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Abstract

Sentence and word embeddings encode struc-001
tural and semantic information in a distributed002
manner. Part of the information encoded – par-003
ticularly lexical information – can be seen as004
continuous, whereas other – like structural in-005
formation – is most often discrete. We explore006
whether we can compress transformer-based007
sentence embeddings into a representation that008
separates different linguistic signals – in partic-009
ular, information relevant to subject-verb agree-010
ment and verb alternations. We show that by011
compressing an input sequence that shares a tar-012
geted phenomenon into the latent layer of a vari-013
ational autoencoder-like system, the targeted014
linguistic information becomes more explicit.015
A latent layer with both discrete and continuous016
components captures better the targeted phe-017
nomena than a latent layer with only discrete018
or only continuous components. These experi-019
ments are a step towards separating linguistic020
signals from distributed text embeddings and021
linking them to more symbolic representations.022

1 Introduction023

As deep learning models become more and more024

powerful, the need grows to move away from black025

box models to interpretable ones. An important026

reason for this is that black box models may make027

good predictions for the wrong reasons. There is028

a big risk involved with deploying such models in029

environments where wrong predictions can have030

dire consequences (Rudin et al., 2021).031

Explanations need to be formulated based on the032

conscious primitives of language. The expressive033

power of human thought and language are arguably034

built by compositional processes that operate on035

objects that, at least at the conscious level, are036

symbolic.037

At a high level, the discrete, symbolic and com-038

binatorial nature of language needs to be reconciled039

with the statistical patterns and the machine encod-040

ing of language in distributed representations.041

At a lower level, understanding the representa- 042

tions of words, sentences, and text produced with 043

deep learning models would help trace the differ- 044

ent syntactic and semantic signals and explain how 045

they are encoded in distributed representations. 046

Information in the input word or text fragment is 047

encoded into a vector of fixed dimensions with con- 048

tinuous values. Some of the information encoded 049

can be viewed as continuous. For example, our in- 050

tuitive understanding of lexical semantic properties 051

is conceived as a similarity space so that we can 052

judge whether words or text fragments are close 053

or distant. Other types of information – e.g. gram- 054

matical number, gender, roles, verb classes – are 055

more discrete in nature. While the good results in 056

using these representations for various NLP tasks 057

(Wang et al., 2019; Rajpurkar et al., 2018) indicate 058

that both discrete and continuous information is 059

encoded in these representations, it is not explicit. 060

Unlike previous work, we do not aim to show 061

that sentence embeddings encode information per- 062

taining to specific linguistic phenomena, but to de- 063

tect how such information is encoded, and whether 064

we can disentangle different linguistic signals from 065

transformer-based sentence embeddings. Because 066

sentence representations compress a multitude of 067

linguistic information, we use datasets that fo- 068

cus on and encode specific linguistic phenomena 069

– in particular, subject-verb agreement and verb 070

alternations – as commonly done (Nikolaev and 071

Padó, 2023; Linzen et al., 2016). To test how 072

well we can detect signals relevant to these (im- 073

plicitly) provided phenomena, we use a variational 074

autoencoder-based system. We show that a latent 075

layer that has a continuous and a discrete part leads 076

to best results. By analysing the kind of errors the 077

system makes when masking different parts of the 078

latent layer, we show that they encode different 079

types of information. The code will be made public 080

upon publication. 081
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2 Related work082

