spanned by the first r left singular vectors in U. Rows with high leverage scores contribute
more to the low-rank structure of A and are more “influential” in representing A. Similarly, v;(A)
measures the coherence of each column j in A with respect to the low-rank subspace formed by the
right singular vectors in V. High values indicate columns well-aligned with the principal directions
of A and play a significant role in capturing its structure. Matrices with uniformly low coherence
scores have rows and columns that are evenly influential. In contrast, matrices with high coherence
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scores for certain rows or columns have a few specific rows or columns that dominate the low-rank
structure.

In the general formulation, this definition can be extended to the set from which the measures are
chosen. But in general, it leads back to the standard formulation under the change of basis.
Definition D.4 (Generalize local coherence & Leverage score). We generalize the notion of coherence
to any arbitrary set of vectors U(™) = {ugnl)}iewl] € RM*Ni and V(n2) = {v§”2)}jem2} €
R™2*N2 and defined the generalized local coherences as

n na .
pi(A) = XU i€ (V]

N
n .
vi(A) = Z|VIVII? V) € [Ny
Suppose the sets U™ and V(2) are be orthonormal basis (i.e. (N1, N2) = (nq,n9),
T T ,
ugnz) ug““) = ;3 and v§"1) vl(nl) = ;). We can write ugnl) = P(l)egm) and v§"2) = P(2)e§7l2)

with P(¥) € R™ X" the base change matrix from the canonical basis to U(™) and V("2) respectively.
So

ni n 1+ ni r¢ .
pi(A) = “H[UTPWel™)|2 = ZTTe™)|” = wi(A) Vi€ [N] o8
N2 n n2 v N3 e .

vi(A) = VTPl |2 = Z2VTel™|? = v(A) V) e [Ny

with A = A x; P() x, P = POTAP® = POTUS (PATV)' = USVT. That said,
any result stated in the standard formulation for A is valid for A under the general orthonormal
formulation.

Candes & Taol (2010) and |Candes & Recht (2012) used mainly an upper bound py on p;
and v;; po > max (maxjep,,) wi(A*), max;c(,,) vi(A*)), and define a constant yy such

that the max; ; [U*V*T]” = max; j Zk Uka;‘ k S H14/ nlrng . Since ’Zk UjkV;k S
T

\/Zk U:;i\/Zk VL =105V 2 = S Vii(A)vi(A%) < =g for all d, j; we
can just take 7 > po+/r. From this, Candes & Recht (2012) show that if the coherence g is low,
few samples are required to recover A*.

Theorem D.2 (Theorem 1.3, Candes & Recht (2012)). Let A* € R™*™2 be a matrix of rank r
sampled from the random orthogonal model, and put n = max(ni,nz). Suppose we observe N
entries of A* with locations sampled uniformly at random. Then there are numerical constants C'

and ¢ such that if N > C max (,u%, e s uoni) nrBlog (n) for some B > 2, the minimizer to the

problem (Ps) is unique and equal to A* with probability at least 1 —c/n>. In addition, ifr < n'/® /g,
then the recovery is exact with probability at least 1 — ¢/n? provided that N > CuonS/°rBlog (n).

Chen et al.|(2014) show that sampling the element at position (i, j) with probability p;; € Q(u; +v;)
allows perfect recovery of A* with fewer samples, and called such sampling strategies local coherence
sampling.

Theorem D.3 (Theorem 3.2 and Corollary 3.3, |Chen et al.| (2014)). Let A* € R™*"2 pe
a matrix of rank r with local coherence {,ui,uj}ie[nl]’je[nﬂ. There are universal constant
co,C1,C2 > 0 such that if each element (i, j) is independently observed with probability p;; >

U log?
max {min {co w’*’;ﬁiiéﬁﬂgz)ﬁ"” , 1} , min(nim)m } then A* is the unique optimal solution of

the nuclear minimization problem (Ps) with probability at least 1 — ¢1/(ny + n2)°2, for a number of
sample N € O (max(nl, ng)rlog2(n1 + ng))

Given N and 7 € [0, 1], to control the coherence,

 For matrix factorization, we select the first Ny = 7N examples with the highest values
of p;(A*) + v;(A*), and select the remaining (1 — 7)N examples uniformly among the
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remaining. The positions selected are one-hot encoded in dimensions n; (for row positions)
and ny (for column positions) to have X (1) and X(?), respectively.

+ For matrix sensing, we generate X1 (resp. X(?)) by taking the first N; = min(|7N],n,)
(resp. N1 = min(|7N |, nz)) rows from the first columns of U* (resp. V*) and the elements
of the remaining N2 = N — N; rows iid from the Gaussian distribution A/(0, 0%) with
o =1/ny (resp. 0 = 1/ny).

The higher 7 (and so N), the less incoherence between the measures (rows of X = X(2) ¢ X(1))
and ® = V* @ U*.

