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Abstract
As training data is fundamental to current machine learning, incentivizing data access will
be crucial in data-limited application areas such as healthcare. Data markets have been
proposed to incentivize greater data access. However, information asymmetry about data
value between data owner and data consumer can impede otherwise beneficial transactions
from taking place. In this paper, we study data measurements of relevance and diver-
sity to resolve this information asymmetry. Unlike previous work in data valuation, our
heuristic-based approach is cheap to compute, task-agnostic, and does not require central-
ized data access — properties that are well-suited for a decentralized marketplace setting.
We evaluate our approach on several medical imaging datasets and find that relevance mea-
surements are effective at discriminating between data domains, while diversity measures
are more useful in selecting sellers that have similar distributions. Code for our experiments
is available at https://github.com/clu5/data-valuation.
Keywords: Data Markets, Data Valuation, Data Measurements

1 Introduction

Access to massive amounts of training data has proved foundational to many artificial
intelligence (AI) breakthroughs, from earlier deep learning models in computer vision to the
current paradigm of large language models (Sun et al., 2017; Kaplan et al., 2020). However,
data access is limited in many important application areas, such as healthcare. Furthermore,
AI companies face increased scrutiny for their large-scale data collection practices, leading
to public backlash and litigation from software developers to journalists. 1 As AI continues
to be rapidly developed and widely deployed, more equitable and transparent practices of

1. See https://stablediffusionlitigation.com, https://githubcopilotlitigation.com, and https:
//www.nytimes.com/2023/12/27/business/media/new-york-times-open-ai-microsoft-lawsuit.
html for more context on lawsuits filed against Stable Diffusion, GitHub, OpenAI respectively.
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data acquisition need to be developed (Posner and Weyl, 2018; Delacroix and Lawrence,
2019).

Recently, data markets have been promoted to provide compensation frameworks for
data contributors, learning to greater data sharing and access (Castro Fernandez, 2023;
Agarwal et al., 2019). As the ethical and legal risks of data acquisition become an ever
more pressing issue, techniques and platforms to value data assets need to be developed
and implemented. The problem of data valuation has already attracted study in areas such
as federated learning, information economics, collaborative science (Wang et al., 2020; Sim
et al., 2020; Fleckenstein et al., 2023; Belter, 2014).

In this work, we motivate the need for federated data valuation and evaluate one ap-
proach using heuristic measures of relevance and diversity. We envision that our approach
to data valuation could enable seller selection in situations when third-party brokers can-
not be trusted, the modeling task is unknown, or when model training is impractical at
valuation time.

2 Decentralized Data Markets

Decentralized data markets can address problems with current centralized settings by pro-
viding a more equitable and efficient exchange of data resources. Additionally, fully de-
centralized data markets could realize an alternative model of collective data governance
without comprising the rights of individual data owners — redistributing the economic ben-
efits from AI technology to those whose data enables AI research and development (Posner
and Weyl, 2018; Duncan, 2023).

2.1 Brokerless Data Markets

Current data brokers are highly centralized and have aggregated vast amounts of data, often
without a user’s knowledge, consent, or compensation (Roderick, 2014; Crain, 2018). This
massive centralization of data has led to increased data breaches, privacy erosion, and data
misuse. For example, the 2017 Equifax data breach exposed the private records of more
than 150 million people, and Google’s Project Nightingale allowed Google employees access
to non-anonymous medical records of 50 million people without their consent (Zou et al.,
2018; Schneble et al., 2020).

In contrast, decentralized data markets may be a more robust, equitable, and efficient
approach to data acquisition (Posner and Weyl, 2018; Raskar et al., 2019; Kennedy et al.,
2022). In a decentralized marketplace, buyers can transact directly with sellers, bypassing
intermediate brokers. This bypassing of data brokers results in lower transaction costs and
greater market efficiency by allowing data owners to capture more of the revenue generated
from their data. Additionally, compensating data owners may incentivize greater data
access from a wider and more diverse range of data producers, in turn attracting more
market participants. A greater number of participants in the market would increase price
transparency and internalize externalities such as privacy risks and data breaches (Posner
and Weyl, 2018).
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2.2 Federated Data Valuation
A survey of data market participants found that current estimating data value is pro-
hibitively time-consuming and one of the biggest sources of friction (Kennedy et al., 2022).
Additionally, most current work in data valuation, such as Data Shapley (Ghorbani and
Zou, 2019), assumes a centralized setting where all data is fully accessible to train AI mod-
els. Besides being computationally expensive, these data valuation methods also assume a
particular modeling objective, which may be challenging when specifying apriori for each
data buyer.