Neural representations have lead to breakthroughs083

in multiple tasks, including NLP, but they, and the084

models used to build them, are quite opaque. Neu-085

ral systems may produce the correct answer but086

for the wrong reason, or based on spurious cor-087

relations in the input. Understanding the neural088

network blackboxes and the representations they089

induce or learn is a crucial research direction (Ben-090

gio et al., 2013). Rudin et al. (2021) provide an091

overview of interpretable ML, which include disen-092

tanglement techniques. Disentanglement can also093

be used to design and select input data such that it094

covers the targeted interpretable concepts and help095

improve generalization (Locatello et al., 2020).096

Disentanglement, often implemented using Gen-097

erative Adversarial Networks (GANs) (Goodfellow098

et al., 2014) and Variational AutoEncoders (VAEs)099

(Schmidhuber, 1992; Kingma and Welling, 2013),100

has found several applications in NLP, as it can101

help separate the various types of information en-102

coded in a sentence, such as syntax and semantics103

(Chen et al., 2019a; Bao et al., 2019), text style (Fu104

et al., 2018; John et al., 2019) or morphological105

information (Zhou and Neubig, 2017). The repre-106

sentation on the latent layer can have continuous or107

discrete variables. Continuous representations can108

also be disentangled (Higgins et al., 2017; Mathieu109

et al., 2019; Chen et al., 2019b), while the discrete110

one by default separates specific factors.111

Bao et al. (2019) and Chen et al. (2019a) use112

two continuous variables to model semantic and113

syntactic information on the latent layer of a VAE.114

Bao et al. (2019) enforce the encoding of syntactic115

information in the latent layer by predicting the lin-116

earized parse tree of the input. Chen et al. (2019a)117

use multi-task training to encourage the separation118

of information on the latent layer.119

Mercatali and Freitas (2021) learn to isolate 9120

generative factors using a variational autoencoder121

(VAE) architecture with Gumbel-softmax sampling122

(Jang et al., 2017). Sentences are encoded (and de-123

coded) using an LSTM. Zheng and Lapata (2022)124

propose a different method for disentangling re-125

lations expressed in a sentence which may share126

arguments. This is implemented as an extension to127

sequence-to-sequence (seq2seq) models, where at128

each decoding step the source input is re-encoded129

by conditioning the source representations on the130

newly decoded target context. These specialized131

representations make it easier for the encoder to ex-132

ploit relevant-only information for each prediction. 133

Huang et al. (2021) disentangle syntactic and se- 134

mantic representation using a sentence encoder and 135

a parse encoder. Learning to produce paraphrases 136

of the input sentence with the given parse structure 137

forces the sentence encoder to produce a semantic 138

representation devoid of syntactic information. 139

We build on Dupont (2018), who shows that 140

a combination of discrete and continuous factors 141

characterizing images can be learned in an unsu- 142

pervised manner. We experiment with different 143

representations on the latent layer of a VAE-like 144

system, to test whether specific grammatical infor- 145

mation can be disentangled from transformer-based 146

sentence embeddings. 147

3 Grammatical phenomena to study 148

sentence representations 149

We investigate whether specific grammatical infor- 150

mation can be accessed from distributed sentence 151

representations. Sentences are combinations of 152

linguistic phenomena, which LLMs compress in 153

fixed-length continuous vectors. Because of this, 154

linguistic phenomena are often studied on specifi- 155

cally designed or selected datasets (e.g. (Nikolaev 156

and Padó, 2023; Linzen et al., 2016)), that isolate 157

or emphasize the targeted phenomena.We also use 158

artificially generated datasets, Blackbird Language 159

Matrices (BLMs) (Merlo et al., 2022; Merlo, 2023), 160

inspired by Raven Progressive Matrices visual pat- 161

tern tests that rely on the solver detecting overlap- 162

ping rules (Raven, 1938; Zhang et al., 2019). 163

3.1 Input data 164

A Blackbird Language Matrix (BLM) problem 165

(Merlo, 2023) has an input consisting of a context 166

of S sentences that share the targeted grammatical 167

phenomenon, but differ in other aspects relevant for 168

the phenomenon in question. BLMs are multiple- 169

choice problems, and each input is paired with a 170

set of candidate answers, where the incorrect ones 171

are built by corrupting some of the generating rules 172

of the input sequence. This added dimension of the 173

datasets facilitates the investigation of the kind of 174

information a system is able to disentangle from 175

the sentence embeddings. 176

BLM datasets can also vary in lexical complex- 177

ity. The datasets usually comprise three levels of 178

complexity. Type I data is generated based on man- 179

ually provided seeds, and a template for its gen- 180

erative rules. Type II data is generated based on 181
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Type I data, by introducing lexical variation using a182

