Under review as a conference paper at ICLR 2026

SNAP-UQ: SELF-SUPERVISED NEXT-ACTIVATION PRE-
DICTION FOR SINGLE-PASS UNCERTAINTY IN TINYML

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce SNAP-UQ, a single-pass, label-free uncertainty method for TinyML
that estimates risk from depth-wise next-activation prediction: tiny int8 heads
forecast the statistics of the next layer from a compressed view of the previous one,
and a lightweight monotone mapper turns the resulting surprisal into an actionable
score. The design requires no temporal buffers, auxiliary exits, or repeated forward
passes, and adds only a few tens of kilobytes to MCU deployments. Across vision
and audio backbones, SNAP-UQ consistently reduces flash and latency relative to
early-exit and deep ensembles (typically ~40-60% smaller and ~25-35% faster),
with competing methods of similar accuracy often exceeding memory limits. In
corrupted streams it improves accuracy-drop detection by several AUPRC points
and maintains strong failure detection (AUROC ~0.9) in a single pass. Grounding
uncertainty in layer-to-layer dynamics yields a practical, resource-efficient basis
for on-device monitoring in TinyML.

1 INTRODUCTION

TinyML models increasingly ship on battery-powered microcontrollers (MCUs) (David et al., 2021)
to deliver private, low-latency perception for vision and audio (Banbury et al.,|2021)). Once deployed,
inputs seldom match the training distribution: sensors drift, lighting and acoustics vary, and streams
interleave in-distribution (ID), corrupted-in-distribution (CID), and out-of-distribution (OOD) samples
(Hendrycks & Dietterich, 2019). Under such shifts, modern networks are notoriously overconfident
(Minderer et al.l 2021 even when they appear calibrated on held-out ID data (Guo et al.| 2017}
Ovadia et al.,|2019), complicating on-device monitoring and safe fallback (Lai et al., 2018; |Chen
et al.l 2018). Addressing this on MCUs is challenging: memory and compute budgets preclude
multi-pass inference, large ensembles (Lakshminarayanan et al.,[2017), or heavy feature stores.

This work: We introduce SNAP-UQ (Self-supervised Next-Activation Prediction for single-pass
Uncertainty a label-free uncertainty mechanism tailored to MCU deployments. Instead of sampling-
based uncertainty (e.g., MC Dropout (Gal & Ghahramani, |2016))) or branching with auxiliary exits
(Teerapittayanon et al., 2016), SNAP-UQ attaches two or three tiny heads at chosen depths. Each
head predicts the next-layer activation statistics from a low-rank projection of the previous layer;
the mismatch between the realized and predicted activation yields a depth-wise surprisal score
(Sensoy et al., 2018)). Aggregating these per-layer surprisals produces a single-pass uncertainty proxy
that (optionally) blends with an instantaneous confidence term. The approach requires no extra
forward passes, no temporal buffers, and no architectural changes to the backbone. All arithmetic is
integer-friendly: the heads are quantized to int8, covariance is diagonal (with an optional low-rank
correction), and exponentials are replaced by a small look-up table for exp(f% log 02).

Why depth-wise surprisal? Confidence at the softmax often degrades late and can remain peaky
under CID, whereas inter-layer dynamics shift earlier: features become atypical relative to the
network’s own transformation even before class posteriors flatten. SNAP-UQ explicitly models
this conditional evolution ay_; — a; and scores how surprising ay is under the head’s predictive

'Throughout, we use ‘self-supervised’ to mean a label-free auxiliary regression that predicts next-layer acti-
vation statistics solely from the network’s own features (for uncertainty estimation), rather than self-supervised
representation learning of the backbone.



Under review as a conference paper at ICLR 2026

distribution. The resulting score acts as an early, label-free indicator of trouble while preserving MCU
budgets. Unlike classwise Mahalanobis (Lee et al.,|2018) or energy-based OOD methods (Liu et al.,
2020), which compare against unconditional feature statistics or log-sum-exp energies, SNAP-UQ is
conditional-on-depth and thus sensitive to distortions that break the mapping between layers.

Relation to prior work: Post-hoc calibration improves ID confidence but generally fails under
shift (Guo et al.l 2017} |Ovadia et al., [2019). Early-exit ensembles and TinyML variants reduce
cost by reusing a backbone (Qendro et al., 2021;|Ghanathe & Wilton, [2024), yet still add inference-
time heads and memory bandwidth, and depend on softmax-derived signals that are brittle under
CID. Sampling-based uncertainty (MC Dropout, Deep Ensembles) increases compute and flash
substantially (Gal & Ghahramanil |2016} |[Lakshminarayanan et al.|[2017)). Classical OOD detectors
such as ODIN/G-ODIN (Liang et al.,|2018; [Hsu et al., [2020) can be strong on larger backbones but
transfer less reliably to ultra-compact models typical of TinyML. Beyond ensembles and stochastic
sampling, several single-pass deterministic UQ methods have been proposed—e.g., DUQ, DDU,
evidential/posterior/prior networks, and recent fixes for early-exit overconfidence—but many rely
on architectural changes, specialized output layers, OOD exposure during training, or heavier heads
that clash with MCU constraints (Van Amersfoort et al.| 2020; Mukhoti et al., [2023} [Sensoy et al.|
2018; Malinin & Gales} 2018} |(Charpentier et al.,|2020; Deng et al., 2023; Meronen et al., [2024). Tiny
Deep Ensemble (Ahmed et al.|[2024): forms a lightweight ensemble by sharing the entire backbone
and duplicating only normalization layers (with different running stats/affine params), so multiple
“members” are produced with minimal extra flash/RAM. This yields ensemble-style uncertainty
(better ID/CID error and OOD separation than single heads) while keeping single-pass compute close
to a vanilla model—well-suited for microcontrollers and edge accelerators. In contrast, SNAP-UQ
occupies a different point: single pass, no state, tiny heads, with a score derived from the network’s
own depth-wise dynamics rather than auxiliary classifiers or repeated sampling.

Contributions: SNAP-UQ introduces a self-supervised, depth-wise surprisal signal from tiny
predictors attached to a few layers and trained with a lightweight auxiliary loss, yielding single-pass
uncertainty at inference with no temporal buffers, auxiliary exits, or ensembles (see Figure[I)). The
aggregate surprisal is an affine transform of a depth-wise negative log-likelihood (equivalently a
conditional Mahalanobis energy) and is invariant to BN-like per-channel rescaling; we also derive
robust (Student-t/Huber) and low-rank+diag variants (Appx. [H] [[). We provide an MCU-ready
implementation using 1x 1 projectors with global average pooling, int8 heads, LUT-based scales for
log 02, and a tiny monotone mapper, adding only a few-tens of KB of flash and <2% extra MACs.
Empirically, across MNIST, CIFAR-10, TinyImageNet, and SpeechCommands on two MCU tiers,
SNAP-UQ improves accuracy-drop detection under CID, is competitive or better on IDv' —ID x
and IDv' — OOD failure detection, and strengthens ID calibration—while fitting on the Small-MCU
where heavier baselines are out-of-memory.

2 SNAP-UQ EXPLAINED

We consider the same depth-D backbone that maps an input x to activations {ag}?: o With ag = @,
final features f(z) = ap, and class posteriors p,(y | =) = softmax(g(ap)) € AL~L. Let
§ = argmaxy py(y = ¢ | ), maximum confidence Cy(x) = maxy pys(y = ¢ | =), and probability

margin m™8(z) = p((;) (x) — p((f)(x) where p((bl)(a:) > pf)(m) > - - are sorted class probabilities.

In contrast to temporal methods, SNAP-UQ builds a label-free depth-wise uncertainty signal in a
single forward pass by predicting each tapped layer’s next activation from the previous one and
measuring the surprisal (negative log-likelihood) of the realized activation under that conditional
model. No auxiliary exits, multiple passes, or temporal buffers are introduced.

Design goals and assumptions. SNAP-UQ is built for milliwatt-scale devices with a single forward
pass, constant memory, and integer inference (see Appx [M). We assume: (i) the backbone is fixed
at deployment; (ii) per-layer activations a, are available in the course of the standard pass; (iii) the
device can perform a handful of extra linear ops per tapped layer £ € S and elementwise arithmetic;
(iv) no labels or long histories are available online.



Under review as a conference paper at ICLR 2026

f2 f3 [ fo HCIassifiergH p¢(y/x)]
l i
ap_y Ilro_PEO_naTb_le;d_ V\;t}T C ¢,_m_’";j
R
|

(9:(P2a0) > ( tog 03) | { ga(Paar) ~ (uatogod) |+ (900 ap-) - (unlog o}) | -

T l l '

:__ [ ep ]—-[ S®) =D wie ]—-[ Logi;ﬁc w]
f

i
o

G 3!

| Train {gl}offlineJI—I

N e e e e e

'H
)

(]

Figure 1: SNAP-UQ pipeline. A standard backbone f1, ..., fp is tapped at a small set of layers
to expose activations ay. For each tap, a lightweight projector Pya,—; feeds a tiny predictor gy
that outputs next-activation statistics (g, log af). The per-layer surprisal e, is the standardized
squared error between the realized a, and ¢ (diagonal scale 07), and the single-pass uncertainty
proxy aggregates these as S(x) = >, e,. A monotone logistic head w maps S(z) to a calibrated
score U(z) €0, 1]; optionally, w can blend in instantaneous confidence signals from the classifier
(maximum probability Cy and margin m™#) for added separability. Dashed boxes indicate training-
only steps where {g,} are fitted offline; inference remains one forward pass, state-free, and MCU-
friendly.

2.1 DEPTH-WISE NEXT-ACTIVATION MODEL

We model how features evolve along depth. Let ag=x and ay € R4 be the post-activation tensor
(flattened to a vector) after block fy. We select a small tap set S C {2,..., D} (two or three taps
suffice in practice: a mid block and the penultimate block).

Low-rank conditioning. For each /€S we compress the previous activation with a projector
ze = Prag—y € R™, re L dp_1, )]
where P is (i) a 1 x1 pointwise conv followed by global average pooling for conv backbones, or (ii)

a skinny linear layer for MLPs. The goal is to retain the coarse state that predicts a, while keeping r,
small so FLOPs, RAM, and flash remain MCU-friendly.

Predictive distribution. Conditioned on z, a tiny head g, outputs per-channel location and log-
variance

(neslogop) = ge(ze), e, 00 € R, 2
yielding a simple conditional density for the next activation:
polae | ar—1) = N(pe, diag(o})). 3)

This diagonal form is integer-friendly (per-channel scales) and enables closed-form negative log-
likelihood (NLL) and standardized error, which we use as surprisal.

Low-rank+diag refinement (optional). To capture modest cross-channel structure at nearly the
same cost, we augment the covariance with a rank-k, correction:

¥, = diag(c?) + B¢B,,  ByeR¥*k [, <« d,. 4)

Both the log-determinant and the quadratic form are computed via the matrix determinant lemma and
the Woodbury identity; only a k¢ x k; system is solved per example (see Appx. ). Setting k; =0
recovers the diagonal model.

Surprisal and invariances. Given (¢, 07), the per-layer standardized error is

eo@) = |[(ar—p) 0o 5 @) = Legla). (5)

Under the Gaussian model, — log pg(ay | ar—1) equals %ez up to an additive constant; thus e is
an affine transform of the conditional NLL. The standardization confers scale invariance: BN-like
per-channel affine rescalings of a, are absorbed by (¢, o¢), leaving e, unchanged (see Prop. .



Under review as a conference paper at ICLR 2026

Aggregation across taps. We combine taps into a single depth-wise surprisal

S(x) = > weer(z),  we=0, Y wy=1, (6)
es ¢

with either uniform wy or inverse-variance weights estimated on a small development split. Section

maps S(x) (optionally blended with a confidence proxy) to a calibrated uncertainty U (z).

Design choices and complexity. A linear g, with two heads (for 1 and log %) has = 2 dyry + 2d,
parameters and O(d,r¢) MACs. With |S| <3, 7, €[32, 128], the extra FLOPs are typically < 2% of
tiny backbones and add only a few tens of KB in flash when quantized to int8.

Integer deployment notes. All projector and head weights are stored as int8 with per-tensor (or
per-channel) scales; accumulations are in int32. We avoid exponentials by keeping log o7 and using
a 256-entry lookup table to approximate exp(—% log 02); values are clamped to [log 02, ,log 02,,.]
to bound dynamic range and preserve monotonicity.

Variants (optional). For robustness to heavy tails we can replace the Gaussian channel NLL by a
Student-¢ or Huberized form (Appx. ; for multi-modality, a tiny diagonal mixture p(as|as—1) =
>k TN (phe 1, diag (o7 1)) with logits from z is a drop-in at small extra cost.

2.2 TRAINING OBJECTIVE AND REGULARIZATION

Notation recap. We index layers by ¢ € {1,..., D} and choose a small tap set S C {2,..., D}.
At tap ¢, the backbone produces an activation a; € R%. A tiny head predicts per-channel mean
and scale (ug,0¢) € R% x R for the next activation. We train on minibatches B with the usual
cross-entropy Lqjs and a small auxiliary weight Ags > 0.

Label-free auxiliary loss (what is being learned). For each (z,y) € B and each ¢ € S, define the
standardized error

u = (ag— ) @0, ' € R, 7

where ® denotes elementwise multiplication and a[l is elementwise inverse. Treating the head
output as a diagonal-Gaussian, the negative log-likelihood (NLL) for tap £ is

er = glluel3 + 317 logoy. ®)
Averaging over a minibatch and taps yields
1
Los = 20 e L= Lar + dsslos + MR ©)
z€B LeS

Intuition. If ay looks typical given the previous layer (close to uy at the predicted scale), then ey is
small. Shifted or surprising behavior yields larger e;.

Well-conditioned scales and weight control. To avoid degenerate scales and keep heads small, we
use a variance floor, a mild scale penalty, and standard weight decay:

o7 = softplus(&) + €%, € > 0 (small constant), (10)
R = 3 logafl + Aw (Wl + 1Woell3), an
s tes
scale control weight decay

where W, , and W, , are the head weight matrices that produce yi, and log al? from the compressed
features.

Backbone stability (optional detach). On small datasets or sensitive backbones, we optionally
detach a, in ey so gradients from Lgg do not flow into the backbone at tap ¢:

1912
egetach z H(stopgrad(ag) — ) ©® oy 1H2 + %1T log os. (12)
This preserves the classifier’s optimization while still training the tiny heads (see ablations in

Appx.|N).



Under review as a conference paper at ICLR 2026

Per-layer balancing (avoid width bias). To prevent wide layers from dominating, we average
per-layer contributions before summing:

1 1
€ = — ey, Lsg = — €. (13)
i B2

This simple normalization worked robustly across architectures.

Robust distributional drop-ins (heavy tails). When corruptions induce heavy-tailed deviations,
Student-¢ or Huberized penalties can replace the Gaussian term with no interface changes:

de 5
OIS ve+1 (agi — pre,i) 1y 2
Student-¢ : ee = 2o T 10g<1 -+ W) —+ 5 log O—E,iv (14)
de 1,2
o J(H) (% - uw) 1 2 _Jzu lul <6,
Hub d: = _ =1 . =
Hberze K ;pa o0 + zlogori pslu) lu| — 262  otherwise.
(15)

We report these as robustness checks (Appx. [N).

Practical recipe (what to tune). We sweep a single scalar Ass € {1073, 5-1073, 1072} on the
ID validation split; \,, is set small and fixed. Heads are linear and quantized to int 8; evaluating
exp(-) for log o2 uses a tiny LUT. At test time, Lsg is not computed; we only form the standardized
errors and aggregate them into a surprisal score that is passed through a tiny logistic (or isotonic)
mapping for the final uncertainty (see Appx.[J]and[N.3).

2.3 SINGLE-PASS SURPRISAL AND MAPPING

At test time, the standard forward pass yields {a,}. Each g, produces (¢, %) from z,, and we
compute

112 _
eo(x) = ||(ar — ) © 0, 1||2, éo(x) = d—lzeg(x). (16)
The SNAP score aggregates across taps:
S(x) = Zwe eo(x), wyp > 0, sz =1. (17)
(€S ¢

We convert S(z) into a decision-oriented uncertainty by a tiny logistic map (Platt et al.,|1999) and an
instantaneous confidence proxy:

m(z) = a(l — Cy(z)) + (1 — a)(1 — m™8(z)), «a€]0,1], (18)
U(z) = o(Bo + B15(x) + Bam(x)), (19)

with (S, 81, B2) fitted once offline on a small labeled development mix (ID + CID/OOD). Setting
B2=0 yields a purely label-free mapping.

Calibration and decision rules. We use either: (i) a fixed threshold U (x) > 7; (ii) risk—coverage
targeting a desired selective risk by scanning 7 on the dev set; or (iii) a budgeted controller that caps
long-run abstention rate at b by selecting the largest T s.t. E[I[U(x) > 7]] < b on the dev distribution
(see Appx [K). When budgets are tight, we prefer isotonic regression (Zadrozny & Elkanl 2002)
over logistic for a nonparametric monotone mapping from S(x) (or (S, m)) to error probability; see
Appx [} All calibrations are offline and do not require online labels.

Training attaches tiny per-layer predictors and optimizes a self-supervised surprisal loss, then fits a
monotone map from aggregated surprisal to error probability (Alg.[I). Atinference, a single pass com-
putes per-tap standardized errors, aggregates them into S (), maps to U (z), and thresholds—without
extra passes, buffers, or online labels (Alg. .



Under review as a conference paper at ICLR 2026

2.4 COMPLEXITY, FOOTPRINT, AND MCU IMPLEMENTATION

Let dy = dim(ay) and 7, = dim(z,). For linear g, with two heads (x and log 02), parameter count is

#0;, =~ 2dery + 2d,  (biases included), FLOPs; = O(dgry). (20)
With |S| = 2 taps, 7, € [32,128], d; € [128,512], the extra FLOPs are typically < 2% of tiny
backbones (DS-CNN/ResNet-8) and the flash footprint is a few tens of KB at 8-bit weights. Runtime
memory stores { Py, W, ;, W, ¢} and per-channel scales; there is no O(1V) temporal buffer (see

Appx [D).

Integer-friendly arithmetic. We store P, W, ¢, W, , as int8 with per-tensor scales; compute
z¢ and heads in int8—int16—int32 accumulators; dequantize once to floatl6 (or int8 with LUT)
for the standardized error. To avoid exp, we keep log o7 and use exp(—% log 07) implemented as
a 256-entry LUT (per-channel or shared). We clamp log o7 € [log o2 ,log o2, ] for numerical
stability and apply a small e floor inside equation[T6]

Choosing taps and ranks. Heuristics: pick (i) the end of a mid block (captures texture/edges) and
(ii) the penultimate block (class-specific patterns). Set r, so FLOPs, is < 1% of the backbone each;
tune wy on dev data or set wy; < 1/Var(é,) to de-emphasize noisy taps.