D.5 LINEAR PROGRAMMING

We fix n; = ny = 10% and &€ = 0 (no noise) and solve for different (V, r, 7) the convex problem (Ps)
using standard linear programming (we use the cvxpy library). As r and/or 7 increases, the number
of samples needs for perfect recovery decreases. The relative recovery error ||A — A*||2/||A*||2
obtained is usually of the order of 10~% and gives us a basis for comparison with other methods. We
do not include figures to save space.

D.6 SUBGRADIENT DESCENT

We write a for vec(A) and b for vec(X) under full SVD A = ULV € R"1*"2, The matrix is
A* = U*S*V*T € Rm*"2 the signal is a* = vec(A*), the sparse basis is @ = V* @ U* €
Rmn2xmnz the sparse coordinates are b* = vec(X*). Let y(A) = Fa(X) = X vec(A). We have
y* = Far(X) + & = Fp- (X) + £, and want to minimize f(A) = gg,(A) + B.||A||. using gradient
descent, where

1 . p
95 (A) = iy (A) = 73 + 2] Al

1 1
— 5aT:xT:Xa _ y*TXa+ 5y,*—r),* 4 %aTa

|

We write F'(A) := Gg,(A) + B.h(A) with

T(XTX 4 Baln)a— (XTXa® + XT€) "a+ §|Xa" +£[3
(a—a*)T (XTX+Bl,) (a—a*) — (XT€— Boa*) (a—a*)+ L1)|¢]3 + 2la*|3
(99)

1a
2a
1
2

T _ T * T
vecGra(A) i= Vagiy () = XT(y =y + foa = { (o Do a - (UXGEXE)

(100)

and h(A) € 9||A. = {UVT + W, |[W|25o < LUTW = 0, WV = 0} any subgradient of
|All., with A = UXV T under the compact SVD [/, We use h(A) UV’ for simplicity and
without loss of generality.

Suppose we start at some A1) := (I, ., or A1) X “d ¢N(0,1/n1ns), with ¢ > 0 the initialization
scale. Using F() := F(A(®), the subgradient update rule is

ACHD — A® _ o, FO w1 (101)

with o the learning rate at step t. Using a = vec A, we have

al™) = a® _ o, vec F(A®)
=al) — q, (vec Gg, (A) + B. vec(h(A)))
That is, using h®) = Vec(h(A(ff)))’
{ alttl) = [I, — a, (XTX + fl,)] a® + o, (X" Xa* + X T¢) — fuah®)

at) —at = [l — @ (XTX 4 ola)] () —a) 4 a0 (XT€ = ra’) = fuouh®)
(103)

(102)

"The norm ||A||. is not differentiable everywhere because the singular values of A can be non-differentiable
at points where they have multiplicities (e.g., when the singular values are not distinct).
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We let f* = f(A*) = B A"« + Z|a*|3 + €] and f® = f(A®). Since the sub-
gradient method is not a descent method, we let Al()?sl = arg minAe{A(t/>.t/<t fA) =
arg minAE{Au_l) Am} f(A) be the best point found so far at step ¢, and fb(;)t = f(Aégt) =
best ’

min { (7, O}, This AL,
chosen appropriately, as the following theorem shows.
Theorem D.4. Suppose there exists a constant L > 0 such that |F(A)|lr < L for all A. Let

AW = argminf(A)) and f,g?st = f(A(t) ). Then, for every T > 1, féz;)t — f(A*) <

can be made n-optimal for an arbitrary precision 7 if the step rule is

best best
1<t'<t
A A F+L2 T, of
23 ’
Proof. Similar to Theorem 0O

That said, many step size rules lead to different accuracy.
Corollary D.1. With a constant step size, oy = «,

(1) _ A*2 2T a2
(1) e A [ + LT
fbest f — 21T o

With a square summable but not summable step size rule, Y, a? < oo and Y, oy = 00, we have

. T
(T) _fr< AW — A*E+L2Y_, o

— e LPa/2 (104)

< —T500 0 (105)
best 9 23;1 o 00
As in section|C.6]
e Welet X = UX2V T under the compact SVD decomposition, with & = diag(oy) kelr]»
where r = rank(X) and oppax = 01 > - 0k > Ot1 - * > Omin = 0 > Opy1 = -+ =0
* We assume the step size a; = « satisfies 0 < a < ﬁ

* We define p,, := Hln — oy (XTX + Bgln) Hp_)p for all p > 0.

D.6.1 MEMORIZATION

We will show that the update first moves to the least square solution of the problem, & = vec A=
(XTX 4 Bol,) X Ty = V(S 4 Bol) ™! (EVTb* + E%UTg) (Theorem TODO). If 3, is t0o
high, the subgradient term h(A) dominates early, and there is no convergence, i.e., no memorization

nor generalization (Theorem . This a can memorize (Theorem TODO), but cannot generalize for
N < n (Theorem TODO).

