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Abstract

We investigate how symmetry-agnostic models learn symmetries with data aug-1

mentation, by deriving a principled measure of equivariance error that, for convex2

losses, calculates the percent of total loss attributable to imperfections in learned3

symmetry. We focus our empirical investigation to 3D-rotation equivariance on4

high-dimensional molecular tasks (flow matching, force field prediction, denois-5

ing voxels) and find that models rapidly become nearly equivariant within 1k-10k6

training steps, a result robust to model and dataset size. This happens because7

learning 3D-rotational equivariance is an easier learning task, with a smoother8

and better-conditioned loss landscape, than the main prediction task. We then the-9

oretically characterize learning dynamics for models that are nearly equivariant, as10

“stochastic equivariant learning dynamics”. For 3D rotations, the loss penalty for11

non-equivariant models is small throughout training, so they may achieve lower12

test loss than equivariant models per GPU-hour unless the equivariant “efficiency13

gap” is narrowed.14

1 Introduction15

Machine learning modeling of molecules – generative modeling, property prediction, simulating16

dynamics, etc. – holds great potential for advancing scientific discovery and human health via17

therapeutics. Molecules are three-dimensional physical entities whose biochemical properties are18

invariant or equivariant to 3D rotations. To model these symmetries, two approaches are common:19

1) use symmetry-respecting neural architectures, or 2) training symmetry-agnostic models with data20

augmentation, wherein training samples are randomly transformed by the symmetry group. This21

choice is made at the start of any molecular modeling project and can have a significant impact on22

engineering, training, and model performance, yet there has been a lack of clarity on when to prefer23

which approach.24

3D-rotational equivariant architectures use sophisticated tensor operations to maintain equivari-25

ance (16), achieve loss scaling curves similar to non-equivariant models (2; 17), and are more pa-26

rameter efficient than non-equivariant models on spherical image tasks (11). Yet they can be much27

slower (10x-100x) than non-equivariant models – though slowness is also partially from less opti-28

mized code and GPU kernels. (11; 6; 2), and they can be harder to optimize based on findings that29

breaking exact equivariance improves learning (24; 22; 3). We call this the efficiency gap, arising30

both from optimization speed (training steps per second) and ease (loss reduction per training step)31

Meanwhile, recent work achieve strong performance on molecular machine learning tasks using32

non-equivariant architectures with data augmentation (28; 1; 24; 10).33

To answer “are symmetry-respecting architectures worth it?”, one powerful principle is: use the34

model that achieves better held-out loss. In a fixed amount of GPU-hours, non-equivariant models35

could incur “unnecessary” equivariance error leading to higher loss, but equivariant models may36
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Figure 1: Overview of the paper. (a) Schematic of twisting and twirling, which underpin a principled measure
of equivariance error. (b) Loss decomposition by Taylor expansion around the twirled prediction. (c) Loss
landscapes for each loss component at early model checkpoints (step=500). (d) Architectures of three
non-equivariant models studied here. (e) For MSE loss, the loss decomposition holds exactly, enabling
computing the percent validation loss from equivariance error, which is plotted by training step in three
settings.

achieve worse test loss due to the efficiency gap. In fact, we suggest the loss penalty vs. efficiency37

gap tradeoff is a general explanatory framework. This work focuses on equivariance, because on38

rotation-invariant tasks like property prediction, symmetry-respecting architectures are relatively39

uncontroversial (26; 9; 21): they have a minimal efficiency gap to symmetry-agnostic architectures40

as rotation-invariant features are informative and fast to compute, and standard deep learning opera-41

tions easily preserve rotation invariance. In contrast, consider set permutation invariance where the42

symmetry-respecting architecture is the norm. This can be explained by observing that set trans-43

formers have minimal efficiency gap to symmetry-agnostic transformers, as set transformers simply44

ignore positional embeddings.45

While it is possible to directly compare efficiency gaps to loss penalties from imperfect symmetry,46

this is easily confounded by implementation details. To provide a more fundamental insight, we47

instead isolate and quantify a key source of potential underperformance in symmetry-agnostic mod-48

els. We develop tools to investigate: what is the percent of a symmetry-agnostic model’s loss that49

comes only from its failure to be perfectly equivariant? (§2, Fig. 1A-B) In an idealized setting (ig-50

noring efficiency differences), this characterizes the counterfactual error reduction if we had trained51

a symmetry-respecting model instead. In light of efficiency gaps for 3D-rotational equivariance, this52

metric quantifies how small the efficiency gap must become for equivariant models to outperform53

non-equivariant models.54

In this work, we focus our empirical investigations to three high-dimensional (R3N → R3N ) molec-55

ular learning tasks satisfying 3D-rotational equivariance – flow matching, molecular dynamics force56

field prediction, and denoising voxelized atomic densities (§3, Fig. 1D). We decompose the total57

loss with data augmentation L(θ) = Lmean(θ) + Lequiv(θ), where Lequiv captures all information58

about deviance from exact equivariance. In particular, for exact equivariant models, the loss relation59

is L(θ) = Lmean(θ), i.e., Lequiv = 0. We find:60
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(i) Equivariance error shrinks rapidly (1k-10k training steps; minutes). Models quickly become61

nearly equivariant, with equivariance error shrinking below 1% of the loss (Fig. 1E). This occurs62

because Lequiv is a significantly easier learning task than Lmean: the loss landscape for Lequiv is63

significantly smoother and better conditioned (Fig. 1C). Strikingly, this is robust to model size,64

training set size, batch size, and optimizer: we find it with standard batch sizes as well as batch size65

1, on training sets of 1M molecules to as small as 500 molecules, and on model sizes of 1M and66

400M.67

In §4, we theoretically characterize learning dynamics for nearly equivariant models. We analyze68

the relationships between the losses Lmean,Lequiv, the gradients ∇Lmean,∇Lequiv, and the parameters69

θ = θE + θE⊥ in the subspace of exactly equivariant functions and its orthogonal component. This70

analysis is not specific to 3D rotations.71

(ii) Stochastic equivariant learning dynamics For nearly equivariant models, we can have72

∇L(θ) ≈ ∇Lmean(θ). The learning gradients approximate the gradients of exactly equivariant mod-73

els. Minibatch noise can cause fluctuations in Lequiv, yet equivariance error remains small (¡10% of74

loss). During this phase, the parameters θ can be close to θE – for the modern graph transformer75

architecture EScAIP, we prove that Lequiv has a globally-valid quadratic relationship with ∥θE⊥∥.76