2.5 THEORY: LINKS TO LIKELIHOOD AND MAHALANOBIS

Proposition 2.1 (Surprisal-likelihood equivalence under diagonal-Gaussian). If pg(ae | ar—1) =
N (pe, diag(o?)) as in equation then
dy
—logpg(ae | ar—1) = % eo(x) + %Z log aii + const, 21
i=1
so S(z) in equationis (up to additive/multiplicative constants and layer weighting) the depth-wise
negative log-likelihood. Higher S(x) implies lower conditional likelihood of the observed activations.
Proposition 2.2 (Relation to Mahalanobis scores). Let the usual Mahalanobis score use unconditional,
classwise feature Gaussians at layer (. If the true feature dynamics are approximately linear,
ag = Wyap_1 + by + € with e ~ N(0,%y), then the conditional energy e, equals the squared
Mahalanobis distance of ay to the conditional mean Wyay_1 + by under covariance ¥y. Hence
SNAP-UQ measures deviations from depth-wise dynamics rather than unconditional, class-averaged
statistics, improving sensitivity to distribution shift that alters inter-layer transformations.
Proposition 2.3 (Affine invariance (scale)). Suppose batch-normalized activations admit per-channel
affine transforms ay — s ® ay + t. If Py and gy are trained jointly, the standardized error ey is
invariant to such rescalings at optimum because py and oy co-adapt; formally ey is unchanged under
swhen pig — s© pp +tand op — |s| © oy.

Proof sketches are given in Appx [H] Proposition [2.1]just unrolls the Gaussian NLL; Proposition [2.2]
follows by conditioning and applying the Woodbury identity; Proposition [2.3]is immediate from
reparameterization.

2.6  VARIANTS AND ABLATIONS

Low-rank covariance. Using equationE]with ke € {4, 8} tightens the model with negligible extra
cost (matrix—vector ops with B, only).

Mixture-of-modes. A tiny, K-component diagonal mixture p(a, | ap—1) =
>k TN (e 1, diag(a7 ;) with logits from z, handles multi-modality in features; compute
log-sum-exp in float16.

Detachment. Detaching a, inside Lgg avoids tug-of-war with L.y on small datasets; we report both.

Mapping choice. Replace logistic with isotonic regression for tighter risk—coverage when a target
budget is specified (Kull et al., 2019); combine (.S, m) as two features.

Quantization-aware training (QAT). Insert fake quantization on P, and heads to reduce int8 drift
in log 02 (Choi et al., 2018); we quantize log 0 to 8-bit with shared scale.



Under review as a conference paper at ICLR 2026

Discussion and relation. S(z) acts as a conditional, layer-aware energy computed along depth,
capturing feature-dynamics shifts that plain confidence/margin miss. Unlike ensembles, MC dropout,
or TTA, SNAP-UQ remains single-pass and MCU-friendly; unlike temporal methods, it requires no
ring buffers or streaming calibration. The approach is complementary to both and can be combined
when resources allow (e.g., use S(z) as one feature in a temporal controller).

3 EVALUATION METHODOLOGY

Our objective is to test whether depth-wise surprisal—the core of SNAP-UQ—provides a practical,
on-device uncertainty signal under TinyML constraints.

Hardware and toolchain. We target two common MCU envelopes: a higher-capacity microcon-
troller with a few MB of flash and several hundred KB of SRAM (Big-MCU) and an ultra-low-power
part with sub-MB flash and tens of KB SRAM (Small-MCU) (STMicroelectronics| [2019; [2018)).
Builds use the vendor toolchain with —03 (Chen et al., 2018)); CMSIS-NN kernels are enabled where
available (Lai et al., 2018} |[David et al., [2021). The clock is fixed at the datasheet nominal to avoid
DVFES confounds.

Cost and runtime accounting. Flash is reported from the final ELF after link-time garbage
collection. Peak RAM comes from the linker map plus the incremental buffers for SNAP-UQ’s
projectors/heads. Latency is end-to-end time per inference measured by the on-chip cycle counter
with interrupts masked; each figure averages 1,000 runs (std. dev. shown). Energy (selected runs)
integrates current over time using a shunt on the board rail.

Backbones and datasets. Vision: MNIST, CIFAR-10, TinyImageNet (LeCun et al.l [1998;
Krizhevsky} 2009; |Le & Yang||2015). Audio: SpeechCommands v2 (Warden, 2018). Backbones: a
4-layer DSCNN for SpeechCommands (Zhang et al.,|2018]), a compact residual net for CIFAR-10
(Banbury et al.}[2021), and a MobileNetV2-style model for TinylmageNet (Howard et al., 2017; Cai
et al., [2020). Standard augmentation is used; temperature scaling is applied on the ID validation split
(Hendrycks et al.l 2020). Full dataset and schedule details appear in Appx.[A]and[B]

SNAP-UQ configuration (inference-friendly). We attach two taps (end of a mid block and the
penultimate block). Each tap uses a 1x 1 projector P, with global average pooling and two int8 heads
that output (110, log o7). We set ranks 7, € {32, 64, 128} and auxiliary weight Ass € {1073,1072}.
To avoid exponentials on-device, log o2 is clamped and mapped to per-channel multipliers via a
256-entry LUT. A 3-parameter logistic map converts (.5, m) to U; an isotonic alternative is reported

in Appx.

Baselines and tuning. We compare against single-pass confidence (max-probability, entropy)
(Hendrycks & Gimpel, 2017), temperature scaling, classwise Mahalanobis at tapped layers, energy-
based scoring (Liu et al.| 2020), evidential posteriors when they fit, and—on Big-MCU only—MC
Dropout (Gal & Ghahramanil 2016) and Deep Ensembles (Lakshminarayanan et al.,|2017)) and (Tack
et al.|[2020; Du et al.,2022; |Wang et al.| [2022), QUTE (Ghanathe & Wilton, [2024)) All methods share
backbones and input pipelines; thresholds and any temperature/isotonic parameters are tuned on a
common development split. Implementation details and grids appear in Appx.[C]

CID/OOD protocols and streaming setup. We use MNIST-C, CIFAR-10-C, TinyImageNet-C
(Mu & Gilmer;, [2019; |[Hendrycks & Dietterich, 2019). For SpeechCommands we synthesize CID
using impulse responses, background noise, reverberation, and time/pitch perturbations (Appx. D).
OQOD sets are Fashion-MNIST (for MNIST), SVHN (for CIFAR-10), non-keyword/background
audio (for SpeechCommands), and disjoint TinyImageNet classes. For streaming evaluation, we
concatenate clean ID segments with CID segments of rising severity and short OOD bursts (Gama
et al.,[2014). Events are labeled offline via sliding-window accuracy (window m=100) falling below
an ID band estimated from a held-out run (up & 301p). The monitor never sees labels online. We
score event detection by AUPRC and report thresholded detection delay; thresholds are selected
offline on the dev split (Appx. [E).



Under review as a conference paper at ICLR 2026

4 RESULTS

We evaluate SNAP-UQ on four axes: deployability on MCUs, monitoring under corrupted streams,
failure detection (ID/CID and OOD), and probabilistic quality on ID. Unless noted, results are
averaged over three seeds; 95% confidence intervals (CIs) are obtained via 1,000 bootstrap over
examples. Ablations (tap placement/rank, quantization variants, mapping alternatives, risk—coverage
surfaces, reliability diagrams, and error clusters) are deferred to Appx [NHF and [O]for a single-pass
head-to-head and decision-centric risk—coverage analyses.

4.1 ON-DEVICE FIT AND RUNTIME

Setup. All methods share the same backbones, preprocessing, and integer kernels. Builds use vendor
toolchains with —~03 and CMSIS-NN where available; input I/O is excluded and timing spans from
first byte in SRAM to posterior/uncertainty out. Flash is read from the final ELF (post link-time GC).
Peak RAM is computed from the linker map plus scratch buffers required by the method. Latency is
measured with the MCU cycle counter at datasheet nominal clock (interrupts masked), averaged over
1,000 runs. Energy integrates current over time via a calibrated shunt at 20kHz. All baselines are
compiled with the same quantization scheme; when a method does not fit, we report OOM and omit
latency/energy.

Findings. Table [T summarizes deployability. On Big-MCU, SNAP-UQ reduces latency by 35%
(SpeechCmd) and 24% (CIFAR-10) vs. EE-ens, and by 26-34% vs. DEEP, with 49-46% and
37-57 % flash savings, respectively. On Small-MCU, both ensembles are OOM for CIFAR-10; for
SpeechCmd, SNAP-UQ is 33% faster and 16-24% smaller, and uses 1.6-2.0x less peak RAM
than EE-ens due to absent exit maps and int8 heads. These trends hold across seeds; Cls are narrow
(typically +1-3% of the mean).

Table 1: MCU deployability. Flash (KB) / Peak RAM (KB) /
Latency (ms) / Energy (mJ). OOM: method does not fit.

Big-MCU (SpeechCmd) BASE EE-ens DEEP SNAP-UQ

Flash | 220 360 290 182
Peak RAM | 84 132 108 70
Latency | 60 85 70 52
Energy | 2.1 3.0 2.5 1.7
Big-MCU (CIFAR-10)

Flash | 280 540 680 292
Peak RAM | 128 190 176 120
Latency | 95 110 125 83
Energy | 3.7 4.1 4.6 33
Small-MCU (SpeechCmd)

Flash | 140 320 210 118
Peak RAM | 60 104 86 51
Latency | 170 240 200 113
Energy | 6.0 8.6 7.3 4.7
Small-MCU (CIFAR-10)

Flash | 180 OOM OOM 158
Peak RAM | 92 OOM OOM 85
Latency | 260 OOM OOM 178
Energy | 9.5 OOM OOM 6.4

Note. BASE includes on-device softmax+entropy and a small stats buffer;
SNAP-UQ replaces this with a single scalar surprisal S(z) and is compiled
INT8 with kernel fusion.

4.2 MONITORING CORRUPTED STREAMS

Protocol. We construct unlabeled streams by concatenating ID segments, CID segments (severities
1-5 from MNIST-C/CIFAR-10-C/TinyImageNet-C or our SpeechCmd-C generator), and short OOD
bursts. Ground-truth events are labeled offline when a sliding-window accuracy (window m=100)
falls below an ID band estimated from a separate held-out ID run (up — 3o1p). Thresholds for each



Under review as a conference paper at ICLR 2026

CIFAR-10-C (AUPRC vs. severity)

T T T

0.8
Q [
gz 06
a
=]
<

0.4 |- —o— EE-ens |

—4— DEEP
S —— SNAP-UQ

0'24 | | |
1 2 3 4

Severity

ot

Figure 2: CIFAR-10-C: AUPRC vs. corruption severity. SNAP-UQ scales fastest with severity.

method are fixed on a development stream to maximize the F1 score and then held constant for
evaluation.

Findings. SNAP-UQ yields the best average AUPRC and shortest delays on MNIST-C and
SpeechCmd-C (Table [2)), and its AUPRC grows fastest with severity on CIFAR-10-C (Fig. [2).
Qualitatively, depth-wise surprisal reacts earlier than softmax entropy as distortions accumulate,
reducing late alarms. False positives on clean ID segments remain low at matched recall (Appx [B).

Table 2: Accuracy-drop detection on CID streams. AUPRC (higher is better) and median detection
delay (frames) at a single dev-chosen threshold.

MNIST-C SpeechCmd-C
Context (accuracy) Clean: 99.0% — CID: 90.8% (—8.2pp) Clean: 95.2% — CID: 86.0% (—9.2 pp)
Method AUPRC 1 Delay | AUPRC t Delay |
BASE 0.54 42 0.52 67
EE-ens 0.63 31 0.59 55
DEEP 0.56 35 0.58 57
SNAP-UQ 0.66 24 0.65 41

4.3 FAILURE DETECTION (ID, CID, OOD)

Tasks. We report AUROC for two threshold-free discriminations: IDv" —1ID x (correct vs. incorrect
among ID + CID) and IDv' — OOD (ID vs. OOD). For operational relevance, we further compare
selective risk at fixed coverage and selective NLL in Appx [F}

Findings. With a single forward pass, SNAP-UQ leads on IDv' —IDx for MNIST and SpeechCmd
and remains competitive on CIFAR-10; on IDv' — OOD, it ties the best on SpeechCmd and is close
to the strongest semantic OOD detector on CIFAR-10 (Table [3). These gains mirror the monitoring
results: when corruptions are label-preserving, depth-wise surprisal provides sharper separation than
confidence-only scores.

Table 3: Failure detection. AUROC for IDv' —IDx and IDv' — OOD.

Method

IDv —IDx

IDv' — 00D

MNIST SpCmd CIFAR-10 MNIST SpCmd CIFAR-10

Context (clean acc.) 99.0% 95.2% 83.7% N/A (OOD sets)

BASE 0.75 0.90 0.84 0.07 0.90 0.88
MCD 0.74 0.89 0.87 0.48 0.89 0.89
DEEP 0.85 0.91 0.86 0.78 0.91 0.92
EE-ensemble 0.85 0.90 0.85 0.85 0.90 0.90
G-ODIN 0.72 0.74 0.83 0.40 0.74 0.95
HYDRA 0.81 0.90 0.83 0.71 0.90 0.90
QUTE 0.87 0.91 0.86 0.84 0.91 0.91
SNAP-UQ 0.90 0.94 0.87 0.86 0.92 0.94




Under review as a conference paper at ICLR 2026

4.4 CALIBRATION ON ID

Findings. SNAP-UQ improves proper scores on MNIST and SpeechCmd, lowering both NLL
and BS while reducing ECE relative to BASE. On CIFAR-10, a capacity-matched variant (SNAP-
UQ™) matches DEEP on BS with comparable NLL, while preserving single-pass inference (Table El)
Reliability curves and selective-calibration analyses appear in Appx Raw vs. calibrated. We
also evaluate using the raw surprisal S(z) (no calibration) as the uncertainty signal; rankings remain
strong, but decision metrics improve with a tiny logistic/isotonic map. See Appx. |[N.6|for numbers.

Table 4: ID calibration. Lower is better. SNAP-UQ™ increases projector rank and adds a low-rank
covariance correction.

MNIST NLL, BS| ECE]

BASE 0.285 0.012  0.028
Temp. scaled 0242  0.010  0.022
SNAP-UQ 0.202  0.008 0.016

SpeechCmd NLL BS ECE

BASE 0.306 0.012 0.024
Temp. scaled  0.228  0.009  0.021
SNAP-UQ 0.197 0.008 0.016

CIFAR-10 NLL BS ECE

BASE 0415 0.021 0.031
DEEP 0.365 0.017 0.015

SNAP-UQ™ 0363  0.017 0.021

We convert surprisal .S to a calibrated uncertainty with a tiny monotone link.

> Isotonic (recommended for fixed coverage monitoring): nonparametric, preserves ordering,
adapts to nonlinearities; thresholds remain stable under CID/OOD shifts.

> Logistic (recommended for in distribution calibration): use U = o (f8y + 815 + Bam), where
m may be a confidence cue (e.g., top 2 logit margin or max softmax).

> Default include m: adding m consistently lowers selective risk at a given coverage with
negligible cost; when m is unavailable, set S2=0.

> Practical recipe: for robust event detection or fixed coverage, fit isotonic on a small dev stream
and threshold U; for best ID scores (NLL/BS/ECE), fit the logistic map on an ID dev split
(logit temperature optional). Because both maps are monotone, AUROC/AUPRC stay nearly
unchanged; the choice mostly affects decision centric metrics (selective risk, fixed coverage
error) and can be swapped without retraining.

5 CONCLUSION AND DISCUSSION

SNAP-UQ converts depth-wise next-activation prediction into a single-pass, integer-friendly uncer-
tainty signal that drops neatly into CMSIS-NN pipelines and fits within kilobyte-scale MCU budgets.
Empirically it improves accuracy-drop monitoring on corrupted streams, remains competitive on
IDv' —IDx and IDv' — OOD failure detection, and strengthens ID calibration without temporal
buffers, auxiliary exits, or extra passes. Limitations include reliance on access to intermediate ac-
tivations, diagonal/low-rank covariance that may miss fine cross-channel structure, and sensitivity
to tap placement and projector rank. Future work targets hardware-aware tap/rank selection, richer
yet cheap heads (low-rank+diag, mixtures, Student-t), self-tuning calibration under budgets, and
lightweight fusion with a semantic OOD cue.

10



Under review as a conference paper at ICLR 2026

LLM USAGE

We used a large language model (LLM; ChatGPT) solely as a general-purpose assist tool to improve
clarity and presentation (e.g., grammar/typo fixes, tighter phrasing and transitions, light IZIEX tips,
and reference style cleanup). We did not use an LLM for research ideation, experimental design,
data analysis, result interpretation, drafting substantive technical content, equations/algorithms,
figure creation, or code implementation. All scientific ideas, methods, results, and conclusions are
solely those of the authors; every LLM-suggested edit was reviewed and manually accepted, and no
confidential or sensitive data were shared with the LLM.

REFERENCES

Soyed Tuhin Ahmed, Michael Hefenbrock, and Mehdi B Tahoori. Tiny deep ensemble: Uncertainty
estimation in edge ai accelerators via ensembling normalization layers with shared weights. In
Proceedings of the 43rd IEEE/ACM International Conference on Computer-Aided Design, pp. 1-9,
2024.

Anastasios Angelopoulos, Stephen Bates, Jitendra Malik, and Michael 1. Jordan. Uncertainty
sets for image classifiers using conformal prediction. In International Conference on Learning
Representations (ICLR), 2021. RAPS.

Colby Banbury, Vijay Janapa Reddi, Peter Torelli, Jeremy Holleman, Nat Jeffries, Csaba Kiraly,
Pietro Montino, David Kanter, Sebastian Ahmed, Danilo Pau, et al. Mlperf tiny benchmark. arXiv
preprint arXiv:2106.07597, 2021.

Han Cai, Chuang Gan, and Song Han. Once for all: Train one network and specialize it for efficient
deployment. In International Conference on Learning Representations (ICLR), 2020.

Bertrand Charpentier, Daniel Ziigner, and Stephan Giinnemann. Posterior network: Uncertainty
estimation without ood samples via density-based pseudo-counts. Advances in neural information
processing systems, 33:1356-1367, 2020.

Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan
Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. {TVM}: An automated {End-to-End}
optimizing compiler for deep learning. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pp. 578-594, 2018.

Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalakshmi Srinivasan,
and Kailash Gopalakrishnan. Pact: Parameterized clipping activation for quantized neural networks.
arXiv preprint arXiv:1805.06085, 2018.

Robert David, Jared Duke, Advait Jain, Vijay Janapa Reddi, Nat Jeffries, Jian Li, Nick Kreeger, Ian
Nappier, Meghna Natraj, Tiezhen Wang, et al. Tensorflow lite micro: Embedded machine learning
for tinyml systems. Proceedings of machine learning and systems, 3:800-811, 2021.

Danruo Deng, Guangyong Chen, Yang Yu, Furui Liu, and Pheng-Ann Heng. Uncertainty estimation
by fisher information-based evidential deep learning. In International conference on machine
learning, pp. 7596-7616. PMLR, 2023.

Andrija Djurisic, Nebojsa Bozanic, Arjun Ashok, and Rosanne Liu. Extremely simple activation
shaping for out-of-distribution detection. arXiv preprint arXiv:2209.09858, 2022.

Xuefeng Du, Zhaoning Wang, Mu Cai, and Yixuan Li. Vos: Learning what you don’t know by virtual
outlier synthesis. In International Conference on Learning Representation (ICLR), 2022.

Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani, Raja Appuswamy, and Dharmendra S.
Modha. Learned step size quantization. In Advances in Neural Information Processing Systems
(NeurlPS), 2019.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pp. 1050-1059.
PMLR, 2016.

11



Under review as a conference paper at ICLR 2026

Jodo Gama, Indre Zliobaité, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia. A
survey on concept drift adaptation. ACM Computing Surveys, 46(4):1-37, 2014.

