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ABSTRACT

Despite the remarkable success of diffusion models (DMs) in generation, they
exhibit specific failure cases with unsatisfactory outputs. We focus on one such
limitation: the ability of DMs to learn hidden rules between image features. Specif-
ically, for image data with dependent features (x) and (y) (e.g., the height of the
sun (x) and the length of the shadow (y)), we investigate whether DMs can accu-
rately capture the inter-feature rule (p(y|x)). Empirical evaluations on mainstream
DMs (e.g., Stable Diffusion 3.5) reveal consistent failures, such as inconsistent
lighting-shadow relationships and mismatched object-mirror reflections. Inspired
by these findings, we design four synthetic tasks with strongly correlated features
to assess DMs’ rule-learning abilities. Extensive experiments show that while DMs
can identify coarse-grained rules, they struggle with fine-grained ones. Our theoret-
ical analysis demonstrates that DMs trained via denoising score matching (DSM)
exhibit constant errors in learning hidden rules, as the DSM objective is not com-
patible with rule conformity. To mitigate this, we introduce a common technique -
incorporating additional classifier guidance during sampling, which achieves (lim-
ited) improvements. Our analysis reveals subtle signals of fine-grained rules are
challenging for the classifier to capture, providing insights for future exploration.

1 INTRODUCTION

Despite the remarkable capabilities demonstrated by diffusion models (DMs) in generating realistic
images (Ho et al., 2020; Song et al., 2020; Vahdat et al., 2021; Dhariwal & Nichol, 2021; Karras
et al., 2022; Tian et al., 2024b), videos (Ho et al., 2022; Yu et al., 2024; Yuan et al., 2024), and
audio (Liu et al., 2023a; Yang et al., 2024; Lemercier et al., 2024), they still encounter specific
failures in synthesis quality, such as anatomically incorrect human poses (Borji, 2023; Zhang et al.,
2024; Huang et al., 2024) and misalignment between generated content and prompts (Feng et al.,
2022; Borji, 2023; Chefer et al., 2023; Liu et al., 2023b; Lim & Shim, 2024), which could harm
the reliability and applicability of DMs in real-world scenarios. We focus on a specific type of
failure with limited attention: the failure of DMs in learning hidden inter-feature rules behind images.
Specifically, consider image data containing dependent feature pairs (x,y), such as the height of
the sun (x) affecting the length of a pole’s shadow (y). Our investigation centers on whether DMs
targeting the joint distribution p(x,y) can accurately capture the underlying relationships between x
and y, effectively recovering the conditional distribution p(y|x). Theoretically, a diffusion model
that perfectly estimates the joint distribution should naturally capture the conditional distribution,
thereby learning the latent rules between features. However, in practice, numerous factors, such as
non-negligible score function estimation errors, can cause the sampled joint distribution to deviate
significantly from the true distribution (Chen et al., 2022; 2023; Benton et al., 2024). How do these
deviations propagate to inter-feature rule learning? This gap between theory and practice remains
largely unexplored.
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Figure 1: Synthetic Tasks Inspired by Real-World Insights. Based on whether inter-feature rules
involve spatial dependencies, we categorize the failure cases into spatial and non-spatial rules. Spatial
rules include: (a) Light-shadow, where evaluated DMs generate unreasonable multiple shadows or
incorrect shadow flips; (b) Reflection/Refraction, showing incorrect mirror rules or missing refraction
effects below water surface; (c) Semantics, such as inconsistencies between sunflower orientation
and sun position, or brush and canvas colors. Non-spatial rules involve: (d) Size-Texture, like
mismatches between tree diameter and growth rings; (e) Size/Region-Color, where evaluated models
fail to capture burning candle’s color variations and star size-color relationships (e.g., red giants and
white dwarf); (f) Color-Color, as in Eclectus parrots’ body-beak color correlations that DMs fail to
maintain. Appendix C provides detailed explanations for each case. These failures of mainstream
DMs in handling real-world inter-feature rules inspire our design of four synthetic tasks.

Although existing studies have explored whether DMs can learn specific rules, they primarily focus
on independent features, such as DMs’ compositional capabilities (Okawa et al., 2024; Deschenaux
et al., 2024; Wiedemer et al., 2024). Some works have investigated inter-feature dependencies in
DMs, but the varying complexity of rules has led to contradictory findings. For example, DDPM has
been reported to fail in generating images satisfying numerical equality constraints (Anonymous,
2025), while succeeding in reasoning about shape patterns in RAVEN task (Wang et al., 2024a).
These inconsistencies highlight the need for a unified experimental setting that allows for adjustable
rule difficulty, enabling an accurate evaluation of DMs’ rule-learning capabilities. Moreover, existing
studies rely heavily on empirical observations, lacking theoretical analysis to elucidate the limitations
of DMs in rule conformity. Due to space limitations, Appendix B provides a more detailed discussion
of existing work and its differences from this study.

Our investigation into inter-feature rules begins with observing the limited ability of mainstream
DMs (e.g., SD-3.5 Large, Flux.1 Dev) to capture real-world inter-feature rules, as illustrated
in Fig.1, although these models perform well on metrics like FID 1. Their errors in inter-feature rules
are evident in various scenarios, such as inconsistent relationships between sun positions and building
shadows, mismatched reflections of toys in mirrors, and sunflowers failing to face the sun. Then, we
carefully design four synthetic tasks to reflect real-world rule failures, ensuring the practical relevance
of our findings. The rule of each task features two difficulty levels: coarse-grained rules (e.g., the
sun and a pole’s shadow should be on opposite sides) and fine-grained rules (e.g., the shadow’s
length as a precise function of the sun’s height). This hierarchical, controllable framework enables a
comprehensive evaluation of DMs’ abilities. Next, through extensive experiments considering various
factors including model architectures, training data size, and image resolution, we reach a consistent
conclusion: DMs effectively learn coarse-grained rules but struggle with fine-grained ones.

Furthermore, we develop a rigorous theoretical analysis using a multi-patch data model with an inter-
feature rule specified in terms of norm. We prove a constant error lower bound on learning the hidden
rule via optimizing the DSM objective (Ho et al., 2020) with a two-layer network. This demonstrates
the incompatibility between learning joint distributions and identifying specific inter-feature rules.

Recognizing DMs’ difficulty in learning inter-feature rules, we mitigate this issue by constructing
contrastive pairs that satisfy either fine-grained or coarse-grained rules and then using them to train
a classifier as additional guidance. While this strategy enhances rule-compliant sample generation,
further improvements are still achievable. The in-depth analysis identifies that fine-grained rules

1Appendix A lists Mixture Gaussian as an example to demonstrate that low FID and incorrect inter-feature
relationships in DMs’ generations are not contradictory.
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exhibit weak signals, making accurate classifier training particularly challenging. We summarize our
key contributions as follows:

Empirically, inspired by mainstream DMs’ struggles with real-world inter-feature rules, we innova-
tively create synthetic tasks with coarse/fine-grained rules to systematically assess DMs’ rule learning
ability in Section 2.1.1. Extensive experiments in Section 2.3 show that while DMs can learn coarse
rules, their ability to grasp precise rules is limited.

Theoretically, we rigorously analyze DMs on a synthetic multi-patch data distribution with a hidden
norm dependency in Section 3. We prove that the unconditional DDPM cannot learn the precise
rule of norm constraint, which exhibits at least a constant error in approximating the desired score
function. This identifies the limitation of the current DMs training paradigm and necessitates further
improvements for learning hidden rules behind images.

Methodologically, we mitigate DMs’ inability to learn fine-grained rules by introducing guided
diffusion with a contrastive-trained classifier in Section 4. However, the challenges of accurately
classifying fine-grained rules identify room for improvement in our strategy. This problem, distinct
from traditional classification tasks, involves detecting subtle distinctions between fine-grained and
coarse-grained rules, highlighting valuable insights for future exploration.

2 EXPLORING INTER-FEATURE RULE LEARNING VIA SYNTHETIC TASKS

In real-world image generation tasks, rules between features are often complex and difficult to
define or quantify precisely. To systematically investigate DMs’ ability in rule learning, we design
simplified and controllable synthetic tasks in Fig.1. These synthetic tasks not only provide explicitly
defined inter-feature rules but also abstract essential feature rules present in real-world data, thereby
making our conclusions practically relevant. For example, Synthetic Task A in Fig.1 simulates the
Light-Shadow relationship, while Task B simplifies the physical rules of Reflection/Refraction.

