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Abstract

We investigate how symmetry-agnostic models learn symmetries with data aug-
mentation, by deriving a principled measure of equivariance error that, for convex
losses, calculates the percent of total loss attributable to imperfections in learned
symmetry. We focus our empirical investigation to 3D-rotation equivariance on
high-dimensional molecular tasks (flow matching, force field prediction, denois-
ing voxels) and find that models rapidly become nearly equivariant within 1k-10k
training steps, a result robust to model and dataset size. This happens because
learning 3D-rotational equivariance is an easier learning task, with a smoother
and better-conditioned loss landscape, than the main prediction task. We then the-
oretically characterize learning dynamics for models that are nearly equivariant, as
“stochastic equivariant learning dynamics”. For 3D rotations, the loss penalty for
non-equivariant models is small throughout training, so they may achieve lower
test loss than equivariant models per GPU-hour unless the equivariant “efficiency
gap” is narrowed.

1 Introduction

Machine learning modeling of molecules — generative modeling, property prediction, simulating
dynamics, etc. — holds great potential for advancing scientific discovery and human health via
therapeutics. Molecules are three-dimensional physical entities whose biochemical properties are
invariant or equivariant to 3D rotations. To model these symmetries, two approaches are common:
1) use symmetry-respecting neural architectures, or 2) training symmetry-agnostic models with data
augmentation, wherein training samples are randomly transformed by the symmetry group. This
choice is made at the start of any molecular modeling project and can have a significant impact on
engineering, training, and model performance, yet there has been a lack of clarity on when to prefer
which approach.

3D-rotational equivariant architectures use sophisticated tensor operations to maintain equivari-
ance (16), achieve loss scaling curves similar to non-equivariant models (2; 17), and are more pa-
rameter efficient than non-equivariant models on spherical image tasks (11). Yet they can be much
slower (10x-100x) than non-equivariant models — though slowness is also partially from less opti-
mized code and GPU kernels. (11; 6; 2), and they can be harder to optimize based on findings that
breaking exact equivariance improves learning (24; 22; 3). We call this the efficiency gap, arising
both from optimization speed (training steps per second) and ease (loss reduction per training step)
Meanwhile, recent work achieve strong performance on molecular machine learning tasks using
non-equivariant architectures with data augmentation (28; 1; 24; 10).

To answer “are symmetry-respecting architectures worth it?”, one powerful principle is: use the
model that achieves better held-out loss. In a fixed amount of GPU-hours, non-equivariant models
could incur “unnecessary” equivariance error leading to higher loss, but equivariant models may
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Figure 1: Overview of the paper. (a) Schematic of twisting and twirling, which underpin a principled measure
of equivariance error. (b) Loss decomposition by Taylor expansion around the twirled prediction. (c) Loss
landscapes for each loss component at early model checkpoints (step=500). (d) Architectures of three
non-equivariant models studied here. (e) For MSE loss, the loss decomposition holds exactly, enabling
computing the percent validation loss from equivariance error, which is plotted by training step in three
settings.

achieve worse test loss due to the efficiency gap. In fact, we suggest the loss penalty vs. efficiency
gap tradeoff is a general explanatory framework. This work focuses on equivariance, because on
rotation-invariant tasks like property prediction, symmetry-respecting architectures are relatively
uncontroversial (26; 9; 21): they have a minimal efficiency gap to symmetry-agnostic architectures
as rotation-invariant features are informative and fast to compute, and standard deep learning opera-
tions easily preserve rotation invariance. In contrast, consider set permutation invariance where the
symmetry-respecting architecture is the norm. This can be explained by observing that set trans-
formers have minimal efficiency gap to symmetry-agnostic transformers, as set transformers simply
ignore positional embeddings.