In decentralized settings, a data seller would not permit buyers’ data access to estimate
its value before payment since data is easily copied. However, a buyer would be reluctant
to pay a fair price for data if they cannot be assured of its value. Therefore, a fundamental
information asymmetry arises between data buyers and sellers, closely related to Arrow’s
Information Paradox (Arrow, 1972), that results in increased search costs and fewer trans-
actions taking place. Thus, new methods of data appraisal for the decentralized setting
with only limited data access need to be developed (Chen et al., 2023).

To allow a buyer to search for the most promising sellers in a decentralized marketplace,
we evaluate heuristic data measurements, which have the advantage of being computa-
tionally cheap to compute, task-agnostic, and only require indirect data access. Many
different data measurements have been developed to quantify intrinsic, task-agnostic char-
acteristics (Mitchell et al., 2022; Lai et al., 2020; Lee et al., 2006). Data measurements
can be general-purpose, such as central tendency (e.g., mean, median) and “distance” (e.g.,
Euclidean distance, KL divergence) or modality-specific, such as Fréchet Inception Dis-
tance (Alfarra et al., 2022) and lexical diversity (Jarvis, 2013). Recently, Amiri et al.
(2023) proposed to use conditional diversity and relevance measurements to value data
without requiring model training or validation data evaluation. We extend their work by
evaluating several other definitions of diversity and relevance in the context of private and
federated data valuation on medical imaging datasets.

3 Private Data Measurements
We adopt several proposed definitions of diversity and relevance measures in our decen-
tralized data marketplace setting. Figure 1 shows an abstract representation of the data
measurement from the buyer’s perspective, which we describe more formally below.

Figure 1: Overview of our data measurements pipeline. A buyer embeds their data
through some embedding model and sends a private query of matrix projections
to each seller. Each seller responds with data measurements that allow the buyer
to compare and transact with sellers that have the most relevant data.
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3.1 Marketplace Description
Suppose that each data buyer has a utility function that comes from a set of specified utility
functions that depend on the seller’s data and test data, u : X seller×X test → R+, u ∈ U . For
example, some buyers may care about empirical risk, urisk ≜ E

[
ℓ(ĥ(Xtest,Ytest)

]
, where

ĥ : X → Y is a model trained on the seller’s data and ℓ : Y × Y → R is some loss function.
However, other buyers may have other utility functions, such as finding the most similar data
point to the mean test data usim ≜ min

Xi∈Xseller
d(X̄test, Xi), where d is some distance metric

d : X × X → R. Therefore, the data value V : X → R+ of a particular seller’s dataset
Xseller

j should correlate to high utility across multiple utility functions under consideration
for all potential buyers:

V (Xseller
j ) = Eu∼U

[
u
(
Xseller

j ,Xtest
)]

. (1)

However, explicitly calculating Eq. 1 is computationally intractable for large datasets or
many utility functions, even in centralized settings.