2 Measuring Equivariance & Loss Decompositions77

Let f : RD → RD be a learnable function and let G be a compact group, for instance of 3D78

rotations. We consider T as the matrix representation of the action of G on RD. A function f is G-79

equivariant if it commutes with all transformations T ∈ G, such that for any input x ∈ RD, we have80

f(T (x)) = T (f(x)), also written (f ◦T )(x) = (T ◦f)(x). Rearranging, we observe that a perfectly81

equivariant function satisfies, for all x, T : (T−1 ◦ f ◦ T )(x) = f(x). We call (T−1 ◦ f ◦ T )(x)82

the twisted prediction for x, from the twisted function T−1 ◦ f ◦ T . To produce a twisted prediction83

on molecules, we sample a random rotation, use it to rotate the input molecule, pass this through84

the function, and un-rotate the output. The un-rotation step re-aligns the output to the “original85

frame” of the input molecule, which provides a canonical frame to compare the impact of different86

transformations on the output.87

In contrast to a perfectly equivariant function, a non-equivariant function must have some distinct88

transformations T1, T2 where the twisted prediction is different: (T−1
1 ◦ f ◦ T1)(x) ̸= (T−1

2 ◦ f ◦89

T2)(x). This property motivates analyzing the distribution of twisted predictions over a uniform90

distribution on the group, which is the usual choice for data augmentation. For a given x:91

Zx(T ) ≜ (T−1 ◦ f ◦ T )(x), T ∼ Uniform(G) (1)

Its first central moment µ(x) is the group-averaged, or twirled prediction.92

µ(x) ≜ ET [(T
−1 ◦ f ◦ T )(x)] (2)

By the twirling formula, µ(x) is perfectly G-equivariant (8). The second cen-93

tral moment of the twisted random variable is the covariance: CovT (Zx(T )) =94

ET

[
(Zx(T )− µ(x))(Zx(T )− µ(x))⊤

]
. The total variance – the trace of the covariance95

matrix – is a natural measure of equivariance error:96

1

D
Ex,T

[
∥(T−1 ◦ f ◦ T )(x)− µ(x)∥2

]
(3)

2.1 Loss decomposition97

Twisting and twirling provide machinery to understand a function’s behavior around group actions.98

We can extend this machinery to analyze losses used to train models under random data augmen-99

tation, where each training point is randomly rotated. Let the data distribution p(x, y) and loss100

function l : RD × RD → R be invariant to G. That is, the joint data distribution p(x, y) for any101

transformation T ∈ G satisfies: p(x, y) = p(T (x), T (y)) and for any predictions z and targets y,102
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and for all T ∈ G: l(T (z), T (y)) = l(z, y). These conditions imply that the loss-optimal model is103

equivariant, and that: l((f ◦ T )(x), T (y)) = l((T−1 ◦ f ◦ T )(x), y). The total loss over all data and104

transformations is:105

L(f) ≜ Ex,y,T

[
l((T−1 ◦ f ◦ T )(x), y)

]
(4)

We perform a Taylor expansion of the total loss around the twirled prediction µ(x), and obtain terms106

involving central moments of the twisted random variable:107

L(f) = Ex,y[l(µ(x), y)]︸ ︷︷ ︸
twirled prediction error

+
1

2
Ex,y

[
tr
(
Hl(µ(x), y)CovT [(T

−1 ◦ f ◦ T )(x)]
)]

︸ ︷︷ ︸
equivariance error

+O(∥δ∥3)

where δ = (T−1 ◦ f ◦T )(x)−µ(x), Hl(µ, y) is the D×D Hessian matrix of the loss with respect108

to its first argument, and CovT is a D×D covariance matrix over the distribution of transformations109

T .110

Proposition 1. If l(z, y) = 1
D∥z − y∥2 is mean-squared error, then the total loss decomposes as:111

L(f) = Ex,y[l(µ(x), y)] +
1
DEx,T

[
∥(T−1 ◦ f ◦ T )(x)− µ(x)∥2

]
.112

For MSE loss, our Taylor expansion reduces to a version of bias-variance decomposition. The113

equivariance error is identical to equation 3 because MSE loss places equal weight on all dimensions.114

These two terms are central objects of study, so we name them:115

Lmean ≜ Ex,y[l(µ(x), y)] (5)

Lequiv ≜
1

D
Ex,T

[
∥(T−1 ◦ f ◦ T )(x)− µ(x)∥2

]
(6)

Percent of loss from equivariance error. Denoting model parameters as θ, under MSE loss, we116

can express the total loss exactly as L(θ) = Lmean(θ) + Lequiv(θ). As all three terms are strictly117

non-negative, this implies: % MSE loss from equivariance error =
Lequiv(θ)
L(θ) . We can further define118

a generalized measure of the percent of loss from equivariance error for any convex loss function119

with non-negative outputs. By Jensen’s inequality, we have Lmean(θ) ≤ L(θ) and both terms are120

non-negative. Furthermore, the two terms are equal if and only if the model is exactly equivariant.121

This implies: % loss from equivariance error = L(θ)−Lmean(θ)
L(θ) .122

3 Experiments123

To gain insight into the empirical learning behavior of non-equivariant models, we apply our loss124

decomposition framework to three high-dimensional learning problems on 3D molecules, each with125

a distinct task and a modern non-equivariant model architecture. For each task, we follow the stan-126

dard training procedure described in its original publication. Notably, all tasks use a mean-squared127

error loss, so our framework provides an exact decomposition of L(f) into Lmean and Lequiv. We128

report both of these metrics, as well as the percentage of the total loss attributable to the model’s129

lack of equivariance, on a validation set over the course of training. We provide complete details on130

methods in §E.131

• Neural Interatomic Potential (NNIP): We consider force prediction with EScAIP (24), a graph132

transformer architecture. The model predicts a 3D force vector for each atom based on density133

functional theory, mapping an input molecule with N atoms to an output in R3N . This task is134

physically equivariant to the special orthogonal group SO(3) acting on atom coordinates in R3.135

• Probabilistic Flow Matching: We study a generative modeling task with Proteı́na (10), a136

transformer-based architecture with similarities to AlphaFold3. The model learns to approximate137

the velocity field of a probability flow that transforms random noise into structured protein back-138

bones. For a molecule with N alpha carbon atoms, the network maps noised atom coordinates and139
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a time t ∈ [0, 1] to a velocity vector in R3N . The learning task is made rotationally equivariant140

through data augmentation, aligning it with SO(3) acting on atom coordinates in R3.141

• Denoising Voxelized Atomic Densities: We analyze a denoising autoencoder task with Vox-142

Mol (23; 20), a non-equivariant 3D convolutional neural network. Molecules are represented143

as densities in a cubic voxel grid. For a grid length g and a atom types, the input and output144

are tensors of shape [g, g, g, a]. This learning task is made rotationally equivariant through data145

augmentation using 16 axis-preserving 90-degree rotations of a cube, which do not introduce dis-146

cretization artifacts due to aliasing. These rotations are a subset of the full octohedral group O.147

3.1 Force field prediction with EScAIP148

We trained EScAIP 6M on a subset of SPICE with 950k training examples used by (24) for 30149

epochs with batch size 64. SPICE is a dataset with of small molecule 3D conformers with energies150

and forces computed by quantum-mechanical density functional theory (5). We varied model size151

from 1M, 4M and 6M, varied training set size from 950k, 50k, 5k, and 500 (with batch size 1), and152

varied the optimizer or learning rate. We observe the following:153

• Equivariance is learned early and quickly, in a manner robust to training set size, model size,154

and optimizer and learning rate. The percent validation loss from equivariance error rapidly155

plummets in the first stage of training to under 0.1% within 1k-10k training steps (Fig. 2A-B).156

