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Abstract

Text-based reinforcement learning involves an001
agent interacting with a fictional environment002
using observed text and admissible actions in003
natural language to complete a task. Previous004
works have shown that agents can succeed in005
text-based interactive environments even in the006
complete absence of semantic understanding007
or other linguistic capabilities. The success of008
these agents in playing such games suggests009
that semantic understanding may not be im-010
portant for the task. This raises an important011
question about the benefits of LMs in guid-012
ing the agents through the game states. In this013
work, we show that rich semantic understand-014
ing leads to efficient training of text-based RL015
agents. Moreover, we describe the occurrence016
of semantic degeneration as a consequence of017
inappropriate fine-tuning of language models018
in text-based reinforcement learning (TBRL).019
Specifically, we describe the shift in the se-020
mantic representation of words in the LM, as021
well as how it affects the performance of the022
agent in tasks that are semantically similar to023
the training games. These results may help024
develop better strategies to fine-tune agents in025
text-based RL scenarios.026

1 Introduction027

Text-based games (TBGs) are a form of interac-028

tive fiction where players use textual information029

to manipulate the environment. Since information030

in these games is shared as text, a successful player031

must hold a certain degree of natural language un-032

derstanding (NLU). TBGs have surfaced as impor-033

tant testbeds for studying the linguistic potential034

of reinforcement learning agents along with par-035

tial observability and action generation. TBGs036

can be modeled as partially observable Markov037

decision processes (POMDP) defined by the tu-038

ple ⟨S,A,O, T,E,R⟩, where S is the set of states,039

A the set of actions, O the observation space, T040

the set of state transition probabilities, E is the041

Figure 1: Semantic degeneration of the terms kitchen
and bloody axe in Zork 1.

conditional observation emission probabilities, and 042

R : S ×A → R the reward function. The agent’s 043

goal is to reach the end of the game by performing 044

text actions, while maximizing the final score. 045

In TBGs, observations and actions are presented 046

in the form of unstructured text, therefore, they 047

must be encoded before being passed onto the RL 048

network. Recent works in text-based RL adopt a 049

strategy where such encoding is learned from the 050

game, typically by fine-tuning a language model, 051

such as embeddings or transformers, using the re- 052

wards values from the training (Yao et al., 2020; 053

Wang et al., 2022a). We hypothesize that this ap- 054

proach may cause the language model to overfit the 055

training games, leading to the degeneration of the 056

semantic relationships learned during pretraining, 057

and, subsequently, negatively impacting the agent’s 058

training efficiency and transfer learning capacity. 059

We conduct experiments in two distinct TBG do- 060

mains: (1) TextWorld Commonsense (TWC) (Mu- 061

rugesan et al., 2021a), and (2) Jericho (Hausknecht 062

et al., 2019). The former provides a number of 063

games where the goal is to perform house clean- 064

ing tasks such as taking objects from a location 065

and placing them in their appropriate places, using 066

commonsense knowledge. The latter provides a 067

library of classic text-adventure games, such as the 068

Zork (1977), each having its own unique objectives, 069

characters, and events. Unlike TWC games, Jericho 070
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games may not let the player know a priori what071