2.1 SYNTHETIC TASKS INSPIRED BY REAL-WORLD INSIGHTS

2.1.1 REAL-WORLD HIDDEN INTER-FEATURE RULES

Following Borji (2023), we explore common inter-feature rules (fig. 1) and classify them into spatial
and non-spatial rules based on whether they stem from spatial arrangements or feature attributes.

Spatial Rules are defined as constraints on the relative positions and layouts between features,
such as the correlation between the sun’s height and the shadow’s length. In Fig.1, scenario Light-
shadow demonstrates how the position of a light source should precisely determine the placement of
building shadows. However, both 8-billion Multimodal SD-3.5 Large2(Rombach et al., 2022)
and 12-billion model Flux.1 Dev3(Labs, 2023), fail to generate proper shadows, either producing
incorrect directions or merely creating symmetrical duplicates of the actual buildings. Similarly, in
scenario Reflection/Refraction, while objects in front of mirrors should dictate the layout of their
reflections, we observe completely unreasonable generations from both models.

Non-Spatial Rules are defined as correlations between intrinsic feature attributes, such as the
relationship between an object’s size and its color. For instance, in type Size -Texture, tree trunk
features should exhibit precise correlations between the diameter and annual ring count, and candle
flames in type Size/Region- Color should show constrained relationships between different flame
zones and their colors. However, these fine-grained inter-feature constraints are ignored by both
SD-3.5 Large and Flux.1 Dev. More detailed discussion and additional experiments for more
advanced DMs are deferred to Appendix C.

2.1.2 SYNTHETIC TASKS

Inspired by real-world rules in Section 2.1.1, we design four synthetic tasks (A-D), each with two
levels of rule granularity (coarse and fine), as shown in Fig.1. We provide a brief overview of synthetic
tasks here, with more details presented in Appendix D. Specially, Task A is inspired by the spatial

2https://huggingface.co/spaces/stabilityai/stable-diffusion-3.5-large
3https://fal.ai/models/fal-ai/flux/dev
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(a) Task A (b) Task B (c) Task C (d) Task D

Figure 2: Synthetic training data satisfies fine-grained rules. To validate the evaluation method, we
extract relevant features from the synthetic training data and check if they meet expectations, focusing
on generations within [2.5%, 97.5%] for stability. The closely matching Estimation and Ground Truth
lines, along with an R2 value near 1, demonstrate effectiveness of the evaluation method.

(a) Task A (b) Task B (c) Task C (d) Task D

Figure 3: Generated data does not satisfy fine-grained rules. Considering generated samples
within [2.5%, 97.5%], we extract focused features and check if they meet fine-grained rules. The
Estimation line, far from the Ground Truth line, and an R2 value less than 1, reveal DMs’ failure in
learning fine-grained rules. Appendix E.2 shows generated images that violate the fine-grained rules.

rules behind the Light-shadow case, simulating the physical law between the sun and pole shadows.
In Task A of Fig.1, the coarse-grained rule requires the sun and shadow to be on opposite sides of the
pole, while the fine-grained rule requires sun’s center, pole top, and shadow endpoint align linearly,
i.e., satisfying l1h2 = l2h1 (see notations in Task A, Fig.1).

Task B abstracts the spatial rule from Reflection/Refraction case, where an object’s reflection size
depends on its size and distance from the mirror. Task B uses two rectangles with lengths h1 and
h2 (notations shown in Task B, Fig.1) to simulate this perspective rule, where size diminishes with
distance. Assuming the viewpoint is at the leftmost edge, the coarse-grained rule requires the left
rectangle (closer to the viewpoint) to be longer than the right one (farther from the viewpoint), i.e.,
h1 > h2, while fine-grained rule dictates rectangle lengths be proportional to their distances from the
viewpoint, i.e., l1h2 = l2h1.

Task C consists of two tangent circles of different radii, aiming to capture the relationship between
shape/outlook and size as illustrated in non-spatial rule. The coarse-grained rule simply requires
distinct radii for the two circles, i.e., r1 ̸= r2, while the fine-grained rule specifies a precise ratio
between the radii, requiring r2 =

√
2r1.

Task D simplifies the non-spatial rule from Size/Region- Color in Fig.1, where, in candle flame
generations, colors transition from blue near the wick to yellow at the outer regions. We construct
two squares, with smaller squares positioned in the upper half and larger ones in the lower half of the
image. The coarse-grained rule requires that the upper square’s side length l1 be smaller than the
lower square’s side length l2, i.e., l1 < l2, while the fine-grained rule specifically requires l2 = 1.5l1.

2.2 EXPERIMENTAL AND EVALUATION SETUP

Experimental Setup. In subsequent experiments, we train DDPM (Ho et al., 2020) on four synthetic

1
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Figure 4: Pipeline for extracting features.

tasks. Unlike latent-space DMs (e.g., SD-3.5
Large), pixel-space DDPM makes the confor-
mity of inter-feature relationships potentially
simpler, as no additional compression-induced
information loss occurs (Rombach et al., 2022;
Yao & Wang, 2025). Following the training
setting (Aithal et al., 2024), we fix the total
timesteps at T = 1000 and employ the widely-
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Table 1: DMs satisfy coarse rules. The in-
valid ratio is around 20%–40%. And DMs
can learn coarse rules with one exception in
Task A, which is visualized in appendix E.1.

Task Invalid (%) Coarse-Grained Violations

A 30.15 1
B 40.45 0
C 41.75 0
D 24.90 0

Table 2: Comparison between DDPM, Guided
DDPM (Guidance), and Filtered DDPM (Filter-
ing): Additional guidance and filtering improve
generation with lower Error and higher R2.

Task Error ↓ R2↑
DDPM Guidance Filtering DDPM Guidance Filtering

A 0.25 0.21 0.17 0.85 0.90 0.90
B 0.11 0.10 0.05 0.83 0.85 0.86
C 0.41 0.26 0.25 0.57 0.67 0.64
D 0.46 0.43 0.39 0.79 0.84 0.85

used U-Net architecture (Ronneberger et al., 2015) as the denoiser. Appendix E.1 provides more
details, including training data size and advanced architectures such as DiT (Peebles & Xie, 2023)
and SiT (Ma et al., 2024).

Evaluation. To evaluate whether generated images follow inter-feature rules, Fig.4 designs a three-
step feature extraction pipeline: (1) Color-based Mask: Segment element masks (e.g., sun, pole,
shadow in Task A) based on predefined color (HSV) ranges when synthesizing training data; (2)
Elements Count: Apply contour detection based on masks to verify the presence of essential elements,
marking images as Invalid if any are missing; (3) Feature Extraction: Extract key feature points
(e.g., sun center, pole top/center and shadow endpoint in Fig.4) and compute features of interest, such
as horizontal sun-to-pole distance l1, vertical sun-to-pole-top distance h1, pole height h2, shadow
length l2. All features are scaled to [0, 1] by normalizing with image size to remove scale effects.

We verify whether generated images satisfy predefined rules using these extracted features. For
example, in Task A, we check: (1) Coarse-grained rule: sun and shadow are on opposite sides of
the pole; (2) Fine-grained rule: validate l1h2 = l2h1. We extend the feature extraction approach to
validate inter-feature rules in Tasks B, C, and D. Applying this evaluation to synthetic training data to
validate our approach, we show close alignment between estimation and ground truth in Fig.2.

2.3 EXPERIMENTAL RESULTS

For each synthetic task, we generate 2000 samples and report the evaluated results as follows:

DMs’ Success on Coarse-Grained Rules. Table 1 demonstrates DMs rarely generate samples that
violate coarse-grained rules across all tasks. This observation aligns with expectations: generating
samples violate coarse-grained rules requires DMs to generate out of the (training) distribution (OOD)
- an extrapolation challenge for DMs observed in prior work (Okawa et al., 2024; Kang et al., 2024).
In Task A, for example, all training samples place the sun and shadow on opposite sides of the pole;
violating this rule would require generating a never-seen mode with both elements on the same side.

(a) Ideal generations. (b) Memorization .

Figure 5: DMs generate rule-conforming sam-
ples. Define Rule-conforming generations have
ratios (e.g., l2h1

l1h2
in Task A) within ±0.01 of true

ratio (1 in Task A). Fig.5(a) shows DDPM’s ability
to generate rule-conforming samples across tasks.
Fig.5(b) indicates that nearest neighbor distances
between 10 idel samples in Task A and training
data are large (> 0.3), suggesting novel generation
rather than memorization.