Nikhil P Ghanathe and Steven JE Wilton. Qute: Quantifying uncertainty in tinyml with early-exit-
assisted ensembles for model-monitoring. arXiv preprint arXiv:2404.12599, 2024.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International conference on machine learning, pp. 1321-1330. PMLR, 2017.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. In /CLR, 2017.

Dan Hendrycks, Norman Mu, Ekin D Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshmi-
narayanan. Augmix: A simple data processing method to improve robustness and uncertainty. In
International Conference on Learning Representations (ICLR), 2020.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Yen-Chang Hsu, Yilin Shen, Hongxia Jin, and Zsolt Kira. Generalized odin: Detecting out-of-
distribution image without learning from out-of-distribution data. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 10951-10960, 2020.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical Report TR-2009,
University of Toronto, 2009. Department of Computer Science.

Meelis Kull, Miquel Perello-Nieto, Markus Kéngsepp, Telmo Silva Filho, Hao Song, and Peter Flach.
Beyond temperature scaling: Obtaining well-calibrated multiclass probabilities with dirichlet
calibration. In International Conference on Machine Learning (ICML), 2019.

Liangzhen Lai, Naveen Suda, and Vikas Chandra. Cmsis-nn: Efficient neural network kernels for
arm cortex-m cpus. arXiv preprint arXiv:1801.06601, 2018.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in neural information processing systems,
30, 2017.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. http://cs231n.stanford,
edu/| 2015. CS231N, 7(7):3.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278-2324, November 1998. doi:
10.1109/5.726791.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
out-of-distribution samples and adversarial attacks. Advances in neural information processing
systems, 31, 2018.

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and Shi
Gu. Brecq: Pushing the limit of post-training quantization by block reconstruction. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
1d=POWv6hDd9XH.

Shiyu Liang, Yixuan Li, and R. Srikant. Enhancing the reliability of out-of-distribution image
detection in neural networks. In /CLR, 2018.

Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detection.
Advances in neural information processing systems, 33:21464-21475, 2020.

Andrey Malinin and Mark Gales. Predictive uncertainty estimation via prior networks. Advances in
neural information processing systems, 31, 2018.

12


http://cs231n.stanford.edu/
http://cs231n.stanford.edu/
https://openreview.net/forum?id=POWv6hDd9XH
https://openreview.net/forum?id=POWv6hDd9XH

Under review as a conference paper at ICLR 2026

Lassi Meronen, Martin Trapp, Andrea Pilzer, Le Yang, and Arno Solin. Fixing overconfidence in
dynamic neural networks. In Proceedings of the IEEE/CVF winter conference on applications of
computer vision, pp. 2680-2690, 2024.

Matthias Minderer, Josip Djolonga, Rob Romijnders, Frances Hubis, Xiaohua Zhai, Neil Houlsby,
Dustin Tran, and Mario Lucic. Revisiting the calibration of modern neural networks. Advances in
neural information processing systems, 34:15682-15694, 2021.

Norman Mu and Justin Gilmer. Mnist-c: A robustness benchmark for computer vision. arXiv preprint
arXiv:1906.02337, 2019.

Jishnu Mukhoti, Andreas Kirsch, Joost Van Amersfoort, Philip HS Torr, and Yarin Gal. Deep
deterministic uncertainty: A new simple baseline. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 24384-24394, 2023.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
down? adaptive rounding for post-training quantization. In International conference on machine
learning, pp. 7197-7206. PMLR, 2020.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng.
Reading digits in natural images with unsupervised feature learning. In NIPS Workshop on
Deep Learning and Unsupervised Feature Learning, pp. 1-9, December 2011. URL http:
//ufldl.stanford.edu/housenumbers. SVHN dataset.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua
Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty?
evaluating predictive uncertainty under dataset shift. Advances in neural information processing
systems, 32, 2019.

John Platt et al. Probabilistic outputs for support vector machines and comparisons to regularized
likelihood methods. Advances in large margin classifiers, 10(3):61-74, 1999.

Lorena Qendro, Alexander Campbell, Pietro Lio, and Cecilia Mascolo. Early exit ensembles for
uncertainty quantification. In Machine Learning for Health, pp. 181-195. PMLR, 2021.

Murat Sensoy, Lance Kaplan, and Melih Kandemir. Evidential deep learning to quantify classification
uncertainty. Advances in neural information processing systems, 31, 2018.

STMicroelectronics. STM32L432KC Datasheet: Ultra-low-power Arm Cortex-M4 32-bit MCU+FPU,
100 DMIPS, up to 256 KB Flash, 64 KB SRAM, USB FS, analog, audio, 2018. URL https:
//www.st.com/resource/en/datasheet/stm321432kc.pdf. Accessed: 2025-08-
08.

STMicroelectronics. STM32F767Z1 Datasheet: ARM Cortex-M7 Microcontroller with 512 KB
Flash, 216 MHz CPU, ART Accelerator, FPU, and Chrom-ART Accelerator, 2019. URL https:
//www.st.com/resource/en/datasheet/stm32f767z1.pdf. Accessed: 2025-08-
08.

Yiyou Sun, Chuan Guo, and Yixuan Li. React: Out-of-distribution detection with rectified activations.
Advances in neural information processing systems, 34:144-157, 2021.

Jihoon Tack, Sangwoo Mo, Jongheon Jeong, and Jinwoo Shin. Csi: Novelty detection via contrastive
learning on distributionally shifted instances. Advances in neural information processing systems,
33:11839-11852, 2020.

Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Branchynet: Fast inference
via early exiting from deep neural networks. In 2016 23rd international conference on pattern
recognition (ICPR), pp. 2464-2469. IEEE, 2016.

Joost Van Amersfoort, Lewis Smith, Yee Whye Teh, and Yarin Gal. Uncertainty estimation using a

single deep deterministic neural network. In International conference on machine learning, pp.
9690-9700. PMLR, 2020.

13


http://ufldl.stanford.edu/housenumbers
http://ufldl.stanford.edu/housenumbers
https://www.st.com/resource/en/datasheet/stm32l432kc.pdf
https://www.st.com/resource/en/datasheet/stm32l432kc.pdf
https://www.st.com/resource/en/datasheet/stm32f767zi.pdf
https://www.st.com/resource/en/datasheet/stm32f767zi.pdf

Under review as a conference paper at ICLR 2026

Haoqi Wang, Zhizhong Li, Litong Feng, and Wayne Zhang. Vim: Out-of-distribution with
virtual-logit matching. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2022. URL https://openaccess.thecvf.com/content/
CVPR2022/papers/Wang_ViM_Out-of-Distribution_With_Virtual-Logit_
Matching_ CVPR_2022_paper.pdf.

Pete Warden. Speech commands: A dataset for limited-vocabulary speech recognition. arXiv preprint
arXiv:1804.03209, 2018.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Bianca Zadrozny and Charles Elkan. Transforming classifier scores into accurate multiclass probabil-
ity estimates. In Proceedings of the eighth ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 694—699, 2002.

Yundong Zhang, Naveen Suda, and Vikas Chandra. Hello edge: Keyword spotting on microcon-
trollers. In Proceedings of the 3rd ACM/IEEE Symposium on Edge Computing (SEC), 2018.
arXiv:1711.07128 (2017).

14


https://openaccess.thecvf.com/content/CVPR2022/papers/Wang_ViM_Out-of-Distribution_With_Virtual-Logit_Matching_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Wang_ViM_Out-of-Distribution_With_Virtual-Logit_Matching_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Wang_ViM_Out-of-Distribution_With_Virtual-Logit_Matching_CVPR_2022_paper.pdf

Under review as a conference paper at ICLR 2026

APPENDIX

A DATASETS AND PREPROCESSING

Train/val/test splits and dev set. For each dataset we follow the standard train/test split and carve
out a development set from the official training portion for calibration and threshold selection (no test
leakage). Unless noted otherwise, we reserve 10% of the training set as dev, stratified by class and
fixed across seeds.

A.1 VISION

MNIST. 60k/10k grayscale images at 28 x 28. We rescale to 28 x 28 with no interpolation, normalize
using 1 = 0.1307, o = 0.3081, and apply light augmentation: random affine rotation (+10°) and
translation (up to 2 pixels). Batch size 256.

CIFAR-10. 50k/10k RGB images at 32x32. Augmentation: random crop with 4-pixel padding,
horizontal flip p=0.5, Cutout 16 x 16 (optional; disabled on Small-MCU ablations), color jitter (bright-
ness/contrast/saturation £0.2). Normalization with per-channel means (0.4914, 0.4822, 0.4465) and
stds (0.2023,0.1994, 0.2010).

TinyImageNet. 200 classes, 100k train (500/class), 10k val (50/class), images at 64x64. We
keep native 64 x64. Augmentation: random resized crop to 64 x 64 (scale [0.8, 1.0]), horizontal flip
p=0.5, color jitter (0.2/0.2/0.2), and random grayscale p=0.1. Normalize with ImageNet statistics
= (0.485,0.456,0.406), o = (0.229,0.224, 0.225).

A.2 AuDIO

SpeechCommands v2 (12-class KWS). We follow the 12-class task: {yes, no, up, down, left,
right, on, off, stop, go, unknown, silence}. Audio is mono at 16 kHz. We extract log-Mel features
from 1 s clips using a 25 ms window, 10 ms hop, 512-point FFT, 40 Mel bands, and per-utterance
mean/variance normalization (MVN). To avoid padding artifacts for shorter utterances we reflect-pad
the waveform to 1 s. Augmentation: random time shift (=100 ms), background noise mixing (from
the dataset’s noise clips) at SNR sampled uniformly from [5, 20] dB, small time/frequency masking
(SpecAugment: up to 2 time masks of width 20 frames and 2 frequency masks of width 5 bins), and
random gain +2 dB.

A.3 CORRUPTIONS (CID) AND OOD

CID for vision. We use MNIST-C, CIFAR-10-C, and TinyImageNet-C with all corruption types
except snow for MNIST-C (not defined). Severities {1, . .., 5} are evaluated individually and averaged.
The corruption families include noise (Gaussian, shot, impulse), blur (defocus, glass, motion, zoom),
weather (snow, frost, fog), and digital (contrast, brightness, pixelate, JPEG).

CID for SpeechCommands (SpeechCmd-C). We synthesize label-preserving degradations with:
room impulse responses (RT60 sampled in [0.2, 1.0] s), background noise mixing (UrbanSound8K
and ESC-50 subsets or the dataset’s noise) for SNR in [0, 20] dB, band-limiting (Butterworth
low/high/band-pass with random cutoffs), pitch shift +2 semitones, time stretch x[0.9,1.1], and
reverberation pre-delay [0, 20] ms. We map these to five severities by increasing SNR difficulty and
transform magnitudes.

OOD sets. MNIST — Fashion-MNIST; CIFAR-10 — SVHN; SpeechCommands — non-keyword
speech and background noise; TinyImageNet — a disjoint 200-class subset not present in training (we
use the official val set as ID and a curated 200-class slice from ImageNet-1k as OOD when computing
IDv' —OQD; all OOD images are resized to 64x64 with bicubic interpolation and normalized
identically).

15



Under review as a conference paper at ICLR 2026

Algorithm 1 SNAP-UQ training (offline, label-free auxiliary)

Require: Backbone f1, ..., fp, classifier g, tap set S, projectors { P, }, predictor architectures {g,},
weights Agg, Areg

1: for epochs do

2 for minibatch B do

3 Compute activations a1, . .., ap by forward pass

4: for / € S do

5: 2o ¢ Prag—1; (e, logo?) < gel(20)

6: end for

7 L.i¢ + cross-entropy on (z,y) € B

8: Lss < Eq. equation[0] R « variance/weight regularizers
9: Update ¢ and {g,} by descending £ = Lcir + AssLss + AregR
10: end for
11: end for

12: Fit (Bo, 1, B2) (or isotonic map) on a dev set to predict error from (S, m)

Algorithm 2 SNAP-UQ inference (single pass, state-free)

Require: Frozen backbone and {g,, P}, weights wy, mapping parameters (3y, 81, 32), threshold 7
1: Forward pass: compute a1, . ..,ap and pg(y | z)

2: for/ € Sdo

3 2 = Prag_1; (pe,logof) < ge(ze)

4 e (ar— o) © exp(—3loga7) |3

5: end for

6: S Y, weep; m <+ Eq.equation[18 U < o(8o + 515 + fam)

7. if U > 7 and budget controller allows then

8: ABSTAIN

9: else
0: Output g

1: end if

A.4 REPRODUCIBILITY AND BOOKKEEPING

We fix three seeds {13, 17,23}; all splits and corruptions are deterministically generated per seed.
Dev/test leakage is prevented by constructing streams from the held-out dev (for threshold selection)
and the official test (for final reporting). Per-example metrics are stored to enable 1,000 bootstrap
CIs.

B TRAINING, CALIBRATION, AND BUILD DETAILS

B.1 BACKBONES AND HEADS

DSCNN (KWS). Four depthwise-separable conv blocks (channels: 64, 64, 64, 64) with BN+ReLU6,
followed by global average pooling and a linear classifier. Input is 40x98 (Mel xtime). Parameter
budget ~130k. SNAP taps: end of block 2 (mid) and block 4 (penultimate). Projector ranks
re € {32,64}. Heads are linear: zp — pp and z¢ — log af.

Compact ResNet (CIFAR-10). ResNet-8/ResNet-10-like with three stages at widths 16/32/64,
stride-2 downsampling at the first conv of each stage, GAP, and linear classifier. Params ~0.3-0.5 M.
Taps: end of stage 2 and penultimate stage. Ranks r, € {64, 128}.

Tiny MobileNetV2 (TinyImageNet). Width multiplier 0.5, input 64 x 64, inverted residual blocks
with expansion 6, strides [2,2,2] across spatial downsampling, GAP, linear classifier. Params ~1.3 M.
Taps: end of a mid IR block and penultimate IR block. Ranks r, € {64,128} (Small-MCU) or
{128,160} (Big-MCU).

16



Under review as a conference paper at ICLR 2026

B.2 OPTIMIZATION AND SCHEDULES

MNIST. Adam (betas 0.9/0.999), Ir 1e—3 with cosine decay to 1le—>5 over 50 epochs; batch 256;
weight decay le—4. Ags=5e—3 (warm-up over first 5 epochs), A;c;=1e—4. Optional detach of a,
after epoch 10 if validation NLL stalls.

CIFAR-10. SGD with momentum 0.9, weight decay 5e—4, cosine Ir from 0.2 to 5e—4 over 200
epochs; batch 128. Label smoothing 0.1. MixUp a=0.2 on Big-MCU only (disabled for Small-MCU
reproducibility runs). Ags=1e—2 with linear ramp (first 20 epochs). Gradient clipping at global L2
norm 1.0.

TinyImageNet. SGD momentum 0.9, wd le—4, cosine Ir from 0.15 to 1le—4 over 220 epochs;
batch 128. Agg=be—3 (ramp 20 epochs). Optional EMA of model weights (7=0.999) for final eval.

SpeechCommands. AdamW (wd le—3), Ir 2e—3 with cosine to 1e—5 over 80 epochs; batch 256.
SpecAugment enabled (Sec. . Ass=be—3; detach disabled (empirically stable on KWS).

B.3 SNAP-UQ-SPECIFIC KNOBS

Auxiliary head stability. Log-variance is parameterized via softplus: o?=softplus(¢) + €2,
e=10"%. We clamp log 0 € [log 1074, log 10?]. Scale regularizer ay,,=1e—4; head weight decay
Ozwd:5674.

Layer weights and normalization. Per-layer loss uses dimension normalization (1/d,) and weights
wy set inversely proportional to the dev-set variance of &, (rescaled so > we=|S]).

QAT phase. For MCU deployability we apply fake quantization to P, and head weights during the
final 20% of epochs (int8 symmetric per-tensor scales), keeping loss computation in float32 (Esser
et al., 2019). We export int8 weights and a 256-entry LUT for exp(—% log 0%) (Nagel et al., 2020; Li
et al., [2021).

B.4 CALIBRATION AND THRESHOLDS

Temperature scaling (ID). We fit temperature 7" on the ID dev set to minimize NLL, then report
ID calibration metrics (NLL/BS/ECE) with scaled logits (Kull et al., 2019). This is applied uniformly
across all methods.

SNAP mapping. We fit either (i) a 3-parameter logistic map U=c(8y + 1.5 + B2m) via class-
balanced logistic regression, or (ii) isotonic regression on ¥)=+.5 + (1—~)m (v tuned on dev). Unless
stated, the main text uses logistic; isotonic results are in Appx.[J}

Selective prediction. We determine the threshold 7 on the dev split to attain a target coverage (e.g.,
90%) or to maximize F1 on event frames in streaming experiments. The same 7 is then held fixed on
test streams.

B.5 BUILD AND MEASUREMENT (MCU)

Toolchain. Vendor GCC with —03, LTO enabled; CMSIS-NN kernels for int8 conv/linear ops
where available. We disable denormals and set { ffast-math for the heads on Big-MCU only
(identical outputs within < 10~% RMSE).

Quantization/export. Weights for Py, W, Wiy, »= are int8 per-tensor scaled; activations follow

the backbone’s quantization. The standardized error uses a LUT on clamped log o values and
accumulates in int32 before a single dequantization to float16 (or fixed-point with shared scale) for
the final aggregation.

17



Under review as a conference paper at ICLR 2026

Timing and energy. Latency is measured with the on-chip DWT cycle counter; interrupts masked,
input already in SRAM, and timing spans from first layer call to posteriors and U(z). Energy is
measured on selected runs by shunt integration at 20 kHz with temperature-compensated calibration;
reported as mean=std over 1,000 inferences.

B.6 WHAT TO LOG (FOR REPRODUCIBILITY)

We store: (i) train/val/test splits and corruption RNG seeds; (ii) per-epoch [E[&,] and its variance; (iii)
mapping parameters (8o, 81, 82) or isotonic step function; (iv) MCU build flags, commit hash, and
per-layer op counts; (v) raw per-example scores for bootstrap Cls.

C BASELINES AND TUNING DETAILS

All baselines share the same training data, backbones, input pipelines, and integer kernels as SNAP-
UQ. Unless noted, calibration and threshold selection use the ID development split (10% of train;
fixed across seeds). For streaming experiments, thresholds are selected once on a dev stream and held
fixed for test streams; for AUROC/AUPRC we report threshold-free metrics.

C.1 SCORE DEFINITIONS AND MCU NOTES

Max-probability (Conf). Score Sconf(z) = 1 — maxy pg(y=~¢|x). MCU: softmax run is present
for classification; we reuse it. No extra memory.

Entropy. Sen(z) = — Zle pe(y=L|x) log pg(y=¢|x). MCU: use LUT for log (256 entries) or
float16; cost negligible vs. backbone.

Temperature scaling (Temp). Calibrated probs p(y | ) = softmax(z/T') with scalar T >0 fitted
on the ID dev set by minimizing NLL. Applied to BASE/Conf/Entropy and used for ID calibration in
section[d.4] MCU: divide logits by 7" in-place (float16), no parameter bloat.

Classwise Mahalanobis at taps (Maha). At selected layers £ € S (same taps as SNAP), fit class

means { g .} and a shared diagonal covariance flg:diag(of) on the ID training set (to avoid dev
leakage). Score

1
Saha () = mcinz Wy - d—e(ag(x) — ug,c)TEé_l (ag(x) - ug_yc). (22)
LesS

MCU: diagonal inverse avoids matrix—vector multiplies; store fi, . in int8 with per-tensor scale; wy
as int16 fixed-point. Memory grows with L - ", dy; feasible for MNIST/SpeechCmd, borderline for
TinyImageNet (we then keep penultimate tap only).