Notably, this speed is independent of epoch or training set size - with a 950k training set, this157

occurs 25% through the first epoch. Training with 500 datapoints with batch size 1, this occurs at158

the fourth epoch. The dip is least affected by changing model size (Fig. 2E), and most affected by159

the optimizer and learning rate (Fig. 2F).160

• Equivariance is learned quickly because its an easier learning task than the main prediction161

task. The loss landscape (Fig. 1C) for the equivariance error is much smoother and better condi-162

tioned, with a 1,000x lower condition number, than the loss landscape for the twirled prediction163

error.164

• After a near-universal dip, percent loss from equivariance error can increase mildly. In the165

default setting, the percent increases from 0.1% to 0.3%. This is explained by a plateau in the166

equivariance error while the twirled prediction error continues to decrease (Fig. 2C).167

• Typical models converge to being nearly equivariant, with percent validation loss from168

equivariance error under 0.1%. The exception is training on 500 or 5k examples only: equiv-169

ariance error continues to increase as training progresses, whereas equivariance error decreases in170

the long-term for larger training set sizes (Fig. 2D, Supp. Fig. 6).171

3.2 Flow matching with Proteı́na172

We trained Proteı́na at 60M without triangular attention and 400M with triangular attention on the173

full Protein databank (PDB) dataset with 225k training examples. We also trained models on 1%174

of the PDB with 2k examples and 0.1% with 200 examples. Flow matching trains a model jointly175

over t, flow matching time, ranging from t = 0 for noise and t = 1 for data. We measure metrics176

at t = 0, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, and 0.99, and use red colors for high t close to the data, and177

blue-purple colors for low t near noise in Figure 3. We observe the following:178

• The equivariance learning dip occurs early for all t, in a manner robust to training set size179

and model size. Following the dip at 1k-10k training steps (Fig. 3A), low t (closer to noise) are180

more equivariant, while high t (closer to data) are less equivariant, with spikes to 10% validation181

loss from equivariance error for t ∈ [0.8, 0.9, 0.95]. This holds for the 400M model (Fig. 3E),182

and 60M model trained on 1% and 0.1% of the PDB (Fig. 3F-H). The dip occurs 4% through one183

epoch when trained on the full PDB, but occurs around epoch 53 when trained on 0.1% of the184

PDB.185

• After training, the model is approximately equivariant for all t, but less so around t = 0.9.186

After one million training steps, the percent validation loss by t is plotted in Fig. 3B. The percent187

loss peaks at t = 0.9 at 6%, and is relatively lower at the extremes t = 0.99 at 3% and t = 0 at188

0.04%. Task difficulty (measured by MSE loss) is harder at lower t (Fig. 3C), so t = 0.9 obtains189

low absolute equivariance error (Fig. 3D), but also low twirled prediction error.190
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Figure 2: Training dynamics of learning equivariance in EScAIP (Force field prediction). (a-c) Validation
losses and percent validation loss from equivariance error during training, early in training (a), with log-log
axes (b), and decomposed into separate terms (c). (d-f) Impact of varying training set size (d), model size (e),
and optimizer or learning rate (f).
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Figure 3: Training dynamics of learning equivariance in Proteı́na (Flow matching). Colors indicate flow
matching time, with noise at t = 0 and data at t = 1. (a) Percent validation loss from equivariance error
during training. (b) Bar plot of the percent validation loss from equivariance error, by flow matching time, at a
final checkpoint after 1M training steps. (c-d) Validation losses by training step. (e-h) Impact of varying
model size (e), training set size (f-h).

3.3 Denoising voxelized atomic densities with VoxMol191

We trained VoxMol 111M on GEOM-drugs, a dataset of 3D structures of drug-like molecules with192

1.1M training examples. We also trained models on 1% (11k), 10% (110k), 25% (275k), and 50%193

(550k) examples, and and models of varying size: full (111 M parameters), small (28 M), and tiny194

(7 M).. We observe:195

• The equivariance learning dip occurs early for all t, in a manner robust to training set and196

model size. Across the training set sizes, all models rapidly reduce their percent validation loss197
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a b c
Denoising voxelized atomic densities with VoxMol

Dip

Figure 4: Training dynamics of learning equivariance in VoxMol (Denoising voxelized atomic densities). (a)
Percent validation loss from equivariance error during training. (b-c) Validation losses by training step.

from equivariance error from an initial 60% to 3% or less within 1k-10k training steps (Fig. 4A-B).198

At 50k training steps, models have around 5-10% validation loss from equivariance error. Beyond199

50k training steps, the twirled prediction error continues to decrease while the equivariance error200

plateaus, or decreases more slowly, below 1e-5 (Fig. 4C).201

4 Learning Dynamics when Lequiv < Lmean202

Our empirical results revealed a two-phase learning process, starting with a rapid initial reduction in203

equivariance error. What happens once the model is approximately equivariant, i.e., when Lequiv <204

Lmean? In this section, we investigate the implications this has on learning dynamics, focusing on205

three fundamental quantities illustrated in Figure 5: the relative magnitudes of the loss components206

(Lequiv vs. Lmean), the norms of their respective gradients (∥∇Lequiv∥ vs. ∥∇Lmean∥), and the model’s207

parameter deviation from the subspace of perfectly equivariant functions (θE⊥). By analyzing this208

interplay, we characterize the second stage of learning, which we call stochastic equivariant learning209

dynamics.210

Lequiv(θ) vs. Lmean(θ)

∥∇Lequiv(θ)∥ vs. ∥∇Lmean(θ)∥ θE vs. θE⊥

Prop
s.

2,
3

Prop. 6

Props. 4, 5

Figure 5: Diagram of theoretical relationships studied here.