Theorem D.5 (Oscillatory Behavior for Large 3.). Let A(Y) € R™*"2 full rank. Consider the
subgradient descent update
ACHD — A _ g, (vAgﬁz (A®) + ﬁ*h(A(t))> (106)

with a fixed step size oy = o > 0, where gg,(A) = 3| Xvec A — y*[|3 + %ZHAH?F and h(A) €
Al If B > —omaxtB2  ypon the 0, -term dominates the updates, causing the sequence b®) to

min(ni,n2)

exhibit oscillatory behavior without convergence to a minimizer of f(A) = gg,(A) + B.||A]1.

Proof. We use lemmawith L= ||XTX+52 Lalla—e = Jmax(XTX) + B2 (operator norm) be the
Lipschitz constant for vec G, (A) = vec Vagp, (A) = XT (Xa—y*)+B.a= (XX + fl,) a—
(XTXa* + X T¢), since || vec G, (U) — vec G, (V) |2 < L|| vec U — vec V|5 forall U, V.

When the data-fitting gradient V 5 g, (A(")) is negligible, the singular direction of 3.h(A®) (which
depends on the singular vectors of A (")) can flip across iterations in a way that prevents stable
convergence (see Theorem[D.12).

O
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Lemma D.6. Let f(A) = g(A) + B1]|All« be a convex function from R™*"2 to R where g has a
] : ient with Lipschi (U)=Vg(V)|r < LIU-V|F

Sforall U,V € R™*"2_ Consider the subgradient descent update
AFD — A0 (Vg(A(t)) + B*h(A(t))) (107)

with a fixed step size o > 0, where h(A®) € 9||AD||,. If B, > \/%) then the {,-term
min(ni,nz

dominates the updates, causing the sequence {A(t)}t>1 to exhibit oscillatory behavior without

convergence to a minimizer of f. Consequently, neither memorization nor generalization is achieved,

and both training and test errors oscillate above a suboptimal level.

Proof Sketch. Since g has a Lipschitz continuous gradient with constant L, (AD)|r <
L for all t when A() is within a suitable bounded region. The subgradient h(A(t)) of
|A®)]|, satisfy |h(A®)|. =~ /min(ny,nz) at the beginning of training (full rank matrix), so
IR(AD) g > [|[R(AD)]|,/rank(h(A®)) ~ \/min(n;,ny)/ min(ny,ne) = /min(ni, ng). If
By > ——L—— then

min(ni,ns)
Bl A lp > Buy/min(ni, no) > L > | Vg(A®)|p (108)

This inequality implies that the update is dominated by the /,-term:
A+ o — af.h(AW) (109)

with the influence of Vg(A(t)) becoming negligible, making the iterates swing sharply depending on
the current singular-vector configuration (see Theorem [D.12)). This “over-regularization” effect is
akin to the /1 case in vector problems, where too large causes step-to-step sign flipping. In the matrix
setting, it induces rank-structure flipping or oscillations.

O
Lemma D.7. For all p > 0 such that p, < 1, we have
A A 1—p} . afB.n/P
la® — all, < pblla® — &, + agn?——L2 < pla® — ), + L v =1 (110)
— Pp 1 —pp
In particular,
R ) 1— pt . aBv/n
Ja® — all, < pla® — alls + afuvi—2 < pa® —al, + LY w> 1
1—p2 1—p2
and
(t) _ 3 t 1.1 _ 24 1 —pk t a1 _ 4 afi
[~ all < plfa® — all + 0 =02 <l )~ a4 7 W21 (1)

Proof. The proof is similar to using tha fact that || vec(h(A®)||, < (nyn2)'/? = n!/P for all
and p > 0 (Lemma [D.TT) O

Theorem D.8. Let p > 0 such that p, < 1. Define
aM_a
hl (1 + (1 Z)IBH nl/p ”P)

t1:= | — 113
' In (pp) 1)

Then for all t > t4,

1-— p; < 2aﬁ*n1/p

|a® — &, < 2a8,n/P < (114)
~ Pp L—=pp
and the prediction error for t > t, is bounded by
Y * 1 - pt A *
||Xa(t) =¥ < 208,n'/? — - ||X||pﬁp + [ Xa -yl
(115)

aﬁ*
> ||X||pﬁp + [ Xa -y Hp

63



Under review as a conference paper at ICLR 2025

Proof. The proof is similar to[C.8] O
Corollary D.2. Let p > 0 such that p, < 1. Define

1n<(1—p>ua<1>—éup>
1
ey iflla® ~al, > £

t] = In(pp) I=pp >t (116)
otherwise
Then for all t > t,
1/p
Ja® — ), < 2277 (a17)
L—pp
and the prediction error for t > t1 is bounded by
N . 2a3,nt/P Ga .
[Ra® —y*y < S0 Ry + [Ra-y° (118)
p
Proof. The proof is similar to[C.2] O