DMs’ Failure on Fine-Grained Rules. While
following coarse-grained rules only requires
DMs to avoid unreasonable OOD generations,
fine-grained rules are much harder, demanding
accurate learning of the in-distribution training
data. Fig.3 demonstrates models’ performance
across four synthetic tasks, where deviations
from the ground truth in linear fitting and the
coefficient of determinationR2 below 1 indicate
DMs fail to capture the predefined fine-grained
rules. Additionally, we observe that DMs strug-
gle more with learning non-spatial rules, such
as Task C, compared to spatial rules, such as
Task A, as evidenced by worse linear fitting and
smaller R2. This discrepancy likely arises from
the fact that non-spatial rules are more implicit
and lack explicit cues, such as object positions
and lengths, which are readily available in spa-
tial rules. More experiments for various settings
(e.g., other backbone models) are deferred to appendix E.3, which shows consistent empirical
observations that DMs can capture coarse-grained rules but struggle to master fine-grained ones.
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Despite Instabilities, DMs Can Generate Fine-Grained Samples. While fine-grained rule ex-
periments show DMs generally struggle to exactly satisfy underlying rules, we observe that they
can occasionally generate rule-conforming samples in Fig.5(a), albeit with instability. For exam-
ple, in Task A, there are 10 ideal generated samples that (almost) satisfy the fine-grained rule, i.e.,
l2h1

l1h2
∈ [0.99, 1.01]. To determine whether these 10 ideal samples originate from DDPM’s generation

or are merely training data replicas (Somepalli et al., 2023a;b; Wang et al., 2024b), we analyze mem-
orization behaviors. For Task A, we represent each sample with a 13D vector capturing key features
(l1, l2, h1, h2) and encoding RGB colors of sun, pole, and shadow. We then compute Euclidean
distances to their nearest neighbors, considering samples as replicas if the distance is below a given
threshold. fig. 5(b) shows rule-conforming generations are not mere duplicates, achieving 100% mem-
orization at a large threshold (0.3). Appendix E.2 shows 10 ideal samples and their nearest neighbors,
highlighting differences. This suggests DMs can generate rule-conforming samples. Inspired by this,
Section 4 presents a mitigation strategy with guidance to improve generation consistency.

3 DMS’ FAILURE FROM A THEORETICAL PERSPECTIVE

This section theoretically explains why DMs struggle with precise rule learning, showing that
without prior knowledge, DDPM-trained DMs exhibit constant rule-conformity errors. We consider
the following multi-patch data setup, which has been widely employed for theoretical analysis of
classification (Allen-Zhu & Li, 2020; Cao et al., 2022; Zou et al., 2023; Lu et al., 2024), and recently
for diffusion models (Han et al., 2024a).
Definition 3.1 (Data distribution with Inter-Feature Rules). Let u,v ∈ Rd be two orthogonal feature
vectors with unit norm, i.e., ∥u∥ = ∥v∥ = 1 and ⟨u,v⟩ = 0. Let ζ be a random variable with its
distribution Dζ supporting on a bounded domain [cζ , cζ ] for some constants 0 < cζ < cζ <∞. Each
image data consists of multiple patches

x = [x(1)⊤,x(2)⊤, · · · ,x(P )⊤]⊤, where x(1) = ζu, x(2) = (1− ζ)v,

and x(1),x(2) are independent with the remaining patches.

Definition 3.1 specifies a inter-feature rule on the first two patches of the data, requiring that
the norm of the first two feature patches sum up to one, i.e., ∥x(1)∥ + ∥x(2)∥ = 1. Then, we
show such a rule will further lead to a structural constraint on the score function. Specifically, let
x0 = [ζu⊤, (1 − ζ)v⊤,x(3)⊤, · · · ,x(P )⊤] represent an input image. For arbitrary noise scedules
{αt, βt}, xt = αtx0 + βtϵt represents the noised image at timestep t. We derive the score function
along the diffusion path as follows.

Theorem 3.2. The score function is ∇ log pt(xt) = [∇ log pt(x
(1)
t ,x

(2)
t )⊤,∇ log pt(x

(3)
t , ...,x

(P )
t )⊤]⊤,

where

∇ log pt(x
(1)
t ,x

(2)
t ) = − 1

β2
t

xt +
αt

β2
t

[
EDζ

[πt(ζ,xt)ζ]u
EDζ

[πt(ζ,xt)(1− ζ)]v

]
where πt(ζ,xt) =

N (xt;µt(ζ),β
2
t I2d)

EDζ
[N (xt;µt(ζ),β2

t I2d)]
, µt(ζ) = [αtζu

⊤, αt(1− ζ)v⊤]⊤.

It is clearly noted ground truth score (restricted to first two patches) exhibits the following identity:

EDζ
[πt(ζ,xt)ζ] + EDζ

[πt(ζ,xt)(1− ζ)] = EDζ
[πt(ζ,xt)] = 1. (*)

Then, we aim to investigate whether a score network, trained via DSM objective, can accurately
conform to such a hidden rule eq.*. Specifically, we follow (Han et al., 2024a) and consider the
following two-layer neural network model: sw(xt) = [s

(1)
w (xt)

⊤, ..., s
(P )
w (xt)

⊤]⊤, with

s(p)w (xt) = − 1

β2
t

x
(p)
t +

m∑
r=1

σ(⟨w(p)
r,t ,x

(p)
t ⟩)w(p)

r,t , (1)

where each patch is processed with a separate set of m neurons, and σ(·) is an (non-constant)
polynomial activation function. Such a network mimics the structure of U-Net (Ronneberger et al.,
2015) with shared encoder and decoder weights. The network also contains a residual connection
that aligns with the score function (Theorem 3.2). Similar network design has been considered in
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Figure 6: Diffusion model exhibits non-vanishing error on synthetic multi-patch data with norm
constraint. We observe for a variety of timestep t and activation functions, a (two-layer) DM cannot
learn precisely the hidden norm constraint as in Definition 3.1, with both bias and variance error.

(Shah et al., 2023; Han et al., 2024a). We train the score network by minimizing the DSM loss (Ho
et al., 2020) with expectation on the diffusion noise and the input:

L(Wt) = Eϵt,x0

P∑
p=1

∥∥∥s(p)w (x
(p)
t )− ϵ

(p)
t

∥∥∥2 (2)

where x
(p)
t = αtx

(p)
0 + βtϵ

(p)
t . We next define the rule-conforming error to measure the learning

outcome of the hidden rule eq.*.

Definition 3.3 (Rule-conforming error). For score network sw of DMs with weights w(p)∗
r,t , let

ψt(xt) :=
〈
s(1)w (xt) +

1

β2
t

x
(1)
t ,u

〉
+
〈
s(2)w (xt) +

1

β2
t

x
(2)
t ,v

〉
be the coefficient along directions u,v at time t for xt. We say the diffusion model conforms to rule
eq.* if ψt(xt) =

αt

β2
t

holds for any xt. We define the rule-conforming error as:

E = Ext

[(
ψt(xt)−

αt

β2
t

)2]
.

Then, we consider training sw by gradient descent over eq.2 starting from initialization
{w(p),0

r,t }r∈[m],p∈[P ]. The following theorem derives a lower bound on the rule-conforming error for
the trained score network model.
Theorem 3.4. Let w(p)∗

r,t , r ∈ [m] be a stationary point of the DDPM loss eq.2. Then we can lower
bound

E ≥ E
ζ,ϵ

(1)
t,−

[
Var|ζ,ϵ(1)t,−

(
σ̃(1)(⟨u, ϵ(1)t,⊥⟩)

)]
+ E

ζ,ϵ
(2)
t,−

[
Var|ζ,ϵ(2)t,−

(
σ̃(2)(⟨v, ϵ(2)t,⊥⟩)

)]
where we decompose ϵ

(p)
t = ϵ

(p)
t,− + ϵ

(p)
t,⊥ with ϵ

(p)
t,− being the projection of ϵ

(p)
t onto

span(w
(p),0
1,t , ...,w

(p),0
m,t ). Var(|A)(·) := Var(·|A) is the conditional variance and σ̃(p)(·) is a polyno-

mial with coefficients depending on ⟨w(1)∗
r,t ,u⟩, ⟨w(2)∗

r,t ,v⟩.

Theorem 3.4 immediately suggests a non-vanishing rule-conforming error, as long as the polynomial
σ̃ is non-constant and dimension d is sufficiently larger than network width m to ensure variability in
the random noise ϵt,⊥, which is independent of u and v.

We now show that when simplifying the model to linear activation σ(x) = x and single neuron
(w(p)

t ), the rule-conforming error can be computed as the sum of bias and variance errors, both of
them are lower bounded by some constants. Specifically, we decompose

E =
∣∣∣Ext

[
ψt(xt)

]
− αt

β2
t

∣∣∣2︸ ︷︷ ︸
E2
bias

+Var
[
ψt(xt)

]︸ ︷︷ ︸
Evariance

.