We summarize our results as:211

• Props. 2, 3: Under mild conditions, we prove lower bounds on the gradient purity in terms of the212

loss ratio. As the loss ratio shrinks, the worst possible gradient purity increases, so that learning213

gradients focus more on Lmean.214

• Props. 4, 5: We show that ∥θE⊥∥ has a quadratic relationship with Lequiv(θ) for EScAIP, a modern215

graph transformer architecture.216

• Prop. 6: We show that when ∥θE⊥∥ is small, ∥∇Lequiv(θ)∥ cannot be too large.217

Due to space constraints, we relegate our analysis to the appendix.218

5 Discussion219

In this work, we found that 3D-rotational equivariance is learned easily and quickly. We described220

a two-phase learning dynamic: initially, model rapidly learn equivariance. This occurs because221

learning equivariance is an easier task, with a smoother and better-conditioned loss landscape, than222
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the main prediction task. We then theoretically analyzed learning dynamics for nearly equivariant223

models. After training, the final percent loss from equivariance error is small for all models, but it224

is notably smaller for EScAIP at 0.006% than for Proteı́na and VoxMol (¡ 5%). While all of these225

loss penalties are small, and easily remedied by test-time postprocessing techniques like twirling or226

input frame canonicalization, this observation may also motivate research on architecture design to227

narrow this gap.228

Intriguingly, equivariance is learned rapidly despite significant differences in model architectures.229

EScAIP is “nearly equivariant”, as it becomes exactly equivariant with only a small change to its230

final linear head, yet its initial dip occurs just as quickly as Proteı́na and VoxMol, which are distant231

from being architecturally equivariant. It is also interesting that each model’s latents learn (or fail to232

learn) to respect symmetries in different ways.233

Our work establishes a principled and unified framework for quantifying equivariance error in rela-234

tion to the loss. We focused our empirical study on 3D rotations, as this is a physically important235

symmetry group for biomolecules, but other symmetry groups may be easier or harder to learn.236

Looking forward, our framework could be used to study the learning dynamics of equivariance on237

other symmetry groups.238
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A Appendix347

A.1 Related Work348

Prior work have measured learned equivariance with a wide variety of approaches (15; 13; 10; 24;349

12; 20; 7), but to our knowledge, this work is the first to derive a measure of equivariance error that is350

interpreted as a percent of loss. Notably, many prior measures effectively estimate equivariance error351

as a pairwise deviation using only two samples per datapoint, whereas we estimate variance around352

a mean using enough samples of the twisted prediction as necessary to obtain stable estimates. (27)353

use the variance of the normalized twisted prediction, but this is not interpretable as a percent of354

loss. They study flow matching, but their metric conflates task difficulty, which gets easier as t → 1,355

with equivariance error. We correct for this issue, and find that t = 0.9 is the most problematic time356

for non-equivariance, whereas they find t = 0.5 instead. (3) find that relaxing architectures from357

exact equivariance improves loss landscape conditioning and achieves better loss than perfectly358

equivariant architectures on image super-resolution and fluid dynamics modeling.359

A.2 Parameter space decomposition360

Here, we describe in greater detail (18)’s mathematical framework for analyzing the geometry of361

neural network parameters in terms of equivariant and non-equivariant parameter subspaces.362

The foundation of this framework is the representation of a network’s parameters in all of its linear363

layers as a point in a high-dimensional vector space, denoted H. This captures the dominant set364

of learnable parameters when non-linearities are fixed. The space is formally constructed as the365

direct sum of the parameter spaces for each individual layer: H =
⊕

i Hom(Xi, Xi+1). Specific366

network architectures are assumed to have parameters in an affine subspace L ⊆ H, referred to as367

the space of ”admissible layers”. This setup is shown by construction to be expressive and capable368

of describing many modern neural network architectures and operations, including fully connected369

layers, convolutions, residual connections, and attention layers.370

To define equivariance for a multi-layer network, the framework supposes that the symmetry group371

G acts on all input, hidden, and output spaces (X0, X1, ..., XL) through a series of representations,372

ρi. With this setup, the set of all parameter configurations where each linear layer is individually373

equivariant forms a linear subspace of H, denoted HG. This set is a linear subspace because the374

group actions ρi(g) is a linear operator, which means any linear combination of equivariant linear375

maps remains equivariant. For instance in the setting of rotations on 3D molecules, consider a linear376

layer with matrix A with a rotation matrix R – if it is equivariant, we have ARx = RAx. If A and B377

are both equivariant to R, then C = c1A+c2B is also equivariant to R: RCx = R(c1A+c2B)x =378

(c1A + c2B)Rx = CRx. HG is thus a linear subspace that is closed under addition and scalar379

multiplication.380

Algebraic manipulations show that TCix = CiTx, using:381

TCix = T (c1Ai + c2Bi)x

= c1AiTx+ c2BiTx

= (c1Ai + c2Bi)Tx

= CiTx

This subspace’s linearity follows from the group’s actions being linear transformations.382

The parameters that are both architecturally admissible and perfectly equivariant then lie in the383

intersection of these spaces, E = L ∩ HG. It further follows that if non-linearities are equivariant,384

which is true for the common case of nonlinearities applied element-wise, then the entire neural385

network function is equivariant when its parameters are in E .386

This geometric structure guarantees that any admissible parameters θ in L can be uniquely decom-387

posed via orthogonal projection into two components: θ = θE + θE⊥. This is possible because H388

being an inner product space allows for a unique projection onto the tangent space of the subspace E .389

The component θE is the projection of the parameters onto the subspace of equivariant functions (E),390

while θE⊥ is the component in the orthogonal complement of this subspace, representing deviation391

from perfect equivariance.392
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B Theoretical Analysis of Learning Dynamics when Lequiv < Lmean393

B.1 Smaller loss ratios imply purer learning gradients394

Under MSE loss, our loss decomposition also applies to gradients:395

∇L(θ) = ∇Lmean(θ) +∇Lequiv(θ) (7)

Denote the relative loss ratio from equivariance error as:396

ϵ(θ) ≜
Lequiv(θ)

Lmean(θ)
(8)

This quantity is closely related to the percentage of total loss from equivariance error (which is397
ϵ(θ)

1+ϵ(θ) ). As ϵ(θ) shrinks, it is plausible that ∇Lmean(θ) can increasingly dominate ∇L(θ), so that398

we have ∇L(θ) ≈ ∇Lmean(θ).399

We will formalize this gradient alignment in terms of ϵ(θ) in a two-stage analysis. To gain theoretical400

insights into the optimization dynamics, we study the ideal, full-batch gradients including exact401

expectations over the symmetry group. First, we derive a general result that holds everywhere in402

parameter space but can be vacuous near critical points. Second, we show a result that holds near403

global optima. Importantly, we show both results in mild conditions that hold for typical deep neural404

networks. Together, these results show that broadly, when ϵ(θ) becomes smaller, learning gradients405

on the total loss become increasingly pure towards the group-averaged prediction task, indicating406

that non-equivariant models increasingly adopt equivariant learning dynamics as their approximate407

equivariance improves.408

Our first result relies only on a mild smoothness assumption on the loss ratio ϵ(θ), a condition409

satisfied for typical neural networks.410

Proposition 2. Let ϵ(θ) be Mϵ-smooth. For the MSE loss, the approximation ∇L(θ) ≈ ∇Lmean(θ)411

holds with relative error bounded by:412

∥∇L(θ)−∇Lmean(θ)∥
∥∇Lmean(θ)∥

≤ ϵ(θ) +
Lmean(θ)

∥∇Lmean(θ)∥
√
2Mϵϵ(θ) (9)

Proof. Provided in D.2413

In well-behaved regions where the gradient norm ∥Lmean(θ)∥ is large (i.e., where learning does414

not plateau or stall), when ϵ(θ) becomes small, the learning gradient becomes increasingly pure at415

focusing on the group-averaged learning task. While this upper bound holds globally, it becomes416

less meaningful near saddle points of Lmean where the loss value can be large, but the gradient norm417

can become very small. In such situations, when ϵ(θ) ̸= 0, the equivariance error gradient can assist418

in escaping these undesired saddle points or suboptimal local minima of Lmean.419