the final goal is. Instead, the player is expected to072

explore the game to learn the story and complete073

the tasks one-by-one. In both domains, actions are074

selected from a list of possible moves.075

Under this framework, we address the following076

research questions:077

1. Does fine-tuning the language model to the078

RL rewards improve the training efficiency in079

comparison to fixed pre-trained LMs?080

2. Does fine-tuning LMs make agents robust to081

tasks containing out-of-training vocabulary?082

Our goal is to evaluate what are the implica-083

tions, pros, and cons of fine-tuning LMs to the084

RL tasks. Our results indicate fine-tuning LMs to085

rewards leads to a decrease in the agent’s perfor-086

mance and hinders its ability to play versions of the087

training games where the observations and actions088

are slightly reworded, such as through paraphrasing089

or lexical substitution (synonyms). In comparison090

to fixed pre-trained LMs, these fine-tuned agents091

under-performed in training and in test settings.092

We refer to this process as semantic degeneration,093

because it leads to loss of relevant semantic infor-094

mation, in the LM, that would be crucial to produce095

generalizable representation. For instance, by learn-096

ing that the terms “bloody axe” and “kitchen” are097

related to each other in the game Zork 1, the agent098

overfits to this setting and, in turn, loses relevant099

information about “kitchen” and “bloody axe” that100

could be important to other games. In NLP, seman-101

tic generation might be an expected consequence102

of fine-tuning (Mosbach et al., 2020), however, the103

vast majority of text-based RL agents employ LMs104

that are fully fine-tuned to the game’s semantics.105

2 Background106

Model and Architecture The general architec-107

ture of the agents in this work consist of a state108

encoder akin to the DRRN (He et al., 2015) with109

an actor-critic policy learning (Wang et al., 2016)110

and experience replay. The main components of111

the agent’s network are (1) a text encoder, (2) a112

state-action encoder, and (3) an action scorer. The113

text encoder module is a language model that con-114

verts an observation o ∈ O and action a ∈ A115

from text form to fixed length vectors f(o) and116

f(a). The state-action encoder consists of a GRU117

(Dey and Salem, 2017) that takes as input the118

encoded state and actions, and predicts the Q- 119

values for each pair: Qϕ(o, a) = g(f(o), f(a)) 120

given parameters ϕ. The action predictor is a 121

linear layer that outputs the probabilities based 122

on the Q-values from the previous layer. The 123

chosen action is drawn following the computed 124

probability distribution. The agent is trained by 125

minimizing the temporal differences (TD) loss: 126

LTD = (r + γmaxa′∈AQϕ(o
′, a′) − Qϕ(o, a))

2 127

where o′ and a′ are the next observation and next 128

actions sampled from a replay memory, γ is the 129

reward discount factor. 130

Text Encoders We used three distinct types of 131

encoders in this study: 132

• Hash - does not capture semantic information 133

from the text. Follows the approach by Yao 134

et al. (2021). 135

• Word Embedding - pre-trained static GloVe 136

embeddings (Pennington et al., 2014) and a 137

GRU to encode the sequences of tokens. 138

• Transformers - pre-trained LMs to encode ob- 139

servations (Devlin et al., 2018). 140

These encoders are often the top performer 141

(Murugesan et al., 2021b; Ammanabrolu and 142

Hausknecht, 2020; Wang et al., 2022b; Atzeni et al., 143

2021; Yao et al., 2020; Tuyls et al., 2021) in bench- 144

mark environments for text-based reinforcement 145

learning such as Textworld (Côté et al., 2018), Jeri- 146

cho (Hausknecht et al., 2019), Scienceworld (Wang 147

et al., 2022b), etc. 148

3 Results 149

We now present our main results. In the TWC 150

environment, agents are trained for 100 episodes, 151

with a maximum of 50 steps per episode (repeated 152

over 5 runs). In the Jericho environment, agents 153

were trained over 100000 steps with no limit to the 154

number of episodes (repeated over 3 runs). These 155

settings were chosen following previous work ref- 156

erence in this manuscript, such as Yao et al. (2021) 157

and Murugesan et al. (2021b). Note that we report 158

results for the game Zork 1 in this section, the re- 159

sults observed here extend to other Jericho games 160

and agent architectures as seen in Appendix A.6. 161

We deploy agents of the same architecture as 162

described in Section 2, the only exception being 163

that the input encoder used by them is different. 164

The encoders are the Hash encoder, which pro- 165

duces semantic-less vectors, the Word Embedding 166

which uses pre-trained GloVe embeddings, and 167

the transformer LMs Albert (Lan et al., 2019) and 168
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Figure 2: Training performance comparing various en-
coders; (left) shows the normalized scores for TWC
games and (right) training scores in Zork 1. Shaded area
corresponds to one standard deviation.