Following theorem suggests there exist a constant bias and variance error for any stationary point w∗
t .

Theorem 3.5. Suppose σ(x) = x, m = 1 and consider t such that αt, βt = Θ(1). We train
the network with the gradient descent on DDPM loss eq.2 from small Gaussian initialization, i.e.,
w

(p),0
t ∼ N (0, σ2

0Id), σ0 = O(d−1/2) and d = Ω̃(1). Let w(p)∗
t be any stationary point. Then
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• ⟨w(1)∗
t ,u⟩, ⟨w(2)∗

t ,v⟩ = Θ(1).
• There exists constants C0, C1 > 0 (depending on E[ζ],E[ζ2], αt, βt) such that Ebias =
C0, Evariance = C1.

Theorem 3.5 shows that (1) all data features u and v can be discovered, which is consistent with the
results in Han et al. (2024a) and verifies the ability of DMs to conform to coarse rules in the data, i.e.,
the existence of the key features. (2) It also verifies that DMs fail to learn the fine-grained hidden rule
when no constraint or guidance is imposed over the training of DMs. Both of these two results are
consistent with our empirical findings in Section 2.

Empirical verification. We train score networks under the theoretical setup and evaluate rule-
conforming error in fig. 6 using four activation functions (see Appendix G for details). The error
in learning eq.* and the distribution of ψt(xt) over 5000 samples show significant rule-conforming
errors, confirming our theory and DMs’ limitation in learning hidden rules.

4 MITIGATION STRATEGY WITH GUIDED DIFFUSION

Motivated by finding that DMs can produce rule-conforming samples but instability, we mitigate this
by a common technique, Guided DDPM, which introduces additional classifier guidance (Dhariwal &
Nichol, 2021) during sampling. Specifically, we train classifier fθ(x, t) with constructed contrasting
data pairs, where positive samples follow fine-grained rules while negative samples violate fine rules
while maintaining coarse-grained compliance. The training objective is

Ltotal = Lclassification + λ · Lcontrastive, (3)

where λ is weight parameter, Lclassification is Cross-Entropy loss and Lcontrastive is NT-Xent loss (Sohn,
2016). More details on NT-Xent loss are in Appendix H.1. Then, following Dhariwal & Nichol
(2021), gradients from fθ(x, t) are used to guide sampling toward fine-grained rule compliance.

Additionally, based on constructed contrastive data, we directly train a classifier in raw images to
determine whether a generation satisfies fine-grained rules. We filter samples predicted as non-rule-
conforming to ensure generation quality. This approach, called Filtered DDPM, provides guidance
based on the noise-free pixel space, can be seen as upper bound for guided diffusion strategies.

4.1 EXPERIMENT RESULTS

Setup. Details of data construction and training process are provided in Appendix H.1.

Results. In addition to R2, inspired by the theorical analysis in section 3, we introduce Error, a metric
capturing how well DMs learn hidden rules from variance and bias. Given the Ground Truth line
y = β1x and the Estimation line ŷ = β̂1x+ β̂0 in Fig.2 and 3, Error is defined as:

Error := |β̂1 − β1|+ |β̂0|︸ ︷︷ ︸
Bias Error

+
√

Var(ŷ − y)︸ ︷︷ ︸
Variance Error

(4)

We measure the bias error |E[y − ŷ]| with the deviation in the estimated coefficients β̂1, β̂0. The
variance error in eq.4 corresponds to the square root of Evariance in Section 3. Table 2 presents results,
Error and R2, before (DDPM) and after applying classifier guidance (Guided DDPM), along with
DDPM filtered by pixel-space classifier (Filtered DDPM). Both Guided DDPM and Filtered DDPM
outperform the baseline DDPM across all tasks, showing reduced Error and improved R2, with
Filtered DDPM achieving the best performance on most tasks.

4.2 DISCUSSIONS ON THE LIMITATION OF GUIDED DIFFUSION

While guided and filtered diffusion helps with rule learning, the improvement is limited. Unlike
conventional classification tasks, fine-grained rules in contrastive samples have subtle signals, making
classifier training difficult. Appendix H.1 provides evidence, showing test accuracy remains between
60% and 80% even on simple tasks. Additionally, the effectiveness of this strategy relies on prior
knowledge of fine-grained rules. In real-world scenarios, fine-grained rules are often difficult to
accurately define and detect, making the construction of contrastive data impossible. We leave the
solution to DMs’ inability to learn fine-grained rules in real-world scenarios for future work.
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A LOW FID AND WORSE INTER-FEATURE LEARNING: A GAUSSIAN
MIXTURE CASE

In this section, we provide a toy example based on the Gaussian Mixture Distribution to explain how
low FID and incorrect inter-feature relationships can coexist. This supports the point that even though
DMs may perform excellently on classical metrics such as FID, this does not necessarily mean they
can perfectly learn the hidden inter-feature rules.

Consider a 2-dimensional population, i.e., the true distribution p(x, y), which is a Gaussian Mixture
Model (GMM) with two components as:

p(x, y) = F(µp,Σp) =
1

2
· N

([
1
1

]
,

[
1 0
0 1

])
+

1

2
· N

([
−1
−1

]
,

[
1 0
0 1

])
. (5)

where we can have

µp =
1

2
·
[
1
1

]
+

1

2
·
[
−1
−1

]
=

[
0
0

]
and the covaraince matirx as

Σp =

2∑
i=1

wi

(
Σi + (µi − µq)(µi − µq)

⊤)
= 0.5 ·

([
1 0
0 1

]
+

[
1 1
1 1

])
+ 0.5 ·

([
1 0
0 1

]
+

[
1 1
1 1

])
=

[
2 1
1 2

]
.

We assume the estimated data distribution learned by DMs is a joint Gaussian distribution:

q(x̂, ŷ) = N (µq,Σq) = N
([

0
0

]
,

[
2 1
1 2

])
. (6)

With means and covariance matrices of true distributon p and estimated distribution q are identical,

that is µp = µq = [0, 0]⊤ and Σp = Σq =

[
2 1
1 2

]
, we easily have the FID between p(x, y) and

p(x̂, ŷ) is computed as:

FID = ∥µp − µq∥22 + Tr
(
Σp +Σq − 2 (ΣpΣq)

1/2
)

= ∥0− 0∥22 + Tr
([

2 1
1 2

]
+

[
2 1
1 2

]
− 2

[
2 1
1 2

])
= 0 (7)

Although the FID is small (i.e., 0), the inter-feature relationships between x and y in true and
estimated distribution are fundamentally different. In the true distribution, x and y are independent
within each Gaussian component but exhibit dependence in the overall distribution due to the mixture
of components. In the estimated distribution q(x̂, ŷ), x̂ and ŷ are dependent with Cov(x, y) = 1.
Therefore, low FID does not imply a correct recovery of the inter-feature rules.

B RELATED WORK

We summarize prior studies on the ability of DMs to learn specific rules, and discuss the relations to
inter-feature rules.

Factual Knowledge Rules. The violation of factual rules in DMs refers to generated images failing
to accurately reflect factual information and common sense, often characterized as hallucinations
in existing work (Aithal et al., 2024; Lim & Shim, 2024; Anonymous, 2025). Typical examples
include violating common sense, such as extra, missing, or distorted fingers (Aithal et al., 2024;
Pelykh et al., 2024; Ye et al., 2023), unreadable text (Gong et al., 2022; Tang et al., 2023; Xu et al.,
2024) and snowy deserts (Lim & Shim, 2024). Additionally, inconsistencies between generated
images and given textual prompts (Liu et al., 2023b; Fu & Cheng, 2024; Mahajan et al., 2024; Li
et al., 2024b) can be regarded as violations of prompt-based knowledge. Unlike inter-feature rules,
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Table 3: Real-World Inter-Feature Rules. For each scenario containing inter-feature rules, table 3
provides detailed prompts and annotates the existing inter-feature relationships. By comparing the
genuine inter-feature relationships with those in generated images, we can evaluate DMs’ ability to
learn inter-feature relationships.

[Spatial Rule] (a) Light shadow:
Prompt 1: A desert scene with a majestic palace under a bright sun.
Inter-Feature Rule 1: Sun position affects palace’s shadow direction.
Prompt 2: The moonlight casts a clear shadow of a tall tree onto
the ground.
Inter-Feature Rule 2: Moon position affects tree’s shadow direction

[Spatial Rule] (b) Reflection/Refraction
Prompt 1: A plush lion toy in front of the mirror. Its front side
is facing the camera. There is its reflection in the mirror.
Inter-Feature Rule 1: The lion toy’s orientation relative to the mirror determines its reflection’s
orientation.
Prompt 2: A transparent glass bottle partially submerged in
a calm, clear pool of water. The upper half of the bottle
extends above the water’s surface and the lower half of the
bottle is submerged.
Inter-Feature Rule 2: The water surface’s position dictates the bottle’s shape distortion.