In the decentralized setting, we cannot directly access Xseller or Xtest for privacy (see
Section 2.1). Instead, we hope to approximate Eq. 1 with private data measurement heuris-
tics µ that should correlate with the buyer’s utility function. Optionally, the seller can
preprocess their data to reduce dimensionality X̃seller = f(Xseller) where f : X → X̃ is some
embedding function. For example, if X is a h × w image, X ∈ X = Rh×w, then X̃ ∈ Rd

may be a d-dimensional embedding of X.
Additionally, we assume that the buyer has a small number of IID data Xbuyer ∈ X n

that can be used to form a k-dimensional data query Q, that can be communicated to each
seller. Then, the data measurements heuristics, µ ∈ R2, diversity and relevance, can be
computed on the j-seller for the i-th buyer by:

µij =
{

Rel
(
Qbuyer

i , X̃seller
j

)
, Div

(
Qbuyer

i , X̃seller
j

)}
, (2)

where several possible definitions of Rel and Div are considered in Section 3.3.
We choose g to be k principal directions obtained from PCA decomposition on Xbuyer

embedded through the same pretrained model as the seller’s data f : Rn×d′ → Rn×d, d′ ≫ d:

Qbuyer = πk

(
f
(
Xbuyer

))
, (3)

where πk : Rn×d → Rk×d computes the k principal directions.
Then, we choose the seller preprocessing function f to be

X̃seller = f
(
Xseller

)
Q⊤, (4)

Additionally, differential privacy could be incorporated with the Gaussian mechanism
M to provide (ϵ, δ)-privacy Dwork et al. (2014) by adding noise generated from a Normal
distribution N (0, σ2I), where the variance, σ2, is chosen to be ∆2·2 ln(1.25/δ)

ϵ2
where ∆ is the L2

sensitivity of the query2. This protects the privacy of each seller sample against membership
inference and reconstruction attacks at the cost of noisier data measurements (Rahman
et al., 2018; Dwork et al., 2017).
2. In differential privacy, ϵ is the desired privacy budget and δ is the probability that the privacy budget is

violated. These parameters should be chosen with respect to the privacy-utility trade-off in context.
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3.2 Advantages of Federated Data Measurements

In Section 3.1, we described the decentralized data measurements. We now make some
remarks on measurement misreporting, privacy, and embeddings before describing specific
definitions of diversity and relevance measurements.

Preventing Data Measurement Misreporting. One potential issue with using
federated data measurements is malicious misreporting of relevance and diversity by the
sellers. A strategic seller could artificially inflate the data measurement value to appear
more relevant and diverse to a buyer. To counteract this, a buyer could send multiple
queries containing “dummy” directions that may be random or adversarial chosen in ad-
dition to the true principal directions. Thus, the buyer would penalize sellers with large
data measurements in these “fake” directions while upweighting sellers with high value in
the “real” directions. This will incentivize the sellers to honestly report their true data
measurements as they do not know which directions are real or fake. Sending additional
queries will increase communication overhead but this may be tolerable since each query is
cheap — being only a k×d matrix, where k ≪ n; each of our queries is 10×512 floats in our
experiments. Each seller’s response contains only a single scalar for diversity measurements
and a n-dimensional vector for relevance.

Privacy-preserving Communication: In most cases, a seller only communicates
a scalar response, which protects against data copying while still allowing the buyer to
compare sellers based on unique information. The seller can also protect against membership
set attacks using differential privacy. On the other hand, the buyer is protected against data
reconstruction attacks since only the principal directions are communicated to the seller.
Without the magnitude component of the variance (principal components), the seller cannot
accurately reconstruct the buyer’s data.

Linear representation space. Using the embedding function, f , allows high-dimensional,
multi-modal data to be represented in a shared, lower-dimensional space, which is more
amendable to linear separable techniques such as PCA (Jacot et al., 2018). For many prac-
tical applications, instead of directly measuring the raw data space (e.g. text data), the
buyer and seller can both embed their data into the same representation space (e.g. word
embeddings) (Pennington et al., 2014; Mikolov et al., 2015). This embedding step can be
precomputed to save computation for each buyer and seller.

3.3 Diversity and Relevance

For our approach, we focus on relevance and diversity as two fundamental heuristic measures
of data value. We consider several existing definitions of relevance and diversity for our
market setting.