Model ID OOD
Hash 0.58± 0.06 0.15± 0.03
Embedding 0.58± 0.08 0.43± 0.07
Albert (Lan et al., 2019)* 0.66± 0.05 0.65 ± 0.05
RoBERTa (Liu et al., 2019)* 0.70 ± 0.05 0.53± 0.06

Table 1: Normalized scores for the in-distribution vo-
cabulary (ID) and out-of-distribution vocabulary (OOD)
game sets in TWC’s Medium difficulty games. (*) Indi-
cates fixed language models.

RoBERTa (Liu et al., 2019). The transformer en-169

coders are used in two variations: Fixed, where170

the LMs weights are frozen; and Fine-tuned (FT),171

where the LMs weights are updated according to172

the rewards. This allows us to compare the per-173

formance of the typical text-based RL fine-tuning174

approach to unconventional ones.175

3.1 Semantic Information from Pre-Training176

Improves the Overall RL Performance177

We evaluate the use of different LMs to encode the178

observations and actions into fixed-length vectors.179

We begin our analysis with the weights of the lan-180

guage model-based encoders fixed, i.e., only the181

RL network parameters ϕ are updated.182

The rich semantic information of LMs accel-183

erates training: The results from these experi-184

ments show that even an agent without semantic185

information can properly learn to play the games.186

However, an agent leveraging the semantic repre-187

sentations from language models are able to: (1)188

converge more quickly, in training, to a stable score189

than hash and simple, as shown in Figure 2; (2)190

handle out-of-training vocabulary, Table 1 shows191

the performance of the models under two settings:192

games using an in-training vocabulary (ID) and193

games using an out-of-training vocabulary (OOD).194

These results show that the fixed transformer LMs195

outperform the Hash and Embedding models in196

both vocabulary distributions, highlighting the im-197
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Figure 3: Training curves of fixed/fine-tuned LMs on
(left) TWC medium difficulty games and (right) Zork 1.
Due to semantic degeneration, the fine-tuned models do
not exhibit an increasing score converging to a maxi-
mum value. Shaded areas denote one standard deviation.

portance of keeping the semantic information from 198

pre-training intact. 199

3.2 Semantic Degeneration Hurts Learning 200

In this experiment, we address the first proposed 201

research question: “does fine-tuning the LM to the 202

RL rewards improve the training efficiency in com- 203

parison to fixed pre-trained LMs?” To that end, 204

we trained the Fixed and Fine-tuned variations of 205

Albert and RoBERTa encoders on the same games, 206

and compared their scores during training. Fig- 207

ure 3 shows the outcome of the experiment. The 208

findings suggest that traditional text-based RL ap- 209

proach of fine-tuning the LMs lead to substantially 210

lower training scores, which are due to semantic de- 211

generation. That is, semantic degeneration leads 212

to ineffective training of the RL agents, whereas 213

the fixed models converge to a higher score after a 214

relatively small number episodes/steps. 215

Semantic degeneration arises from fine-tuning 216

the LMs to the training rewards. The LM “forgets” 217

its semantic associations it had learning during its 218

pre-training, such as the masked token prediction 219

in the case of transformers. This “forgetting” orig- 220

inates from overfitting the model’s weights to the 221

games’ word distributions. The biggest problem 222

arises from the fact that the RL network receives 223

the encoded vectors from the LM and updates its 224

weights based on such initial representations. How- 225

ever, since the LMs are fine-tuned, the encoding 226

will change between each episode, causing the RL 227

network to receive a different encoding for the same 228

observation as the training goes on. 229

A comparison of pre-trained and semantically 230

degenerated word vectors is seen in Figure 4. A 231

2D TSNE plot of pre-trained word vectors from a 232

RoBERTa model is seen in Figure 4a; Figure 4b 233

shows the plot of the word vectors after fine-tuning 234
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Figure 4: Shift caused by the semantic degeneration
to the contextual word vectors in the RoBERTa model
fine-tuned to Zork 1: (a) pre-trained embeddings, (b)
embeddings fine-tuned to Zork 1. Bolded words denote
the case where the term “bloody axe” shifts towards the
word “kitchen” as a result of them co-occurring in a
positively rewarded state.