[Spatial Rule] (c) Semantics
Prompt 1: A field of sunflowers under a clear blue sky with the
sun shining brightly above.
Inter-Feature Rule 1: Sun direction dictates sunflower orientation.
Prompt 2: A paintbrush fully loaded with paint, making a stroke on
a blank white canvas.
Inter-Feature Rule 2: Brush tip color matches canvas paint.

[Non-Spatial Rule] (d) Size -Texture
Prompt 1: The cross-section of a sturdy tree, covered with annual
rings.
Inter-Feature Rule 1: The diameter of a tree is related to its growth rings.
Prompt 2: A nautilus fossil, showing its intricate spiral shell
structure with visible growth chambers.
Inter-Feature Rule 2: Nautilus fossil size correlates with spiral patterns.

[Non-Spatial Rule] (e) Size/Region- Color
Prompt 1: An artistic representation showing the expanded star
phase and cooling star phase of the same star.
Inter-Feature Rule 1: Celestial body size and color should align, exemplified by red giants and
white dwarfs.
Prompt 2: A burning red candle in a dark with the flame, which is
vibrant, dynamic, and glowing intensely against the darkness.
Inter-Feature Rule 2: Candle flame color varies with distance from the wick.

[Non-Spatial Rule] (f) Color - Color
Prompt 1: Two Eclectus parrots, showcasing the striking sexual
dimorphism of the species.
Inter-Feature Rule 1: Eclectus parrots’ body and beak colors match—green and yellow for
males, red and black for females.
Prompt 2: A male Poecilia reticulata and a female Poecilia
reticulata are swimming gracefully in a clear, freshwater
aquarium, showcasing the striking sexual dimorphism of the
species
Inter-Feature Rule 2: Guppies’ body and tail colors match—males are equally colorful in both.
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(a) Light shadow Rule Type: (b) Reflection/Refraction (c) Semantics
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Figure 7: Evaluating More Mainstream DMs on Real-World Inter-Feature Rules. We evaluate
more mainstream DMs on scenarios with inter-feature rules, with 5 random generations and manual
selection of unreasonable samples. Despite their success in metrics like FID, none of these DMs
achieve complete correctness in cases involving inter-feature relationships.

factual knowledge rules do not involve relationships between multiple features and are typically
attributed to imbalanced training data distribution (Samuel et al., 2024) or mode interpolation caused
by inappropriate smoothing of training data (Aithal et al., 2024).

Independent Features Rules. Prior work has investigated DMs’ ability to combine independent
features, i.e., compositionality. Through controlled studies with independent concepts (e.g., color,
shape, size), Okawa et al. (2024) observe that DDPM can successfully compose different independent
features. Similar findings are reported in (Deschenaux et al., 2024), where interpolation between
portraits without and with clear smiles resulted in generations with mild smiles. However, numerous
studies highlight DMs’ limitations in complex compositional tasks (Liu et al., 2022; Gokhale et al.,
2022; Feng et al., 2022; Marioriyad et al., 2024), potentially due to insufficient training data for
reconstructing each individual feature (Wiedemer et al., 2024). These studies primarily examine
compositional tasks with independent features, in contrast to our focus on feature dependencies.

Abstract (Dependent Feature) Rules. This type closely aligns with our work, which studies feature
relationships like shape consistency in generations. Prior studies give mixed conclusions on DDPM’s
rule-learning ability. For example, DDPM struggles with numerical addition rule (Anonymous,
2025) but maintains shape consistency rule in RAVEN task (Wang et al., 2024a). Inconsistent rule
complexity leads to ambiguous evaluation conclusions, and the lack of theoretical analysis leaves the
underlying factors behind DMs’ performance in rule learning poorly understood. Through controlled
experiments with adjustable rule complexity, we provide a unified assessment of DMs’ rule-learning
abilities and offer a theoretical explanation of their fundamental limitations, as a result of their training
paradigm.

C DETAILS AND MORE EXAMPLE ON REAL-WOLD HIDDEN INTER-FEATURE
RULES

table 3 provides a detailed description of the prompts for each case in fig. 1 and fig. 7, including
scenarios with inter-feature rules and the corresponding rules themselves. We also consider more
DMs such as SDXL4 (Podell et al., 2023), Flux.1.1 Ultra5 (Labs, 2023), DALL·E 36 (Betker
et al., 2023), and VAR-based (Tian et al., 2024a) text-to-image model Infinity7 (Han et al., 2024b)
in the evaluation. By comparing these rules, we observe that most mainstream DMs fail in some or all
scenarios. For instance, in the Reflection/Refraction scenario, none of the DMs successfully generate

4https://fal.ai/models/fal-ai/fast-lightning-sdxl
5https://fal.ai/models/fal-ai/flux-pro/v1.1-ultra
6https://chatgpt.com/g/g-iLoR8U3iA-dall-e3
7https://github.com/FoundationVision/Infinity?tab=readme-ov-file
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plausible images: the reflected toy in the mirror faces the camera just like the real one, and the
submerged bottle shows no refraction. Our evaluation covers both classic latent diffusion models (e.g.,
SD-3.5 Large) and the latest next-scale prediction-based diffusion models (e.g., Infinity).
Surprisingly, none of them can perfectly handle these inter-feature relationships, highlighting the
widespread limitation of DMs in this regard.

D DETAILS AND MORE EXAMPLE ON SYNTHETIC TASKS

This section presents supplementary details and examples regarding our synthetic datasets.

Task A generates synthetic images featuring a simple outdoor scene composed of a vertical pole, a
sun, and their corresponding shadow. The height of the pole is randomly selected within the range
of [6.4, 12.8] pixels, which corresponds to [20%, 40%] of the total image size (32× 32 pixels). The
sun’s horizontal position is sampled from two predefined distance intervals: far distances (0 − 6
pixels or 26 − 32 pixels) and near distances (10 − 16 pixels or 16 − 22 pixels), ensuring a varied
distribution of sun locations. The shadow length is computed using the formula:

shadow length =
pole height × |sun distance|

sun height − pole height
(8)

where the sun height is determined as twice the pole height, clipped within [9.6, 25.6] pixels (30%-
80% of the image size). Colors for the sun, pole, and shadow are randomly selected from predefined
HSV (Hue-Saturation-Value) ranges: Sun color (yellowish tones) has a hue in [0, 30], saturation in
[100, 255], and value in [200, 255]. Pole color (blue-green tones) has a hue in [90, 150], saturation in
[100, 255], and value in [100, 255]. Shadow color (dark tones like black, brown, gray) has a hue in
[0, 180], saturation in [0, 50], and value in [50, 150].

Task B generates synthetic images containing two rectangular objects placed within a 32× 32 pixel
space. The first rectangle’s position and size are determined as follows: its leftmost position l1 is
chosen randomly from the range [0, 9.6] pixels (30% of the image width), and its height l2 is chosen
randomly from [6.4, 19.2] pixels (20% to 60% of the image height). The color of the first rectangle
is randomly selected from a yellowish hue range with hue [0, 30], saturation [100, 255], and value
[200, 255] in HSV space. The second rectangle’s position is determined by h1, which is chosen
randomly within a range dependent on l1. Specifically, h1 is sampled from the range [l1 + 6.4, 25.6]
pixels (ensuring h1 > l1). The height of the second rectangle h2 is calculated based on the first
rectangle’s height l2, ensuring the relation l1h1 = h2l2. The color of the second rectangle is chosen
randomly from a blue-green hue range with hue [90, 150], saturation [100, 255], and value [100, 255]
in HSV space.

Task C generates images containing two circles: one large and one small. The large circle’s diameter
is randomly chosen between 10% and 30% of the image size, and the small circle’s diameter is
determined to be

√
2 times the diameter of the large circle. The colors of the circles are randomly

selected from predefined color ranges in the HSV color space. Specifically, the large circle is assigned
a color from the blue-green hue range, with hue values between 90 and 150, saturation between 100
and 255, and brightness between 100 and 255. The small circle is assigned a color from the yellowish
hue range, with hue values between 0 and 30, saturation between 100 and 255, and brightness between
200 and 255. The circles are randomly positioned such that they are adjacent to each other—either
on the left, right, top, or bottom of the large circle.