3.4 Relevance Measures

Relevance should capture some relative notion of similarity between the buyer and seller.
For example, if the buyer has chest X-ray (CXR) images of African-American patients,
then a seller with CXR images of the same demographic would be more relevant CXR from
a different demographic. Likewise, CXR data would be more relevant than MRI data or
photography images.
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One ubiquitous notion of distance is L2 distance. Specifically, we consider nega-
tive L2 of the mean projected vectors between buyer and seller:

∥∥X̄buyer − X̄seller
∥∥
2
, where

X̄ ≜ 1
k

∑k
i=1 πkXi is the mean vector and π is the buyer’s projection operator. Another com-

mon measure of relevance is cosine similarity, which we again compute between mean pro-
jected vectors: X̄buyer · X̄seller

∥X̄buyer∥
2
∥X̄seller∥

2

. Lastly, we consider similarity measure proposed by Amiri
et al. (2023), defined by the geometric mean of the overlap between the buyer’s and seller’s
principal components: k

√∏k
i=1

min
(
λbuyer
i ,λseller

i

)
/max

(
λbuyer
i ,λseller

i

)
, where λ is the magnitude

of the principal components of the projected covariance matrix π(Xseller)⊤π(Xseller). One
downside to this method is that both the eigenvalues and eigenvectors must be communi-
cated, which could allow approximate reconstructions of the buyer data.

3.5 Diversity Measures

Diversity measures should capture the inherent heterogeneity or redundancy within a dataset.
Intuitively, data with greater diversity should correspond to better generalization and ro-
bustness during test time prediction. If there is insufficient diversity in the training set,
the model may overfit and have poor generalization on unseen test data (Xu et al., 2021;
Friedman and Dieng, 2022). For example, a seller with X-ray images from 100 unique
patients would typically be considered more valuable than 100 X-rays from a single pa-
tient. Xu et al. (2021) proposed to measure data diversity in a validation-free manner
using the volume of the gram matrix. We consider the projected version of volume:√
det (π(Xseller)⊤π(Xseller)).
In the context of natural language processing, Lai et al. (2020) considered data diversity

as the dispersion of the features of the data, defined as the geometric sum of the standard

deviation of each feature:
(∏d

i=1 σi

) 1
d
, where σi is the standard deviation of feature i of

the projected seller data π(Xseller).
A third definition of diversity is the Vendi score (Friedman and Dieng, 2022) de-

fined as exp
(
−
∑C

c=1 λc log λc

)
, where λ is eigenvalue of the projected covariance matrix

1
msellerπ(X

seller)⊤π(Xseller) and C is the number of directions.

4 Experiments

We evaluate our approach on the MedMNIST medical imaging benchmark (Yang et al.,
2023). We precompute embeddings with CLIP ViT-B/16 to embed each image into a 512-
dimensional vector (Radford et al., 2021). For the buyer query, we project the seller’s data
onto the first 10 principal directions of the buyer’s data. See Appendix A for more details
on the experimental setup.

Qualitative Evaluation: In Figure 2, we compare combinations of diversity and rele-
vance measurements. The buyer used 100 embedded images from the BloodMNIST dataset
to create the query, and we compared sellers with data from four other domains: MNIST,
MedMNIST, CIFAR-10, and a noisy version of BloodMNIST (see Figure 4). For each of the
four domains, we start with 10,000 in-domain (ID) BloodMNIST data points and gradually
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Figure 2: Relevance measurements discriminate between in-domain and out-
of-domain data. We plot relevance and diversity when sellers with 10,000
in-domain BloodMNIST data have increasing proportion replaced with out-of-
domain data (Noisy Bloodmnist, MedMNIST, MNIST, CIFAR). We see that
relevance measures such as cosine similarity discriminate out-of-domain data bet-
ter than diversity measures.

replace an increasing proportion with out-of-domain (OD) data starting from 10% OD /
90% ID until 100% OD data.

Ideally, sellers with more ID data and less OD data should have higher data measure-
ment values. Additionally, sellers with more relevant OD data (noisy BloodMNIST) should
have higher values than irrelevant OD data (CIFAR and MNIST). We observe that diver-
sity measures perform poorly at discriminating between ID and OD sellers. In contrast,
relevance measures perform better at discriminating between domains. In particular, we
find that cosine similarity assigns sellers with mostly ID data high relevance values while
assigning sellers with mostly OD data much lower values.