the LM to the game Zork 1. Notice the shift of the235

term “bloody axe” towards the term “kitchen” from236

(a) to (b). The shift happens because both terms237

appear in a sequence early on in the game, there-238

fore, the association between their vectors becomes239

stronger as the LM is fine-tuned. Moreover, the240

terms “egg” and “nest” shift away from “chicken”.241

The first two terms are also employed in the game242

in a sequence where the agent receives a positive243

reward, whereas the last is never used in the game.244

Despite being related in-game, these terms should245

have their semantic relationships preserved, which246

is possible by utilizing fixed LMs.247

3.3 Agents with fine-tuned LMs are less248

robust to language change249

We address the second research question: “does250

fine-tuning LMs make agents robust to tasks con-251

taining out-of-training vocabulary?”. To test the252

robustness of each model, we first train each agent253

on a particular game. Then, we evaluate the agents254

by having them play games where the observations255

are transformed in one of the following ways: Para-256

phrasing, we run the observations through a para-257

phrasing model to rephrase the descriptions (us-258

ing a Bart-based paraphrase (Lewis et al., 2019));259

Lexical Substitution, we replace words in the ob-260

servations using synonyms and hypernyms from261

WordNet (Fellbaum, 2010). By playing these ver-262

sions of the games, agents have to perform the263

same task as seen in training, but with reworded or264

slightly modified observations.265

Figure 5a shows the fixed LM agent is robust to266

paraphrasing as it is able to maintain the original267

score even in the modified versions. This is due to268

the ability of LMs to handle such perturbations in269

text. This evidence emphasizes the hypothesis that270
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Figure 5: Evaluation of a RoBERTa agent on original
(none), paraphrased, and lexical substitution observa-
tions on (left) TWC medium games and (right) Zork
1. Fixed LMs exhibit strong robustness to the perturba-
tions, scoring as much as in the games without perturba-
tions.

semantic understanding is important for generaliza- 271

tion to words unseen in training. Figure 5b shows 272

the performance of the three agents in Zork 1. The 273

fine-tuned agent exhibits a decline in performance 274

while playing the paraphrased and lexical substitu- 275

tion games. This is explained by the fact that the 276

LM has been adjusted to the semantics of the orig- 277

inal game, thus, tokens are no longer distributed 278

according to semantic similarity. The hash-based 279

agent is unable to score in either of the modified 280

games due to the lack of semantic information. The 281

fixed agent, however, exhibits strong robustness to 282

the perturbations. This shows how semantic degen- 283

eration leads to decrease in performance in unseen 284

or slightly different games. 285

4 Conclusion 286

In this paper, we have put forth a novel perspec- 287

tive over the occurrence of semantic degeneration 288

at the intersection of LM fine-tuning and text RL. 289

We have shown that semantic understanding brings 290

benefits to the training of agents. Moreover, de- 291

spite being the typical approach to text-based RL, 292

learning the semantics from the game may not be 293

the optimal approach to training agents. Our results 294

corroborate the well known trends of trading-off 295

general semantics for task-specific representations 296

in NLP tasks; we shine light on how this affects 297

agents in carrying out tasks that are semantically 298

similar to the training ones. Semantic degeneration 299

was observed for different agent architectures and 300

in several games and environments. This suggests 301

that the phenomenon is a general problem. Our re- 302

sults indicate that using meaningful semantic repre- 303

sentations can be beneficial, and fine-tuning strate- 304

gies may be developed to ensure prior semantic 305

information is not lost by the model, while learning 306

task-specific representations. 307
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Limitations308

