
Portfolio Management with Reinforcement Learning

Zikai Sun
Department of Electronic Engineering
The Chinese University of Hong Kong

Shatin, Hong Kong
zksun@link.cuhk.edu.hk

Yuting An
Department of Mechanical and Automation
The Chinese University of Hong Kong

Shatin, Hong Kong
ytan@mae.cuhk.edu.hk

Abstract

Portfolio management is a crucial trading task for investment companies in the
market. In this work, reinforcement learning (RL) incorporating the transformer
structure is combined with deep learning (DL) to build an automated portfolio
management model. The proposed method uses the Sharpe ratio along with trans­
action cost as the reward and build an environment that contains the whole A­share
market to train the RL agent. The result demonstrates that the trained strategy out­
performs The Shanghai Composite Index and tradition baselines.
Video link:IERG5350 project video link

1 Introduction

Modern portfolio theory suggests that one should pay more attention to return per unit risk. Peo­
ple can reduce exposure to individual asset risk by simply holding a diversified portfolio of assets,
which is called portfolio management. With the rapid development of big data techniques and quan­
titative trading, automated portfolio management strategy has become more crucial to investment
companies.
The portfolio management problem is a sequential decision­making process over time series that
allocates financial assets like stocks, bonds, options, cash, or more in the market. This process
can naturally be solved by the reinforcement learning (RL) framework. And we aim to design a
reinforcement­learning­based trading strategy which could achieve better performance than widely
used baselines. The proposed method utilizes Deep Deterministic Policy Gradient (DDPG) as the
framework of RL to learn the dynamics in the market and replaces the four Multi­layer Perceptions
(MLP) in DDPG with Gated Transformer­XL (GTrXL) to well process the time­series stock data.
The goal of the proposed method is to develop a RL­based automated portfolio management strategy
that makes more profit while maintaining the risk in consideration of transaction cost.

2 Related work

Portfolio management could be treated as a Markov Decision Process (MDP). And, in recent years,
reinforcement learning has been widely applied in solving this MDP problem, helping design ad­
vanced strategies through the interaction with the historic market data like price, volume, financial
statements, and news[8].
Reinforcement learning approaches could be classified into three categories: critic­only, actor­only,
and actor­critic approaches[1]. The critic­only approach estimates the state­action value, Q, accord­
ing to the expected return when the agent takes different actions. Deep Q­Network (DQN) is a
classical method[3], which approximates the state­action value with neural networks and extends
the method to deal with continuous state space. The actor­only approach learns the policy (a map­
ping from state to action) directly instead of computing state­action value. So, it could work well

https://mycuhk-my.sharepoint.com/:f:/g/personal/1155135727_link_cuhk_edu_hk/Eoq-QLfeJ0VEoSrtVAgvTV4BxfOw26UEbxY3xvogezM3Dg?e=CHX9nt

when the action space is continuous. Actor­critic is the most commonly used method in recent years.
The Actor­network learns the policy and the critic network approximates the Q value simultaneously,
which combines the advantages of these two methods. Deep Deterministic Policy Gradient (DDPG)
is a popular framework that incorporates actor and critic network in serial. Xiong designs an algo­
rithm based on DDPG and defeats the traditional min­variance portfolio allocation method and Dow
Jones Industrial Average[8]. Kim develops an algorithm that combines the DDPG with the GTrXL
for the portfolio optimization in US stock market[5].
Apart from the reinforcement learning approach, other elements like state, action, and reward func­
tion should be finely designed based on various data and market factors. For state design, asset close
price and shares owned, along with the available cash during a certain period is neccesary[6]. Also,
some technical analysis indicators like Moving Average Convergence Divergence (MACD), Rela­
tive Strength Index (RSI) are incorporated[2, 10]. Moreover, Ye predicted the price movement using
Long­short Time Memory (LSTM) and handled the related news with Natural Language Process
(NLP)[9]. The encoded results are then synthesized into the state with a simple asset price. For ac­
tion design, Yang[2] took selling, buying, and holding of each stock as an action space. Besides, the
net value proportion of assets in each time step is adpoted[9]. For reward function design, change of
the portfolio net value is a good choice[8] and transaction costs are considered by Ye and Jiang.[4, 9]
Sharpe ratio, which represents the relationship between return and risk is also an ideal objective
function.

3 Problem Formation

In this section, we introduce how the portfolio management problem is modeled in the RL framework.
And the state, action, and reward function are also defined in this section.