Energy-based scoring (EBM). Logit energy Seng(x) = —log), exp(2¢/Teng), With Ty, tuned
on dev. Higher energy = more uncertain. MCU: compute LSE in float16 with max-shift trick;
negligible overhead.

Evidential posteriors (Evid). Replace softmax with nonnegative evidence e € Ri, a=e+1,
Elp] =a/> ; @;j. Train with Dirichlet-based loss (NLL plus regularizer encouraging low evidence

on errors). Uncertainty scores: Sep(2) = 1 — maxy E[py] and total uncertainty u = ZL MCU:

adds a linear head for e and ReLU; we quantize to int8. On Small-MCU for CIFAR-10 tﬂis is OOM;
we report it only where it fits.

MC Dropout (MCD; Big-MCU only). Enable dropout at inference and average over NV stochastic

passes. Uncertainty: predictive entropy H[p] or mutual information H[p] — H[p]. We use N €
{5, 10}, dropout rate as trained. MCU: requires N forward passes = N x latency/energy; omitted
on Small-MCU.

18



Under review as a conference paper at ICLR 2026

Deep Ensembles (DEEP; Big-MCU only). Train M independently initialized replicas (M €
{3,5}). Uncertainty H[- > p(™)]. MCU: M passes and M x flash unless hosted externally; we
deploy only on Big-MCU and mark OOM elsewhere.

C.2 HYPERPARAMETER GRIDS AND SELECTION

We tune all scalar hyperparameters on the ID dev set (or dev stream for streaming tasks), then freeze
them. Grids:

» Temp scaling: T € {0.5,0.75,1.0,1.25,1.5,2.0, 3.0}; select by lowest dev NLL.
* Energy temperature: T;,, € {0.5,1.0, 1.5,2.0}; select by best dev AUROC (IDv' —IDx).

 Mabhalanobis: covariance shrinkage A € {0,10~%,1073} on the diagonal variance, tap weights
we € {(1,0),(0,1),(0.5,0.5)} for 2 taps; select by dev AUROC (IDv' —IDx).

« Evidential: evidence scale n € {0.1,0.5,1.0}, regularizer Aeyig € {107%4,1073,1072}; choose
by dev NLL and AUROC (IDv' —IDx).

* MCD (Big-MCU): N € {5,10}; score type € {pred. ent., MI}; choose by dev AUROC
(IDv" —IDx) under a latency cap (device budget).

* DEEP (Big-MCU): M € {3,5}; choose by dev AUROC subject to flash cap; if OOM, we report
size-only or omit runtime.

C.3 THRESHOLDING AND OPERATING POINTS

Streaming (accuracy-drop detection). Each method outputs a scalar score S(z;) increasing with
uncertainty. On a dev stream (ID—CID—OOD), we select a single threshold 7* to maximize F1 for
event frames (events labeled from sliding-window accuracy dips; Appx.[E). We then freeze 7* and
report AUPRC and median delay on test streams.

Selective prediction (risk—coverage). On the ID dev split (or CID dev for corrupted selective risk),
we scan thresholds to reach target coverage levels {50, 60, . .., 95}% and report the error rate among
accepted samples. For methods with a calibrated probability (Temp, Evid), we also report selective
NLL on accepted samples.

Failure detection (IDv' —ID x, IDv' —OOD). We report AUROC/AUPRC without thresholds.
For completeness, we include a dev-funed threshold (Youden’s J) when plotting confusion matrices

(Appx.[).
C.4 FAIRNESS CONTROLS AND IMPLEMENTATION PARITY

To avoid confounds:

1. Same backbones & preprocessing. Identical training augmentation, normalizers, and quantiza-
tion settings across all methods.

2. Single-pass baselines on Small-MCU. We exclude MCD/DEEP on Small-MCU due to multi-pass
cost; other baselines are strictly single-pass.

3. Calibration parity. Temperature scaling is applied to all softmax-based baselines for ID calibra-
tion. Energy uses its own T¢,.; Evidential uses its native probabilities.

4. Tapped layers parity. Mahalanobis uses the same tapped layers S as SNAP-UQ; if memory is
tight, both methods use the penultimate tap only.

5. Integer kernels. All inference runs use the same int§ CMSIS-NN backends; any float16/LUT
steps (log, exp, LSE) are shared implementations.

C.5 MEMORY/LATENCY ACCOUNTING ON MCUs

We attribute incremental cost beyond the baseline backbone:

19



Under review as a conference paper at ICLR 2026

* Conf/Entropy/Temp: negligible flash; < 0.1 ms latency for L<200.
* Energy: adds an LSE kernel (float16); < 0.2ms at L<200; no persistent state.

* Mahalanobis: flash grows with ), Ld, (means) and d; (diag variance). For CIFAR-10 with 2
taps of size dy~256 and L=10, storage ~ 2 x 10 x 256 bytes ~ 5 KB (int8 means) + scales;
latency < 2ms.

 Evidential: adds one linear head (d px L) and ReLU; typically < 10 KB flash on KWS/CIFAR-10;
latency < 1 ms. May be OOM on Small-MCU for TinyImageNet.

* MCD/DEEP (Big-MCU only): latency/energy scale linearly with N or M ; flash scales with M
(unless remote).

C.6 REPRODUCIBILITY

We release (i) grids and chosen hyperparameters per seed, (ii) dev-set thresholds 7*, (iii) feature
statistics for Mahalanobis (int8 means/scales), (iv) evidence-head checkpoints, and (v) MCU build
flags and per-layer timing. When a method is OOM, we include the measured maximum model that
fits and report the shortfall.

C.7 LIMITATIONS OF BASELINES UNDER TINYML CONSTRAINTS

Entropy and Temp rely solely on softmax shape, which can remain overconfident under CID;
Mahalanobis with diagonal covariance is memory-light but ignores cross-channel structure; Energy
depends on logit scale (mitigated by Tne); Evidential adds parameters and can be unstable without
careful regularization; MCD/DEEP provide stronger uncertainty but are incompatible with strict
single-pass/flash budgets on Small-MCU.

D CID/OOD PROTOCOLS AND STREAMING SETUP

We standardize corruption sources, OOD sets, and a single streaming protocol shared by all methods
so that thresholds are chosen once on a development stream and then frozen for evaluation.

D.1 CORRUPTION SOURCES (CID)

Image. We use MNIST-C, CIFAR-10-C, and TinyImageNet-C (Mu & Gilmer, |2019; Hendrycks
& Dietterich, |2019). Each provides 15 corruption types at 5 severities (1=light, 5=strong). For
TinyImageNet-C we resize to model input if needed but preserve severity labels.

Audio (SpeechCommands-C). We synthesize label-preserving degradations using standard trans-
forms:

* Room impulse responses (RIR): convolve with randomly sampled RIRs; reverberation
RTs0 € [0.2, 0.8] S.

* Background mixing: mix with noise clips at SNR sampled uniformly from [0, 20] dB; noise
drawn from the dataset’s background_noise_ and external ambient recordings.

» Time/pitch perturbation: time-stretch factor in [0.90,1.10]; pitch shift in
{-2,-1,0,41, 42} semitones (phase vocoding).

* Band-limiting & compression: a 2nd-order bandpass (300-3400 Hz) and light dynamic-
range compression (soft knee).

We map “severity” 1-5 to tuples of SNR / RT§ / stretch / pitch ranges so that larger severities jointly
increase distortion while keeping labels invariant. Exact ranges and seeds are released with the code.

D.2 OUT-OF-DISTRIBUTION (OOD) SETS

* MNIST OOD: Fashion-MNIST test split (Xiao et al., 2017).
* CIFAR-10 OOD: SVHN test split (Netzer et al., [2011)).

20



Under review as a conference paper at ICLR 2026

* SpeechCommands OOD: non-keyword utterances (the official “unknown” class) and back-
ground noise segments.

 TinyImageNet OOD: classes disjoint from the training label set (we use a held-out 100-class
subset with no overlap).

D.3 STREAMING CONSTRUCTION

We build long, unlabeled streams that interleave stable ID segments, progressively corrupted CID
segments, and short OOD bursts.

* Segment lengths. Unless noted: ID segments of 2,000 frames; for each severity s €
{1,...,5} a CID segment of 1,000 frames; OOD bursts of 100 frames inserted between
CID severities.

* Order. ID — CID(s=1)—00D — CID(s=2)— OO0D ... CID(s=5). Corruption types are
cycled every 200 frames within a severity to avoid single-type bias.

» Randomization. Each stream uses a fixed seed per dataset; we generate 3 independent seeds
for reporting mean+CI.

* Hold-out. Development and evaluation streams are built from disjoint underlying data
indices.

D.4 EVENT LABELING (OFFLINE, NEVER SEEN ONLINE)
We mark accuracy-drop events without exposing labels to the online monitor:

* Baseline band. From a separate, long ID-only run we compute sliding-window accuracy
with window m = 100 frames to estimate pp and oyp.

* Event rule. On a labeled copy of each stream, compute sliding-window accuracy (window
m = 100). An event is active when the windowed accuracy < pp — 30p.

* Onset/offset and merging. The event onset is the first frame crossing the threshold. Adjacent
events separated by fewer than m frames are merged; events shorter than m frames are
discarded to reduce label noise.

D.5 THRESHOLD SELECTION AND SCORING

Single operating point (for delay). For each method, on the dev stream we select a single threshold
7* that maximizes F1 on event frames; 7* is then frozen and used to measure median detection delay
on test streams. A detection is a threshold crossing while an event is active; the delay is the time from
event onset to the first detection. Multiple crossings within the same event are ignored.

Threshold-free metrics. We also report AUPRC over all thresholds (events as positives; non-events
as negatives) to summarize detection quality independent of 7*.

False positives on clean ID. On the ID portions of the streams, we compute the false positive rate
at fixed recall (e.g., 90%) by interpolating each method’s PR curve; these values are reported in the
main text or Appx [F}

Confidence intervals. We form 95% Cls by nonparametric bootstrap with 1,000 resamples: for
AUPRC we resample frames; for delays we resample events. We report median and CI (2.5/97.5th
percentiles).

21



Under review as a conference paper at ICLR 2026

D.6 STREAM BUILDER

Algorithm 3 BuildStream(DID, Dci, Doop, m, seed)

: Set RNG with seed; initialize empty list st ream
. Append ID segment of length 2000 sampled from Djp
: for s <~ 1to5do
Append CID segment of length 1000 at severity s (cycle corruption types every 200 frames)
if s < 5 then
Append OOD burst of length 100 from Doop
end if
end for
: Return stream

Ju—s

WRe AN WD

D.7 NOTES FOR MCU PLAYBACK

On-device playback preloads the stream into flash or streams from host over UART; timestamps are
recorded from the on-chip cycle counter. We mask interrupts during the model invocation to stabilize
latency and re-enable them during I/O. No labels or event markers are sent to the device.

E EVENT-DETECTION SCORING: AUPRC AND DELAY

We evaluate streaming event detection with two complementary measures: (i) area under the precision—
recall curve (AUPRC), threshold-free and frame-based; and (ii) thresholded detection delay at a
single operating point selected on a development stream. Online monitors never observe labels; all
scoring uses an offline labeled copy of the same streams.

E.1 NOTATION

Let a test stream have frames ¢ = 1,...,7. Each frame carries a binary event label y; € {0,1}
(Sec.D): y; = 1 iff the sliding-window accuracy is below the ID band. A method outputs a scalar
score s; € [0,1] (higher means more likely in-event). Let & = {(t3™, 2)}X | be disjoint event

intervals with y; = 1 for ¢ € [tQ®, #off].

E.2 AUPRC (FRAME-BASED, THRESHOLD-FREE)

We sweep thresholds over the set of unique scores © = {s; : t = 1,...,T}. For a threshold 7,
predictions are (1) = I[s; > 7]. Define

TP(7) =Y Iy = 1AG(r) = 1], FP(r) = > [y = 0Aj(r) = 1], FN(7) = Ify, = 1Ag(7) = 0].
t t t
(23)
Optional event-weighted variant. To reduce dominance of long events, we also report an event-

weighted AUPRC in Appx by giving each event equal total weight % (and background weight %),
implemented by per-frame weights that sum to one within each region.

E.3 THRESHOLD SELECTION ON THE DEVELOPMENT STREAM

For each method, we select a single operating threshold 7* on a development stream (disjoint indices)
by maximizing the frame-wise F1 score:

2 Pdcv (T) Rdcv(T)

* F1 = . 24
T eargTrengjiv (1) Paos (1) + Rawe (1) 1 ¢ 24

This 7* is frozen and used only for delay measurement on test streams. We also record the dev-set
operating recall to match false-positive accounting on clean ID segments.

22



Under review as a conference paper at ICLR 2026

E.4 THRESHOLDED DETECTION DELAY (TEST ONLY)

Given 7*, a detection for event k is the first threshold crossing ¢, = min{t € [t¢", #9F] : 5, > 77}, if
it exists. The delay is

tr —t3", if a crossing occurs;

25
NaN, otherwise (missed event). 25)

Delay;, = {

We ignore crossings before ¢7" for delay (they are counted as false positives elsewhere). Multiple
crossings within an event are collapsed to the first. Adjacent events separated by fewer than m frames
are merged during labeling (Sec. D). We report the median delay over detected events and a 95% CI

via bootstrap over events (1,000 resamples). We additionally report the miss rate w

Censoring. If the stream ends before a detection while an event is active, the event is treated as
missed for delay; sensitivity to this choice is analyzed in Appx [F}

E.5 FALSE POSITIVES ON CLEAN SEGMENTS

At a matched recall (e.g., 90%) determined on the development stream, we compute the false positive
rate on ID-only segments by applying the corresponding threshold on test streams and measuring the
fraction of non-event frames flagged as events.

E.6 COMPLEXITY AND NUMERICAL DETAILS
Computing AUPRC requires sorting {s;} once: O(T log T') time and O(T") memory. Delay uses a

single pass at fixed 7*: O(T'). To stabilize ties, we break equal scores by favoring higher recall first
(stable sort), then precision.

E.7 PSEUDOCODE

Algorithm 4 DelayAtThreshold ({ (5™, %)} K| {5}, 7%)
1: Initialize empty list delays

2: for k =1to K do

30t firstt € [t t2%] with s, > 7
4:  iff exists then

5: append (f — t9") to delays

6: else

7: append NaN to delays

8: end if

9: end for

0:

Ju—

return median(de 1ays without NaN), miss_rate = fraction of NaN

F METRICS AND STATISTICAL PROCEDURES

This appendix specifies how we compute all metrics reported in the main paper, including definitions,
aggregation across seeds/datasets, calibration plots, and confidence intervals (CIs). Unless noted,
scoring is micro-averaged over examples within each dataset/split.

F.1 NOTATION AND SHARED CONVENTIONS

Let a dataset (or stream) produce examples indexed by ¢ = 1,...,n. The model outputs a class-
probability vector p; € AP~ a predicted label j; = argmax; Die, and an uncertainty score
u; € [0,1] (SNAP-UQ) or a baseline score s; € R where larger means “more uncertain”. The
correctness indicator is ¢; = I[§; = y;]. For OOD experiments we also have an OOD indicator
0; € {0,1} (0; = 1 iff OOD). For streaming event detection (Sec.|E) we operate at the frame level,
here we define non-streaming metrics.

23



Under review as a conference paper at ICLR 2026

F.2 FAILURE DETECTION: ROC/AUC AND PR/AUPRC

IDv —IDXx. Positives are incorrect ID/CID predictions (¢; = 0); negatives are correct ID/CID
predictions (¢; = 1). We rank by uncertainty (higher is more likely positive).

IDv' —OOD. Positives are OOD examples (o, = 1); negatives are correct ID examples (0; =
0 A ¢; = 1). We exclude incorrect ID examples to avoid conflating semantic shift with hard-ID errors.

ROC and AUROC. For a threshold 7, predict 2;(7) = I[score; > 7], where score; is u; for
SNAP-UQ or the baseline score. True/false positive rates are

Yl =1 T Sie=g

where z; encodes the task’s positive label. AUROC is the trapezoidal integral over the ROC curve

obtained by sweeping 7 over the unique scores in descending order. Ties are handled by stable sorting
and averaging as in standard implementations.

PR and AUPRC. Precision and recall at 7 are
B TP(7) R(r) TP(7)
~ TP(r) + FP(r) + ¢’ YT TP(r) + FN(1) + ¢’

with € = 10712, AUPRC uses stepwise-in-recall integration (VOC-style): if (R;, P;) are points in
decreasing 7, Ry = 0, then AUPRC = )" .(R; — R;—1) max;<; P;.

P(7) 27)

Aggregation across corruptions. For “—C” datasets (e.g., CIFAR-10-C), we compute the metric
per severity and corruption type and report the mean over severities and types. Severity curves in the
main text average over corruption types at each severity.

F.3 SELECTIVE PREDICTION: RISK-COVERAGE AND SELECTIVE NLL

Let an acceptance function 4;(7) = I[u; < 7] (lower uncertainty means accept). Coverage and risk
at threshold 7 are

Cov(r) = % > Air).  Risk(r) = 2i DG 7 vil, (28)

Zi Ai() +e

We sweep 7 to plot risk vs. coverage. When we report a single operating point (e.g., 90% coverage),
T is chosen to achieve the closest coverage from above.

Selective NLL. At threshold 7, the negative log-likelihood on accepted samples is

NLL(r) = 2 Ai(0) (= o8 piy,) (29)

22 AilT) +e

This quantifies probabilistic quality conditioned on acceptance.

F.4 1D CALIBRATION METRICS

Unless noted, ID calibration is computed on held-out ID splits with the classifier’s posteriors p;.

Negative log-likelihood (NLL).

n

1
NLL = — —1 i - 30
=D —logpiy, (30)

i=1

Brier score (multi-class). With one-hot target e,,

n

1 1
BS:gZzHPi—%

i=1

> 31)

24



Under review as a conference paper at ICLR 2026

Expected calibration error (ECE). We bin confidences ¢; = max, p; ¢ into B adaptive bins of
(approximately) equal mass (we use B = 15). For bin b with index set Z;,

1 1
acc(b) = — Iy; =vy;|, conf(b)=— Q- (32)
ECE is
- 17|
ECE = g = | acc(b) — conf(b)|. (33)
n
b=1

Bins with |Z,| = 0 are skipped. Reliability diagrams plot acc(b) vs. conf(b) with bin widths
proportional to |Zy|/n.

Selective calibration. When we evaluate calibration among accepted samples at a fixed coverage
k, we recompute NLL/BS/ECE on the subset {i : A;(7,;) = 1} where 7,; yields coverage k.

F.5 CONFIDENCE INTERVALS AND SIGNIFICANCE
For per-dataset metrics we form 95% Cls by nonparametric bootstrap with 1,000 resamples:

» For AUROC/AUPRC, NLL, BS, ECE, selective metrics: resample examples with replace-
ment.

* For corruption-severity curves: at each severity, resample examples; then average across
corruption types.

* For streaming event metrics (AUPRC, delay): see Sec. [E} we resample frames for AUPRC
and events for delay.

We report point estimates as the mean over seeds and the CI as the 2.5/97.5th percentiles across
bootstraps, applied independently per seed and then averaged (this avoids seed-mixing artifacts).
When comparing two methods, we report a paired bootstrap CI on the difference by resampling
indices shared across both methods.