transformer, by generating alternatives for masked183

nouns. Type III data is generated by combining184

sentences from different instances from the Type II185

data. This allows investigations into the impact of186

lexical variation on the ability of a system to detect187

grammatical patterns.188

We use two BLM datasets, which encode two189

different linguistic phenomena, each in a different190

language: subject verb agreement in French, and191

an instance of verb alternations in English.192

BLMs for subject-verb agreement in French193

Subject-verb agreement is often used to test the194

syntactic abilities of deep neural networks (Linzen195

et al., 2016; Gulordava et al., 2018; Goldberg, 2019;196

Linzen and Baroni, 2021). While theoretically sim-197

ple, it can have several complicating factors: e.g.198

linear or structural distance between the subject199

and the verb.200

EXAMPLE OF CONTEXT
1 The vase with the flower leaks.
2 The vases with the flower leak.
3 The vase with the flowers leaks.
4 The vases with the flowers leak.
5 The vase with the flower from the garden leaks.
6 The vases with the flower from the garden leak.
7 The vase with the flowers from the garden leaks.
8 ???

EXAMPLE OF ANSWERS
The vase with the flower and the garden leaks. Coord
The vases with the flowers from the garden leak. Correct
The vase with the flower leaks. WNA
The vase with the flower from the garden leak. AE
The vases with the flower from the garden leak. WN1
The vases with the flowers from the gardens leak. WN2

Figure 1: Subject-verb agreement BLM: a type I data
instance (original in French). WNA=wrong nr. of at-
tractors; AE=agreement error; WN1=wrong nr. for 1st

attractor (N1); WN2=wrong nr. for 2nd attractor (N2).

We use BLM-AgrF (An et al., 2023),1 illustrated201

in Figure 1. The input for each instance consists202

of a context set of seven sentences that share the203

subject-verb agreement phenomenon, but differ in204

other aspects – e.g. number of intervening attrac-205

tors between the subject and the verb, different206

grammatical numbers for these attractors, and dif-207

ferent clause structures.208

BLMs for verb alternations in English The209

study of the argument-structure properties of verbs210

and semantic role assignments is also a test-bed211

1The data is publicly available at https://github.com/
CLCL-Geneva/BLM-SNFDisentangling

for the core syntactic and semantic abilities of neu- 212

ral networks (Kann et al., 2019; Yi et al., 2022). 213

In particular, Yi et al. (2022) demonstrates that 214

transformers can encode information on the two al- 215

ternants of the well-studied spray-load alternation 216

(Rappaport and Levin, 1988; Levin, 1993). We use 217

the dataset BLM-s/lE (Samo et al., 2023), whose 218

structure is exemplified in Figure 2. 219

EXAMPLE OF CONTEXT
1 The girl sprayed the wall with paint.
2 Paint was sprayed by the girl
3 Paint was sprayed onto the wall by the girl
4 Paint was sprayed onto the wall
5 The wall was sprayed by the girl
6 The wall was sprayed with the paint by the girl
7 The wall was sprayed with paint
8 ???

EXAMPLE OF ANSWERS
The girl sprayed paint onto the wall Correct
The girl was sprayed paint onto the wall AgentAct
The girl sprayed paint the wall Alt1
The girl sprayed with paint onto the wall Alt2
The girl sprayed paint for the room NoEmb
The girl sprayed paint under the wall LexPrep
Paint sprayed the girl onto the wall SSM
The wall sprayed the girl with paint SSM
Paint sprayed the wall with the girl AASSM

Figure 2: Verb alternations. The labels indicate which
(sub)rules are corrupted to create the error: Agen-
tAct=The agent in the alternant should be an NP in
an active sentence; Alt=the alternation consists of a NP
and a PP after the verb; NoEmb=the PP should not be
embedded in the PP; LexPrep=the argument structure
require given prepositions; SSM=syntax/semantic map-
ping; AASSM=simultaneous violations of Agent Act
and SSM.

As can be seen, a BLM instance consists of a 220

context set comprising one alternant of the spray- 221

load alternation and other sentences that provide 222

the syntactic properties of the arguments (e.g. pas- 223

sivization strategies). The target sentence is the 224

other alternant (whose arguments share common 225

properties with the first sentence) to be chosen from 226

an answer set of superficially minimally, but, syn- 227

tactically and semantically deeply, different candi- 228

dates. (See Samo et al. (2023) for more detail.) 229

There are two groups within this dataset, one for 230

each of the two alternates. Group 1 (ALT-ATL) has 231

the alternant AGENT-LOCATIVE-THEME (e.g. The 232

girl sprayed the wall with the paint) in the con- 233

text and the correct answer is the alternant whose 234

configuration is AGENT-THEME-LOCATIVE (e.g. 235

The girl sprayed paint onto the wall), while the 236

the template of Group2 (ATL-ALT) starts with 237

AGENT-THEME-LOCATIVE and the target answer 238
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is AGENT-LOCATIVE-THEME.239