Task D generates images containing two squares: one smaller and one larger. The small square’s
size is randomly chosen to be between 30% and 70% of the top half of the image’s size. The larger
square’s size is then set to be 1.5 times the size of the small square. The color of the small square
is randomly selected from a yellowish hue range, with hue values between 0 and 30, saturation
between 100 and 255, and brightness between 200 and 255. The color of the large square is randomly
chosen from a blue-green hue range, with hue values between 90 and 150, saturation between 100
and 255, and brightness between 100 and 255. The position of the squares is determined within
specific regions of the image. The top half and the bottom half of the image are divided into distinct
regions, with the small square being placed in the top half and the large square in the bottom half.
The exact position of each square is randomly chosen within its respective region, while ensuring that
the squares do not exceed the image’s boundaries. Both squares are positioned such that they do not
overlap with each other and remain entirely within the image frame.
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Task A

Task B

Task C

Task D

Figure 8: Synthetic Data Examples. We present synthetic samples in four synthetic tasks, with
annotations of features of interest and Ratio calculations. The target Ratios for Tasks A, B, C, and D
are 1, 1,

√
2, and 1.5, respectively.

E MORE SYNTHETIC TASKS SETUP AND RESULTS

E.1 MORE DETAILS OF EXPERIMENTAL SETUP

4000, 2000, 2000, and 2000 samples are generated for synthetic task A, B, C and D, respectively,
with an image size of 32×32. Additionally, in appendix E.3, we explore more advanced architectures
such as DiT (Peebles & Xie, 2023) and SiT (Ma et al., 2024), alongside larger synthetic datasets
of 20000 and 40000 samples and higher image resolutions of 64 × 64. These factors enhance the
training of DMs, thus leading to better alignment between generated and real data distributions (Chen
et al., 2022; Benton et al., 2024; Chen et al., 2023) and enabling more effective learning of hidden
rules. We use the U-Net architecture as the denoising network, consisting of several down-sampling
and up-sampling blocks, each with two convolutional layers followed by ReLU activation. Each
down-sampling block incorporates a Self-Attention mechanism and skip connections to preserve fine
details. Pooling layers are used to reduce spatial dimensions and capture abstract features. A final
1× 1 convolution layer produces the denoised output image. We use AdamW (Loshchilov, 2017) as
the optimizer with a learning rate of 3e− 4. The noisy steps are set to T = 1000, with a linear noise
schedule ranging from 1e− 4 to 2e− 2. For Tasks A, B, C, and D, the sample sizes are 4000, 2000,
2000, and 2000, respectively, and the input data size is (3, 32, 32). The training is performed on a
single NVIDIA A800 GPU for 400, 800, 1600, and 1000 epochs, respectively.

E.2 MORE RESULTS OF SYNTHETIC TASKS

This section provides additional details to complement the experimental results in section 2.3. Notably,
to ensure more accurate quality assessment of generated images, we upscale the 32 × 32 images
to 128× 128 during evaluation. This allows the training data to precisely exhibit the expected rule
patterns, thereby enabling more reliable evaluation of the generated samples.

Generations that Violate Coarse-Grained Rules. table 1 illustrates the DDPM’s ability to learn
coarse-grained rules. We observe that in all four synthetic tasks, the number of samples violating the
coarse-grained rules is almost zero, except for Task A, where one generated sample, shown in fig. 10,
has the sun and shadow on the same side of the pole.
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Task A

Task B

Ratio: 0.92 Ratio: 1.28 Ratio: 0.76 Ratio: 1.03 Ratio: 1.10 Ratio: 1.06 Ratio: 0.68 Ratio: 0.74

Task C

Task D

Figure 9: Examples of Rule-violating Generations. We present samples generated by DDPM that
violate fine-grained rules in four synthetic tasks, with annotations of features of interest and Ratio
calculations. The target Ratios for Tasks A, B, C, and D are 1, 1,

√
2, and 1.5, respectively.

Generations that Violate Fine-Grained Rules. We then proceed to show the samples generated
by DDPMs that do not satisfy the fine rules in fig. 9, and highlight the features of interest using the
evaluation method developed in section 2.2.

Generations that Satisfy Fine-Grained Rules. Here, we use two coordinate sys-
tems: a 4D representation capturing key features (l1, l2, h1, h2) and a 13D repre-
sentation that additionally encodes the RGB colors of the sun, pole, and shadow.

Figure 10: For Task A, while all training sam-
ples have the sun and shadow on opposite
sides, DDPM generates one sample violating
this coarse-grained rule where the sun and
shadow appear on the same side.

This dual-coordinate analysis allows us to distin-
guish whether differences between generated and
training samples arise from structural variations or
merely from different color combinations within sim-
ilar structures (Okawa et al., 2024). We then com-
pute the Euclidean distances between each generated
sample and its nearest neighbor in both 4D and 13D
spaces. As a supplement to the DDPM memory exper-
iment in section 2.3, fig. 11 presents the three nearest
neighbors in the training data for high-quality gen-
erated samples (with ratios in [0.99, 1.01]) in both 4-
dimensional and 13-dimensional coordinates. We ob-
serve that the 4-dimensional coordinates effectively
capture the spatial structure of the nearest neighbors
in the training data, while the 13-dimensional coor-
dinates provide a more comprehensive understanding
of the similarity of the generated samples, accounting for both color and structure.

E.3 MORE SETTING OF SYNTHETIC TASKS

In this section, we consider additional factors, such as more powerful model architectures and larger
training datasets, to evaluate the diffusion model’s ability to learn precise rules in Task A. Furthermore,
detailed experimental results not included in section 2.3, such as samples that violate coarse rules,
will be presented in this section.
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Figure 11: Generations that Violate Fine-Grained Rules. Taking Task A as an example, we show
10 high-quality generated samples and their Top-3 nearest neighbors from the training data. The first
column visualizes the generated samples, while columns 2-4 display the Top-3 nearest neighbors
from training data in 4D coordinates, where similarity mainly reflects spatial structure. Columns
5-7 show the top-3 nearest neighbors in 13D coordinates, where similarity primarily reflects object
colors.
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Figure 12: The learning capability of DDPM for fine-grained rules across training epochs. We
observe that as epochs increase from 200 to 4000, DDPM’s ability to learn fine-grained rules shows
no significant improvement, as evidenced by the stable Estimation line and R2. This suggests that
increasing training iterations does not alleviate DMs’ difficulty in learning fine-grained rules. The
visualized generated samples fall within the interval [2.5%, 97.5%].

More Training Epochs. Taking Task A as an example, fig. 12 shows the impact of more training
epochs on learning fine-grained rules. We observe that as the number of training epochs increases,
the DDPM’s ability to learn fine-grained rules improves significantly from 200 to 400 epochs, with
R2 increasing from 0.19 to 0.85. This indicates that the relationship between l1h2 and l2h1 is better
described by the linear model. However, even as the training continues up to 4000 epochs, there is no
noticeable improvement in the model’s ability to learn the fine-grained rules, as reflected by the slight
changes in the fitted line coefficients and R2 remaining around 0.85.

More Model Architectures. Then, we consider the factor modle architectures and use more
powerful backbones, DiT (Peebles & Xie, 2023) and SiT (Ma et al., 2024), to replace U-Net as
the denoising network. Specifically, we consider two sizes of DiT and SiT: DiT Small with 33M
parameters and patch size (DiT-S/2), DiT Base with 130M parameters and patch size (DiT-B/2), SiT
Small with 33M parameters and patch size (SiT-S/2), and SiT Base with 130M parameters and patch
size (SiT-B/2). Keeping the number of training epochs, noise time steps, and other hyperparameters
consistent, we find that, compared to the 14M parameter U-Net, the parameter count of SiT and DiT
has increased by 2 to 10 times. However, as revealed in fig. 13, although all models follow coarse
rules, the deficiency in DDPM’s ability to learn fine-grained rules does not significantly improve with
the increase in parameter count, and there is even a slight decrease in performance with DiT-S/2.

More Training Data. Next, we consider the impact of training data size. For Task A, we gradually
increase the sample size from 4000 to 20000 to 40000 and observe whether increasing the sample
size improves the DMs’ ability to learn rules. fig. 14(a) and fig. 14(b) show that the increase in sample
size does not enable DMs to learn fine-grained rules better, as evidenced by the almost unchanged
R2 and the fitted linear model. Similarly, we do not observe DMs violating coarse rules with large
samples.
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(a) 33M, DiT-S/2 (b) 130M, DiT-B/2 (c) 33M, SiT-S/2 (d) 130M, DiT-B/2

Figure 13: DDPM’s capability in learning fine-grained rules with more powerful backbones.
Even with larger and more advanced denoising networks, DDPM still cannot avoid generating
samples that violate fine-grained rules. This indicates that DDPM’s inability to learn fine-grained
rules is decoupled from model architecture. The visualized generated samples fall within the interval
[2.5%, 97.5%].