Our work focuses on popular TBG environments309

and also popular choices of LMs. In future work310

it would be interesting to study rarer TBG environ-311

ments, potentially beyond English. In that context312

it would also be interesting to study multilingual313

LMs as the semantic representation for these games.314

Since we use LM representations for game play-315

ing, some of the limitations of these representations316

(like inability to distinguish between some related317

concepts, or certain biases), might carry over. In-318

vestigating these in detail is another interesting319

avenue to be explored.320
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A Appendix425

A.1 TextWorld Commonsense426

This section contains information about the games427

(Table 2) in TextWorld Commonsense as well as428

an example of an observation and plausible actions429

(Figure 6).430

The goal of TWC games are to complete a series431

of household tasks, such as “picking up an apple432

and putting it in an appropriate location”. The agent433

is provided with the description of a scene and a list434

of plausible actions. They must then decide which435

action to be taken in the current game state. If the436

action performed is good, the agent is rewarded437

with points.438

TWC games are split into easy, medium and hard439

difficulties. As the difficulty increases, the number440

of target objects and rooms to cleanup increases.441

Details can be seen in Table 2.442

A.2 Model comparison in TWC443

Figure 7 shows the comparison between all lan-444

guage models in all three difficulties of TWC in445

terms of normalized score and number of move-446

ments.447

These results show how agents using fixed LMs448

converge earlier to a stable score (Figures 7 a, b, c)449

and to stable number of movements (Figures 7 d,450

e, f). Higher scores are better. Lower number of451

movements are better because it means the agent452

can complete the task while taking fewer actions,453

avoiding unnecessary moves.454

A.3 Complete Table of TWC Results 455

Tables 4 and 5 show the results for all difficul- 456

ties in TWC in the in-distribution set and out-of- 457

distribution set. 458

We can see that fixed LMs consistently perform 459

better when applied to both in-distribution and out- 460

of-distribution tasks. This is due to the fact that 461

they can keep rich semantic information and not 462

suffering from semantic degeneration. 463

A.4 Complete results for perturbation 464

experiments in TWC 465

Figure 8 shows the results for the perturbation ex- 466

periments in TWC difficulties. 467

The result show how that a fixed LM model 468

(RoBERTa) can maintain a relatively similar per- 469

formance to the original observations when playing 470

noisy versions of the game. 471

A.5 Experiment details 472

All experiments were repeated 3 times with dif- 473

ferent random seeds. The reported error bars 474

correspond to one standard deviation. We fol- 475

lowed previous literature for determining the hyper- 476

parameters for the agent model (Murugesan et al., 477

2021b; Yao et al., 2021). 478

For TWC, agents were trained for 500 episodes, 479

each episode ended when the game was over or 480

when the agent reached 100 steps. Results were 481

reported as the normalized score for each game, 482

on a scale between 0 and 1. The normalized score 483

was calculated by dividing the final score by the 484

maximum score possible for that game. We trained 485

and evaluated the agents on all games of each of 486

the three difficulties: easy, medium and hard. 487

For Jericho, agents were trained for 100,000 488

steps, regardless of the number of episodes this 489

incurred in. The results were reported as the av- 490

erage score for the last 100 episodes played by 491

the agent. We trained and evaluated agents on 12 492

Jericho games, as seen in Table 3. 493

A.6 Additional experiments on Jericho games 494

Figure 9 shows the fine-tuning/fixed LM compari- 495

son on additional games from the Jericho library: 496

detective, pentari, inhumane, and enchanter. 497

The models show a consistent trend in which the 498

fixed LMs outperform the fine-tuned models. 499

Table 3 shows an extensive set of experiments 500

on 12 Jericho games and different agent architec- 501

tures. In addition to the Actor-Critic network de- 502
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Observation
You’ve entered a kitchen.
Look over there! A dishwasher. You can see a closed cutlery
drawer. You see a ladderback chair. On the ladderback chair
you can make out a dirty whisk.