See Appendix B.1 for results on other MedMNIST datasets. In the Appendix, we evalu-
ate the effect of other data characteristics, such as the number of unique classes (Figure B.2)
and noise corruptions ( Figure B.4).

Quantitative Evaluation: Since our data valuation framework is task agnostic, we
evaluate the correlation between data measurements and test accuracy for three prediction
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Table 1: Kendall rank correlation between relevance and diversity measurements
and average test accuracy. In general, we find position correlations between di-
versity measurements and test prediction performance across MedMNIST datasets
for binary classification, multiclass classification, and clustering prediction tasks.

Data Measurement Blood Derma Retina Path Tissue Organ Average

Relevance
L2 Dist. 0.04 0.24 0.24 0.06 0.17 -0.03 0.12

Cosine Sim. 0.00 0.26 0.25 0.05 0.11 0.09 0.13
Eigenvalue 0.01 0.33 0.24 0.03 0.20 -0.04 0.13

Diversity
Dispersion 0.09 0.32 0.25 0.12 0.32 0.17 0.21

Volume 0.08 0.34 0.29 0.22 0.33 0.23 0.25
Vendi Score 0.12 0.33 0.24 0.19 0.28 0.23 0.23

tasks: binary classification, multiclass classification, and clustering. For each dataset, we
sample data from a subset of classes for the buyer’s data query and a held-out test set.
For each of the 500 sellers, we introduce class heterogeneity by sampling classes from a
Dirichlet distribution as typically done in non-IID federated learning experiments Li et al.
(2021). We train a model using the seller’s data, evaluate performance on the buyer’s test
set, and calculate the rank correlation of each data measurement and test set performance.
We report correlations averaged over prediction tasks; this can be thought of as a crude
approximation of Eq. 1.

Intuitively, we expect that sellers with more data from the same classes as the buyer
will result in better-performing models and should have a higher data measurement value.
Indeed, we find a moderate to strong positive correlation between relevance and diversity
measurements and test accuracy for several datasets in Figure 1. Interestingly, we find
that diversity measures, such as volume, tend to be more correlated with test accuracy
than relevance measures (strongest correlations shown in Figure 11). See Table 2 for an
expanded table across prediction tasks.

5 Conclusion

In this paper, we motivated the need for new data valuation approaches for decentral-
ized data marketplaces. Importantly, these techniques should be federated and privacy-
preserving for domains such as healthcare, where medical data is sensitive, and data value
must be estimated without direct access to the seller’s data. In this work, we evaluated sev-
eral definitions of relevance and diversity on multiple benchmark medical imaging datasets.
We found that relevance is more useful in differentiating between different domains (medical
vs. non-medical data). In contrast, diversity measures are more correlated with prediction
accuracy and may be more suited when sellers have more data from similar distributions.
Developing robust and generalizable data measurements will be important in resolving
information asymmetries between data buyers and sellers to facilitate decentralized data
transactions. However, further work is needed to validate our approach to data valuation
and seller selection in the context of data markets on other data modalities and domains.
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Broader Impact Statement

We believe that AI developers must reconcile important ethical questions regarding data
acquisition in current AI development. Class-action lawsuits have been filed against several
AI companies for their data collection practices, raising questions about data compensation
and consent from data owners. Current data acquisition norms may actively discourage
further data sharing, which can hamper the progress and impact of AI, especially in data-
limited domains such as healthcare.

Our work advances technical challenges in operationalizing data marketplaces, which
promise an alternative model of data acquisition, compensation, and ownership. In addi-
tion, our approach does not require centralized access to seller data, which contrasts with
previous work in data valuation and, therefore, better protects the privacy of data producers
during the data valuation stage. Centralizing all data with the broker can result in unde-
sirable privacy and security risks, such as data breaches. In contrast, decentralized data
marketplaces may be more robust and transparent. Bypassing intermediate data brokers
will enhance privacy and increase market efficiency. Transaction costs can be reduced, and
revenue can be directly captured by data producers. This will enable a greater number of
data transactions and sustain more types of markets.
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Appendix A. Experimental Setup
We use the buyer’s data to determine the principal directions to send as the query to each
of the sellers. The number of directions was determined by checking a Scree plot of the
magnitude of the buyer’s eigenvalues.