In the basin of attraction of global optima where Lmean(θ) = 0, we can derive another bound on the420

learning gradient purity. This bound also relies on mild assumptions satisfied by typical deep neural421

networks, and avoids the coefficient that explodes when ∥Lmean(θ)∥ → 0.422

Proposition 3. Let the model fθ be a deep neural network constructed from analytic activation423

functions, and let the data distribution p(x, y) have compact support. In the basin of attraction of a424

global minimum θ∗ where Lmean(θ
∗) = 0, for the MSE loss, the approximation ∇L(θ) ≈ ∇Lmean(θ)425

holds with relative error bounded by:426

∥∇L(θ)−∇Lmean(θ)∥
∥∇Lmean(θ)∥

≤
√

2M

c
·

√
Lequiv(θ)

Lmean(θ)α
(10)

where M is the resulting smoothness constant of Lequiv(θ), and c > 0, α ∈ [1, 2) are the constants427

of the Kurdyka-Łojasiewicz (KŁ) inequality that Lmean(θ) is guaranteed to satisfy.428
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Proof. Provided in §D.3.429

Experimental validation. Our theory suggests that when the loss ratio is small, the gradient norm430

ratio is also small. We empirically investigated this and found strong log-log correlations of Pearson431

R = 0.75 over training in EScAIP, and R = 0.41 to 0.90 for Proteı́na at t ≥ 0.2. The only exception432

was Proteı́na at t = 0, which had negative correlation of -0.32.433

B.2 Parameter space decomposition434

In the proceeding analysis, we adopt (18)’s mathematical framework for analyzing neural network435

parameters in terms of equivaraint and non-equivariant parameter subspaces, which enables express-436

ing parameters into orthogonal components: θ = θE + θE⊥. In this framework, the total parameter437

space of a neural network is shown to have a subspace E corresponding to perfectly equivariant func-438

tions. It is shown that under mild conditions, the total parameter space is an inner product space,439

and E is a linear subspace, which together enable the orthogonal decomposition θ = θE + θE⊥. This440

framework is shown to apply to a broad class of modern neural network operations and architec-441

tures, including fully connected layers with non-linearities, convolutions, residual connections, and442

attention layers. It also includes a broad class of symmetry groups including SO(3) and all groups443

studied in this work. We provide more detail in §A.2 and refer the interested reader to (18).444

B.3 Relating equivariance error to the deviation from equivariant parameter subspace445

We will study the relationship between Lequiv and ∥θE⊥∥. In general for neural networks, Lequiv is a446

complex, highly non-linear function of θ = θE+θE⊥. However, we know that Lequiv is non-negative,447

continuous, and equal to zero iff θE⊥ = 0. By these properties, we know that if ∥θE⊥∥ is small,448

then Lequiv is small. More formally, for any ϵ > 0, there exists a δ > 0 such that if the parameter449

deviation is small (∥θE⊥∥ < δ), then the equivariance error is also small (Lequiv < ϵ).450

We will be able to make a stronger statement specifically for the EScAIP architecture, a modern451

graph transformer architecture that achieved strong results on NNIP energy and force prediction452

tasks (24). The EScAIP architecture uses rotation-invariant features derived from an input molecu-453

lar graph. Its hidden representations for atoms and edges, denoted h, are rotation-invariant through-454

out the network. Force prediction outputs a 3D force vector at each atom in a molecule. For a single455

atom with a set of 3D edge vectors E (the vectors pointing from one atom to another atom) in a456

molecule x, EScAIP predicts force vectors as:457

[
ox
oy
oz

]
=

∑
e∈E

[
ex ·wx

⊺h(e,x)
ey ·wy

⊺h(e,x)
ez ·wz

⊺h(e,x)

]
(11)

where e ∈ R3, h(e,x) ∈ Rh is the last hidden representation of the edge e in molecule x, and458

W = [wx,wy,wz], where each w ∈ Rh, are the parameters for a linear head with no bias. The459

3D edge vectors e are rotation-equivariant with respect to the input molecule, while the hidden460

representation h(e) is rotation-invariant to the input molecule, but composing these to form the461

output prediction generally breaks both invariance and equivariance.462

In particular, force predictions are equivariant if and only if the scalar projections of the hidden463

features are independent of the coordinate axis, i.e., wx
⊺h(e,x) = wy

⊺h(e,x) = wz
⊺h(e,x),464

for all inputs. Under the mild assumption of a non-degenerate learned embedding function h(e,x),465

such that the set of all possible hidden vectors spans the feature space, this condition holds if and466

only if the parameter vectors themselves are identical: wx = wy = wz. This condition defines467

the subspace E for the EScaIP architecture. Using this, we decompose W = WE +WE⊥ with an468

equivariant part WE = [w̄, w̄, w̄] ∈ E where w̄ = 1
3 (wx +wy +wz), and a non-equivariant part469

WE⊥ = [dx,dy,dz] ∈ E⊥ where dx = wx − w̄, and same for y, z.470

With this setup, we can now establish that the equivariance error of the EScaIP architecture has a471

quadratic relationship with the magnitude of the parameter deviation from E , the space of perfectly472

equivariant functions.473

Theorem 4. For the EScAIP architecture trained with mean-squared error loss on a non-degenerate474

dataset, for any fixed set of upstream parameters θ \W , there exist positive constants 0 < λmin ≤475
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λmax (which depend on the model architecture, data distribution, and other parameters θ \W ) such476

that:477

λmin · ∥WE⊥∥2F ≤ Lequiv(θ) ≤ λmax · ∥WE⊥∥2F (12)

Proof. Provided in D.4.478

We can generalize the preceding analysis to a broader class of neural networks. Applying a Taylor479

expansion to Lequiv(θ) for the neural net f on an input x, we have: f(x; θE + θE⊥) = f(x; θE) +480

JθE⊥f(x; θE) · θE⊥ + O(∥θE⊥∥2) where JθE⊥f(x; θE) is the Jacobian of the network output with481

respect to parameter components θE⊥, evaluated at θE . The key structure, analogous to the EScAIP482

argument, is the decomposition of the neural net output into a purely equivariant term, and a term483

linear in θE⊥, as well as a remainder term in this setting. With this setup, for a broad class of neural484

network architectures, we can relate locally near E that Lequiv is quadratic in ∥θE⊥∥ (Thm. 5), and485

its grad norm is linear in ∥θE⊥∥ (Thm. D.6).486

Theorem 5. For any neural network whose parameters can be expressed as θ = θE + θE⊥ with487

θE ∈ E and θE⊥ ∈ E⊥, and for equivariance error Lequiv defined by the variance of the output488

with respect to transformations, there exist positive constants 0 < λmin ≤ λmax such that for a489

non-degenerate dataset, using ∥ · ∥ to denote L2-norm:490

λmin∥θE⊥∥2 +O(∥θE⊥∥3) ≤ Lequiv(θ) ≤ λmax∥θE⊥∥2 +O(∥θE⊥∥3) (13)

Proof. Provided in D.5.491

Theorem 6. Under the same conditions as Thm. 5, the norm of the gradient of the equivariance
loss with respect to the non-equivariant parameters is bounded by the deviation itself. Specifically,
there exists a constant C such that:

∥∇θE⊥Lequiv(θ)∥ ≤ C · ∥θE⊥∥

Proof. Provided in D.6.492
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C Supplementary Figures493

950k training examples (full dataset)

Figure 6: EScAIP: Validation loss curves over training, varied by training set size.
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Figure 7: EScAIP: Percent validation loss from equivariance error vs. grad norm ratio, over training. Colored
line indicates smoothed exponential moving average, colored by training step.
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Figure 8: Proteı́na: Percent validation loss from equivariance error vs. grad norm ratio, over training, by flow
matching time. Colored line indicates smoothed exponential moving average, colored by training step.