F.6 IMPLEMENTATION DETAILS AND NUMERICS

* Score direction. All scores are oriented so that larger values indicate higher likelihood of
the positive class (error/OOD/event). If a baseline produces a confidence-like score, we
negate it.

* Ties. We break ties in descending threshold order and use right-continuous step functions
for PR; this matches common toolkits (e.g., scikit-learn) and yields stable AUPRC.

* Epsilon. We use ¢ = 102 in denominators to avoid division by zero; this does not affect
plotted values at the reported precisions.

* Seed averaging. For each dataset, we compute the metric per seed, then average those
metrics; CIs are computed per seed and then averaged (“average CI”) to avoid over-narrowing
from pooling examples across seeds.

* Unit handling. Delays are reported in frames; when converting to milliseconds on MCU
streams, we multiply by the measured per-inference latency on the same board/backbone.

F.7 EVENT-WEIGHTED PR

Long events can dominate frame-based PR. We therefore report, when indicated, an event-weighted
AUPRC in which each event contributes equal mass. Let £ be the set of events and B the background;
we assign weight w; = 1/|€| to frames within an event (distributed uniformly within each event)
and w; = 1/|€| to background frames in total, normalized to ), wy = 1. Precision and recall are
computed with these weights, and integration proceeds as above.

25



Under review as a conference paper at ICLR 2026

F.8 DATASET-LEVEL AGGREGATION

When we present a single number across multiple datasets (e.g., average AUPRC across MNIST-C
and SpeechCmd-C), we macro-average dataset metrics (simple mean of per-dataset scores) to avoid
size bias. For CIFAR-10-C and TinyImageNet-C we macro-average across severities and corruption
types as described earlier.

F.9 REPRODUCIBILITY CHECKLIST

We release (i) the exact bin boundaries for adaptive ECE, (ii) per-threshold PR/ROC points for each
method, (iii) per-seed bootstrap indices, and (iv) the list of thresholds used for selective metrics
(coverage grid {0.5,0.6,...,0.99} unless noted).

F.10 CALIBRATION UNDER SHIFT (CID/OO0OD)

Beyond the ID calibration in §4.4] we evaluate calibration on corrupted (CID) and OOD data. Follow-
ing Hendrycks & Dietterich (CIFAR-10-C), we compute ECE on the corrupted split (ECE-OOD),
negative log-likelihood on corrupted data (NLL-OOD), and selective risk at fixed coverage. We
compare: (i) Temp. scaled (ID)—temperature fitted on ID only; (ii) SNAP-UQ (logistic, ID)—logistic
map on S(x) (and optional confidence blend) fitted on ID only; (iii) SNAP-UQ (isotonic, ID+CID-
dev)—a monotone isotonic map fitted on a small development mix of ID and corrupted samples (no
test leakage, same backbone/quantization).

Table 5: Calibration under CIFAR-10-C (avg severities 1-5). Lower is better. Selective risk is
error rate among the retained set at fixed coverage.

Method ECE-OOD | NLL-OOD | Risk@90% | Risk@95% |
Temp. scaled (ID) 0.124 1.42 0.124 0.112
SNAP-UQ (logistic, ID) 0.108 1.31 0.109 0.098
SNAP-UQ (isotonic, ID+CID-dev) 0.096 1.27 0.104 0.096

Discussion. Two observations mirror our theory—practice link: (i) depth-wise surprisal S(z) (a
conditional negative log-likelihood up to affine transform) remains informative under shift, so fitting
a monotone map preserves ordering and improves decision-centric metrics; (i) using a small ID+CID
development mix for a monotone calibrator reduces overconfidence on corrupted inputs without
requiring OOD labels online.

G TRAINING OBJECTIVE AND REGULARIZATION: EXTENDED DETAILS
This appendix expands section[2.2} we restate the objective with layer weighting, derive gradients in

a numerically stable parameterization, discuss collapse/overdispersion failure modes and how our
regularizers address them, and give practical schedules and pseudocode.

G.1 OBIJECTIVE, LAYER WEIGHTING, AND NORMALIZATION

For tapped layers S, define per-layer diagonal-Gaussian NLL

Ly(x) = %(H(ae — o) @03+ 1" log 0’3), ag € R%, (34)
We use dimension-normalized losses to avoid bias toward larger dy:
_ 1 1 _
l() = —Llo(z),  Lss == > weli(x), (35)
d 1Bl 7% i3

with nonnegative layer weights wy that sum to |S|. Good defaults are (i) uniform w,=1, or (ii)

inverse-variance weights w; o« 1/ @‘[é@] (estimated on the dev split), which de-emphasize noisy
taps. The total loss is
L= ['clf + >\SS ['SS + >\reg R. (36)

26



Under review as a conference paper at ICLR 2026

Regularizers. We use:

* Variance floor. Parametrize o7 ; = softplus(&,;) + * with € € [107*,107%] to prevent collapse
(Sec.[G3).

* Scale control. R, = > 0 | log 0§7i| discourages runaway over/under-dispersion.

* Weight decay. Standard ¢5 on P, and head weights.

* Detach option. Optional stop_grad(ay) inside Lgg for small backbones (reduces optimization

tug-of-war).

Thus R = ayarRvar + 0w |Oheads |3 with small o, (e.g., 107%) and standard weight decay (e.g.,
HX 1074).

G.2 STABLE PARAMETERIZATIONS AND EXACT GRADIENTS

We differentiate w.r.t. (z, s¢) where s;; = log agyi is the log-variance (or the pre-softplus &, ;, see
below).

For a single channel ::

0y = %(M + 5@) 37)
Oly,; i~ e i~ e

Gi _ Hei— Qi e, . Gbi (38)
Opue i esti Ops
Ol 1 (agi—pes)®) _ 1 (agi—pe,i)”

With dimension-normalization, 9, /O, = d% 0Ly /Oy and similarly for s,.
Softplus parameterization. Set o7 ; = softplus(¢,,;) + € with small e. Then

0y i 00f, /1 (aei — pei)®\ . .
> = 2 . o= 2 — — 2= T 7 ) .g d i), 4
0 (803’2.) i 2 (azi (07,) ) sigmoid(&.:) (40)

which avoids exploding gradients when sy ; — —00 and enforces positivity.

Backprop to Py and head weights. Let z; = Pyay—1 and (1, S¢) = ge(2¢). Then

aﬁss T 8£ss T 6l:SS
1 (Jpue) e + (Js.0) D, (41)
0Lss  OLss T 42)

aP, | 0z -V

where J,, o = Opg /0% and J, ¢ = Osy/0z are the head Jacobians (linear for our tiny heads).

G.3 FAILURE MODES AND STABILIZATION

Variance collapse (o2 ]). If the head overfits and drives 02 — 0, the quadratic term explodes and
training destabilizes. The variance floor and L1 scale control counteract this by (i) bounding the
smallest variance via €2 and (ii) penalizing extreme log-variances.

Overdispersion (c21). Conversely, trivially inflating o reduces the quadratic term but increases
> log0?; Ryar and weight decay prevent such drift. Monitoring E[é,] on ID (expected ~ 1;
Appx.[H.5) offers a simple sanity check.

Gradient tug-of-war. On tiny backbones, Lgg and L.r may momentarily push a, in different
directions. Two mitigations work well: (i) detach a, in Lgg; (ii) gradient balancing, scaling Agg to
keep the ratio p = ||V Lss||/||VLazt| € [0.05,0.2] (EMA-smoothed).

27



Under review as a conference paper at ICLR 2026

G.4 CHOOSING Agg AND Areg

Fixed grid (simple). \gs € {1073,5x1073,1072}, pick by dev AUPRC on CID; )¢, so that R
contributes 1-5% of L on the first epoch.
Adaptive (balanced). Update \gg after each step:
p*
)\SS — Clip()\SS ) /\min; )\max)a (43)
P

with target p* =0.1, p an EMA of gradient-norm ratio, and bounds (Amin, Amax) = (107%,1072).

G.5 ROBUST VARIANTS AND THEIR GRADIENTS

As in section[2.2] two robust alternatives replace the quadratic:

Student-¢ (diag). With dof v,>0,

) _ v+l (agi — pei)®\ | o 2
o) =" 1og (1+ T) + Llogo?,, (44)
83?? ve+1
2 = 00— Qeq)s (45)
Ofhe,i VN?,Z» + (ae; — prei)? (v )
ory') 1 ve+1 (agi —pei)® 1
’:5[1— e ) (46)
0514 ve + (ae; — pei)?/of T4 Ve
Gradients are automatically clipped for large residuals, improving heavy-tail robustness.
Huberized Gaussian. Replace = (a—p)/o with Huber ps(r):
ééf) = ps(re;) + 3 log 0?@ 47
o, . r | <6
5 — D (= — | , _ 9 ) = U 48
g = vstr)- oo = (G 113 “

G.6 SCHEDULES, CLIPPING, AND QAT

Schedules. Cosine LR with 5-10 epoch warm-up (Appx.[B). Start with Agg small; optionally ramp
it linearly over the first 10% of epochs.

Gradient clipping. Global L2 clip at 1.0; per-parameter clips on £ (log-variance pre-activations) at
+8 are also effective.

QAT. Insert fake quantization on P, and head weights for the last 20% of training; quantize log o2
to 8-bit with a shared scale per head. Keep the loss in float32 during training for stability; on device,
use the LUT strategy in Appx.

28



Under review as a conference paper at ICLR 2026

G.7 IMPLEMENTATION NOTES

Algorithm 5 Stable SNAP-UQ step (training)

Require: batch B, taps S, projectors Py, heads g,, weights wy, Asg, Areg
1: Forward backbone — {a,}, logits — pg
2: Lgf ¢ cross-entropy
3: for{ € Sdo
4: 2o < Peag—1; (e, &) < ge(20)
5: o7 + softplus(&) + €% s; < logo?
. Z
7
8

lr = 55 (Ilae — pe) © o |5 + 17 se)

: end for -

t Lss < 51 Laen Yres wil
9: R + avyar Z[ ||3€H1 + Oéwd”eheadsll%
10: if detach: treat a, as constants for Lgg end if
11: £+ Lag + AssLss + Areg R
12: Backprop; apply gradient clipping; optimizer step
13: (Optional) Update Agg by gradient-norm balancing (Sec.|G.4)

Numerical tips. (i) Clamp s, to [log o2, ,log o2, ] with (02, 02..) = (107%,10%); (ii) main-

min’ max min’ ¥ max

tain EMA of per-layer E[&,]; values > 1 on ID suggest underfit heads; < 1 suggests overdispersion.

G.8 DIAGNOSTICS AND SANITY CHECKS

On a clean ID validation split:

1. E[é/] ~ 1 and Var[é,] = 2/d,; (Appx.[H.5).
2. Corr (&, 1-Cy) should be positive but < 1 (captures complementary signal).

3. Freezing g, and re-fitting only the mapping (logistic/isotonic) should preserve ranking of S(x).

G.9 FROM TRAINING TO DEPLOYMENT

After training, retain P and linear heads for (u,log o?) (int8 weights). Export per-head scales/zero-
points and the LUT for exp(—% log 0?) (256 entries suffice). Fit the monotone mapping (3-parameter
logistic or isotonic, Appx.|J) on a small dev set mixing ID and representative shifts; store mapping
parameters or a compact lookup table. No online labels are needed at inference.

Takeaway. The diagonal-Gaussian auxiliary loss supplies clean, closed-form gradients and—paired
with a variance floor, light scale control, and optional detachment—trains stably on tiny backbones.
Its dimension-normalized, layer-weighted form makes heads comparable across taps and preserves
MCU deployability.

H PROOFS AND ADDITIONAL DERIVATIONS

This section provides detailed proofs for the propositions in section[2} plus auxiliary derivations used
in the main text.

H.1 NOTATION

For a tapped layer ¢ € S, activations have dimension dy. The SNAP predictor produces (¢, log o7)
from zp = Pyay_1; we write Yy :diag(ag), vg = ag — g, and define the standardized error

de

L 2
eela) = oo F =3 (ae,zaglfw ' (49)
i=1 )2

The SNAP score is S(z) = ), g we €(x) with &, = eg/dgand ), wy = 1.

29



Under review as a conference paper at ICLR 2026

H.2 PROOF OF PROPOSITION[2. 1] (SURPRISAL—-LIKELIHOOD EQUIVALENCE)

Under the diagonal-Gaussian conditional model pg(a; | a;—1) = N| (,ug, Eg), the negative log-
likelihood is

—logpe(ag | ap—1) = %[(ae — ) "2, (ap — pe) + log det By + dy 1og(2ﬂ')] (50)
de
= Leo(x) + 3 logo7, + % log(2r). (51)
i=1
Averaging (or weighting) across taps yields
2
> we 4 ( — log po(ar | aéq)) = wyé(x) + const, (52)

Les Les

where the constant depends only on {o¢} (and dy). Thus S(z) is an affine transform of the depth-wise
NLL and is therefore order-equivalent as an uncertainty score. O

H.3 PROOF OF PROPOSITION [2.2] (RELATION TO MAHALANOBIS)

Assume a linear-Gaussian depth-wise feature evolution
ap = Wyag_1 + by + €y, Ey NN((LZ(). (53)

Then py = Wyae—1 + by is the conditional mean and

ee(r) = (ae — o) 'Sy (ag — pe) = MDss,(ar, Weag—1 + be)z, (54)

i.e., the squared Mahalanobis distance to the conditional mean with covariance ;. In contrast, the
classwise (unconditional) Mahalanobis score at layer ¢ typically uses means {fi, .} and (shared)
covariance ¥, yielding min.(a, — ﬂe’c)—rizl(ag — fig,c). Unless Wyas—1 + by = fig e~ for some
class ¢* (a strong condition), the unconditional score conflates between-class variation with dynamics-
induced shift. Therefore, SNAP-UQ’s e, captures deviations from depth-wise transformations rather
than deviations from class centroids, which explains its sensitivity to distribution shift that perturbs
inter-layer mappings. O

H.4 PROOF OF PROPOSITION [2.3]| (AFFINE INVARIANCE FOR BN-LIKE RESCALING)

Consider a per-channel affine transformation of activations a;, = s ® a; + ¢ with s > 0 and the
co-adapted predictor outputs p, = s © py + t and 0, = s © o (these transformations are consistent
with batch-normalization statistics). Then

ep(z) = H(afg — ) ® (02)*1”; = ||(s®ag Ft—sOu —1t)O (s @0@)71H§ (55)
=[ls© (ar —pe) © (s @ a7 |3 = [[(a — 1) © 07 Y||; = exla). (56)

Thus e, (and hence 5) is invariant to such per-channel affine rescalings at optimum. O

H.5 DISTRIBUTIONAL CALIBRATION UNDER THE MODEL

If the conditional model is well specified with diagonal 3, then e;(x) = Zfi 1 (%)2 ~ X3,

Hence

Ele] =1,  Varle] = Z. (57)

This implies a simple sanity-check: on clean ID data, €, should concentrate near 1; persistent
elevation indicates mismatch or shift. For low-rank-plus-diagonal >, (Appx , ey follows a (weighted)
generalized x?; bounds follow from eigenvalue inequalities of E[l.

30



Under review as a conference paper at ICLR 2026

H.6 STUDENT-t AND HUBERIZED VARIANTS

For the Student-¢ variant with dof v, > 0 and diagonal scales oy,

dy
—logp(ag | ar_1) = E vetl log(l + %) + 3 log oy ; + const(vy), (58)
i=1

which produces Eq. equation[I4] As vy — oo, this reduces to the Gaussian NLL. The Huberized variant
in Eq. equation [15|is the Gaussian NLL with the quadratic term replaced by ps(u) = 2u?I(|u| <

§) + (8|u| — £6*)I(|u| > &), improving robustness to occasional heavy-tailed channels.

I LOW-RANK-PLUS-DIAGONAL COVARIANCE: WOODBURY IDENTITIES

Let ¥y = D, + B,B, with D; = diag(0?) > 0 and B, € R%*k¢ |, < d,. Using the matrix
determinant lemma and Woodbury identity:

Log-determinant.

log det &y = log det(Dy) + logdet(Ix, + B/ D, ' By). (59)

Quadratic form. For vy = ay — iy,

_ — — — -1 —
¥, '=D;' -~ D;"By(Iy, + B/ D;'B,)” B/ D;", (60)
v/ 2 e = v/ DY oe — ||(Ie, + B D Be)™Y2B) D g3 (61)
6ding Ay

£

Thus the low-rank correction subtracts a nonnegative term A, tightening the diagonal model.
Computationally: (i) form M, = B;DZ LBy € RFe*ke: (i) solve (I + My)~u for a few right-hand
sides using Cholesky; cost is O(d¢ky + k}}) per example. Both equation |59|and equation [61] are
integer-friendly if D;l is implemented via per-channel scales.

NLL expression. Putting terms together,
—logp(ag | ag—1) = 3 [egiag — Ay +logdet Dy + log det(I + M) + dg log(27r)} . (62)

When k; = 0 we recover the diagonal case.

J ISOTONIC CALIBRATION DETAILS

We optionally replace the logistic mapping in Eq. equation [I9] by isotonic regression to obtain a
nonparametric, monotone calibration from (.5, m) to error probability.

Feature construction. Let ¢)(x) be either ¢4 (z) = S(x) or ¢2(x) = (vS(x) + (1 —v)m(x)) with
v € [0,1] tuned on a validation split.

Fitting. Given a development set {(v;, y;)}7_, with labels y; € {0, 1} indicating correctness, we
solve the pool-adjacent-violators (PAV) problem:

n

f € arg f norﬁicgasing Z(yl B f(wl))z 63)

The solution is a right-continuous, piecewise-constant function with at most n steps and can be
evaluated with binary search. We clip f to [¢, 1 — €] (e.g., € = 10™%) to avoid degenerate thresholds.

Deployment. At inference, U () := f(1(x)) replaces the logistic output; thresholds 7 or budgeted
risk controllers act on U (z) identically. Isotonic guarantees that increasing .S (or the blend) never
decreases the estimated error probability, which often sharpens risk—coverage under tight budgets.

31



Under review as a conference paper at ICLR 2026

K BUDGETED ABSTENTION CONTROLLER

For applications with an abstention budget b € (0, 1), we implement a simple controller that adapts
the threshold 7 to respect the long-run budget (Angelopoulos et al.l [2021). Let A, = I[U(x;) > 7]
and define an exponentially-weighted moving average (EWMA) A; = nA; + (1 — n)A;—1 (A9 =0,
n € (0,1]). We update

Ti41 < Tt +I<E(At —b)7 (64)

with a small step x > 0. Intuitively, if recent abstentions exceed b, the threshold increases; otherwise
it decreases. This keeps the abstention fraction near b while responding to bursts of high uncertainty.
The controller is scalar, requires no labels, and adds negligible overhead.

L ADDITIONAL COMPLEXITY ACCOUNTING

For a conv layer with Cj, x H x W input and Coy X H' x W/ output, choosing P, as a 1x 1 pointwise
projection from Cj, — 1, followed by global average pooling costs HWr, + r, multiply—adds. Two
linear heads mapping ry — dyp = Coy cost 27¢dy. Summed across |S| taps, the overall fraction of

backbone FLOPs is
o ves (HWere+2rode)
p= FLOPs(backbone)

which is typically < 2% in our TinyML settings for r, € [32,128] and |S| < 3.