3.1 State

The minute­level stock price and the transaction volume of each equity in the China A­share stock
market are chosen to construct the environment for the RL agent to learn. Three elements of the state
are then considered: the current position, the market information, and the overall macroeconomic
information.
(1) The current position includes the information of the prices of stocks vi,t, the weight of holdings
of stocks wi,t. This is denoted as s∗ = [v, w]

(2) The market information includes historical minute­level trading information of assets like
price variation and trading volume. Several widely used technical indicators are also con­
sidered in this approach.Because most of the market participants utilize these indicators
while trading, the market will definitely contain the pattern related to these indicators which
could be extracted. The i th stock’s observation at time t can be expressed as xi,t =
{open, close, high, low, volume,MACD,MA, ...}. Then for the RL system that takes N steps,
the input can be written asXi,t = {xi,t, xi,t−1, ..., xi,t−N+1} For this part, we consider using a gate
recurrent unit (GRU) to extract it into a feature vector. The learned model structure is denoted as
fw1

.
(3) The third element is some macroeconomic information like risk­free rate and the unemployment
rate, and corporate financial/fundamentals data like PE and PB, since they are strongly related to
financial market and are crucial in predicting economic crisis and prosperity. All of the data in this
part could be expressed as hi,t.Because of the limitation of time, they are not included in this research.
Finally, the system concats all encoded features together, and the synthesized state is then defined as

st = (s∗i,t, fw1
(Xi,t), hi,t)

3.2 Action

Unlike many algorithms that use buying, holding, and selling a certain asset as actions, it is more
efficient and effective to define the action space as the net value proportion of assets that will hold
for the next time step. The action denoted as at = {a0,t, ..., an,t}, which means the holding weight

2

of the ith asset is re­allocated to ai,t. At the same time, we limit the allocation ratio of every asset as

ai,t ∈ [−k, k],

n∑
i

|ai,t| <= k

Where k is the maximum leverage level, and many brokerage can provide 2 times leverage. By this
definition, we can easily get each asset’s net value proportionwi,t+1 at the next time step, considering
the stock price movement ratio yi,t = vi,t+1/vi,t.

wi,t+1 =
yi,t+1 · ai,t+1∑
k yi,t+1 · ai,t+1

3.3 Reward

On one hand, to achieve a balance between return and risk, the proposed system directly uses the
Sharpe ratio as part of the reward function. Since the T­bill interest rate is nearly 0 in 2020, the
risk­free rate of return could be ignored, the formulation odf the Sharpe ratio could then simplified
as:

Sharpe ratio =
E(Rp)

Std(Rp)
=

E(Rp)√
E(R2

p)− (E(Rp))2

where we use the log return to make it satisfy additivity.

E(Rp) =
1

T

T∑
t=1

Rp,t, Rp,t = ln(
n∑

i=1

ai,tyi,t)

On the other hand, considering that there will be trading losses or transaction costs, it is hoped that
the system could reduce the number of unnecessary tradings as much as possible. The transaction
cost is then defined as c =

∑n
i=1 |ai,t − wi,t|. With the learned strategy µθ, the system aims to

maximize the objective function, formally written as:

µθ∗ = argmax
µθ

JT (µθ)

s.t.

n∑
i=1

|ai,t − wi,t| < τ

when the lagrange parameter β is introduced, this can be written as

µθ∗ = argmax
µθ

(JT (µθ)− β

n∑
i=1

|ai,t − wi,t|)

So, considering both risk­reward ratio and transaction cost, the reward function is then defined as
follows:

r =

∑T
t=1 Rp,t√

T
∑T

t=1 R
2
p,t − (

∑T
t=1 Rp,t)2

− β

n∑
i=1

|ai,t − wi,t|

4 Methods and Algorithms

Since the portfolio management problem is with continuous action space, partial observability, and
high dimensionality, the DDPGwith 2D Relative­attention Gated Transformer is proposed and could
be applied to A­share automated stock trading. The developed RL framework in Figure 1 includes the
following elements: Actor­Critic Architecture, Gated Transformer­XL, Gradient Update Algorithm,
Replay Buffer.

3

Actor­Critic Architecture The framework essentially follows the structure of the DDPG to deal
with the continuous action space. In detail, the architecture incorporates two actor and two critic
neural networks. Both of them includes a behavior network that interacts with the environment and
a target network that helps update the behavior network. The observed state si is the input of the
actor behavior network. The output action ai , along with the observed state si , serve as the input of
the critic behavior network and the network output is theQ value. The structure of actor/critic target
network is similar with the behavior one and the output Q′ is utilized to calculate the TD­error with
Q and ri

Figure 1: The RL framework of DDPG with GTrXL.

Gated Transformer­XL In this work, Transformer encoders that have a robust structure to long
term dependency of partial observability is utilized since many experiments have proved that self­
attention architectures can deal better with longer sequences than recurrent neural networks(RNN)
while avoiding the gradient vanishing or exploding during the optimization process[7]. Specifically,
a variation of Transformer called 2D Relative­attentional Gated Transformer (RG­Transformer) is
used as a core part of the behavior/target actor and behavior/target critic for high dimensional port­
folio data[5].
The final GTrXL layer block is written below:

Y
(l)& = RMHA(LayerNorm([StopGrad(M (l−1)), E(l−1)]))

Y (l)& = g
(l)
MHA(E

(l−1),ReLU(Y (l)
))

E
(l)& = f (l)(LayerNorm(Y (l)))

E(l)& = g
(l)
MLP(Y

(l),ReLU(E(l)
))

where g is a gating layer function.