Theorem D.9. Assume E[€] = 0 and Cov(§) = UglN. Then

r 2 r 2
Ee [IIXa —y"|3] = Z( Paoi ) (VTa*)?JrZ( B2 ) 024+ 02N —7) (119)
i=1

—\oi+fe o; + B2

Proof. The proof is similar to O
Theorem D.10. For N < n,

la — a3 > [|(1, — VV T a'||3 (120)
In particular, if a* has a nonzero component orthogonal to Col(V), then & cannot perfectly generalize
to a*.
Proof. The proof is similar to |C.10) O
Lemma D.11. Let A € R™*"2. We have | vec(H)||, < (n1n2)/? for all H € 9||A||. and p > 0.

Proof. Let H € 0||Al|«. Then ||H]|2—,2 < 1. So by the definition of the spectral (operator) norm,
we have |[HJ|22 = sup, Hll\i)ﬁ!z = Omax(H) < 1. Taking x = e§712), the j-th standard basis

vector in R™2, we obtain ||H. ;|2 = ||He(,n2)||2 < 1; which implied H;; < |[H. ;|2 < 1. So

)|, <
[ vee(ED), = (20, 52, [Hp) T <

< (ning)'/”.

D.6.2 GENERALIZATION

We now turn our attention to the generalization delay. We analyse how the iterate A (®) transitions

from memorizing the training data (A(Y) ~ A)to converging toward the low rank ground truth A*.
We focus on quantifying the additional number of iterations At required for this phase and bounding
the generalization error ||A() — A*||,, ast — oc.

Theorem D.12. Given a > 0 and AV = UNSOVIOT ¢ R X2 (compact SVD) with ¥ =
diag (a%l), .. ,051)), let

AT — A® _ uyOT — y® (zm - alm) VO foralit > 1 (121)

where r; = rank(A®)).
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1. A point A is stationary for this dynamical system if and only if || A |22 = omax(A) < .
e)
2. |A®W|ae < « if and only if t > L%J

3pmmu>LM%#ﬁLn:M¢| @”mezﬂ

Proof. Equation[I21]| writes

Tt41
A+ — D)y T Z DD DT
P s Y
—2:(t a)u)vyT (122)
= Z \o(t) | - sign(o; ®_ )U_(t»)V.@—r
This implies
(t+1) = 0! (®) —al Vielr] (123)

)

So starting at o, — Ul(t)

, each o; decay at each step by « until o* € [0, @), and start oscillating

1)
between o and o — o. It starts doing so when ¢ > ¢; := LU; = max; t;. O
o . In 1+(lii);suailf)/ipé”p> R 1—p
Like in section |C.6.2} after t; = |— ln(p;) , ||a(t) —al, < 2045*711/”17 P <

Q8D aﬁ = " (Theorem ID_I) and

Ivec G, (AM)]|, = || vec Gg, (A")) — vec G, (A, since G, (A) = 0
<X TX + Baln|lpspll vec A® — vec All,

1-—
< 208, nl/p||XTX + Balullpp 1 — Zp (124)

< 208}

S—- ||XTX+52|n||p%p

p

So, this gradient can be made much smaller than the subgradient term by choosing a3, sufficiently
small. After time ¢;, the contribution of the gradient G, to the update of A® is dominated by the
{,—regularization term. Specifically, the update rule approximates

AUD ~x AD _ o, UOVOT (125)
By theorem [D.12] this converge to a solution with operator norm bound by af3, after additional
At = © (LU“L(A)J) steps. Note that when | A(®)]||, becomes too small, A(Y) ~ A* since for
problem of interest, the minimum nuclear norm solution that fits the data is A* under the low-
rank constraint = rank(A) < min(ny,n9) (and the coherence assumptions on X with respect
to the eigenbasis of A*). The smaller af,, the longer it take to recover A*, and the smaller
is the error ||[A(Y) — A*||., when t — oco. Like in linear sparse recovery, if 3, is choose such
that amaX(A) < af,, then A will get stuck near A, and there will be no generalization after

memorization. So, a bad choice of a non-zero 85 can be detrimental to generalization (it is better to
not use B, on that problem unless the initialization scale is nontrivial).

Generalization appends through a multiscale singular value decay phenomenon. The small singular
value after memorization converges to {o,0 < o < af,}, followed by the next smaller one until
the larger one. So, for N < njng, if we just regularize the Frobenius norm (standard ¢2) without
regularizing the nuclear norm (¢,.), we can’t reach the optimal solution. On the other hand, when N
is large enough, regularizing the nuclear norm is sufficient.
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By carefully choosing « and 31, one can balance the speed of generalization (smaller At) with the
accuracy of recovery (smaller ||b® — b*||,,). Appropriate step rule also guaranteed the converge of
D@1 to [[b*]|s.