D Proofs494

D.1 Proof of Proposition 1495

Proposition. If l(z, y) = 1
D∥z − y∥2 is mean-squared error, then the total loss decomposes as:496
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L(f) = Ex,y[l(µ(x), y)]︸ ︷︷ ︸
prediction error

+
1

D
Ex,y

[
D∑
i=1

VarT [(T−1 ◦ f ◦ T )(x)i]

]
︸ ︷︷ ︸

equivariance error

(14)

Proof. For mean-squared error, the Hessian is constant: Hl(z, y) =
2
D I where I is the D×D iden-497

tity matrix. Furthermore, higher-order derivatives are zero, so the decomposition has no additional498

terms. The equivariance error simplifies as:499

1

2
Ex,y

[
tr
((

2

D
I

)
CovT [. . . ]

)]
=

1

D
Ex,y [tr (CovT [. . . ])] (15)

500

D.2 Proof of Proposition 2501

Proposition. Let ϵ(θ) be Mϵ-smooth. For the MSE loss, the approximation ∇L(θ) ≈ ∇Lmean(θ)502

holds with relative error bounded by:503

∥∇L(θ)−∇Lmean(θ)∥
∥∇Lmean(θ)∥

≤ ϵ(θ) +
Lmean(θ)

∥∇Lmean(θ)∥
√
2Mϵϵ(θ) (16)

Proof. The total loss gradient is L(θ) = (1 + ϵ(θ))Lmean(θ).504

∇L(θ) = ∇[(1 + ϵ(θ))Lmean(θ)] (17)
= ∇ϵ(θ)Lmean(θ) + (1 + ϵ(θ))∇Lmean(θ) (18)

∇L(θ)−∇Lmean(θ) = ϵ(θ)∇Lmean(θ) + Lmean(θ)∇ϵ(θ) (19)

Now, we bound the norm of this difference using the triangle inequality:505

∥∇L(θ)−∇Lmean(θ)∥ ≤ ϵ(θ)∥∇Lmean(θ)∥+ Lmean(θ)∥∇ϵ(θ)∥ (20)

Using the smoothness assumption that ∥ϵ(θ)∥ ≤
√
2Mϵϵ(θ), we obtain the final result:506

∥∇L(θ)−∇Lmean(θ)∥
∥∇Lmean(θ)∥

≤ ϵ(θ) +
Lmean(θ)

∥∇Lmean(θ)∥
√

2Mϵϵ(θ) (21)

507

D.3 Proof of Proposition 3508

Proposition 7. Let the model fθ be a deep neural network constructed from analytic activation509

functions, and let the data distribution p(x, y) have compact support. In the basin of attraction of a510

global minimum θ∗ where Lmean(θ
∗) = 0, for the MSE loss, the approximation ∇L(θ) ≈ ∇Lmean(θ)511

holds with relative error bounded by:512

∥∇L(θ)−∇Lmean(θ)∥
∥∇Lmean(θ)∥

≤
√

2M

c
·

√
Lequiv(θ)

Lmean(θ)α
(22)

where M is the resulting smoothness constant of Lequiv(θ), and c > 0, α ∈ [1, 2) are the constants513

of the Kurdyka-Łojasiewicz (KŁ) inequality that Lmean(θ) is guaranteed to satisfy.514
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Proof. The network fθ is a composition of analytic functions, making it analytic in θ. Further, the515

loss functions Lequiv,Lmean preserve analyticity. Thus, both are also analytic functions of θ. Lequiv516

is thus M -smooth for some constant M in any compact parameter set. A foundational result states517

that any real-analytic function satisfies the Kurdyka-Łojasiewicz inequality (14; 4). From the M -518

smoothness of Lequiv(θ), we have: ∥∇Lequiv(θ)∥2 ≤ 2M · Lequiv(θ). From the KŁ condition on519

Lmean(θ), we have: ∥∇Lmean(θ)∥2 ≥ c · Lmean(θ)
α for some constants c > 0 and α ∈ [1, 2) in the520

basin. The result follows from combining these properties.521

D.4 Proof of Proposition 4522

Theorem. For the EScAIP architecture trained with mean-squared error loss on a non-degenerate523

dataset, for any fixed set of upstream parameters θ \W , there exist positive constants 0 < λmin ≤524

λmax such that:525

λmin · ∥WE⊥∥2F ≤ Lequiv(θ) ≤ λmax · ∥WE⊥∥2F (23)

Remarks. The constants λmin and λmax depend on the model architecture, data distribution, and526

other parameters θ \W .527

Proof. For a molecule x, the k-th component of the predicted force vector decomposes into a sum528

of contributions from WE and WE⊥:529

ok(x;W ) =
∑
e∈E

ek · (w̄Th(e))︸ ︷︷ ︸
oeq,k(x;WE)

+
∑
e∈E

ek · (dT
k h(e))︸ ︷︷ ︸

∆ok(x;WE⊥)

(24)

where the final hidden representation h depends on θ \W , the set of upstream parameters. Recall530

the equivariance error from Proposition 1, and observe that the variance of ok = oeq +∆ok depends531

only on ∆ok, as oeq is equivariant by construction. Thus, the equivariance error of the entire model,532

for a fixed set of upstream parameters and expressed as a function of the force prediction head533

parameters, is:534

Lequiv(θ) = Ex,T

[
∥∆o(Tx;WE⊥)− ET ′ [∆o(T ′x;WE⊥)]∥2

]
Now, let us denote: g(T, x,WE⊥) = T−1∆o(Tx;WE⊥). Observe that this function g is linear in535

our deviation parameters WE⊥. By vectorizing the h × 3 parameter matrix WE⊥ into a 3h × 1536

column vector p = vec(WE⊥), we can express this linear relationship as a matrix-vector product,537

for some matrix MT,x with shape 3 × 3h: g(T, x,WE⊥) = MT,xp. Similarly, the rotation-538

averaged prediction ḡ(x;WE⊥) = ET [g(T, x,WE⊥)] is also a linear function, so we associate it539

with the matrix M̄x. The equivariance error term with these linear matrix forms is:540