(65)

M IMPLEMENTATION NOTES FOR INTEGER INFERENCE

We quantize P, W, ¢, W, ¢ to int8 with per-tensor scales sp, s, s,. Let Z, = round(z¢/s. ) be int8
and similarly for weights; accumulations are in int32. For standardized error, we compute

e = d%; Z ((ae; — pe) 50,1‘)2, (66)

where 5, ; ~ exp(f% log JZ ;) is looked up from a 256-entry LUT indexed by quantized log O’Zi; this

avoids runtime exponentials while preserving monotonicity. Clamping log o7, € [log a2, ,logo2 ]
guarantees bounded dynamic range.

Summary. Propositions formalize that SNAP-UQ’s score S(z) is (i) an affine transform of
the depth-wise NLL under a simple conditional model, (ii) a Mahalanobis energy to the conditional
mean that is sensitive to shifts in inter-layer dynamics, and (iii) invariant to BN-like rescalings. The
Woodbury derivations provide efficient low-rank covariance handling, and isotonic calibration gives a
monotone, nonparametric mapping for budgeted selective prediction.

N ABLATIONS AND SENSITIVITY ANALYSES

This section expands on design choices for SNAP-UQ: tap placement, projector rank, quantization
of heads, uncertainty mapping, risk—coverage behavior, calibration reliability, and corruption/error
clusters. Unless noted, results are averaged over three seeds; error bars denote 95% ClIs from 1,000 x
bootstrap.

Table [6] summarizes in-distribution quality across four benchmarks. On MNIST and SpeechCmd,
SNAP-UQ achieves the best or tied-best scores on all proper metrics—improving NLL and BS versus
single-pass baselines and matching or exceeding the strongest competitors’ F1 and ECE. On CIFAR-
10, the capacity-matched variant (row “SNAP-UQ'”) matches the best BS (0.017), improves NLL to
0.363 (better than DEEP and QUTE+), and attains the top F1 (0.879), while keeping a single pass.
On TinyImageNet, SNAP-UQ delivers the best BS and ECE and the highest F1 (0.436), approaching
the strongest multi-head/ensemble alternatives in NLL despite their larger compute/memory budgets.
Overall, SNAP-UQ consistently tightens proper scoring rules (NLL/BS) and calibration (ECE) while
maintaining competitive or superior accuracy (F1), validating that depth-wise surprisal can improve
ID probabilistic quality without auxiliary exits or repeated evaluations.

32



Under review as a conference paper at ICLR 2026

Table 6: ID metrics. Higher F1 is better; lower Brier Score (BS), Negative Log-Likelihood (NLL),
and Expected Calibration Error (ECE) are better. Mean4std over 3 seeds.

Model F11 BS | NLL | ECE |
MNIST
BASE 0.910+0.002 0.013£0.000 0.29240.006 0.01440.001
MCD 0.886+0.004 0.018+0.000 0.38240.004 0.07140.006
DEEP 0.9314+0.005 0.0104+0.000 0.2274+0.002 0.034+0.004
EE-ensemble  0.93940.002 0.0114+0.000 0.266+0.005 0.108+0.002
HYDRA 0.9324+0.006 0.010+£0.000 0.230+0.012  0.01440.005
QUTE 0.941+0.004 0.009+£0.000 0.19940.010 0.02640.003
SNAP-UQ 0.946+0.003  0.008+0.000 0.202+0.004 0.01640.002
SpeechCmd
BASE 0.923+0.007 0.010+£0.000 0.233+0.016  0.02640.001
MCD 0.917+0.006 0.011£0.000 0.27940.013  0.04840.002
DEEP 0.9344+0.008 0.008+0.000 0.20540.012  0.03440.006
EE-ensemble  0.926+0.002 0.009+£0.000 0.226+0.009 0.029+0.001
HYDRA 0.9324+0.005 0.008+£0.000 0.20340.016 0.01840.004
QUTE 0.933+0.006 0.008+0.000 0.202+0.016  0.01840.001
SNAP-UQ 0.938+0.005 0.008=+0.000 0.197+0.008 0.016+0.002
CIFAR-10
BASE 0.8344+0.005 0.023£0.000 0.52340.016 0.04940.003
MCD 0.867+0.002  0.019+0.000 0.396+0.003 0.01740.005
DEEP 0.877+0.003  0.017+£0.000 0.365+0.015 0.01540.003
EE-ensemble  0.8544-0.001 0.021+0.000 0.446+£0.011 0.03340.001
HYDRA 0.8184+0.004 0.02640.000 0.6324+0.017 0.06940.001
QUTE 0.858+0.001  0.020+£0.000 0.428+0.019 0.02540.003
QUTE+ 0.8784+0.003  0.017+£0.000 0.369+0.008 0.02640.001
SNAP-UQ' 0.879+0.003  0.017+£0.000 0.363+0.010 0.02140.003
TinyImageNet

BASE 0.351+0.005 0.004+0.000 5.33740.084 0.4164+0.003
MCD 0.332+0.004 0.003£0.000 2.84440.028 0.06140.005
DEEP 0.4144+0.006 0.003£0.000 3.44040.049 0.11540.003
EE-ensemble  0.430+0.005 0.003+0.000 2.534+0.046 0.03240.006
HYDRA 0.376+0.004 0.004£0.000 3.96440.036 0.32840.004
QUTE 0.395+0.014  0.004+0.000 3.70040.123  0.28240.009
QUTE+ 0.381+0.010 0.003£0.000 2.75740.044 0.12240.008

SNAP-UQ 0.436+0.007  0.003£0.000 2.6104+0.050  0.030-£0.004

33



Under review as a conference paper at ICLR 2026

N.1 TAP PLACEMENT AND PROJECTOR RANK

We vary (i) the set of tapped layers S and (ii) projector rank 7. Taps are chosen at the end of a mid
block (M) and/or the penultimate block (P). As shown in two taps (M+P) consistently provide
the best accuracy—latency trade-off on both CIFAR-10 (Big-MCU) and SpeechCmd (Small-MCU).
The trend with rank is visualized in where AUPRC improves as r increases while latency
remains nearly flat.

Table 7: Taps and projector rank. CIFAR-10/Big-MCU (top) and SpeechCmd/Small-MCU (bottom).
Latency in ms. AUROC is IDv' —IDx; AUPRC is accuracy-drop (avg over -C).

CIFAR-10 (Big-MCU)

Config Flash (KB) Lat. (ms) AUROC?T AUPRC 1
P only, r=32 276 88 0.83 0.62
P only, r=64 284 86 0.84 0.64
M+P, r=64 292 83 0.86 0.70
M+P, r=128 306 86 0.87 0.72
M+P+early, r=64 315 90 0.86 0.71
SpeechCmd (Small-MCU)
Config Flash (KB) Lat. (ms) AUROC?1 AUPRC?T
P only, =32 114 118 0.92 0.62
P only, r=64 116 116 0.93 0.63
M+P, r=64 118 113 0.94 0.65
M+P, r=96 121 115 0.94 0.66
0.75
Q
=
o 0.7
&
)
2 065} |
5
<
0.6 | |
32 64 96 128
Projector rank 7 (M+P)
90 T T
S 88| -
@]
=
2 86 S
‘fi 844 —
g
5 82 |
0 | |
32 64 96 128

Projector rank 7 (M+P)

Figure 3: Rank sensitivity. Accuracy-drop improves with rank; latency impact is small (CIFAR-
10/Big-MCU).

Takeaway. Two taps (mid+penultimate) provide the best accuracy—latency trade-off ';aE!e 7);

increasing rank beyond 64 yields diminishing returns with small latency changes (Figure 3)).

34



Under review as a conference paper at ICLR 2026

N.2 QUANTIZATION OF SNAP HEADS

We compare float32, float16, and int8 for the projector and predictor heads while keeping the
backbone unchanged. shows that int8 preserves AUPRC within the CI while reducing flash
and improving latency.

Table 8: Quantization variants. Heads only (projectors + (j, log 02)). CIFAR-10/Big-MCU and
SpeechCmd/Small-MCU.

CIFAR-10 (Big-MCU)  SpeechCmd (Small-MCU)
Flash (KB) AUPRC+  Flash (KB)  AUPRC 1

Precision

FP32 324 0.71 128 0.66
FP16 306 0.71 122 0.66
INTS 292 0.70 118 0.65

Takeaway. INTS preserves performance while cutting flash by 1.6-2.1x and lowering latency by
7-9%.

N.3 MAPPING ALTERNATIVES: LOGISTIC VS. ISOTONIC

We compare the 3-parameter logistic map with isotonic regression. As summarized in [Table 9
isotonic yields consistently lower risk at fixed coverage; the full risk—coverage curves in[Figure 4]
show the gap across operating points.

Table 9: Risk at fixed coverage. Lower is better (CIFAR-10-C).

Method Risk @ 80% Risk @ 90% Risk @ 95%
Logistic (SNAP) 0.136 0.109 0.098
Isotonic (SNAP) 0.127 0.104 0.096
Entropy (baseline) 0.154 0.124 0.112
0.2 T T
—@— SNAP (logistic)
—— SNAP (isotonic)
—A— Entropy
) 0.15 -
Z
0.1 |
| | | |
0.5 0.6 0.7 0.8 0.9

Coverage
Figure 4: Risk—coverage (CIFAR-10-C). Isotonic improves budgeted operation (Angelopoulos et al.|
2021).

N.4 RISK—COVERAGE ACROSS DATASETS

The advantage of SNAP holds beyond CIFAR-10; shows lower risk at matched coverage on
MNIST-C and SpeechCmd-C.

35



Under review as a conference paper at ICLR 2026

MNIST-C SpeechCmd-C
T T I T T
0.2 |- —®— SNAP | g2 o
—a&— Entropy
~z 0.15 |- ~{ 0.15 |- -
[ &
o1 1% .\‘\‘\ ]
| | | | | | |
0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9
Coverage Coverage

Figure 5: Risk—coverage on two datasets (lower is better). SNAP dominates at moderate to high

coverage.

N.5 RELIABILITY DIAGRAMS (ID)

We plot accuracy vs. confidence using 15 adaptive bins. Points in|[Figure 6]lie close to the diagonal
on MNIST and CIFAR-10, indicating well-behaved calibration on ID data (see also Table .

MNIST (ID) CIFAR-10 (ID)
1 T T T ~ 1 T T ,..
5 ‘®
-® s
0.8 |- - 0.8 [~ e —
¥ ) e
> - = -
g 0.6 |- o E 0.6 [~ o —
3 P 3 -
S 04| e q 04 - 9 -
. - - . -
0.2 |- - - 0.2 - —
5 4
om- om—
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Confidence Confidence

Figure 6: Reliability diagrams (SNAP-UQ). Points near the diagonal indicate good calibration;
overconfidence would fall below the dashed line.

N.6 CALIBRATION ABLATIONS: RAW S(z) VS. LOGISTIC VS. ISOTONIC

Setup. We compare (i) raw S(z) = >, g we €¢(x) with a fixed threshold, (ii) a 3-parameter logistic
map U = o(By + $1S + Bam), and (iii) isotonic regression (monotone table). All use the same
dev split and backbone; heads are int8. Datasets: MNIST-C, SpeechCmd-C, CIFAR-10-C, and
TinyImageNet-C.

Findings. Ranking metrics (AUROC/AUPRC) are similar across all three because monotone maps
preserve order: e.g., CIFAR-10-C AUPRC raw 0.69 vs. logistic 0.70 vs. isotonic 0.71; SpeechCmd-C
0.63/0.65/0.66; MNIST-C 0.64/0.66,/0.67; TinyImageNet-C 0.58/0.60/0.61. Decision-centric
metrics benefit from calibration: selective risk @90% coverage improves (CIFAR-10-C) 0.111 —
0.109—0.104 and (TinyImageNet-C) 0.185 —0.180 — 0.176, while median detection delay drops
by 1-3 frames on average. Proper scoring on ID requires calibration: NLL/BS/ECE match Table4]
with logistic/isotonic but degrade with raw S (not a probability). Overhead is negligible (3 params or
a 16-32 entry table, both int8/LUT-friendly).

Recommendation. If a single threshold must generalize across shifts or we report decision metrics,
keep logistic or isotonic; if labels or space are extremely limited, raw S is acceptable with a percentile
threshold on the ID dev set.

36



Under review as a conference paper at ICLR 2026

Table 10: Raw vs. calibrated. AUPRC (CID) / Selective risk @90% (lower is better) / Median delay
(frames).

MNIST-C SpeechCmd-C CIFAR-10-C TinyImageNet-C

Raw S(z) 0.64 / 0.072 / 26 0.63 / 0.061 / 44 0.69 / 0.111 / 29 0.58 / 0.185 / 52
Logistic 0.66 / 0.070 / 24 0.65 / 0.058 / 41 0.70 / 0.109 / 27 0.60 / 0.180 / 49
Isotonic 0.67 / 0.069 / 23 0.66 / 0.057 / 40 0.71 / 0.104 / 26 0.61 / 0.176 / 47

N.7 ERROR/CORRUPTION CLUSTERS AND ABSTENTION

We analyze the most frequent CID failures and report abstention rates at a tuned operating point

(90% recall on event frames). lists the top clusters on CIFAR-10-C (sev. 4-5), and [Figure 7]
visualizes the gap to baselines.

Table 11: Top failure clusters (CIFAR-10-C, severity 4-5). Abstention rate among misclassified
frames.

Cluster SNAP-UQ (%) EE-ens (%) DEEP (%)
Motion blur 72.4 58.9 61.2
Contrast 68.1 53.4 56.7
JPEG 63.9 49.2 51.6
Snow 59.7 47.1 50.3
Frost 58.3 45.0 47.6

[ 0 snaP-UQ [l U EE-ens [| 0 DEEP

80 |- —

60 |- —

1

I I I I
Motion Contrast JPEG Snow Frost

Abstention (%) among errors

Figure 7: Abstention on hard clusters (CIFAR-10-C, sev. 4-5). SNAP-UQ defers more often on the
most failure-prone corruptions.

N.8 HOWw MANY TAPS? (2, 3, 4, AND 5 TAPS)

We extend the tap-count study beyond mid+penultimate (M+P, 2 taps) and early+mid+penultimate
(E+M-+P, 3 taps) to 4 and 5 taps. For CIFAR-10/Big-MCU we tap at block boundaries:

E— Ml - M2 — M3 —P (67)

where E (early) is the end of the first downsampling stage, M1/M2/M3 are successive mid-depth
blocks, and P is penultimate. Unless stated, projector rank is r=64 and per-layer errors are width-
normalized.

Takeaways. Moving from 2—3 taps yields a consistent but modest AUPRC gain (+0.01) with a
small latency/flash increase. Adding a fourth mid-depth tap (E+M1+M2+P) improves both AUPRC
and AUROC slightly, but a fifth tap (E+M1+M2+M3+P) no longer helps CID and only adds cost.
In short, M+P is the best accuracy—cost point; E+M+P is a safe upgrade under loose budgets; a
carefully placed fourth mid tap can help on harder corruptions, while five taps shows saturation (see

Table [12)).

37



Under review as a conference paper at ICLR 2026

Table 12: Tap-count sweep (CIFAR-10/Big-MCU, r=64). AUPRC is CID accuracy-drop detection
(avg over CIFAR-10-C); AUROC is IDv' —ID x. Diminishing returns after 3—4 taps.

Config (taps) Flash (KB) Lat.(ms) AUROC?{ AUPRC(C)t
M+P (2) 292 83 0.86 0.70
E+M+P (3) 305 86 0.86 0.71
E+M1+M2+P (4) 318 89 0.87 0.72
E+M1+M2+M3+P (5) 334 93 0.87 0.72

Table 13: Leave-one-out (4 taps) on CIFAR-10/Big-MCU, baseline E+M1+M2+P. Mid-depth taps
contribute most to CID detection.
Variant (remove - ) Lat.(ms) AUROC{T AUPRC(C) 1T

E+M1+M2+P (none) 89 0.87 0.72
w/o E 88 0.87 0.71
w/o M1 88 0.86 0.70
w/o M2 88 0.86 0.70
w/o P 90 0.85 0.71

Interpretation. The two mid taps (M1/M2) are the most informative for CID monitoring (largest
AUPRC drops if removed). The penultimate primarily stabilizes IDv' —IDx (AUROC), while
the early tap adds a small but repeatable gain for difficult corruptions at negligible accuracy cost.
Practically, 2 taps (M+P) remain recommended for tight MCU budgets; 3 taps (E+M+P) offer a
low-risk bump; 4 taps are worthwhile only if the additional few KB and ~6 ms are acceptable (see
Table[13])).

Cross-layer correlation and a simple placement heuristic. To make tap placement less ad-hoc,
we measured the Pearson correlation between each layer’s standardized surprisal é,(x) and the final
score S(x) over held-out streams. Correlation peaks around mid blocks and the penultimate block
across backbones, which explains why M+P works well and why extra early taps add limited unique
signal.

Table 14: Correlation of per-layer surprisal with the aggregated score S(z) (Pearson ). Layers:
Early (E), successive mid blocks (M1/M2), Penultimate (P). Higher is better.

Dataset / Backbone E M1 M2 P
CIFAR-10/ ResNet-8 (Big-MCU) 041 0.63 0.68 0.74

SpeechCmd / DSCNN (Small-MCU) 038 0.61 0.59  0.66
TinylmageNet / MobileNetV2-tiny 035 057 062 0.69

Heuristic (budget-aware). Start by placing one tap at the penultimate block (highest r in Table [14)),
then add the mid tap that maximizes AUPRC gain per KB (or per ms). This greedy two-step recovers
the best trade-off M+P. Under a slightly looser budget, add an early or second-mid tap only if the
marginal gain-per-cost remains positive on the development stream (see [Table 12} [Table 13)).

To make tap placement less ad-hoc and easier to port across backbones, we provide two lightweight
diagnostics: (i) a surprisal correlation heatmap that reveals redundancy across depth, and (ii) a
diminishing-returns curve that summarizes the benefit of adding taps under a fixed budget.

Surprisal correlation (see Figure[§). Across candidate layers E, M1, M2, P, pairwise standardized-
surprisal correlations concentrate in the mid-late depth: ry;m2 =~ 0.63-0.72 and rvpp =~ 0.62,
while very-early to penultimate is much lower (7g p ~ 0.35), indicating limited redundancy between
shallow and late taps. Correlation of each layer’s surprisal with the aggregated score S(z) increases
monotonically with depth—r(eg, S) ~ 0.41, r(ém,S) =~ 0.63, r(ém, S) =~ 0.68, r(ep,S) =~
0.74—showing that mid and penultimate layers are both highly informative about S(x). These
numbers justify the default mid+penultimate placement: the two taps are strongly aligned with S(z)
yet not fully redundant, whereas adding a very-early tap yields smaller marginal gain per cost.

38



Under review as a conference paper at ICLR 2026

Surprisal correlation heatmap (7 ) Correlation to S (x)
0.8 — T T T
x =
_ug) & 0.6 [~ —
£ N
8 S
> 0
— g
0.4 —
! ! ! !
E MI M2 P
Layer index (E — M1 — M2 — P) Layer

Figure 8: Redundancy vs. informativeness. Left: pairwise correlation of per-layer standardized
surprisal é;(x). Right: each layer’s correlation with the aggregated score S(x).

Diminishing returns with more taps. We sort candidate layers by marginal gain-per-cost on a dev
stream (gain: AAUPRC on CID; cost: A flash or latency) and add taps greedily. Fig.[9]shows that
gains saturate after 34 taps, aligning with Table[T2} the best trade-off remains M+P, with E+M+P
as a safe upgrade.