Theorem D.13. Forall T' € N*, we have

* T *
AW — A*[2 4+ (maxi<i<7 |[VAF(AD)[2) 3, oF n €113 + B2||A*||Z

| gy
min (A0 - A7) <

1<i<T 28 31, 2.
(126)
Proof. The proof is similar to[C.13] O

So, when }~,a? < coand )",y = o0 (e.g. ¢ = a/(b+1t),a > 0and b > 0), [AD|; —
[|[A*|l1 = 0as T — oo, for S = 0 in the noiseless setting.

D.6.3 ADDITIONNAL EXPERIMENTS

We optimize the noiseless matrix completion problem using the subgradient descent method with
(n1,n2,7m, N,(, B2) = (10,10,2,70,10~6,0) for different values of a and 3,. As expected, larger o
and/or f3, lead to fast convergence and do so at a suboptimal value of the test error (Figure f#2).

a=0.01 a=0.05 a=0.1
1 107t ‘ T 10~ ‘ ‘ 107
10-1 . s 0 1071 i : — w107 i } —f— 102
o \ | - \ \ I (BN A\
5 10 \ = 07 ol IIXvec@) =y Il £ 1yl S| BT . po-a ) —— IIXvec@O) =y I/ llyTI Sl | T
i \ [ —— 10+ - IO =Ale / [IA" ]I -1 104> - IO =A"Ie 1 1IA" ]I T 10+
5] —— ||Xvec(A) —y* TP | ~ \ . i . L ALY T
1051 [IXvec( ‘) y ”2‘/ e —4 10-5 \ - o 10-° \ 0
- [IAQ—A|le [ JIA7 I \ | \
} L — ‘ e 106 o 107 o 10
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Figure 42: Training error ||X vec A®) — y*||5/||y* |2 and recovery error ||A®) — A*||g/||A*||r as a
function of the learning rate « and the ¢,-regularization coefficient .. Here
(n1,n2,m, N) = (10,10, 2,70)

D.7 PROJECTED SUBGRADIENT

To ensure memorization, we can use the projected subgradient for problem (Ps) of minimizing
|A |« subject to the constraint Fyec o (X) = X vec A = y*, where at each step the update (using
now just 3.h(A) as gradient) is projected onto the constraint set. In our case, the update write
ACD =TT (A® — B, h(A®)) with II the projection on the set {A, X vec A = y*}. Figure
shows the results for a matrix sensing problem.

—_ 10
10-2 r Y 7] 9~
0 I v | B E
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\ l1a®)|.- 2 n , E
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Figure 43: Relative errors, norm || A(®)||,, and evolution of singular value for the projected
subgradient method. G, (A (")) dominates 3,h(A®)) until memorization. From memorization
B.h(A®) dominates and make ||A®)||; converge to ||A*||; at 5, and so A(*2) = A*. Here
(n1,n2,7, N) = (10,10,2,70) and ((, v, B«, B2) = (107,107, 107%,0).
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D.8 PROXIMAL GRADIENT DESCENT AND ITERATIVE SOFT-THRESHOLDING ALGORITHM

Similar to what we derive in section[C.8] we have A — oF(A) =11, (A — aGp,(A)) where I1,, is
the proximal mapping for B — 3. [|B||., Io(A) = argming 5= ||B — A||Z + . [|B||« = Sas. (A)
with S, (A) = Umax(X — v,0)V " the soft-thresholding operator for A = UXV " under SVD,
where max(X — 7, 0),;; = d;; max(X;; — ,0). The final form of the update is then

A = 505 (AD = 0,Ga(AD)) Ve 1 (127)

Figure [44] shows the results for a matrix sensing problem.

100 e T 10° e : !
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Figure 44: Gradient Ratio, relative errors, norm || A(®||,, and evolution of singular value for the
Proximal Gradient Descent. G 5,(A®)) dominates 3,(A (")) until memorization. From

memorization 3,k (A ")) dominates and make || A(*)||; converge to || A*||; at to, and so A(*2) = A*,
Here (n1,n2,7, N) = (10, 10,2,70) and (¢, @, B+, B2) = (107¢,1071,107%,0).

D.9 GROKKING WITHOUT UNDERSTANDING

Like in section [C.9] there is no grokking for N < n when 3, # 0, no matter the value of 8, and

the initialization scale ¢ > 0, A(}) wd ¢N(0,1/n). With a small initialization, 8; is sufficient
for generalization to happen, provided N is large enough and 5 is not very large. If the scale at
initialization is large, B2 is necessary to generalize, but it is not sufficient: because of the large
initialization, a transition is observed in the generalization error during training, corresponding to a
transition in the ¢ norm of the model parameters, but not the recovery error.