Datasets statistics Table 1 shows the datasets240

statistics. Each subset is split 90:10 into train:test241

subsets. 20% of the train data is used for develop-242

ment.243

Subj.-verb agr. Verb alternations
ALT-ATL ATL-ALT

Type I 2304 3750 3750
Type II 38400 15000 15000
Type III 38400 15000 15000

Table 1: Types I, II, III correspond to different amounts
of lexical variation within a problem instance.

3.2 Sentence representations244

We investigate sentence embeddings obtained from245

two transformer-based systems: RoBERTa (Liu246

et al., 2019) and Electra (Clark et al., 2020), with247

a FFNN baseline and an encoder-decoder archi-248

tecture inspired by variational autoencoders, repre-249

sented schematically below.250

251

For all of these systems we use as sentence em-252

bedding the encoding of the [CLS] or the <s> char-253

acter read from the last layer of the model.254

3.3 Detecting linguistic signals in sentence255

embeddings256

We explore sentence embeddings using a baseline257

FFNN and variations of a system based on the vari-258

ational autoencoder architecture.2 The system’s hy-259

perparameters – parameters of the CNN and FFNN260

layers in the encoder and decoder – were estab-261

lished using development data on the subject-verb262

agreement problem, using type I data for training263

and testing. It was then deployed on the other264

train/test configurations and the verb alternation265

problem. We add to the encoder-decoder architec-266

ture different sampling methods on the latent layer267

of the encoder-decoder – continuous, discrete and268

joint sampling – to test whether separating discrete269

and continuous components makes the targeted phe-270

nomena more explicit.271

2The code will be made publicly available upon publica-
tion.

3.3.1 FFNN baseline 272

The FFNN baseline is a three-layer feed-forward 273

neural network, that maps an input sequence of 274

sentence embeddings into a vector representing 275

the answer. The learning objective is to maxi- 276

mize the probability of the correct answer from 277

the candidate answer set and is implemented 278

through the max-margin loss function. This 279

function combines the scores of the correct and 280

erroneous sentences in the answer set relative 281

to the sentence embedding predicted by the system: 282

283

lossa(x) = 284∑
ei
[1− score(ec, epred) + score(ei, epred)]

+ 285

286

where ei is the embedding of a sentence ai in the 287

answer set A, epred is the embedding produced by 288

the system for input x, and score is the cosine of 289

the angle between the given vectors. 290

For prediction, the answer ai with the highest 291

score from a candidate set w.r.t. the produced 292

sentence embedding is taken as the correct answer. 293

3.3.2 Encoder-decoder 294

This system is similar to a variational autoencoder 295

(VAE) (Kingma and Welling, 2013; Kingma et al., 296

2015), but the decoder does not reconstruct the 297

input, rather it constructs an answer. 298

A variational autoencoder encodes an input se- 299

quence into a compressed representation, and then 300

attempts to reconstruct it, while modeling the com- 301

pressed representation of the input as a distribution 302

over the latent space, rather than a single point. 303

This procedure avoids overfitting and ensures that 304

the latent space is structured and thus has good 305

properties that enable the generative process. 306

The input is a stack of 2D-ed sentence embed- 307

dings. The encoder consists of a 3D CNN layer 308

with a 3x15x15 kernel for the input SxNxM where 309

S is the length of the input sequence (7) and NxM 310

is the shape of the 2D sentence representation ar- 311

ray (we use 32x24). This is followed by a linear 312

layer that compresses the output of the CNN to 313

the dimension set for the latent layer. The decoder 314

consists of a linear layer followed by a CNN (with 315

a 1x15x15 kernel) that produces a 2D array repre- 316

senting the embedding of the predicted answer. 317

The objective function of the VAE captures 318

the modeling (reconstruction of the input) and 319

regularization constraints placed on the latent 320

space through two factors: 321

322
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L(x) = EqΦ(z|x)[log pΘ(x|z)]−KL(qΦ(z|x)∥p(z))323