Figure 3: Example images from datasets in the MedMNIST benchmark. See
medmnist.com for more information.

To create the noisy version of the MedMNIST dataset used in the qualitative experi-
ments, we use the following PyTorch code:
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f = transforms.Compose([
transforms.ToTensor(),
transforms.GaussianBlur(5),
transforms.RandomResizedCrop(size=(28, 28)),

])

Figure 4: Noisy images from datasets in the MedMNIST benchmark. See
medmnist.com for more information.

In Table 1, we show how correlated each data measure of relevance and diversity is with
prediction accuracy in a binary classification task using a subset of the original classes from
each MedMNIST dataset. We select the following classes for each dataset class to use as
the subset for the buyer and test set in the quantitative experiments, which are treated as
the ”positive” classes in binary classification and the only classes evaluated in multi-class
classification and clustering:

• PathMNIST: ’colorectal adenocarcinoma epithelium’, ’cancer-associated stroma’, ’nor-
mal colon mucosa’

• DERMAMNIST: ’melanoma’, ’basal cell carcinoma’, ’actinic keratoses and intraep-
ithelial carcinoma’

• RetinaMNIST: ’1’, ’2’, ’3’

• BloodMNIST: ’neutrophil’, ’monocyte’, ’lymphocyte’
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• TissueMNIST: ’Glomerular endothelial cells’, ’Podocytes’, ’Proximal Tubule Segments’

• OrganAMNIST: ’lung-left’, ’lung-right’, ’heart’, ’liver’

To introduce heterogeneity between the data sellers, we sample class weights from a Dirichlet
probability distribution (initialized from the initial class proportions in each dataset) as
typically done in Federated Learning experiments with non-IID data distributions Zhu
et al. (2021).

In addition, we use the following number of samples for the buyer and each seller:

• PathMNIST: 100 samples in buyer, 1500 samples per seller

• DERMAMNIST: 100 samples in buyer, 1500 samples per seller

• RetinaMNIST: 100 samples in buyer, 500 samples per seller

• BloodMNIST: 500 samples in buyer, 5000 samples per seller

• TissueMNIST: 1500 samples in buyer, 25000 samples per seller

• OrganAMNIST: 500 samples in buyer, 5000 samples per seller

For each data seller, we train a simple Logistic Regression model on its corresponding
dataset of labeled embeddings and evaluate the held-out test set for the task of binary
classification of the above-mentioned positive classes for each dataset. For multiclass classi-
fication, we train a Random Forest model with 10 trees and a max depth of 5 and evaluate
F1 score. For clustering, we fit a K-Means model with the same number of clusters as
classes in the buyer and evaluate homogeneity score. Finally, we compute relevance and
diversity measures between each seller and the buyer and calculate the Kendall rank corre-
lation between prediction accuracy for the model trained using that seller’s dataset and its
data measurements.
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Appendix B. Additional Experiments

B.1 Additional Qualitative Results
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Figure 5: Qualitative assessment of different relevance and diversity measures when the in-
domain distribution is the ChestMNIST dataset.
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Figure 6: Qualitative assessment of different relevance and diversity measures when the in-
domain distribution is the PathMNIST dataset.
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Figure 7: Qualitative assessment of different relevance and diversity measures when the in-
domain distribution is the TissueMNIST dataset.

B.2 Effect of Number of Unique Classes on Diversity

We plot diversity for sellers with data from varying numbers of unique classes. Intuitively,
we expect that as the number of classes increases, the diversity also increases, which is re-
flected across all three diversity measures in the BloodMNIST and DermaMNIST datasets.
However, in the PathMNIST and OrganAMNIST, diversity decreases with both the disper-
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sion and Vendi Score measures for sellers with the highest number of unique classes (this
behavior may be related to both the frequency of each class as some MedMNIST datasets
can be highly imbalanced). The Volume-based definition of diversity more closely follows
this desirable property (middle column) across all datasets.
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Figure 8: Comparing different diversity measures with varying numbers of
unique classes. The buyer has data from all classes.
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B.3 Evaluating Absolute Diversity.