While it is possible to directly compare efficiency gaps to loss penalties from imperfect symmetry,
this is easily confounded by implementation details. To provide a more fundamental insight, we
instead isolate and quantify a key source of potential underperformance in symmetry-agnostic mod-
els. We develop tools to investigate: what is the percent of a symmetry-agnostic model’s loss that
comes only from its failure to be perfectly equivariant? (§2, Fig. 1A-B) In an idealized setting (ig-
noring efficiency differences), this characterizes the counterfactual error reduction if we had trained
a symmetry-respecting model instead. In light of efficiency gaps for 3D-rotational equivariance, this
metric quantifies how small the efficiency gap must become for equivariant models to outperform
non-equivariant models.

In this work, we focus our empirical investigations to three high-dimensional (R3" — R3") molec-
ular learning tasks satisfying 3D-rotational equivariance — flow matching, molecular dynamics force
field prediction, and denoising voxelized atomic densities (§3, Fig. 1D). We decompose the total
loss with data augmentation £(6) = Lmean(6) + Lequiv(€), where Lequiy captures all information
about deviance from exact equivariance. In particular, for exact equivariant models, the loss relation
is £(0) = Lmean(0), i.e., Lequiv = 0. We find:
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(i) Equivariance error shrinks rapidly (1k-10k training steps; minutes). Models quickly become
nearly equivariant, with equivariance error shrinking below 1% of the loss (Fig. 1E). This occurs
because Lequiy is a significantly easier learning task than Lpcan: the loss landscape for Lequiv is
significantly smoother and better conditioned (Fig. 1C). Strikingly, this is robust to model size,
training set size, batch size, and optimizer: we find it with standard batch sizes as well as batch size
1, on training sets of 1M molecules to as small as 500 molecules, and on model sizes of 1M and
400M.

In §4, we theoretically characterize learning dynamics for nearly equivariant models. We analyze
the relationships between the losses Lican, Lequiv, the gradients V Lican, V Lequiv, and the parameters
0 = O¢ + O, in the subspace of exactly equivariant functions and its orthogonal component. This
analysis is not specific to 3D rotations.

(ii) Stochastic equivariant learning dynamics For nearly equivariant models, we can have
VL(0) = VLiyean(#). The learning gradients approximate the gradients of exactly equivariant mod-
els. Minibatch noise can cause fluctuations in Lequiv, yet equivariance error remains small (;10% of
loss). During this phase, the parameters 6 can be close to g — for the modern graph transformer
architecture ESCAIP, we prove that L.q.iy has a globally-valid quadratic relationship with ||f¢ ||.

2 Measuring Equivariance & Loss Decompositions

Let f : RP? — RP be a learnable function and let G be a compact group, for instance of 3D
rotations. We consider 7" as the matrix representation of the action of G'on R”. A function f is G-
equivariant if it commutes with all transformations 7' € G, such that for any input x € R, we have
f(T(z)) =T(f(x)),also written (foT)(z) = (To f)(x). Rearranging, we observe that a perfectly
equivariant function satisfies, for all z,T: (T~ ! o f o T)(x) = f(z). We call (T o f o T)(x)
the twisted prediction for x, from the twisted function T~ o f o T. To produce a twisted prediction
on molecules, we sample a random rotation, use it to rotate the input molecule, pass this through
the function, and un-rotate the output. The un-rotation step re-aligns the output to the “original
frame” of the input molecule, which provides a canonical frame to compare the impact of different
transformations on the output.

In contrast to a perfectly equivariant function, a non-equivariant function must have some distinct
transformations 77, T, where the twisted prediction is different: (77 o f o Ty)(z) # (Ty ' o f o
T5)(z). This property motivates analyzing the distribution of twisted predictions over a uniform
distribution on the group, which is the usual choice for data augmentation. For a given z:

Z(T)2 (T o foT)(x), T ~ Uniform(Q) (1)

Its first central moment () is the group-averaged, or twirled prediction.

wa) £E(T" o f o T) ()] 2)

By the twirling formula, wu(x) is perfectly G-equivariant (8). The second cen-
tral moment of the twisted random variable is the covariance: Covp(Z,(T)) =
Er [(Zo(T) — 1(2))(Zo(T) — p(z))"].  The total variance — the trace of the covariance
matrix — is a natural measure of equivariance error:

1

SEer (I 0 o T)(@) - p(a)] ®

2.1 Loss decomposition

Twisting and twirling provide machinery to understand a function’s behavior around group actions.
We can extend this machinery to analyze losses used to train models under random data augmen-
tation, where each training point is randomly rotated. Let the data distribution p(z,y) and loss
function [ : RP x RP — R be invariant to G. That is, the joint data distribution p(x,y) for any
transformation 7' € G satisfies: p(z,y) = p(T(z),T(y)) and for any predictions z and targets y,
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and forall T € G: I(T(2),T(y)) = I(z,y). These conditions imply that the loss-optimal model is
equivariant, and that: [((f o T)(z),T(y)) = I((T~' o f o T)(x),y). The total loss over all data and
transformations is:

L(f) £ By [I((T "o foT)(x),y)] )

We perform a Taylor expansion of the total loss around the twirled prediction x(x), and obtain terms
involving central moments of the twisted random variable:

£(£) = Bayl(a(2),)] + 5y [t (Hi(u(2),9)Covr (T o f o TY(@)])] +O(6]°)

twirled prediction error

equivariance error

where § = (Tt o foT)(z) — u(x), Hy(u,y) is the D x D Hessian matrix of the loss with respect
to its first argument, and Covy is a D x D covariance matrix over the distribution of transformations
T.

Proposition 1. Ifl(z,y) = &||z — y||? is mean-squared error;, then the total loss decomposes as:
L(f) = By y[l(pu(2),9)] + 5Eer [[(T~ o f o T)(x) — p(x)]?].

For MSE loss, our Taylor expansion reduces to a version of bias-variance decomposition. The
equivariance error is identical to equation 3 because MSE loss places equal weight on all dimensions.
These two terms are central objects of study, so we name them:

(1>

Eqy[1(1(2), y)] %)
SEar [I(T7 0 £ 0 T)(@) = ()] ©)

E mean

(1>

£equiv

Percent of loss from equivariance error. Denoting model parameters as 6, under MSE loss, we
can express the total loss exactly as £(0) = Limean() + Lequiv(d). As all three terms are strictly

non-negative, this implies: % MSE loss from equivariance error = “‘“(“9()0) We can further define

a generalized measure of the percent of loss from equivariance error for any convex loss function
with non-negative outputs. By Jensen’s inequality, we have Lye.n(6) < L£(0) and both terms are
non-negative. Furthermore, the two terms are equal if and only if the model is exactly equivariant.

This implies: % loss from equivariance error = W.

3 Experiments

To gain insight into the empirical learning behavior of non-equivariant models, we apply our loss
decomposition framework to three high-dimensional learning problems on 3D molecules, each with
a distinct task and a modern non-equivariant model architecture. For each task, we follow the stan-
dard training procedure described in its original publication. Notably, all tasks use a mean-squared
error loss, so our framework provides an exact decomposition of £(f) into Lyean and Lequiv. We
report both of these metrics, as well as the percentage of the total loss attributable to the model’s
lack of equivariance, on a validation set over the course of training. We provide complete details on
methods in §E.

* Neural Interatomic Potential (NNIP): We consider force prediction with EScAIP (24), a graph
transformer architecture. The model predicts a 3D force vector for each atom based on density
functional theory, mapping an input molecule with N atoms to an output in R, This task is
physically equivariant to the special orthogonal group SO(3) acting on atom coordinates in R3.

* Probabilistic Flow Matching: We study a generative modeling task with Proteina (10), a
transformer-based architecture with similarities to AlphaFold3. The model learns to approximate
the velocity field of a probability flow that transforms random noise into structured protein back-
bones. For a molecule with [V alpha carbon atoms, the network maps noised atom coordinates and
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atime t € [0,1] to a velocity vector in R*". The learning task is made rotationally equivariant
through data augmentation, aligning it with SO(3) acting on atom coordinates in R3.