Plausible Actions
Open dishwasher
Open cutlery drawer
Take dirty whisk from ladder-
back chair

Figure 6: Example of an observation from a TextWorld Commonsense game.
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Figure 7: Comparison of the performance across several language encoding models. Figures a, b, c show the
normalized score for easy, medium and hard games, respectively. Figures d, e, f show the number of movements
needed by the agent to complete the task (lower values are better). Shaded region corresponds one standard
deviation.

scribed in the manuscript, we conducted experi-503

ments with variants of the CALM agent (Yao et al.,504

2020), which utilizes a DRRN and a GPT gener-505

ative model to score actions. In addition to the506

default CALM agent with DRRN, we introduced507

our LM combinations to it both with and without508

fine-tuning. We can see the trend is maintained for509

fine-tuned LMs regardless of the agent architecture,510

and regardless of the game environment.511

A.7 Text perturbations512

This sections presents a description of the perturba-513

tions applied to the game texts.514

A perturbation is a modification of an original515

piece of text in the game to produce an “out-of-516

training” example. Perturbations are applied to the517

observations, actions and inventories.518

The types of perturbations are: 519

• Lexical substitution - we use WordNet synsets 520

to find replacements for words in the text 521

• Paraphrasing - we use a sequence-to-sequence 522

BART paraphraser to rephrase the original 523

text 524

B Reproducibility 525

The code needed used to implement the methods de- 526

scribed in this manuscript are submitted along with 527

the supplementary material. The code is anony- 528

mous and contains the instructions to set up the 529

environments, download the game data, and train 530

the agents. 531
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Figure 8: Evaluation of an RoBERTa agent on original, paraphrased, and lexical substitution observations on (a)
Easy, (b) Medium and (c) Hard games.

Game Albert
Fix.

Albert
FT

RoBERTa
Fix.

RoBERTa
FT

Hash CALM-
DRRN

CALM Fix. CALM-FT

balances 10.0 ± 0.8 2.09 ± 1.01 10.0 ± 1.0 1.96 ± 0.92 9.0 ± 1.3 8.55 ± 1.1 9.02 ± 1.04 4.19 ± 1.93
deephome 7.0 ± 0.88 3.22 ± 2.01 7.0 ± 0.81 1.13 ± 1.1 3.0 ± 1.07 1.0 ± 1.02 4.0 ± 2.13 0.35 ± 0.5
detective 159.1 ± 2.03 58.7 ± 5.01 290.0 ± 10.0 57.9 ± 6.06 99.5 ± 8.1 290.0 ± 12.01 290.0 ± 11.3 122.84 ± 18.4
dragon 10.2 ± 3.22 −2.4 ± 5.01 11.0 ± 5.1 −5.04 ± 4.77 −6.31 ± 5.36 0.53 ± 3.7 6.05 ± 4.3 0.40.53
enchanter 18.3 ± 1.2 9.2 ± 2.01 20.0 ± 0.9 8.6 ± 1.38 18.0 ± 1.78 0.0 ± 0.0 8.84 ± 4.96 0.0 ± 0.0
inhumane 1.4 ± 0.54 0.63 ± 0.67 3.7 ± 0.33 0.67 ± 0.43 3.01 ± 0.39 12.7 ± 0.55 12.7 ± 0.58 8.13 ± 0.48
library 13.58 ± 0.73 10.93 ± 0.68 12.990.83 11.04 ± 0.71 12.53 ± 0.65 11.35 ± 0.59 11.35 ± 0.76 5.86 ± 0.77
ludicorp 12.64 ± 0.34 11.53 ± 0.42 12.13 ± 0.44 12.82 ± 0.47 12.99 ± 0.37 8.85 ± 0.83 8.9 ± 0.88 5.06 ± 0.78
omniquest 4.4 ± 1.2 1.01 ± 1.1 4.25 ± 1.22 1.75 ± 1.13 4.0 ± 2.0 5.95 ± 2.35 5.89 ± 2.76 4.35 ± 2.17
pentari 27.9 ± 0.33 17.25 ± 0.68 27.3 ± 0.28 22.0 ± 0.39 25.0 ± 0.30 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
zork1 28.6 ± 0.15 4.19 ± 0.71 26.92 ± 0.17 3.9 ± 0.91 24.0 ± 0.13 25.81 ± 0.15 26.02 ± 0.21 14.38 ± 0.29
zork3 0.01 ± 0.3 0.0 ± 0.0 0.02 ± 0.02 0.0 ± 0.0 0.01 ± 0.03 0.17 ± 0.05 0.2 ± 0.07 0.13 ± 0.3