Gradient Update Algorithm The target return Gi for the i­th sample from replay buffer is:

Gi = ri + γQ′
(
s′i, µ

′
(
s′i

∣∣∣θµ′
)∣∣∣θQ′

)
where si, ai, ri, s′i and γ are the state, action, reward, next state, and discount factor, respectively.
The critic weights θQ is updated by minimizing the loss from temporal difference error between Gi

and Q
(
si, ai

∣∣θQ):
L =

1

N

∑
i

(
Gi −Q

(
si, ai

∣∣θQ))2
4

Also, the policy gradient to update the actor weights θµ are calculated using the chain rule as:

∇θµJ ≈ 1

N

∑
i

∇θµQ
(
s, µ (s|θµ)

∣∣θQ) |s=si,a=µ(si)

=
1

N

∑
i

∇aQ
(
s, a

∣∣θQ) |s=si,a=µ(si)∇θµµ (s|θµ) |s=si

Finally, the target actor weights θµ
′ and target critic weights θQ

′ is updated slowly with τθµ +

(1− τ) θµ
′ and τθQ + (1− τ) θQ

′ , respectively, where τ is the target update rate.

Dual Replay Buffers To accelerate the training, an asynchronous learning method with dual mem­
ories has been employed. The experience replay buffers consists of one memory that saves all the
trajectories and h­memory that saves trajectories with high rewards.

5 Experiments

Figure 2: Left: returns of different agent. Right: weights when testing.

Dataset preprocess We use the whole China A­share stock market as our stock pool, which con­
tains 4066 stocks. The time span of our dataset is from 2010/01/02 to 2020/11/1. We consider this
market because (1) over 87.78% of stocks are held by individual investors at 2020 Q2, which may
have more emotional patterns and relatively easier to learn by the algorithm. (2) we can get the
minute­level data for all stocks, which guarantee that we have enough data to train.
Data preprocessing has a great influence on the experimental results. For the daily data of each stock,
we first obtain its basic minutes’ data such as its open, high, low, and close price. We also consider
the volume information. For the trading information and technical indicators, we divide data by the
closing price of the previous day. We do this because we want to pay more attention to the trend of
price rather than the price itself. Also, we calculate 20 different technical indicators on the scale of
5 minutes and 1 day separately, such as MA, EMA, MACD, etc. Macro­economy information and
financial data are neglected and will be considered in future research.

Experiment result We use all the stocks to train the agent. For each episode, the environment
randomly selects 4 stocks as the dataset, and the model outputs the best weights of holding for each
stock. When testing, we fixed 4 stocks as stock pool, and run the agent on the testing dataset.
We compare our results with some current baseline strategies (such as Modern Portfolio Theory
(MPT) strategy, Equally Weighted Rebalance (EWR, called UCRP in figure label) strategy, etc).
The comparison of the return and the stock weights (action) of each equity is demonstrated in Figure
2.
In future work, we plan to include more specific financial indicators like historical PE(TTM), PB
and consider macro­economy information like total social financing of China and unemployment
rate. More stocks will be utilized in testing and more experiments will be conducted.

5

References
[1] T. G. Fischer. Reinforcement learning in financial markets­a survey. Technical report, FAU Discussion

Papers in Economics, 2018.
[2] S. Z. Hongyang Yang, Xiao­Yang Liu and A. Walid. Deep reinforcement learning for automated stock

trading: An ensemble strategy. ICAIF ’20: ACM International Conference on AI in Finance, 2020.
[3] C. Y. Huang. Financial trading as a game: A deep reinforcement learning approach. arXiv preprint

arXiv:1807.02787, 2018.
[4] Z. Jiang, D. Xu, and J. Liang. A deep reinforcement learning framework for the financial portfolio man­

agement problem. arXiv preprint arXiv:1706.10059, 2017.
[5] T. Kim and K. Matloob. Portfolio Optimization with Deep Reinformcement Learning (IEEE­CSDE 2020

conference proceeding). https://www.youtube.com/watch?v=y­CaJZFEx68.
[6] X. Li, Y. Li, Y. Zhan, and X.­Y. Liu. Optimistic bull or pessimistic bear: adaptive deep reinforcement

learning for stock portfolio allocation. arXiv preprint arXiv:1907.01503, 2019.
[7] E. Parisotto, F. Song, J. Rae, R. Pascanu, C. Gulcehre, S. Jayakumar, M. Jaderberg, R. L. Kaufman,

A. Clark, S. Noury, et al. Stabilizing transformers for reinforcement learning. In International Confer­
ence on Machine Learning, pages 7487–7498. PMLR, 2020.

[8] Z. Xiong, X.­Y. Liu, S. Zhong, H. Yang, and A. Walid. Practical deep reinforcement learning approach
for stock trading. arXiv preprint arXiv:1811.07522, 2018.

[9] Y. Ye, H. Pei, B. Wang, P.­Y. Chen, Y. Zhu, J. Xiao, and B. Li. Reinforcement­learning based portfolio
management with augmented asset movement prediction states. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 1112–1119, 2020.

[10] Z. Zhang, S. Zohren, and S. Roberts. Deep reinforcement learning for trading. The Journal of Financial
Data Science, 2(2):25–40, 2020.

6

	Introduction
	Related work
	Problem Formation
	State
	Action
	Reward

	Methods and Algorithms
	Experiments