D.10 IMPACT OF COHERENCE ON GROKKING: AMPLIFYING GROKKING THROUGH DATA
SELECTION

Above, we introduce the parameter 7 € [0, 1] that control the incoherence between the measures
{Xi}ien] and the sparse basis (dictionary) {®. ;};e[n), With ® = V* @ U* € R™"2xX"1n2 and
X = X® o X(1) ¢ RVXm1m2 Unlike compressed sensing (Section , where large values of 7
are detrimental to generalization, here, as 7 — 1, performance improves, and the number of examples
required to generalize decreases exponentially, as does the time it takes the models to do so (Figures
@] and Figures @ Note that here, for matrix completion, for a fixed 7, we select the first 7NV
examples with the highest values of 1;(A*) + v;(A*), and select the remaining (1 — 7)N examples
at random, uniformly.

D.11 DEEP MATRIX FACTORIZATION: THE EFFECT OF OVERPARAMETRIZATION

Let now use the parameterization A = Hle Ay, with 4, € Rm>d A, € R4%"2 and A; € R%*4
for all ¢ € (1,L). This corresponds to a linear network with L layers, where each hidden layer
has the parameter .4;—with this, increasing L leads to overparameterization without altering the
expressiveness of the function class A — Fa (x) = x ' vec A, since the model remains linear with
respect to the input x. Like in compressed sensing, there is no need for £, (5. = 0) to generalize
when L > 2 (and the initialization scale is small), unlike the shallow case (L. = 1). This is an
observation already made and proven in previous art. (Gunasekar et al., 2017} |Arora et al.l [2019;
Gidel et al.l 2019; Gissin et al., [2019; Razin & Cohen, [2020; [Li et al.| [2020). Gunasekar et al.| (2017);
Arora et al.|(2019) show increasing L implicitly bias A toward a low-rank solution, which oftentimes
leads to more accurate recovery for sufficiently large N. In fact, with depth, the update for the
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Figure 45: Training and error || X vec A® — y*||5/|ly*||2 and recovery error |[A®) — A*||5/||A* ||
as a function of the number of sample N and the coherence parameter 7 € [0, 1]. Here
(nla na, T, Q, ﬂlv 627 C) = (1()’ 10, 27 10_17 10_5) 07 10_6)'
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Figure 46: Training and error | X vec A1) — y*||o/||y*||2 and recovery error

|A2) — A*||5/||A*||¢ (along with ¢; and 5, the memorization and the generalization step) as a
function of the number of sample N and the coherence parameter 7 € [0, 1]. Here
(nla n2, T, Q, ﬂlv 527 C) = (1()’ 10, 2a 10_17 10_5) 07 10_6)'
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whole iterate is similar to the shallow case but with a preconditioner in front of the gradient (like in
section [C.TT). This preconditioner makes it possible to recover the low-rank matrix signal without
any regularization and with fewer samples than in the shallow case (Arora et al.| 2018} [2019)). It
is also shown specifically for this problem that initializing the model very far from the origin and
using a small (but non-zero) weight decay leads to grokking (Lyu et al.| 2023)), i.e., the model first
memorizes the observed entries, then after a long training period, converges to the sought matrices
provided the number of such observe entries is large enough.

We have y(A) = Freca(X) = Xvec A and y* = Frec ax(X) + & = Xvec A* + £, and want to
minimize f(A) = gg,(A) + B. > [ Ak« using gradient descent, where

1
95,(A) = S lly(A) =y 3 + Z [ (128)

Let vec G(A) := 2922) _ XT(y(A) —y*) = X X (vec A — vec A*) — X T£. The gradient for
each Ay is

G (Ay) 1= 295 ()

0Ay
G(A)( Az AL)T + B Ay, fork =1
= (Ag--- Akfl)TG(A)(Ak+1 .. 'AL)T + B2 A, fork e (1,L) (Lemma
(A1 Ap—1) TG(A) + B2 Ay fork=1
(129)
And the update rule for each Ay, is
ALY = A — G (AY) - aBLh(AY)
(130)

T T
= (1-aB)AY —a (H Aﬁ”) G(A®) (H AE“) — B h(A")
i<k i>k
where h(A) € 0| Axll«. We start the optimization at .A,(Cl) i
initialization scale.
Lemma D.14. Let f(A;,--- , AL) = g(A) € Rwith A = Hle Aj, € ROXdL where Ay €