324

This is implemented through the corresponding325

loss function, where x is the input and x′ is output,326

i.e. the reconstructed input.327

328

loss(x) = ∥x− x′∥2 +KL(qΦ(z|x)∥p(z))329

330

Because our system does not reconstruct the331

input but rather outputs a sentence embedding, the332

loss function becomes:333

334

loss(x) = lossa(x) +KL(qΦ(z|x)∥p(z))335

336

where lossa is the max-margin loss function used337

by the baseline FFNN.338

We can enforce different assumptions on the la-339

tent layer, and sample a vector accordingly from340

the output of the encoder. In particular, we can341

consider the latent layer to be a continuous vector,342

a discrete one, or a combination. For each variation343

the KL divergence factor will change accordingly,344

and lossa(x) will remain the same.345

Continuous In this setting, the assumption is346

that the vector on the latent layer is a vector of347

continuous values, with a standard Gaussian prior348

distribution p(z) = N (0, 1). The output of the349

encoder is a vector interpreted as [µx;σx] mod-350

eling a normal distribution from which the vec-351

tor z is sampled: z ∼ qΦ(z|x) = N (µx, σx)352

(Kingma and Welling, 2013). The KL factor be-353

comes KL(N (µx, σx)∥N (0, 1)).354

Discrete To model data that may have discrete355

structure, Jang et al. (2017) introduce the Gumbel-356

Softmax distribution, which can approximate357

categorical samples. If c is a categorical variable358

with class probabilities π1, ...πk, drawing a359

sample c from a categorical distribution with class360

probabilities π would be:361

362

c ∼ one_hot(argmaxi[gi + logπi])363

364

where gi ∼ Gumbel(0, 1), and the nondiffer-365

entiable argmax funtion is approximated using366

softmax:367

argmax
i

[gi + logπi] ≈ softmax
i

[gi + logπi] =

=
exp((gi + logπi)/τ)∑k
j=1 exp((gj + logπj)/τ)

368

where τ is a temperature that controls the 369

softmax distribution: higher values result in 370

more uniform distributions, whereas for values 371

closer to 0 the expected value approaches the 372

expected value of a categorical random variable 373

with the same logits. The KL factor becomes 374

KL(qΦ(c|x)∥Gumbel(0, 1)) 375

Joint A latent vector with a discrete and continu- 376

ous part can also be used (Dupont, 2018). In this 377

case the encoder models a distribution with con- 378

tinuous latent z and discrete latent c as qΦ(z, c|x) 379

with prior p(z, c) and likelihood pΘ(x|z, c). 380

Because the continuous and discrete channels 381

can be assumed to be conditionally independent, 382

qΦ(z, c|x) = qΦ(z|x)qΦ(c|x); p(z, c) = p(z)p(c) 383

and pΘ(x|z, c) = pΘ(x|z)pΘ(x|c), where each 384

of the probabilities and samplings will be done 385

according to the continuous or the discrete 386

sampling respectively. The KL factor becomes 387

388

KL(qΦ(z, c|x)∥p(z, c)) = 389

KL(qΦ(z|x)∥p(z)) +KL(qΦ(c|x)∥p(c)). 390

4 Experiments 391

We hypothesize that we can separate different types 392

of linguistic information, specifically lexical from 393

structural information, in transformer-based sen- 394

tence representations. We test this hypothesis 395

through two types of analysis. 396

A1 Through the performance on the BLM 397

multiple-choice problems that encode differ- 398

ent linguistic phenomena, in two different lan- 399

guages. 400

A2 Through error analysis, which will reveal: 401

A2.1 what kind of information is accessed in 402

sentence embeddings to solve the prob- 403

lems; 404

A2.2 whether different types of information 405

is captured in the discrete and continuous 406

parts of the latent layer. 407

Should our hypothesis be correct, we expect anal- 408

ysis A1 to show higher performance for joint sam- 409

pling on the latent layer of our encoder-decoder 410

system, compared to either discrete or continuous 411

sampling alone. The different range of lexical vari- 412

ation of the three dataset subsets (type I, II, III) 413

adds another dimension to the investigation: lexi- 414

cal variation, a source of continuous information 415
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in neural networks, allows us to assess the impact416