First, we compare the diversity between MedMNIST datasets and non-medical datasets (CI-
FAR, MNIST, FashionMNIST) without any buyer projection in Figure 9. All three diversity
methods show that CIFAR has the highest absolute diversity, followed by MedMNIST, a
combination of 8 different MedMNIST datasets. Intuitively, CIFAR is composed of natural
images of animals and vehicles, which contain more variation both on a pixel and semantic
level than medical datasets. Interestingly, even FashionMNIST, which consists of grayscale
images of clothes, contains slightly more diversity than some of the individual MedMNIST
datasets. This may be reflected in the CLIP model’s bias, as most of the training data
consisted of text-image pairs publicly available on the Internet.
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Figure 9: Diversity of 1000 CLIP-embedded samples for each dataset. MedMNIST is a
combination of 8 individual medical datasets. Across all three diversity measures,
CIFAR has the highest diversity, while MNIST has the lowest diversity. Each
diversity measure is min-max scaled between datasets to lie within 0 and 1.
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B.4 Effect of Noise Corruptions on Relevance and Diversity

(a) Different corruptions from CIFAR-C dataset.

(b)

Figure 10: Effect of Noise Corruptions on Relevance and Diversity.
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B.5 Additional Quantitative Results

Table 2: Correlation between relevance and diversity measurements and test ac-
curacy. For each seller, we compute data measurements and train an ML model
on their data to predict a held-out test set. We report the rank correlation between
each data measurement and test accuracy on three prediction tasks. Underlined
values denote the highest correlation with prediction accuracy for either the cate-
gory of relevance or diversity, while bolded values indicate the highest correlated
data measure overall. In general, we find that diversity measures are more corre-
lated with prediction performance than measures of relevance.

Task Measurement Blood Derma Retina Path Tissue Organ Avg.

Binary

Relevance

L2 0.23 0.21 0.26 0.02 0.06 0.00 0.13
Cosine 0.19 0.22 0.28 0.02 -0.02 0.02 0.12
Eigen. 0.21 0.34 0.31 0.01 0.21 0.00 0.18

Diversity

Disp. 0.12 0.29 0.12 0.14 0.23 0.12 0.17
Vol. 0.26 0.33 0.19 0.23 0.28 0.16 0.24

Vendi 0.17 0.29 0.09 0.12 0.26 0.13 0.18

Multiclass

Relevance

L2 0.11 0.43 0.35 -0.01 0.07 -0.05 0.15
Cosine 0.03 0.44 0.26 -0.01 0.06 0.00 0.13
Eigen. 0.09 0.55 0.35 -0.02 0.06 -0.04 0.17

Diversity

Disp. 0.08 0.57 0.48 0.17 0.29 0.08 0.28
Vol. 0.11 0.57 0.52 0.24 0.24 0.07 0.29

Vendi 0.03 0.59 0.47 0.17 0.15 0.06 0.25

Clustering

Relevance

L2 -0.22 0.08 0.10 0.16 0.37 -0.03 0.08
Cosine -0.22 0.11 0.21 0.15 0.29 0.24 0.13
Eigen. -0.28 0.11 0.07 0.10 0.33 -0.09 0.04

Diversity

Disp. 0.07 0.10 0.16 0.06 0.44 0.30 0.19
Vol. -0.12 0.12 0.17 0.18 0.46 0.47 0.21

Vendi 0.17 0.11 0.15 0.27 0.42 0.51 0.27
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(a) Correlating Vendi score measurements and F1 score for multiclass classification on the
DermaMNIST dataset.

(b) Correlating Volume and F1 score for multiclass classification on the RetinaMNIST
dataset.

Figure 11: Correlating between data measurements of diversity and prediction accuracy on
MedMNIST datasets.
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