Table 3: Evaluation of Fixed (Fix.) and Fine-tuned (FT) LMs across 12 games using the Actor-Critic and the CALM
architectures. Values are the average scores of the last 100 episodes. Experiments were conducted 3 times for each
model and game. Errors reported as one standard deviation.
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Figure 9: Comparison of fine-tuned/fixed LMs on various Jericho games.
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Easy Medium Hard
Model Score Moves Score Moves Score Moves

DRRN 0.88± 0.04 24± 2 0.60± 0.02 44± 1 0.30± 0.02 50± 0
TPC 0.89± 0.06 21± 5 0.62± 0.03 43± 1 0.32± 0.04 48± 1
KG-A2C 0.86± 0.06 22± 3 0.62± 0.03 42± 0 0.32± 0.00 48± 1
BiKE 0.94± 0.00 18± 1 0.64± 0.02 39± 1 0.34± 0.00 47± 1
BiKE + CBR 0.95± 0.04 16± 1 0.67± 0.03 35 ± 1 0.42 ± 0.04 45 ± 1

Hash 0.31± 0.07 43± 2 0.58± 0.06 43± 2 0.22± 0.03 50± 0
Simple 0.83± 0.08 26± 4 0.58± 0.08 43± 2 0.35± 0.05 49± 0
Albert* 0.96± 0.02 10± 2 0.66± 0.05 38± 2 0.41± 0.05 49± 0
MPNet* 0.85± 0.04 19± 3 0.66± 0.06 38± 2 0.36± 0.04 49± 0
RoBERTa* 0.94± 0.03 12± 2 0.70 ± 0.05 38± 2 0.40± 0.04 49± 0
XLNet* 1.00± 0.00 6 ± 1 0.65± 0.08 36± 3 0.37± 0.07 48± 1

Table 4: Results for the in-distribution (valid) sets in TWC. (*) Indicates agents with fixed LM encoders.

Easy Medium Hard
Model Score Moves Score Moves Score Moves

DRRN 0.78± 0.02 30± 3 0.55± 0.01 46± 0 0.20± 0.02 50± 0
TPC 0.78± 0.07 28± 4 0.58± 0.01 45± 2 0.19± 0.03 50± 0
KG-A2C 0.80± 0.07 28± 4 0.59± 0.01 43± 3 0.21± 0.00 50± 0
BiKE 0.83± 0.01 26± 2 0.61± 0.01 41± 2 0.23± 0.02 50± 0
BiKE + CBR 0.93± 0.03 17± 1 0.67± 0.03 35± 1 0.40 ± 0.03 46 ± 1

Simple 0.50± 0.12 39± 4 0.43± 0.07 43± 2 0.26± 0.04 50± 0
Hash 0.19± 0.06 44± 2 0.15± 0.03 50± 0 0.09± 0.02 50± 0
Albert* 0.64± 0.05 33± 3 0.65± 0.05 38 ± 2 0.16± 0.02 50± 0
MPNet* 0.85± 0.05 23± 2 0.58± 0.06 42± 2 0.14± 0.02 50± 0
RoBERTa* 0.90± 0.04 19± 2 0.53± 0.06 44± 1 0.19± 0.03 50± 0
XLNet* 0.64± 0.05 30± 3 0.42± 0.07 47± 1 0.17± 0.03 50± 0

Table 5: Results for the out-of-distribution (test) sets in TWC. (*) Indicates agents with fixed LM encoders.
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