of such information on the differentiation of the417

input into discrete and continuous signals. We mea-418

sure performance in terms of F1 score, and report419

averages over 5 runs.420

Analyses A2.1 and A2.2 investigate the kind421

of errors the system makes when using different422

variations of the system. The erroneous candidate423

answers represent different types of errors – struc-424

tural or lexical – and changes in the frequency of425

such types of errors provide additional clues regard-426

ing the information encoded in the different parts427

of the latent vector.428

Data We use the data described in Section429

3.1, and sentence embeddings generated using430

RoBERTa (Liu et al., 2019) and Electra (Clark431

et al., 2020) pretrained models3.432

For space reasons, we show here results when433

training on type I, II and III – increasing lexical434

variation – and test on type III – maximal lexical435

variation. This is the most difficult learning set-up,436

and will allow us to test whether the system can437

discover robust patterns, or rather it picks up on438

lexical regularities.439

System We analyze the effects of compressing440

these embeddings into low-dimensional represen-441

tations, with discrete and continuous components,442

using the system described in Section 3.2. Unlike443

previous work on disentangling syntax and seman-444

tics (Chen et al., 2019a; Bao et al., 2019; Huang445

et al., 2021), the targeted grammatical information446

is only implicitly provided.447

Previous work (anonymous) explored how the448

subject-verb agreement information can be ac-449

cessed in BERT (Devlin et al., 2019) sentence em-450

beddings. Experiments with various architectures451

have shown that this information seems to be reg-452

ularly distributed in the sentence embedding (the453

embedding of the [CLS] special token), such that454

reshaping the one-dimensional array corresponding455

to the sentence embedding into a 2D-array makes456

the grammatical pattern more easily accessible.457

We adopt a similar experimental set-up, using458

a VAE-based architecture, and aim to determine459

whether we can separate different types of linguis-460

tic information in sentence embeddings, in a gen-461

eral framework. For this reason we do not tune462

hyperparameters for each dataset and system set-463

3RoBERTa: xml-roberta-base, Electra: google/electra-
base-discriminator

up. We use the hyperparameters tuned using BERT 464

(Devlin et al., 2019) sentence embeddings, with 465

sentence embeddings reshaped as 32x24 arrays, 466

trained and tested with type I subject-verb agree- 467

ment data. The size of the latent layer for con- 468

tinuous sampling is 5. For the joint sampling we 469

use 1x2+5 (7) and 2x2+5 (9) sized vectors (1 and 470

2 binary categories, continuous portion length 5). 471

We include experiments using a continuous latent 472

that matches the length of the vector on the latent 473

layer for the joint sampling (7 and 9) to show that 474

the increase in performance is not due to a longer 475

vector on the latent layer. 476

All systems used a learning rate of 0.001 and 477

Adam optimizer, and batch size 100. The training 478

was done for 120 epochs. The experiments were 479

run on an HP PAIR Workstation Z4 G4 MT, with 480

an Intel Xeon W-2255 processor, 64G RAM, and 481

a MSI GeForce RTX 3090 VENTUS 3X OC 24G 482

GDDR6X GPU. 483

A1: Performance analysis We analyze first the 484

performance of different variations of the encoder- 485

decoder system in terms of F1 score averages over 486

5 runs4. Should having a discrete part of the la- 487

tent layer be useful, we expect the set-up using 488

joint sampling to have the highest performance. To 489

control for alternative explanations of the improve- 490

ment, we set up pairwise comparisons with two 491

control models: we compare joint models to sim- 492

ple models with latent vectors of equal size, and 493

with the simple model that has overall highest per- 494

formance. We verify the robustness of the results 495

across two word embedding representations. 496

The comparative results of selected set-ups are 497

shown in Figure 3. They cover: the FFNN base- 498

line; VAE_5, the system with continuous sampling 499

and latent size 5 (the best variation when using 500

continuous sampling); VAE_7, the system that has 501

the latent layer size equal to the one used in joint 502

sampling; VAE_5_1x2, the system using joint sam- 503

pling, with a continuous part of length 5, and 1 504

binary category for capturing discrete signals. All 505

results were obtained for Electra sentence embed- 506

dings. The results on all configurations and both 507

sentence embedding types are shown in Figure 6 in 508

the Appendix. 509

Joint sampling leads to highest performance on 510

all datasets and sentence embeddings, and particu- 511

larly in the more difficult set-up of using maximal 512

4The standard deviation for all set-ups is lower than 1e-03,
so we do not include it.
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Subject-verb agreement