(a) Training Data Size 20000 (b) Training Data Size 40000 (c) Image Size 64× 64

Figure 14: DDPM’s capability in learning fine-grained rules with increased training samples and
larger image sizes. We observe that increasing training samples and image sizes does not significantly
improve DDPM’s ability to learn fine-grained rules, as evidenced by the stable Estimation line andR2.
This suggests that neither expanding the training dataset nor increasing image resolution alleviates
DMs’ difficulty in learning fine-grained rules. The visualized generated samples fall within the
interval [2.5%, 97.5%].

More Image Size Choice. Our final consideration is image size. In the main text, the images are
only 32 × 32. Existing studies suggest that low-resolution images may lead to the loss of details
in diffusion models’ generation (Chen et al., 2024; Niu et al., 2024; Li et al., 2024a). Therefore,
we consider larger input resolutions of (3, 64, 64), as shown in fig. 14(c). We observe almost no
improvement in the DMs’ ability to learn underlying rules with generated samples that do not violate
coarse rules. Due to computational constraints, we were unable to explore even higher resolutions.
But it is clear that for a relatively simple task like Task A, which does not contain rich semantics,
DMs are unable to recover the underlying feature relationships even at the 64× 64 resolution. This
itself highlights the difficulty DMs face in learning hidden features.

F PROOFS
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Proof of Theorem 3.4. According to the decomposition of the rule-respecting error in terms of bias
and variance, we have Emse = E2
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where σ̃(2)(·) is a polynomial of the same form as σ̃(1)(·) except that ϕr,t, γr,t, ζ is respectively
replaced with φr,t, ςr,t, 1− ζ. Then we can lower bound the variance by
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where we use law of total variance.
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We first simplify the loss as follows, where we omit the superscript and consider a single patch due to
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t ∥wt∥2
)
∥wt∥2

I2 = Eϵt,i

[α2
t

β4
t

∥x0,i∥2 +
(
1 +

1

βt

)2∥ϵt,i∥2] = α2
t

β4
t

∥x0,i∥2 +
(
1 +

1

βt

)2
d

I3 =
αt

β2
t

Eϵt,i

[
⟨wt,xt,i⟩

]
⟨wt,x0,i⟩+

( 1

βt
+ 1
)
Eϵt,i

[
⟨wt,xt,i⟩⟨wt, ϵt,i⟩

]
=
α2
t

β2
t

⟨wt,x0,i⟩2 + (1 + βt)∥wt∥2.

This suggests

Eϵt,i

∥∥∥⟨wt,xt,i⟩wt −
1

β2
t

xt,i − ϵt,i

∥∥∥2 =
(
α2
t ⟨wt,x0,i⟩2 + β2

t ∥wt∥2
)
∥wt∥2 −

2α2
t

β2
t

⟨wt,x0,i⟩2 − 2(1 + βt)∥wt∥2 + I2

where I2 is a constant independent of wt. Then we obtain the loss for the first two patches as

L(1)(w
(1)
t ) =

(
α2
tE[ζ2]⟨w

(1)
t ,u⟩2 + β2

t ∥w
(1)
t ∥2

)
∥w(1)

t ∥2 − 2α2
t

β2
t

E[ζ2]⟨w(1)
t ,u⟩2 − 2(1 + βt)∥w(1)

t ∥2 + I2

L(2)(w
(2)
t ) =

(
α2
tE[(1− ζ)2]⟨w(2)

t ,v⟩2 + β2
t ∥w

(2)
t ∥2

)
∥w(2)

t ∥2 − 2α2
t

β2
t

E[(1− ζ)2]⟨w(2)
t ,v⟩2 − 2(1 + βt)∥w(2)

t ∥2 + I2.

We next analyze the training dynamics of the gradient descent on the first patch. The second patch
follows from similar analysis. For notation clarity, we omit the superscript.

The gradient for the first patch can be computed as

∇L(1)(wt) = ∥wt∥2(2α2
tE[ζ2]⟨wt,u⟩u+ 2β2

twt) + 2
(
α2
tE[ζ2]⟨wt,u⟩2 + β2

t ∥wt∥2
)
wt

− 2α2
t

β2
t

E[ζ2]⟨wt,u⟩u− 2(1 + βt)wt.
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It is noticed that the gradient only consists of directions of w0
t and u. It suffices to track the gradient

descent dynamics projected to the two directions u and w̃0
t , where w̃0

t = w0
t − ⟨w0

t ,u⟩u, i.e.,

⟨wk+1
t ,u⟩ = ⟨wk

t ,u⟩ − η⟨∇(1)L(wt),u⟩

=
(
1 + η

(
2α2

tβ
−2
t E[ζ2] + 2(1 + βt)− 2α2

tE[ζ2]∥wk
t ∥2 − 4β2

t ∥wk
t ∥2 − 2α2

tE[ζ2]⟨wk
t ,u⟩2

))
⟨wk

t ,u⟩

⟨wk+1
t , w̃0

t ⟩∥w̃0
t ∥−1 = ⟨wk

t , w̃
0
t ⟩∥w̃0

t ∥−1 − η⟨∇(1)L(wt), w̃
0
t ⟩∥w̃0

t ∥−1

=
(
1 + η

(
2(1 + βt)− 4β2

t ∥wk
t ∥2 − 2α2

tE[ζ2]⟨wk
t ,u⟩2

))
⟨wk

t , w̃
0
t ⟩∥w̃0

t ∥−1

It is clear that gradients become zero only when Θ(∥wk
t ∥2 + ⟨wk

t ,u⟩2) = Θ(1). This suggests that
before convergence, ∥wk

t ∥2 = o(1) given the initialization is small, i.e., σ0 = O(d−1/2). We can
then verify that ⟨∇(1)L(wt),u⟩ ≥ ⟨∇(1)L(wt), w̃

0
t ⟩+ C for some constant C.

In addition, suppose we decompose wk
t = ϕkt w̃

0
t + γkt u, we can see

ϕkt = ⟨wk
t , w̃

0
t ⟩∥w0

t ∥−2, γkt = ⟨wk
t ,u⟩

which then implies

∥wk
t ∥2 = ⟨wk

t , w̃
0
t ⟩2∥w̃0

t ∥−2 + ⟨wk
t ,u⟩2.

This combined with the fact that ⟨∇(1)L(wt),u⟩ ≥ ⟨∇(1)L(wt), w̃
0
t ⟩ + C suggests that

⟨wk+1
t , w̃0

t ⟩∥w̃0
t ∥−1 cannot increase to Θ(1) without ⟨wk

t ,u⟩ reaching Θ(1). Thus at stationary
point, we must have both ⟨wk

t ,u⟩, ∥wk
t ∥2 = Θ(1).

Next, we analyze the stationary point. Given the gradient only consists of directions wk
t and u, we

have for any stationary point wt, it satisfies

⟨∇L(1)(wt),wt⟩ = ∥wt∥2(2α2
tE[ζ2]⟨wt,u⟩2 + 2β2

t ∥wt∥2) + 2
(
α2
tE[ζ2]⟨wt,u⟩2 + β2

t ∥wt∥2
)
∥wt∥2

− 2α2
t

β2
t

E[ζ2]⟨wt,u⟩2 − 2(1 + βt)∥wt∥2 = 0

⟨∇L(1)(wt),u⟩ = ∥wt∥2(2α2
tE[ζ2]µ2⟨wt,u⟩+ 2β2
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(
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)
⟨wt,u⟩

− 2α2
t

β2
t

E[ζ2]µ2⟨wt,u⟩ − 2(1 + βt)⟨wt,u⟩ = 0

We solve the stationary equalities as

∥w(1)
t ∥2 =

6α2
tβ

−2
t E[ζ2] + 6 + 2βt ±

√
4α4

tβ
−4
t (E[ζ2])2 + (56 + 16βt)α2

tβ
−2
t E[ζ2] + 28 + 16βt + 4β2

t

8α2
tE[ζ2] + 8β2

t

⟨w(1)
t ,u⟩2 =
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α2
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t ∥w

(1)
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2∥w(1)
t ∥2 − β−2

t

Similarly, we can compute and solve the stationary point for the second patch where E[ζ2] is replaced
with E[(1− ζ)2].