Ex,T [∥g(T, x,WE⊥)− ḡ(x,WE⊥)∥2] = p⊺Q̄p (25)

where the matrix Q̄ = Ex,T [(MT,x−M̄x)
⊺(MT,x−M̄x)]. Finally, observe that Q̄ is positive defi-541

nite, as the as equivariance error is strictly positive on a non-degenerate dataset whenever WE⊥ ̸= 0.542

By the properties of a positive definite matrix, the quadratic form p⊺Q̄p is lower-bounded by the543

smallest eigenvalue of Q̄, denoted λmin(Q̄), which is positive. It is also upper bounded by the544

largest eigenvalue λmax(Q̄). This establishes the quadratic relationship on the equivariance loss as545

stated in the theorem.546

547

D.5 Proof of Proposition 5548

Theorem. For any neural network whose parameters can be expressed as θ = θE+θE⊥ with θE ∈ E549

and θE⊥ ∈ E⊥, there exist positive constants 0 < λmin ≤ λmax such that for a non-degenerate550

dataset:551
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λmin|θE⊥|22 +O(|θE⊥|32) ≤ Lequiv(θ) ≤ λmax|θE⊥|22 +O(|θE⊥|32) (26)

Proof. Applying a Taylor expansion to Lequiv(θ) for the neural net f on an input x around equivariant552

parameters θE , we have:553

f(x; θE + θE⊥) = f(x; θE) + JθE⊥f(x; θE)θE⊥ +O(∥θE⊥∥2) (27)

where JθE⊥f(x; θE) is the Jacobian of the network output with respect to parameter components554

θE⊥, evaluated at θE . As before, the term f(x; θE) is equivariant by construction, and thus drops out555

of the equivariance error term. The term JθE⊥f(x; θE)θE⊥ is linear in θE⊥, which creates a quadratic556

dependence on θE⊥ in the variance term in Lequiv.557

The deviation from the twirled mean is the difference between the canonicalized prediction and its558

average over transformations. Let’s expand this difference:559

(T−1 ◦ f ◦ T )(x; θ)− µ(x; θ) = (T−1 ◦ f ◦ T )(x; θ)− ET ′ [(T ′−1 ◦ f ◦ T ′)(x; θ)] (28)

Substituting the Taylor series and using the equivariance of f(x; θE):560

=
(
f(x; θE) + [T−1JθE⊥f(T (x); θE)]θE⊥ +O(|θE⊥|2)

)
− ET ′

[
f(x; θE) + [T ′−1JθE⊥f(T

′(x); θE)]θE⊥ +O(|θE⊥|2)
]

(29)

=
(
T−1JθE⊥f(T (x); θE)− ET ′ [T ′−1JθE⊥f(T

′(x); θE)]
)
θE⊥ +O(|θE⊥|2) (30)

Let ∆Jx,T ≜ T−1JθE⊥f(T (x); θE) − ET ′ [T ′−1JθE⊥f(T
′(x); θE)]. The expression becomes561

∆Jx,T · θE⊥ +O(∥θE⊥∥2).562

Lequiv(θ) =
1

D
Ex,T

[
|∆Jx,T · θE⊥ +O(|θE⊥|2)|2

]
(31)

=
1

D
Ex,T

[
|∆Jx,T · θE⊥|2 + 2(∆Jx,T · θE⊥)TO(|θE⊥|2) + |O(|θE⊥|2)|2

]
(32)

The orders of the terms are:563

• ∥∆Jx,T · θE⊥∥2 is O(∥θE⊥∥2).564

• The cross-term is O(∥θE⊥∥) · O(∥θE⊥∥2) = O(∥θE⊥∥3).565

• The final term is (O(∥θE⊥∥2))2 = O(∥θE⊥∥4).566

We will study the leading term, which is quadratic in θE⊥, and subsume the remainder into567

O(∥θE⊥∥3). As ∆Jx,T is a linear function, we can define a matrix Q̄ that represents the aver-568

aged outer product of the Jacobian deviations: Q̄ ≜ 1
DEx,T [(∆Jx,T )

⊺
(∆Jx,T )]. The equivariance569

error can now be expressed concisely:570

Lequiv(θE + θE⊥) ≈ θTE⊥Q̄θE⊥ (33)

The matrix Q̄ is positive definite for a non-degenerate dataset when θE⊥ ̸= 0. Using the Rayleigh-571

Ritz theorem, this quadratic form is thus bounded by the smallest and largest eigenvalues:572

λmin∥θE⊥∥22 ≤ θTE⊥Q̄θE⊥ ≤ λmax∥θE⊥∥22

Reincorporating the remainder term in our Taylor expression, we arrive at:573

λmin|θE⊥|22 +O(|θE⊥|32) ≤ Lequiv(θ) ≤ λmax|θE⊥|22 +O(|θE⊥|32) (34)

574
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D.6 Proof of Proposition 6575

Theorem 8. Under the same conditions as the Taylor expansion theorem above, the norm of the
gradient of the equivariance loss with respect to the non-equivariant parameters is bounded by the
deviation itself. Specifically, there exists a constant C such that:

∥∇θE⊥Lequiv(θ)∥ ≤ C · ∥θE⊥∥

Proof. From previous theorems, we know Lequiv(θ) ≈ p⊺Q̄p, where p = vec(θE⊥). The gradient576

of a quadratic form is linear: ∇pLequiv = 2Q̄p. Taking norms, we get ∥∇pLequiv∥ = ∥2Q̄p∥ ≤577

2∥Q̄∥∥p∥. Setting C = 2λmax or 2∥Q̄∥2 gives the result.578

E Code Availability, Methods & Experimental Details579

Code repository for this project: ¡tbd¿ Our code repositories are minor modifications on the orig-580

inal codebases. We added callbacks to track metrics during training, added configuration files for581

controlling training, and added helper scripts for computing and plotting some metrics.582

E.1 EScAIP583

We trained EScAIP 6M on a subset of SPICE with 950k training examples used by (24) for 30584

epochs with batch size 64. SPICE is a dataset with of small molecule 3D conformers with energies585

and forces computed by quantum-mechanical density functional theory (5). We varied model size586

from 1M, 4M and 6M, varied training set size from 950k, 50k, 5k, and 500 (with batch size 1), and587

varied the optimizer or learning rate. The model predicts a 3D force vector for each atom based on588

density functional theory, mapping an input molecule with N atoms to an output in R3N . This task589

is physically equivariant to the special orthogonal group SO(3) acting on atom coordinates in R3.590

We follow the same training recipe as the original repository, which does not use data augmentation.591

We suspect that data augmentation is not as important for EScAIP because it operates on rotation-592

invariant features.593

For further details and configuration files, please refer to our code repository.594