0.74
<
< 0.72
E
=
O 0.7
=]
(=]
Q
g
> 0.68
<
0.66 . . .
1 2 3 4 5
Number of taps

Figure 9: Diminishing returns. Average AUPRC vs. tap count under matched quantization/backbone.
Saturation after 3—4 taps supports the use of two to three taps on MCUs.

Placement recipe (practical). Compute ’I“(ég, S (m)) on a short dev stream; pick the highest-
correlation penultimate layer and the best mid layer (M+P). If budget allows, add the early or
second-mid tap only if AAUPRC per KB (or per ms) is positive. This reproduces the trade-offs
in Tables [12] and [I3]and makes porting to new backbones one pass of correlation + a small greedy
sweep.

N.9 ROBUST DISTRIBUTIONAL VARIANTS: STUDENT-t AND HUBER

Motivation. The diagonal-Gaussian head in SNAP-UQ is fast and integer-friendly, but activation
residuals under strong corruptions can be heavy-tailed. Two robust drop-ins mitigate this without
changing the single-pass design: (1) a Student-¢ energy that down-weights outliers (Eq. equation [T4)
and (2) a Huberized energy with quadratic/linear pieces (Eq. equation [I5). Both preserve the
surprisal — risk mapping and maintain int8 compatibility.

Datasets, tuning grids, and selection rule. We evaluate MNIST, Speech Commands (SpeechCmd),
CIFAR-10, and TinyImageNet (with CID streams from their “-C” variants). For Student-t we sweep
v € {3,5,7,10}; for Huber we sweep ¢ € {0.8,1.0,1.2,1.5} (standardized units) (see Table .

39



Under review as a conference paper at ICLR 2026

The development split is the same stream used to set a single threshold per method. The primary
selection metric is selective risk at 90% coverage (lower is better). Secondary metrics are AUPRC on
CID streams and AUROC for IDv' — OOD. Unless noted, we then fix v = 5 (shared across taps) and
0 = 1.0 (shared across taps).

Table 15: Tuning grids and selection rule (development stream).

Dataset Dev split v grid (Student-t) ¢ grid (Huber) Selection (primary—secondary)
MNIST 10% ID + CID {3,5,7,10} {0.8,1.0,1.2,1.5}  risk@90% — AUPRC, AUROC
SpeechCmd 10% ID + CID {3,5,7,10} {0.8,1.0,1.2,1.5}  risk@90% — AUPRC, AUROC
CIFAR-10 10% ID + CID {3,5,7,10} {0.8,1.0,1.2,1.5} risk@90% — AUPRC, AUROC
TinylmageNet 10% ID + CID {3,5,7,10} {0.8,1.0,1.2,1.5} risk@90% — AUPRC, AUROC

Setup and implementation. We use two taps (mid+penultimate), projector rank r = 64, int8 heads,
and the same training schedules as the Gaussian default. Mapping from surprisal to risk uses the
same dev-split logistic fit (or isotonic in Appx.[J]]and[N.3). For Student-t, we replace the quadratic
with log(1 + u?/v) and evaluate log(1 + x) with a 256-entry LUT plus linear interpolation; 1/v is
precomputed. Huber uses only comparisons (no transcendentals). As in the Gaussian head, log o'
uses a LUT and all weights are INTS.

Findings. On CIFAR-10 and TinyImageNet, Student-¢ consistently reduces NLL/BS (Table[T7)
and yields small, repeatable gains in failure detection and CID AUPRC (Table [T6), suggesting
robustness to heavy-tailed residuals at higher corruption severities. On MNIST and SpeechCmd, all
three heads perform within confidence intervals; Huber closely tracks Gaussian while offering better
outlier stability and the simplest MCU path (no log LUT). Overall, Gaussian remains a strong default;
enable Student-t when high-severity corruptions are expected or selective risk at high coverage is
critical, and prefer Huber when LUTs for log(1+x) are undesirable.

Actionable guidance: when and how to use the robust heads? Use the Gaussian head by
default; switch to Student-t when corruptions are heavy-tailed or high severity (e.g., CIFAR-10-C or
TinyImageNet-C severities > 3) or when selective risk at high coverage is critical; use Huber when
you want extra outlier stability without transcendental ops (e.g., impulsive audio artifacts) or when
LUTs for log(1+x) are undesirable.

Sensible defaults (drop-in). Student-¢: fix » = 5 (shared across taps). This down-weights large
standardized residuals while keeping gradients stable; sweeping v € [3, 7] typically changes NLL/BS
by < 0.2 pp in our runs. Huber: set § = 1.0 in standardized units (also shared across taps);
d € [0.8,1.2] behaves similarly and requires no LUTs.

A tiny selection rule (one dev pass). On a small development stream (ID—CID), compute: (1)
selective risk at 90% coverage, and (2) AUPRC for accuracy-drop. If Student-¢ improves either by
> (.01 absolute over Gaussian, keep it; otherwise use Gaussian. Prefer Huber when Student-¢ shows
no gain and you want the simplest integer path. This rule matched the tables we report across MNIST,
SpeechCmd, CIFAR-10, and TinyImageNet (Tables [[7HI6).

Stability and what not to tune. Learning v per tap brings tiny gains and adds sensitivity; if desired,
learn a single v shared across taps with a softplus reparam clipped to [3, 30], but our recommendation
is to fix v. For Huber, keep § fixed; per-tap § did not help within CIs. Share v/ across taps to reduce
variance and code paths.

INTS/LUT implications. Both variants remain INT8-friendly. Student-¢ needs log(1+z); a 256-
entry LUT with linear interpolation adds ~ 1 KB flash and no extra RAM. Huber uses only com-
parisons and adds zero transcendentals. As with the Gaussian head, we keep log o in a LUT and
quantize all weights to int8; latency differences vs. Gaussian were < 2%.

Images vs. audio (quick summary). On images (CIFAR-10, TinyImageNet), Student-¢ consis-
tently lowers NLL/BS and improves failure detection/AUPRC under severe corruptions; on audio
(SpeechCmd), all three heads are within CIs, with Huber providing the simplest robust choice.

40



Under review as a conference paper at ICLR 2026

Table 16: Comparison across heads (single pass, 2 taps, r = 64, INT8 heads). AUROC:
IDv' —OOD. AUPRC: CID accuracy-drop. Lower is better for risk@90%, AURC, FPR@95%.

MNIST AUROC (OOD)+ AUPRC (CID) ? Risk@90% | AURC| FPR@95% |
Gaussian 0.94 0.66 0.070 0.094 0.24
Student- 0.95 0.67 0.069 0.092 0.23
Huber 0.94 0.66 0.069 0.093 0.24
SpeechCmd AUROC (OOD)  AUPRC (CID)  Risk@90% AURC  FPR@95%
Gaussian 0.94 0.65 0.058 0.110 0.26
Student-t 0.95 0.66 0.057 0.108 0.25
Huber 0.94 0.66 0.057 0.109 0.25
CIFAR-10 AUROC (OOD)  AUPRC (CID)  Risk@90% AURC  FPR@95%
Gaussian 0.94 0.70 0.109 0.189 0.44
Student-¢ 0.95 0.71 0.104 0.183 0.41
Huber 0.94 0.70 0.107 0.186 0.43
TinyImageNet AUROC (OOD)  AUPRC (CID)  Risk@90% AURC  FPR@95%
Gaussian 0.92 0.60 0.180 0.242 0.51
Student-¢ 0.94 0.61 0.176 0.236 0.48
Huber 0.93 0.59 0.179 0.240 0.50

Table 17: ID calibration (lower is better). Robust heads slightly improve NLL/BS on CIFAR-10 and
match Gaussian elsewhere; ECE remains stable.

MNIST SpeechCmd CIFAR-10
Method NLL] BS| ECEJ] NLL BS ECE NLL BS ECE
SNAP-UQ (Gauss) 0.202 0.008 0.016 0.197 0.008 0.016 0.377 0.018 0.022
SNAP-UQ (Student-t)  0.205 0.008 0.016 0.199 0.008 0.017 0.369 0.017 0.021
SNAP-UQ (Huber) 0.204  0.008 0.016 0.198 0.008 0.016 0.372  0.017 0.021
TinyImageNet (ResNet-50, single-pass, 2 taps)
Method NLL | BS| ECE |
SNAP-UQ (Gauss) 0.982 0.060 0.018
SNAP-UQ (Student-t) 0.956 0.058 0.017
SNAP-UQ (Huber) 0.968 0.059 0.018

Calibration interplay. Because logistic/isotonic maps are monotone, AUROC/AUPRC remain
similar across heads; the robust choices primarily help decision-centric metrics (lower selective risk
at fixed coverage) and shorten median detection delay by 1-3 frames in high-severity regimes.

N.10 OPTIONAL CONFIDENCE BLEND

Adding the blend term m(z) (from max-probability/margin) to the logistic improves separation on
hard ID/CID cases with no runtime cost. [Table 18|reports SpeechCmd gains.

Table 18: Blend ablation (SpeechCmd).

Config AUROC (IDv' —IDx)+ AUPRC (C) 1
U = o(Bo + £15) (no blend) 0.93 0.64
+ m(z), B2 > 0 (default) 0.94 0.65

N.11 RUNTIME BREAKDOWN AND MEASUREMENT PROTOCOL
Measurement conditions. We profile wall-clock inference on an ARM Cortex-M7 (600 MHz,

single core) using CMSIS-NN kernels (int8), fixed clock and DVFS disabled. Binaries are compiled
with -O3 and linker-time optimization; all methods reuse the same backbone, input pipeline, and

41



Under review as a conference paper at ICLR 2026

Table 19: Latency share by stage (percentage of end-to-end). Big-MCU: CIFAR-10/ResNet-8;
Small-MCU: SpeechCmd/DSCNN. Percentages sum to 100.

Big-MCU (CIFAR-10) Backbone convs  Tap proj./head  Classifier (FC+softmax) Mem. I/O
BASE 78% - 12% 10%
EE-ensemble 74% 12% 10% 4%
DEEP (M=4) 76% - 16% 8%
SNAP-UQ 84% 7% 3% 6%
Small-MCU (SpeechCmd) Backbone convs  Tap proj./head  Classifier (FC+softmax) Mem. I/O
BASE 81% - 9% 10%
EE-ensemble 77% 11% 8% 4%
DEEP (M=4) 79% - 14% 7%
SNAP-UQ 86 % 6% 2% 6%

quantization settings. Each number is the mean of 10® forward passes after a 100-pass warmup;
inputs are cached in SRAM to avoid SD/flash stalls. Latency is reported as end-to-end time from
input tensor present in SRAM to logits/risk produced. Power is sampled at 100 kS/s from a shunt;
energy is time-integrated over the same window.

Where the speedup comes from. SNAP-UQ is single-pass and state-free. Compared to early-
exit ensembles (multiple heads, controller) or deep ensembles (multiple passes), it (i) removes
repeated classifier/softmax work, (ii) replaces softmax+entropy and running stats with a single scalar
surprisal, and (iii) keeps head math in int8 with kernel fusion (pointwise 1x 1+ GAP and tiny linear
heads fused with scale/LUT). Backbone cost is identical across methods; gains come from the tail
(head+classifier+I/O) (see Table[I9]and Figure[10).

Interpretation. Across both MCUSs, the backbone compute is identical for all methods, so any
end-to-end speedup must arise in the tail. The stacked bars show that SNAP-UQ shifts a larger share
of time into the shared backbone (Big-MCU: 84% vs. 74-81%; Small-MCU: 86% vs. 77-81%) while
shrinking the tail to 6-12% compared to 10-26% for early-exit and deep ensembles. Concretely: (i)
the classifier block drops from 12% /9% (BASE) or 16%/14% (DEEP) to 3% /2% with SNAP-UQ
because repeated FC+softmax and entropy/stats are removed and replaced by a single surprisal
scalar; (ii) early-exit ensembles incur an extra 11-12% in exit heads and controller logic that
SNAP-UQ avoids (single pass, no controller); and (iii)) memory I/O remains modest and similar
(Big-MCU 6% vs. 4-10%; Small-MCU 6% vs. 4-10%) due to kernel fusion and INTS8 heads. The
net effect—eliminating repeated heads/softmax and reducing tail compute—explains the observed
end-to-end gains in the tens-of-percent, despite identical backbones.

Big-MCU (CIFAR-10 / ResNet-8) Small-MCU (SpeechCmd / DSCNN)

100 — 100 —

80 [~ | e 80 | | - -
- |
2 60 - 60 |- -
<
=
P
2 40| = 40 - B
g
<
-

20 - | 20 |- -

0 0
BASE EE-ens DEEP  SNAP-UQ BASE EE-ens DEEP  SNAP-UQ

D Backbone D Tap proj./head D Classifier D Mem I/0

Figure 10: Where the speedup comes from. Stacked latency shares (sum to 100%). SNAP-UQ
reduces the tail (classifier, extra exits/controller, softmax/entropy, and I/O), pushing a larger fraction
of time into the shared backbone and yielding end-to-end savings even though the backbone is
identical across methods.

42



Under review as a conference paper at ICLR 2026

Table 20: Minimal SNAP-UQ vs. default. Flash (KB) / Peak RAM (KB) / Latency (ms) /
FPR@95%TPR (IDv' — OOD, lower is better) / AUPRC on CID (higher is better).

Big-MCU (CIFAR-10 / ResNet-8)

Config Flash | Peak RAM | Latency | FPR@95% | AUPRC(CID) 1
Minimal (P-only, r=32) 276 112 79 39.8% 0.68
Default (M+P, r=64) 292 120 83 34.6% 0.70

Small-MCU (SpeechCmd / DSCNN)

Config Flash | Peak RAM | Latency| FPR@95% | AUPRC(CID)t
Minimal (P-only, r=32) 112 48 108 21.5% 0.63
Default (M+P, r=64) 118 51 113 18.9% 0.65

Minimal configuration. When SRAM is extremely tight or intermediate activations cannot be
exposed, a single tap at pre-logits with a low projector rank (e.g., =32) provides a workable “minimal
SNAP-UQ”. Table 20| summarizes the cost/quality trade-offs versus our default two-tap setup (M+P,
r=64). Measurements follow the same protocol as Sec. (Cortex-M7 @ 600 MHz, CMSIS-NN
int8, fixed clock, 103 passes avg.).

Recommendation. Use Minimal (P-only, r=32) when hook access is limited or memory/latency
budgets are strict; expect ~2-5 KB flash and ~2-4 KB SRAM savings and ~4-5 ms latency reduction,
at the cost of a modest FPR increase (~2-5 pp) and slightly lower CID AUPRC (~0.01-0.02). When
feasible, Default (M+P, r=64) remains the best accuracy—cost point on both MCUs.

O EXTENDED COMPARATIVE SCOPE AND SINGLE-PASS HEAD-TO-HEAD

This appendix expands the comparative scope for single-pass uncertainty/OOD baselines and reports
head-to-head results under the same MCU deployment and tuning protocol as SNAP-UQ. We focus
on methods that (i) need no extra forward passes, (ii) keep no temporal state, and (iii) fit the same
INTS8 budget. Summary results appear in Tables and 23] with risk—coverage curves in Figs.
and[12]and clean-ID FPR in Tables 22 and 24]

0.1 METHODS CONSIDERED AND DEPLOYMENT PARITY

MSP/Entropy (max posterior, predictive entropy); Temperature scaling (ID dev only); Energy
logsumexp(g(ap)/T) with T tuned on dev; Mahalanobis@taps (classwise means + diagonal
covariances at the same tapped layers as SNAP-UQ; score is min diagonal Mahalanobis); ReAct
(Sun et al.l |2021)) (percentile clipping of tapped activations with per-channel thresholds fixed on dev);
ASH (Djurisic et al.,[2022)) (activation shaping via percentile shrinkage at one tap). On Big-MCU
only, we additionally report ODIN-lite (temperature scaling without input perturbation) and MC
Dropout / Deep Ensembles when they fit; non-fitting methods are marked OOM and excluded from
runtime summaries. All baselines are evaluated under identical quantization/runtime conditions; see
the head-to-head results in Tables [21)and [23]and the corresponding curves in Figs.[IT]and[12]

0.2 DECISION-CENTRIC PROTOCOL AND METRICS

Beyond AUROC/AUPRC, we surface decision metrics useful on-device: (i) Risk at fixed coverage
(80/90/95%) on CID streams (lower is better; reported in Tables 21] and 23] and visualized in
Figs.[TT)and[T2); (ii) AURC (area under the risk—coverage curve; Tables 2] 23); (iii) Selective NLL
conditioned on accepted samples at 90% coverage (Table[23); (iv) Clean-ID FPR at matched 90%
recall on event frames (Tables[Q;Z], @]) For each method, the operating threshold is chosen once on a
dev stream and then held fixed for test streams.

43



Under review as a conference paper at ICLR 2026

0.3 HEAD-TO-HEAD: CIFAR-10-C (STREAMING)

SNAP-UQ yields the lowest risk at 80/90/95% coverage and the smallest AURC in the single-pass
family (Table [21)); the full risk—coverage traces are shown in Fig.[TT} At matched 90% event recall,
SNAP-UQ also achieves the lowest clean-ID FPR (Table[22).

Table 21: Single-pass head-to-head on CIFAR-10-C streams. Risk at fixed coverage (lower is
better) and AURC. Thresholds fixed on dev and reused for test.

Method Risk@80% | Risk@90% | Risk@95% | AURC |
MSP / Entropy 0.154 0.124 0.112 0.118
Energy (1) 0.148 0.117 0.106 0.112
Mabhalanobis @taps 0.141 0.113 0.102 0.109
ReAct 0.139 0.111 0.101 0.107
ASH 0.138 0.110 0.100 0.106
SNAP-UQ 0.127 0.104 0.096 0.099
0.2 T
—@— SNAP-UQ
—— ReAct
—aA— Maha@taps
0.15 |- —©—  Energy B
= —»—  Entropy
&
0.1 |- .
| | | |
0.5 0.6 0.7 0.8 0.9

Coverage

Figure 11: Risk—coverage on CIFAR-10-C. Lower is better; compare with Table [21|for numeric
points.

Table 22: Clean-ID false-positive rate at matched 90% recall on event frames (CIFAR-10-C streams).

Method FPR on clean ID | Notes

MSP / Entropy 0.079 threshold fixed on dev

DEEP (Big-MCU) 0.065 single-pass comparison not applicable on Small-MCU
EE-ens (Big-MCU) 0.079 single-pass comparison not applicable on Small-MCU
SNAP-UQ 0.042 same dev threshold, one pass

0.4 HEAD-TO-HEAD: SPEECHCOMMANDS-C (STREAMING)
On SpeechCmd-C, SNAP-UQ again achieves the best risk at 80/90/95% coverage and the lowest

AURC (Table [23)); the risk—coverage curves are shown in Fig.[I2] Clean-ID FPR at matched recall is
summarized in Table 24]

0.5 REPRODUCIBILITY CHECKLIST

For completeness, we summarize the exact protocol that underlies Tables and Figs.

* Dev/test split: a single dev stream per dataset (ID — CID — OOD) for threshold/temperature/per-
centile selection; test streams share the same composition but disjoint seeds.

* Quantization: INT8 weights per tensor; FP16 accumulators as needed; identical to section

44



Under review as a conference paper at ICLR 2026

Table 23: Single-pass head-to-head on SpeechCmd-C streams. Risk at fixed coverage and AURC.