Rdk=1%dx for all k € [L]. We have

N(0,1/n) with ¢ > 0 the

ag A) (.Az .AL) fork =1
aAk (HA> (HA> = ( Akf )T@-‘?(Z;é) (Aps1 - AL)T forke (1,L)
i<k i>k ( T I9g9(A fOi" k=1
(131)
Proof. We have
(A2 ) ®|d0)vecA1 fork =1
RdodL S vec A = (Ak+1 ) (Al Akfl)) vec Ak for k € (17 L) (132)
(lay, ®(.A - Ap_1))vec Ay, fork =1L
So
Ovec A (Ag - AL)" @ g, € Rirdoxcido fork =1
RdOdLXdk,—ldk 3 y — (-Ak+1 . "AL)T ® (-Al i "-Akfl) c Rérdoxdids—1  for k c (LL)
Vee Ak lg, ® (Ay -~ Ap_1) vec Ay, € Rirdoxdrdi— fork =1L
(133)
For Q € R%oxdr
vec A\ T ((Ag--- AL) ® ly,) vec Q fork=1
(8/1) veeQ ={ ((Ags1--AL) @ (A1---Ap_1)") vecQ fork € (1,L)
vee Ak (la, ® (A1 -+~ AL_1)) " vecQ fork =1L (134)
vec (Q(Az---AL) ") fork =1
= vec ((Aq -+ ~Ak71)TQ(~Ak+1 e AL)T) fork € (1,L)
vee ((Aj - ~AL_1)TQ) fork=1L
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So
dg(A) dvec A\ 9g(A) dvecA\ '  9g(A)
dvec Ay <5vecAk) dvecA (3vec.Ak) YA
vec %(.Ag . ~.AL)T> fork =1 (135)
=< vec| (A 'Ak_l)Ta%(:) (Agt1 - "AL)T> fork e (1,L)
vec (Al"'AL—1)T%> fork=1L
O

E BEYONG SPARSE RECOVERY AND MATRIX FACTORIZATION

We will optimize functions of the form f(#) = £(6) + 5(6), where £ is the square loss or cross-
entropy loss function of the considered model on the training data, 6 the set of model parameters, and
2 aregularizer applied to 6. It can be the standard £,, norm or quasi-norm of ¢, the sum of the nuclear
norms of each matrix in 6 (in this case, we call it £,), etc. By normal initialization for a parameter

A € R"*"2 we mean A % A0, 1/ny).
E.1 NON LINEAR TEACHER-STUDENT

We consider a teacher y*(x) = B*g(A*x) from R? to R¢ with r hidden neurons (A* € R"*?
and B* € R*"); where g(z) = max(z,0) and x, A*, rB* “ (0,1). We i.i.d sample N
inputs output pair Dyin = { (X, ¥*(x;))}Y; and optimize the parameters = (A, B) of a student
vo(x) = Bg(Ax) on them, starting from normal initialization, with the loss function £(0) =
+ Zil llyo(xi) — y*(x;)||3 and different regularizer 2,,() for p € {1,2,*}.

For any p € {1, 2, x}, the smaller is o3, the longer is the delay between memorization and general-
ization. See Figures 47| andfor an experiment with (d, r, ¢, N) = (100, 500, 2, 10?).
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Figure 47: Training and test error two layers ReLU teacher-student with ¢; regularization, for
different values of the learning rate v and the ¢; coefficient 8. We can see that the smaller is a3, the
longer is the delay between memorization and generalization.

E.2 DOMAIN SPECIFIC REGULARIZATION

Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019) leverage prior knowledge from
differential equations by incorporating their residuals into the loss function, ensuring that solutions
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Figure 48: Training and test error two layers ReLU teacher-student with ¢, regularization, for
different values of the learning rate «v and the /5 coefficient 5. We can see that the smaller is a3, the
longer is the delay between memorization and generalization.
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Figure 49: Training and test error two layers ReLU teacher-student with ¢, regularization, for
different values of the learning rate « and the /, coefficient 3. We can see that the smaller is a3, the
longer is the delay between memorization and generalization.
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remain consistent with physical laws. Sobolev training (Czarnecki et al.||2017) generalizes this idea
by incorporating not only input-output pairs but also derivatives of the target function. More precisely,

9*y* (x) }
X=Xi ) je[N]

oxk
for k € [K], the goal is to train a neural network yg(x) that approximates both the output and its
derivatives. The loss function extends the standard mean squared error (MSE) to include Sobolev
penalties:

given input-output pairs {(x;,y"(x;)};c () along with known derivatives {

aky*
o )~ T (%3)

(136)

F

1 ol 2, B =
1O) = 5 Y Ivatxs) =y x)IF + 5 DD
i=1 '

data loss Sobolev penalty

The hyperparameter 3 controls the contribution of the derivative alignment term. This penalty ensures
that the model not only fits the data but also respects known smoothness constraints or differential
structure, which is crucial in physics-based applications (Lu et al.|[2021). We consider the two layers
feed forward teacher y*(x) = B*g(A*x) of Section[E.I} and optimize the parameters § = (A, B) of

astudent yy(x) = Bg(Ax) using the sobolev objectify for K = 1, % = B*diag (¢'(A*x)) A*.