Verb alternations ALT-ATL

Figure 3: F1 (avg. over 5 runs): continuous and joint
sampling, Electra sentence embeddings.

lexical variation data (type III), as expected. Us-513

ing a bigger continuous latent layer leads to lower514

performance, showing that the increase in perfor-515

mance when using joint sampling is indeed due to516

having a discrete portion. This indicates that this517

configurations captures more, or more explicitly,518

linguistic information that is relevant to the two519

phenomena represented in the datasets.520

A2.1: Error analysis To understand better the521

kind of information the system accessed in the522

sentence representations, we use the answer sets,523

which have been constructed to include specifi-524

cally built erroneous answers. Using two differ-525

ent problems with different properties allows us526

some interesting controlled pairwise comparisons.527

In the agreement problems, basically all incorrect528

answers violate structural rules. In the verb alter-529

nation problem, NoEmb and LexPrep are lexical530

rules, while the others are structural.531

Results are shown in Figure 4, for sentence em-532

beddings obtained using Electra, which had overall533

better performance5. For the agreement data, the534

main sources of error are WNA, WN1 and WN2.535

These mistakes indicate a lack of understanding536

of the structural aspect of agreement, preferring a537

linear interpretation. These are mistakes that show538

that the global pattern of agreement over the whole539

BLM, which is purely formal, has not been learnt.540

For all, the highest drop (compare the red and the541

blue bars) is obtained for the configuration that in-542

cludes a discrete part in the latent layer, and most543

obviously for the WN2 error – the closest NP car-544

ries the number that allows it to agree with the verb–545

5Average 0.95 vs. 0.91 for verb alternations, 0.866 vs
0.871 for subject-verb agreement.

which humans also make. This indicates that us- 546

ing joint sampling allows the system to find longer 547

distance patterns, and not be tricked by proximity. 548

Most of the errors specific to Alternations are 549

in the syntax-semantic mapping (SSM), for both 550

groups. Group 2 also shows some structural mis- 551

takes if not enough lexical variation is seen in train- 552

ing. This pattern of mistakes suggests that the 553

syntax-semantic mapping, the core of argument 554

structure, has not been fully mastered. When us- 555

ing joint sampling, the most affected mistakes (as 556

shown in comparing the blue and red bars in Type I 557

and type III, which reveal the clearest patterns) are 558

the lexical ones, LexPrep, as expected. 559

A2.2: Discrete vs. continuous analysis To get 560

closer to understanding what kind of information 561

is encoded in the discrete and continuous portions 562

of the latent layer, we mask these one by one (set 563

it to 0), and perform error analysis. To analyze 564

the change in error patterns we compare the sys- 565

tem predictions before and after masking through 566

Cohen’s κ. Pairwise agreement between the nor- 567

mal system setting, and masked discrete, and 1-5 568

continuous layer units are presented in Figure 5. 569

Absolute error plots are shown in Figure 8 in the 570

appendix. 571

The lower the agreement the more different in- 572

formation the two settings encode. The heatmaps 573

indicate that for the verb alternation problem, the 574

discrete part of the latent encodes information that 575

is most different from the base setup and all the 576

continuous units. The distinction grows with lexi- 577

cal variation in the data – it is highest when training 578

on type III data. Masking the discrete part leads to 579

a big increase in SSM errors (the syntax-semantic 580

mapping), as shown in Figure 8 in the Appendix, 581

which plots the absolute errors for the masked sys- 582

tem variations. 583

For the subject-verb agreement data, the contin- 584

uous units encode the most distinct information, 585

and this also becomes more pronounced with the 586

increase in lexical variation. The error analysis 587

in Figure 8 shows a high increase in WN2 errors 588

when masking the units in the continuous part. This 589

indicates a loss in long distance view of the model. 590

Discussion The performance on the multiple- 591

choice problems and the error analysis show that 592

including a discrete part for the latent layer in an 593

encoder-decoder architecture leads to better results. 594

The error analyses indicate that important infor- 595

7



Subject-verb agreement

Verb alternations ATL-ALT

Figure 4: Error analysis for continuous and joint sampling using Electra sentence embeddings.