Method Risk@80% | Risk@90% | Risk@95% | AURC |
MSP / Entropy 0.118 0.072 0.063 0.091
Energy (T') 0.112 0.067 0.059 0.087
Mabhalanobis @taps 0.106 0.064 0.056 0.084
ReAct 0.104 0.062 0.055 0.083
ASH 0.103 0.061 0.054 0.082
SNAP-UQ 0.100 0.058 0.051 0.081
0.14

—— SN/‘\P-UQ
0.12 | —@— ASH |
—A— ReAct

01l —O— Maha@taps

= ——  Entropy
&
8-1072 - .
6-1072 | N
4.10-2 | | | |
0.5 0.6 0.7 0.8 0.9
Coverage

Figure 12: Risk—coverage on SpeechCmd-C. Lower is better; the numeric points at 80/90/95%
correspond to Table[23]

Table 24: Clean-ID false-positive rate at matched 90% recall on event frames (SpeechCmd-C
streams).

Method FPR on clean ID | Notes

MSP / Entropy 0.064 threshold fixed on dev
Energy (1) 0.060

Mahalanobis @taps 0.057

SNAP-UQ 0.031 one pass, same dev threshold

Table 25: Selective NLL conditioned on accepted samples at 90% coverage (lower is better).

Method CIFAR-10-C |  SpeechCmd-C |
MSP / Entropy 0.368 0.226
Energy (T') 0.357 0.214
Mabhalanobis @taps 0.349 0.208
ReAct 0.346 0.206
ASH 0.344 0.205
SNAP-UQ 0.339 0.182

45



Under review as a conference paper at ICLR 2026

Table 26: Notation & acronyms used in the paper. We define all symbols at first use and repeat the
most common here for quick reference.

Term Definition

1D In-distribution data (same distribution as training).

CID Corrupted-in-distribution (label-preserving corruptions of ID).

OOD Out-of-distribution (semantically different from ID).

IDv' —IDx Binary task: correct vs. incorrect predictions on ID + CID.
IDv'—OOD Binary task: ID vs. OOD (semantic shift).

Tap (layer) A selected intermediate layer where we attach a small head.

Projector P, Low-rank map from a,_1 to 2z, (e.g., 1x1 conv or skinny linear).

Head g, Tiny predictor outputting (j¢, log o3 ) for ae.

Surprisal e, Standardized error ||(a¢ — pe) ® o |3

S(z), U(zx) Aggregate surprisal; mapped uncertainty score.

BN Batch Normalization.

LUT Lookup table (we use a 256-entry LUT for exponentials/scales).

MCU Microcontroller unit (TinyML target). OOM: does not fit in flash/RAM.
AUPRC / AUROC Area under PR / ROC curve.

Risk—coverage Selective prediction trade-off: error among accepted vs. acceptance rate.
CMSIS-NN ARM kernels used for integer inference on MCUs.

* Runtime: cycle-counter timing, 1,000 inferences averaged; interrupts masked; datasheet nominal
clock.

* Risk—coverage: coverage levels computed on test streams with the dev-fixed threshold; AURC by
trapezoidal rule (as in Tables[21] [23|and Figs. [T} [I2).

* FPR at matched recall: event recall target 90% set on dev; FPR measured on clean ID segments
of test streams (Tables[22] 24).

P FROM THEORY TO PRACTICE: IMPLICATIONS AND EMPIRICAL VALIDATION

This appendix connects our theoretical results to deployable practice and provides targeted experi-
ments that verify the predictions. We focus on three propositions from §2} (i) surprisal-likelihood
equivalence (Prop. , (ii) relation to conditional Mahalanobis energies (Prop. , and (iii) affine
(BN-like) invariance (Prop. [2.3} this corresponds to “Proposition 2.3” in the reviewer’s comment). For
each, we (a) interpret the result operationally, (b) state a falsifiable hypothesis for deployment, and (c)
validate with controlled measurements on MNIST, CIFAR-10, TinyImageNet, and SpeechCommands
across Big-/Small-MCU backbones.

P.1 PROP[2.T} SURPRISAL IS (AFFINE TO) DEPTH-WISE NEGATIVE LOG-LIKELIHOOD

Implication for practice. The aggregate SNAP score S(x) is an affine transform of the depth-wise
NLL under the conditional model pg(ay|ae—1). Thus S(x) is a calibrated ordering of per-example
difficulty without requiring labels online. Two direct consequences: (1) threshold selection on a
small development split transfers across operating points, and (2) selective-prediction risk should be
monotone in coverage when ranking by S(x).

Hypotheses. (H1) S(z) has high rank correlation with the true per-example negative log-likelihood
(NLL) measured offline on ID and CID. (H2) Sorting by S(z) yields near-convex risk—coverage
curves and dominates entropy/MSP at moderate-to-high coverage.

Verification. We compute per-example NLL on held-out sets and compare to S(x) via Spearman’s
p; we also report the area under the risk—coverage curve (AURC; lower is better).

46



Under review as a conference paper at ICLR 2026

Table 27: Prop2.1] verification: rank correlation and AURC. Spearman p between S(z) and
per-example NLL on ID/CID, and AURC (lower is better).

Spearman p (ID / CID) AURC | (ID/ CID)
Dataset SNAP-UQ Entropy SNAP-UQ Entropy
MNIST 0.93/090 0.78/0.74 0.102/0.128 0.121/0.149
CIFAR-10 0.89/086 0.75/0.70 0.134/0.172  0.154/0.196

TinyImageNet  0.86/0.82 0.71/0.66 0.181/0.219  0.204/0.244
SpeechCmd 091/0.88 0.79/0.73 0.118/0.147  0.136/0.165

Takeaway. The strong correlations and lower AURC confirm that SNAP’s S(x) behaves like a
likelihood-based difficulty ordering, supporting threshold transfer and stable selective operation.

P.2 PROP[2.2} RELATION TO CONDITIONAL MAHALANOBIS ENERGIES

Implication for practice. Classical Mahalanobis uses unconditional, classwise centroids and a
shared covariance at a single layer. Prop shows S(z) aggregates conditional layer-wise energies
to the predicted next activation, making it sensitive to dynamics changes (e.g., corruptions that disrupt
layer-to-layer mappings) rather than only distances to class means. We therefore expect larger gains
on CID monitoring and IDv' —ID x failure detection than on far-OOD that is separable by marginal
feature statistics.

Hypotheses. (H3) On CID streams, S(z) detects accuracy-drop events earlier (lower delay at
matched precision/recall) than unconditional Mahalanobis at tapped layers. (H4) On far-OOD with
clean low-level statistics (e.g., SVHN vs. CIFAR-10), Mahalanobis may match/exceed SNAP on
IDv' —OOD AUROC, while SNAP remains competitive.

Verification. We compare event AUPRC and median detection delay on CID streams; and AUROC
on IDv' —OOD.

Table 28: Prop[2.2] verification: CID monitoring and IDv' — OOD.
CID monitoring (AUPRC 1/ Delay |) IDv'—OOD (AUROC 1)

Dataset SNAP-UQ Maha@taps SNAP-UQ Maha@taps
MNIST / MNIST-C 0.66 /24 0.60/33 0.86 0.87
CIFAR-10/ CIFAR-10-C  0.70/27 0.64/36 0.94 0.95
TinyImageNet / TIN-C 0.62 /31 0.57/39 0.90 0.90
SpeechCmd / SpCmd-C 0.65/41 0.57/58 0.92 0.90

Takeaway. SNAP’s condition-on-depth energy excels at process drift (CID), while unconditional
Mahalanobis can remain strong on specific far-OOD settings—exactly as Prop[2.2] suggests.

P.3  PROP[2.3} AFFINE (BN-LIKE) INVARIANCE AND ITS LIMITS

Implication for practice. If intermediate features undergo per-channel affine transforms (e.g., BN
scale/shift or fixed quantization rescaling), the standardized errors e, and hence S(z) are invariant
when the predictor co-adapts. Practically, this means SNAP is robust to (i) post-training BN folding
and (ii) int8 per-tensor/per-channel scaling, provided the head parameters are quantization-aware or
re-fit with a brief calibration.

Hypotheses. (H5) Applying synthetic per-channel rescalings a, = s ® a, + t (with realistic s, ¢
drawn from BN statistics) leaves S(x)-based rankings almost unchanged (Spearman p ~ 1). (H6)
Post-training BN folding and int8 quantization (heads) do not materially change CID AUPRC or
IDv' —OOD AUROC after a short calibration of the logistic/isotonic map.

47



Under review as a conference paper at ICLR 2026

Verification. We inject controlled rescalings at tapped layers and measure the delta in S(z) ranking;
we then evaluate end-to-end with BN-folded and int8 heads.

Table 29: Prop[2.3] verification: invariance to BN-like rescaling and deployment transforms.
S (z) rank Spearman p End-to-end metrics (CID AUPRC / OOD AUROC)

Dataset BN-rescale Int8 rescale FP32 Int8 (recal)
MNIST 0.997 0.994 0.66 / 0.86 0.66 / 0.86
CIFAR-10 0.995 0.992 0.70/0.94 0.70/0.94
TinyImageNet 0.993 0.990 0.62/0.90 0.62/0.90
SpeechCmd 0.996 0.993 0.65/0.92 0.65/0.92

Takeaway. Rankings are essentially invariant, and end-to-end performance is unchanged after a
brief map recalibration—supporting Prop[2.3]and explaining why SNAP ports cleanly to int§ MCU
pipelines.

P.4 PRACTICAL DESIGN RULES INDUCED BY THE THEORY

The propositions produce concrete knobs for embedded deployments: (R1) Threshold portability.
Because S(z) tracks NLL (Prop, calibrate a single threshold on a small dev set and reuse it
across similar conditions; for budgeted abstention, isotonic mapping preserves ordering and improves
risk under tight budgets. (R2) Prefer taps that sense dynamics. Since conditional energies target
layer-to-layer mappings (Prop[2.2), favor a mid-block and the penultimate block; this maximizes
sensitivity to CID while keeping cost low (see Appx. [N.I). (R3) Quantize heads confidently.
Affine invariance (Prop[2.3)) and the observed stability in Table 29] justify int8 heads; use a short
recalibration pass (few minutes on dev data) to refit the logistic/isotonic map if scales change. (R4)
When semantics dominate OOD, consider a hybrid. For far-OOD cases where unconditional
separability is strong, combine S(x) with a semantic OOD score (e.g., energy or Mahalanobis) in the
tiny mapping; this preserves single-pass latency.

P.5 SUMMARY

Across four datasets and two MCU tiers, the empirical checks align with the theoretical predictions:
S(x) behaves like a likelihood-derived difficulty measure, conditional energies excel at corrupted-ID
monitoring versus unconditional baselines, and the score is stable to BN folding and int8 rescaling.
These links clarify why SNAP-UQ performs well in the main results and provide concrete, low-
overhead recipes for deployment.

Q TRAINING OVERHEAD AND STATISTICAL ROBUSTNESS

This appendix quantifies the incremental training cost of SNAP-UQ relative to a baseline cross-
entropy (CE) training loop and reports variance across multiple seeds.

Q.1 COMPUTE AND MEMORY OVERHEAD

Let S be the tapped layers, d; = dim(ay), and r, the projector rank. For linear heads predicting
(e, log o?) from zg = Pray—1, the additional parameters and per-step multiply—adds are

#0, ~ 2dyry + 2d, (biases included), (63)

FLOPs, ~ (HWy)r¢ + 2rdy (1x1+GAP projector). (69)

With two taps and r, € {64,96}, the total training FLOPs overhead is typically < 12% of the
backbone for our TinyML backbones, and the peak activation memory rises by 3—5% due to the

extra zy and head activations. Quantized INT8 weights reduce parameter memory even during float
training when fake-quantization is used.

48



Under review as a conference paper at ICLR 2026

Q.2 Two TRAINING MODES

We provide two options:

(J) Joint training (default). Optimize £ = Lr + AgsLss + Areg R end-to-end. We use Ags €
[1073, 5x107?]; this preserves the CE convergence epoch while learning heads.

(P) Post-hoc heads. First train the classifier with CE only; then freeze the backbone and train the
heads with stop-gradient on a,. This lowers overhead to ~2-3% compute and recovers >95% of the
monitoring gains we observe with (J).

Q.3 STABILITY AND REGULARIZATION
To avoid variance collapse in log o2 we use a variance floor o7 < softplus(&,)+¢2 and a scale penalty

Rvar = o, || log o?|1. Small Ass (1073-5x1073) keeps gradients well conditioned. Detaching a,
within Lgg (option “detach’) halves across-seed variance with no significant change in means (see

Table 31).

Q.4 RESOURCE ACCOUNTING (WALL-CLOCK, MEMORY, PARAMS)

We measured overheads on identical hardware, batch sizes, and optimizers.

Table 30: Training resource overhead vs. CE baseline. Mean over 5 runs; | lower is better.

Setting Extra wall-time/epoch  Extra peak mem. Extra params Notes

(J) Joint, r=64 (2 taps) +8.3% +3.6% +28 KB (INTS) default

(J) Joint, 7=96 (2 taps) +11.7% +4.8% +42 KB (INTS8) higher rank
(P) Post-hoc, =64 (2 taps) +2.4% +1.1% +28 KB (INT8) frozen backbone

Q.5 STATISTICAL ROBUSTNESS ACROSS SEEDS

We expanded from 3 to 10 seeds and report mean =+ standard error (SE) in the paper; full 95%
bootstrap confidence intervals (1,000 ) are provided here.

Table 31: Seed robustness. Mean =+ SE over 10 seeds; 95% ClIs in brackets.

Dataset/Metric Baseline QUTE Tiny-DEEP SNAP-UQ
CIFAR-10-C AUPRC 1 0.660.006 [0.65,0.67] 0.684:0.007 [0.67,0.69] 0.67+0.008 [0.66,0.69] 0.70+0.006 [0.69.0.71]
SpeechCmd IDv' —ID x AUROC 1 0.9040.004 [0.89,0.91] 0.914:0.004 [0.90,0.92] 0.90+0.005 [0.89,0.91] 0.94+0.003 [0.93,0.95]
MNIST ECE (ID) | 0.0224:0.001 [0.020,0.024]  0.0204:0.001 [0.018,0.022] ~ 0.021+0.001 [0.019,0.023]  0.016+0.001 [0.015,0.017]

Q.6 LEARNING DYNAMICS AND CONVERGENCE

Learning curves show that CE convergence (epoch of validation-accuracy plateau) is unchanged by
adding Agg<5x 1073, while the standardized-surprisal term stabilizes within 5-10 epochs with the
variance floor. Figures of train/val losses and calibration traces are provided in Appendix [F}

Q.7 PRACTICAL GUIDANCE

For stable and efficient training on TinyML backbones we recommend: (i) two taps at
mid+penultimate, (ii) r=64 (increase to 96 only if flash allows), (iii) Agg=10"2 (raise to 5x 1073 if
CID sensitivity is a priority), (iv) enable “detach” if optimization is noisy, and (v) prefer the post-hoc
pathway when training-time compute is the bottleneck.

Reproducibility. We fix data loaders, batch sizes, and augments across methods; report all hyper-

parameters and seeds; use identical integer/fake-quant settings across training and deployment for
SNAP-UQ heads; and release scripts to reproduce Tables

49



	Introduction
	SNAP-UQ Explained
	Depth-wise next-activation model
	Training objective and regularization
	Single-pass surprisal and mapping
	Complexity, footprint, and MCU implementation
	Theory: links to likelihood and Mahalanobis
	Variants and ablations

	Evaluation Methodology
	Results
	On-device fit and runtime
	Monitoring corrupted streams
	Failure detection (ID, CID, OOD)
	Calibration on ID

	Conclusion and Discussion
	Datasets and Preprocessing
	Vision
	Audio
	Corruptions (CID) and OOD
	Reproducibility and bookkeeping

	Training, Calibration, and Build Details
	Backbones and heads
	Optimization and schedules
	SNAP-UQ-specific knobs
	Calibration and thresholds
	Build and measurement (MCU)
	What to log (for reproducibility)

	Baselines and Tuning Details
	Score definitions and MCU notes
	Hyperparameter grids and selection
	Thresholding and operating points
	Fairness controls and implementation parity
	Memory/latency accounting on MCUs
	Reproducibility
	Limitations of baselines under TinyML constraints

	CID/OOD Protocols and Streaming Setup
	Corruption sources (CID)
	Out-of-distribution (OOD) sets
	Streaming construction
	Event labeling (offline, never seen online)
	Threshold selection and scoring
	stream builder
	Notes for MCU playback

	Event-Detection Scoring: AUPRC and Delay
	Notation
	AUPRC (frame-based, threshold-free)
	Threshold selection on the development stream
	Thresholded detection delay (test only)
	False positives on clean segments
	Complexity and numerical details
	Pseudocode

	Metrics and Statistical Procedures
	Notation and shared conventions
	Failure detection: ROC/AUC and PR/AUPRC
	Selective prediction: risk–coverage and selective NLL
	ID calibration metrics
	Confidence intervals and significance
	Implementation details and numerics
	Event-weighted PR
	Dataset-level aggregation
	Reproducibility checklist
	Calibration under shift (CID/OOD)

	Training Objective and Regularization: Extended Details
	Objective, layer weighting, and normalization
	Stable parameterizations and exact gradients
	Failure modes and stabilization
	Choosing lambdaSS and lambdareg
	Robust variants and their gradients
	Schedules, clipping, and QAT
	Implementation notes
	Diagnostics and sanity checks
	From training to deployment

	Proofs and Additional Derivations
	Notation
	Proof of Proposition 2.1 (Surprisal–likelihood equivalence)
	Proof of Proposition 2.2 (Relation to Mahalanobis)
	Proof of Proposition 2.3 (Affine invariance for BN-like rescaling)
	Distributional calibration under the model
	Student-t and Huberized variants

	Low-rank-plus-diagonal covariance: Woodbury identities
	Isotonic calibration details
	Budgeted abstention controller
	Additional complexity accounting
	Implementation notes for integer inference
	Ablations and Sensitivity Analyses
	Tap placement and projector rank
	Quantization of SNAP heads
	Mapping alternatives: logistic vs. isotonic
	Risk–coverage across datasets
	Reliability diagrams (ID)
	Calibration ablations: raw S(x) vs. logistic vs. isotonic
	Error/corruption clusters and abstention
	How many taps? (2, 3, 4, and 5 taps)
	Robust distributional variants: Student-t and Huber
	Optional confidence blend
	Runtime breakdown and measurement protocol

	Extended Comparative Scope and Single-Pass Head-to-Head
	Methods considered and deployment parity
	Decision-centric protocol and metrics
	Head-to-head: CIFAR-10-C (streaming)
	Head-to-head: SpeechCommands-C (streaming)
	Reproducibility checklist

	From Theory to Practice: Implications and Empirical Validation
	Prop.2.1: Surprisal is (affine to) depth-wise negative log-likelihood
	Prop.2.2: Relation to conditional Mahalanobis energies
	Prop.2.3: Affine (BN-like) invariance and its limits
	Practical design rules induced by the theory
	Summary

	Training Overhead and Statistical Robustness
	Compute and Memory Overhead
	Two Training Modes
	Stability and Regularization
	Resource Accounting (Wall-Clock, Memory, Params)
	Statistical Robustness Across Seeds
	Learning Dynamics and Convergence
	Practical Guidance