E.2 Proteı́na595

We trained Proteı́na at 60M without triangular attention and 400M with triangular attention on the596

full Protein databank (PDB) dataset with 225k training examples. We also trained models on 1%597

of the PDB with 2k examples and 0.1% with 200 examples. Flow matching trains a model jointly598

over t, flow matching time, ranging from t = 0 for noise and t = 1 for data. We measure metrics599

at t = 0, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, and 0.99, and use red colors for high t close to the data, and600

blue-purple colors for low t near noise in Figure 3. The model learns to approximate the velocity601

field of a probability flow that transforms random noise into structured protein backbones. For602

a molecule with N alpha carbon atoms, the network maps noised atom coordinates and a time603

t ∈ [0, 1] to a velocity vector in R3N . The learning task is made rotationally equivariant through604

data augmentation, aligning it with SO(3) acting on atom coordinates in R3.605

For further details and configuration files, please refer to our code repository.606

E.3 VoxMol607

Following (23), we represent each molecule using a 3D voxel grid by placing a continuous Gaussian608

density at each atom’s position. Each atom type is assigned a distinct input channel, producing a 4D609

tensor of shape [c× l× l× l], where c denotes the number of atom types and l is the edge length of610

the voxel grid. The voxel values are normalized between 0 and 1.611

The denoising task arises from the use of walk-jump sampling for generating molecules (25).612

This uses a two-step score-based sampling method. The “walk” phase involves running k steps613

of Langevin Markov chain Monte Carlo on a randomly initialized noisy voxel grid, simulating a614

stochastic trajectory along a manifold. The “jump” phase applies a denoising autoencoder (DAE) to615

22



clean up the noisy sample using a forward pass of the trained model at step k. The DAE is trained616

on voxelized molecules corrupted with isotropic Gaussian noise, with a mean squared error (MSE)617

loss between prediction and ground truth. WJS provides a fast alternative to diffusion models by618

requiring only a single noise and denoise step (23; 19).619

Architecture The VoxMol architecture is based on a 3D U-Net with convolutional layers spanning620

four resolution scales, and includes self-attention modules at the two coarsest levels (23). During621

training, data augmentation is performed by applying random rotations and translations to each622

sample. For further architectural and training details, refer to Pinheiro et al. (23).623

Measuring whether latent representations learn to respect equivariance To evaluate whether624

VoxMol learns equivariant latent features, we analyze cosine similarity between latent embeddings625

under two scenarios.626

First, we examine representations of the same molecule under rotation. Let x be a molecule and Rk627

a discrete rotation operator (e.g., 90◦ around an axis). Using the encoder ϕ(·) ∈ RC×D×H×W , with628

C = 512 and spatial dimensions 8× 8× 8, we define the spatially pooled latent vector:629

ϕ̄(x) =
1

DHW

∑
d,h,w

ϕ(x)[:, d, h, w]

We then compute:630

simsame = cos
(
ϕ̄(Rk(x)), Rk(ϕ̄(x))

)

This measures whether encoding a rotated molecule is equivalent to rotating the latent vector of the631

original input—a key signature of learned equivariance.632

Second, to obtain a baseline, we compute cosine similarities between embeddings of randomly633

selected different molecules:634

simdiff = cos
(
ϕ̄(xi), ϕ̄(xj)

)
, with xi ̸= xj

We compute these metrics across 1000 molecules for various rotation angles along all three axes.635

Cosine similarities are calculated over the 512-dimensional latent vectors and visualized using violin636

plots to capture the distributional differences in Figure 9.637

Findings. Cosine similarity between rotated versions of the same molecule tends to decrease as638

rotation angle increases, reflecting imperfect latent equivariance. While same-molecule embeddings639

remain more similar to each other than to embeddings of different molecules, the overlap between640

their distributions grows with rotation. This suggests that although the encoder partially preserves641

geometric structure, the latent space does not fully achieve rotation equivariance, indicating potential642

for improved regularization or architectural design.643
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Figure 9: VoxMol: Cosine similarity of molecule latent representations with different rotations. x, y, z indicate
rotation axes, and numbers 0, 0.5, 1, 1.5, 2 correspond to 0, 90, 180, 270, 360 degrees of rotation. The last
column depicts cosine similarity between different molecules.

E.4 Metrics644

To compute equivariance error, twirled prediction, error, percent MSE loss from equivariance error,645

and gradient norms, 10 rotations per sample were used in EScAIP and Proteı́na. This number was646

found to be sufficient to provide a stable signal for metrics which was robust to randomness and647

resampling. For EScAIP, these metrics were computed on the first four (fixed) validation batches648

with batch size of 16, for a total of 64 samples. For Proteı́na, these metrics were computed on the649

first eight (fixed) validation batches with batch size of 3, for a total of 24 samples. The total MSE650

loss on these subsets was indicative of the total validation MSE loss, indicating these sample sizes651

were sufficient to provide a stable and representative signal for these metrics.652

To plot the loss landscape, we selected a subset of parameters in each architecture. For EScAIP,653

we used the final FFN (with a non-linearity) and the final linear head, for a combined total of654

33k parameters. For Proteı́na, we used the final linear head with 1.5k parameters. We computed655

the Hessian of this parameter subset for the total MSE loss using one fixed training batch with656

ten rotations. We then performed eigendecomposition of the total MSE loss Hessian to find the657

eigenvectors for the largest positive eigenvalue, and minimum positive eigenvalue, which formed658

the two axes for plotting the loss landscape. We selected a step size approximately 2-3x the training659

step size at that checkpoint, which is estimated by multiplying the training learning rate with the660

total parameter gradient norm at that checkpoint. We then create a 2D grid of perturbations to the661

parameter subset, and compute Lmean and Lequiv at each point on the grid. Importantly, the axes and662

the step size are the same for both Lmean and Lequiv.663

To compute the condition numbers, we computed the Hessian of the same parameter subsets for664

Lmean and Lequiv separately, and performed eigendecomposition on them separately. We reported665

the condition number as the ratio between the largest positive eigenvalue and the minimum positive666

eigenvalue.667

E.5 Loss Landscape Analysis668

To better understand the initial dip, we studied loss landscapes for Lmean and Lequiv at early check-669

points (500 steps). We computed the Hessian of each loss on a training batch for a subset of 33k670

parameters including non-linear layers for EScAIP, 1.5k parameters in Proteı́na’s linear head, and671

6.9k parameters in a final layer of VoxMol. For EScAIP, we measured condition numbers of 1e9672

for Lmean and 1e6 for Lequiv (1,000x smaller). For Proteı́na, we measured 2e10 for Lmean and 1e8673

for Lequiv (100x smaller). For VoxMol, we measured 5e9 and 6e8 respectively (10x smaller). We674

calculate condition numbers for Lmean and Lequiv using the largest positive and smallest positive675
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eigenvalues for each loss. For loss landscape plotting, we chose two axes for plotting using the676

largest positive and smallest positive eigenvector on the total loss, and used the same step size and677

grid for Lmean and Lequiv. In both models, we find that Lequiv has a substantially smoother loss678

landscape than Lmean (Fig. 1C).679
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