We then compute the bias error as

Ebias = Eϵt,x0

[
⟨w(1)

t ,x
(1)
t ⟩⟨w(1)

t ,u⟩+ ⟨w(2)
t ,x

(2)
t ⟩⟨w(2)

t ,v⟩
]
− αt

β2
t

=
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αtE[ζ2]
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(1)
t ∥2

2∥w(1)
t ∥2 − β−2

t

+
E[1− ζ]∥w(2)

t ∥2

αtE[(1− ζ)2]

1 + βt − 2β2
t ∥w

(2)
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2∥w(2)
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t

− αt

β2
t

∣∣∣∣∣ = C0(E[ζ],E[ζ2], αt, βt)
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Task A

Task B

Task C

Task D

Class 0 Class 1 Class 2

Figure 15: Constructed contrastive data includes three classes, which differ in fine-grained rules.

It can be easily verified that there exists a constant bias C0 that depends on E[ζ],E[ζ2], αt, βt. In
addition, we compute the variance as

Evariance =
(
α2
tE[ζ2]⟨w

(1)
t ,u⟩2 + β2

t ∥w
(1)
t ∥2

)
⟨w(1)

t ,u⟩2 +
(
α2
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(2)
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)
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t ,v⟩4 − 2α2
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t ,v⟩2

= α2
tVar

(
ζ⟨w(1)

t ,u⟩2 − (1− ζ)⟨w(2)
t ,v⟩2
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= C1(E[ζ],E[ζ2], αt, βt) > 0

where we see E[A2]− E[A]2 = Var(A) ≥ 0 for arbitrary random variable A.

G EXPERIMENT DETAILS ON SYNTHETIC DATA WITH TWO-LAYER
DIFFUSION MODEL

In order to verify the theoretical claims on DMs failing to precisely recover the inter-feature rule
equation * (in Section 3), we conduct numerical experiments on a two-layer diffusion model on a
two-patch data distribution.

Specifically we set x = [x(1)⊤,x(2)⊤] where x(1) = ζu, x(2)⊤ = (1 − ζ)v. Here we set u =
[1, 0, · · · 0] ∈ Rd, v = [0, 1, 0, · · · 0] ∈ Rd with d = 100. The score network follows the structure in
equation 1 where we consider σ(·) to be ReLU, linear, quadratic and cubic activation functions. We
set network width m = 20. To simulate the DDPM loss in expectation, for each epoch, we sample
n = 1000 input data x0,i, i ∈ [n] and for each data we sample nϵ = 1000 standard Gaussian noise
ϵt,i,j , i, j ∈ [1000], and consider minimizing the empirical loss

L(Wt) =
1

nnϵ

n∑
i=1

nϵ∑
j=1

2∑
p=1

∥sw(x(p)
t,i,j)− ϵ

(p)
t,i,j∥

2

where x(p)
t,i,j = αtx

(p)
0,i +βtϵ

(p)
t,i,j , p = 1, 2. We use gradient descent to train the score network for 5000

epochs. We consider αt = exp(−t) and βt =
√
1− exp(−2t) where we set t = 0.2, 0.4, 0.6, 0.8.
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(a) Task A (b) Task B (c) Task C (d) Task D

Figure 16: Construction of contrastive training data. For each task, we build a three-class dataset
where Class 1 represents samples satisfying fine-grained rules, while Classes 0 and 2 represent
samples that only satisfy coarse-grained rules. Based on these constructed contrastive datasets, we
train classifiers as additional guidance to improve DDPM’s generation.

(a) Task A (b) Task B (c) Task C (d) Task D

Figure 17: CLIP representation of contrastive training data. For each task, we use the CLIP
model to extract its representations and apply UMAP for dimensionality reduction. We observe that
the contrastive data is nearly inseparable, which presents a challenge for training the classifier.

We then check whether learned diffusion models learn the ground-truth rule equation * by plotting
the distribution of ψt(xt) against αt/β

2
t . The distribution of ψt(xt) is estimated with 5000 samples

xt.

H DETAILS OF MITIGATION STRATEGIES

H.1 DETAILS OF GUIDED DIFFUSION

Guided Diffusion is a common strategy that trains an additional classifier to guide DDPM generation
towards desired samples during the sampling process.

Training Details and Results. This section includes the details of training classifiers with con-
trastive learning as guidance. We use a U-Net classifier fθ(x, t) with guidance weight λ = 1. Fig.16
visualizes the contrastive datasets constructed for each of the four synthetic tasks.Fig. fig. 15 visual-
izes the constructed contrastive data, where each dataset includes three sample types that differ only
in fine-grained rules and appear nearly identical at a glance. The classifier training for each task is
treated as a three-class classification problem with 2000 positive samples (class 1) and 2000 samples
per negative class (classes 0 and 2). We use U-Net as the classifier architecture, trained for 20000
iterations with a learning rate of 3e− 4, and a contrastive learning weight λ = 1. Beyond standard
guided diffusion, we dynamically adjust guidance weights (gradient scales) with a piecewise strategy
where guidance is activated only in the final 20 denoising steps. The weight linearly increases from
0 to predefined gradient scale factors (7 for Tasks A/C, 10 for Tasks B/D). Through comparation
of constant versus piecewise weighting, we report optimal strategies: Task A,B,D for standard
sweighting method and Task C employs the piecewise weighting method. As noted in Section 4.2,
training high-accuracy classifiers is not easy in our problem, as evidenced by the accuracy of the
training data for Tasks A, B, C, and D being 0.57, 0.51, 0.55, and 0.63, respectively.

NT-Xent Loss. NT-Xent Loss (Normalized Temperature-scaled Cross Entropy Loss) (Sohn, 2016)
is commonly used in contrastive learning to measure the similarity between positive pairs (similar

26



Published as a workshop paper at DeLTa Workshop (ICLR 2025)

samples) and distinguish them from negative pairs (dissimilar samples).

LNT-Xent(i, j) = − log

(
exp(sim(zi, zj)/τ)∑2N

k=1 1[k ̸=i] exp(sim(zi, zk)/τ)

)
, (9)

Where zi and zj are the embeddings of the i-th and j-th samples, sim(zi, zj) =
z⊤
i zj

∥zi∥∥zj∥ is the
cosine similarity and τ is the temperature parameter that scales the similarity which we set τ = 0.5
in our experiments.

H.2 DETAILS OF FILTERED DDPM

Filtered DDPM is a more straightforward strategy that uses a classifier trained on raw im-
ages to filter DDPM generations, keeping only samples predicted to satisfy fine-grained rules.

Figure 18: Test accuracy
of different architectures.

Training Details and Results. Based on the contrastive data con-
structed in fig. 16, we split the training and test data in an 80:20 ratio
and directly train a three-way classifier in the raw image space, using
MLP, ResNet-8, and U-Net architectures. These models are trained for
100 epochs with a learning rate of 3e − 4. As shown in fig. 18, the
classifiers achieve accuracy between 60% and 80%. While they outper-
form classifiers trained for guided diffusion due to the noise-free setting,
they still fail to achieve 100% accuracy, even for these simple synthesis
tasks. Additionally, fig. 17 shows the representations extracted by CLIP
(Radford et al., 2021) for each synthetic task, followed by dimensionality
reduction using UMAP (McInnes et al., 2018). We observe that the data
from different categories in the contrastive data is difficult to distinguish, which presents a challenge
for training the classifier. Based on test accuracy, we use the trained MLP model to filter DDPM
generations for Tasks A and B, keeping only samples predicted as Class 1 (satisfying fine-grained
rules). For Tasks C and D, we use the U-Net model for filtering.

27


	Introduction
	Exploring Inter-feature Rule Learning via Synthetic Tasks
	Synthetic Tasks Inspired by Real-World Insights
	Real-World Hidden Inter-Feature Rules
	Synthetic Tasks

	Experimental and Evaluation Setup
	Experimental Results

	DMs' Failure from a Theoretical Perspective
	Mitigation Strategy with Guided Diffusion
	Experiment Results
	Discussions on the Limitation of Guided Diffusion

	Low FID and Worse Inter-Feature Learning: A Gaussian Mixture Case
	Related Work
	Details and More Example on Real-Wold Hidden Inter-Feature Rules
	Details and More Example on Synthetic Tasks
	More Synthetic Tasks Setup and Results
	More Details of Experimental Setup
	More Results of Synthetic Tasks
	More Setting of Synthetic Tasks

	Proofs
	Experiment Details on Synthetic Data with Two-layer Diffusion Model
	Details of Mitigation Strategies
	Details of Guided Diffusion
	Details of Filtered DDPM