Subject-verb agreement

Verb alternations ALT-ATL

Figure 5: Errors when masking the latent vector in the
joint sampling 1x2_5 setting using Electra.

mation is captured in the discrete and continuous596

sections of the latent layer. Depending on the prob-597

lem, either the discrete or the continuous latent598

sections contain more distinct information from599

each other. This shows that linguistic signals could600

be separated with such an architecture. We plan601

future work to enforce stronger disentanglement of602

the signals from the sentence embeddings, that can603

be linked to specific symbolic information.604

5 Conclusion605

Sentence embeddings combine a multitude of se-606

mantic and syntactic information in a continuous607

vector. We presented work that aims to disentangle 608

such different linguistic signals from the sentence 609

representation. We used diagnostic datasets, that 610

focus on specific phenomena and encode them in a 611

variety of contexts. The phenomena to discover are 612

not explicitly provided, but are implied by the cor- 613

rect answer to a problem instance. We combined 614

this data with a VAE-based system, and showed 615

that we can induce a representation on the latent 616

layer that captures linguistic signals relevant to the 617

targeted phenomena. Error analysis shows that the 618

different parts of the latent layer captures slightly 619

different signals. 620

The consistent results of the same experimental 621

set-up on different transformer-based sentence em- 622

beddings, on two different linguistic phenomena 623

in two different languages supports our hypothesis 624

that linguistic information is regularly distributed in 625

the sentence embedding, and is retrievable and pos- 626

sibly ultimately mappable onto a more symbolic 627

representation. We plan future work that forces 628

more disentanglement of the signals encoded in the 629

latent layer of the VAE-based system. 630

Limitations 631

We performed experiments on an artificially gen- 632

erated dataset, that presents a grammatical phe- 633

nomenon in a particular way – as a sequence of 634

sentences with specific properties. In future work 635

we plan to separate the distillation of rules from a 636

8



sentence representation from the processing of the637

sequence.638

We adopted the hyperparameters of the tested639

systems from previous experiments using sentence640

embeddings from a pretrained BERT model. This641

was a deliberate choice, as our goal was to inves-642

tigate general properties of sentence embeddings643

with respect to different grammatical phenomena644

through the same systems. Specifically optimiz-645

ing each architecture for each problem may lead to646

better individual results.647

Ethics Statement648

To the best of our knowledge, there are no ethics649

concerns with this paper.650
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A Supplementary Materials864

A.1 Detailed results865

Figure 6 shows the complete results, in terms of F1 averages over 5 runs (the standard deviation is less866

than 1e-03, so we do not include it), for all settings considered, and Electra and RoBERTa sentence867

embeddings.868

Subject-verb agreement

Verb alternations ALT-ATL

Verb alternations ATL-ALT

Figure 6: F1 (avg. over 5 runs): continuous and joint samp., Electra and RoBERTa sentence embeddings.
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869

Figure 7 shows the error percentages for all settings, and both types of sentence embeddings. 870

Subject-verb agreement

Verb alternations ALT-ATL

Verb alternations ATL-ALT

Figure 7: Error analysis for continuous and joint sampling using Electra sentence embeddings.

871
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Figure 8 shows the plot of absolute errors for a base system – encoder decoder with joint sampling – 1x2872

(one binary category) + 5 (continuous units). The discrete part and each continuous unit are separately873

masked (set to 0), and the test data is then used to generate predictions. The plots shows the errors for the874

base system (black), and each masked variation.875

Subject-verb agreement

Verb alternations ALT-ATL

Verb alternations ATL-ALT

Figure 8: Errors when masking the latent vector in the joint sampling 1x2_5 setting using Electra.
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Figure 9 shows the inter annotator agreement in terms of Cohen’s κ, when the base system and each 876

masked variation is considered an annotator. 877

Subject-verb agreement

Verb alternations ALT-ATL

Verb alternations ATL-ALT

Figure 9: Errors when masking the latent vector in the joint sampling 1x2_5 setting using Electra.
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