For any p € {1, 2, x}, the smaller is o3, the longer is the delay between memorization and general-
ization. See Figure 50| for an experiment with (d, r, ¢, N') = (100, 500, 2, 10?).
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Figure 50: Training and test error two layers ReLU teacher-student with Sobolev training, for
different values of the learning rate « and the ¢, coefficient 3. We can see that the smaller is o3, the
longer is the delay between memorization and generalization.

E.3 ALGORITHMIC DATASET

Consider a binary mathematical operator o on S = Z/pZ for some prime integer p. We want to
predict y* (z) = x10x5 givenx = (21, 22) € S2. The dataset D = {(x, y*(x))|x € S?} is randomly
partitioned into two disjoint and non-empty sets Dyin and Dyy, the training and the validation dataset
respectivelyﬂ Let 7'gain = |Dyain|/|D| be the training data fraction.

For MLP, the logits for = = (xj,r3) are given by y(z1,22) = b® +
WQRyg (b(l)—i—W(l) (E<x1>oE<x2>)), where (z1) stands for the token corresponding to
x1, and E is the embedding matrix for all the symbols in S, g the activation function.
0 = (EEWD b W b)) e Rpxdr x Rd2xdi » Rdz x RP¥d2 x RP are the learnable

81t can be necessary in some contexts to consider the symmetric nature of o, so that |D| = p(p 4 1)/2if o is
symmetric (and we consider &1 o z2 and 2 o x; as the same operation), and p> otherwise.
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parameter, with d; the embedding dimension. For the LSTM, we treat a problem as a sequence
classification problem, i.e., the sequence of tokens (1) (o) (x2)(=) is given to the model and its task
is to predict y* (z1, x2).

We consider addition modulo p = 97 with ry,;, = 40%. For MLP and LSTM, ¢; and ¢, have the
same effect on grokking as /5. For any p € {1,2,x}, the smaller is /3, the longer is the delay
between memorization and generalization. See Figures [51] [52} [53] [54] 53] and 56|

a=0.001 . a=0.01 . a=0.1 .
1.00 : —— = 10 1.00 - - e 10 1.00 f— - —- 10
- | T [ \ g |
1 i
0.75 \\ : we 075 A ': o we 075 i 106
! i by Lk
5 \ ! \ {1 \ — Train [ I}
£ 0.50 ‘ Lt « 0.50 \ i « 0.50] o st T @
w \ i 107 | E: 107 es ! | o 107
0.25 — Train i — 0.25 — Train 1 0.25 \ T
1, I il
o= Test i ’ ---- Test | [0 - \ Il i -
0.00+ ‘ s B o000t i et | F° 000 ithid |
10! 103 10! 103 10! 103
Steps (t) Steps (t) Steps (t)

Figure 51: Training and test error (1 — Accuray ) of a Multi-layer perceptron trained on the
algorithmic dataset with ¢; regularization for different values of the learning rate « and the ¢
coefficient 5. We can see that the smaller is a3, the longer is the delay between memorization and

generalization.
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Figure 52: Training and test error (1 — Accuray ) of a Multi-layer perceptron trained on the
algorithmic dataset with ¢ regularization for different values of the learning rate v and the ¢
coefficient 5. We can see that the smaller is a3, the longer is the delay between memorization and

generalization.
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Figure 53: Training and test error (1 — Accuray ) of a Multi-layer perceptron trained on the
algorithmic dataset with ¢, regularization for different values of the learning rate v and the .
coefficient 5. We can see that the smaller is a3, the longer is the delay between memorization and
generalization.

E.4 IMAGE CLASSIFICATION

We optimize the parameters § = (A, B) of a model yg(x) = Bg(Ax) on N = 1000 samples of the
MNIST dataset. Figure show the results for ¢; : the result for /5 and /., are similar.
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Figure 54: Training and test error (1 — Accuray ) of a Long Short Term Memory trained on the
algorithmic dataset with ¢; regularization for different values of the learning rate a and the ¢,
coefficient 5. We can see that the smaller is o3, the longer is the delay between memorization and

generalization.
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Figure 55: Training and test error (1 — Accuray ) of a Long Short Term Memory trained on the
algorithmic dataset with /5 regularization for different values of the learning rate  and the /5
coefficient 5. We can see that the smaller is a3, the longer is the delay between memorization and

generalization.
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Figure 56: Training and test error (1 — Accuray ) of a Long Short Term Memory trained on the
algorithmic dataset with ¢, regularization for different values of the learning rate o and the ¢,
coefficient 5. We can see that the smaller is a3, the longer is the delay between memorization and

generalization.
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Figure 57: Training and test error (1 — Accuray ) of a Multi-layer perceptron trained on MNIST
with ¢ regularization for different values of the learning rate « and the ¢; coefficient 3. We can see
that the smaller is 3, the longer is the delay between memorization and generalization.
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