* Denoising Voxelized Atomic Densities: We analyze a denoising autoencoder task with Vox-
Mol (23; 20), a non-equivariant 3D convolutional neural network. Molecules are represented
as densities in a cubic voxel grid. For a grid length g and a atom types, the input and output
are tensors of shape [g, g, g, a]. This learning task is made rotationally equivariant through data
augmentation using 16 axis-preserving 90-degree rotations of a cube, which do not introduce dis-
cretization artifacts due to aliasing. These rotations are a subset of the full octohedral group O.

3.1 Force field prediction with EScAIP

We trained ESCAIP 6M on a subset of SPICE with 950k training examples used by (24) for 30
epochs with batch size 64. SPICE is a dataset with of small molecule 3D conformers with energies
and forces computed by quantum-mechanical density functional theory (5). We varied model size
from 1M, 4M and 6M, varied training set size from 950k, 50k, 5k, and 500 (with batch size 1), and
varied the optimizer or learning rate. We observe the following:

* Equivariance is learned early and quickly, in a manner robust to training set size, model size,
and optimizer and learning rate. The percent validation loss from equivariance error rapidly
plummets in the first stage of training to under 0.1% within 1k-10k training steps (Fig. 2A-B).
Notably, this speed is independent of epoch or training set size - with a 950k training set, this
occurs 25% through the first epoch. Training with 500 datapoints with batch size 1, this occurs at
the fourth epoch. The dip is least affected by changing model size (Fig. 2E), and most affected by
the optimizer and learning rate (Fig. 2F).

* Equivariance is learned quickly because its an easier learning task than the main prediction
task. The loss landscape (Fig. 1C) for the equivariance error is much smoother and better condi-
tioned, with a 1,000x lower condition number, than the loss landscape for the twirled prediction
error.

» After a near-universal dip, percent loss from equivariance error can increase mildly. In the
default setting, the percent increases from 0.1% to 0.3%. This is explained by a plateau in the
equivariance error while the twirled prediction error continues to decrease (Fig. 2C).

* Typical models converge to being nearly equivariant, with percent validation loss from
equivariance error under 0.1%. The exception is training on 500 or 5k examples only: equiv-
ariance error continues to increase as training progresses, whereas equivariance error decreases in
the long-term for larger training set sizes (Fig. 2D, Supp. Fig. 6).

3.2 Flow matching with Proteina

We trained Protefna at 60M without triangular attention and 400M with triangular attention on the
full Protein databank (PDB) dataset with 225k training examples. We also trained models on 1%
of the PDB with 2k examples and 0.1% with 200 examples. Flow matching trains a model jointly
over t, flow matching time, ranging from ¢ = 0 for noise and ¢ = 1 for data. We measure metrics
att = 0,0.2,0.4,0.6,0.8,0.9,0.95, and 0.99, and use red colors for high ¢ close to the data, and
blue-purple colors for low ¢ near noise in Figure 3. We observe the following:

* The equivariance learning dip occurs early for all #, in a manner robust to training set size
and model size. Following the dip at 1k-10k training steps (Fig. 3A), low t (closer to noise) are
more equivariant, while high ¢ (closer to data) are less equivariant, with spikes to 10% validation
loss from equivariance error for ¢ € [0.8,0.9,0.95]. This holds for the 400M model (Fig. 3E),
and 60M model trained on 1% and 0.1% of the PDB (Fig. 3F-H). The dip occurs 4% through one
epoch when trained on the full PDB, but occurs around epoch 53 when trained on 0.1% of the
PDB.

* After training, the model is approximately equivariant for all ¢, but less so around ¢ = 0.9.
After one million training steps, the percent validation loss by ¢ is plotted in Fig. 3B. The percent
loss peaks at t = 0.9 at 6%, and is relatively lower at the extremes ¢ = 0.99 at 3% and ¢t = 0 at
0.04%. Task difficulty (measured by MSE loss) is harder at lower ¢ (Fig. 3C), so ¢ = 0.9 obtains
low absolute equivariance error (Fig. 3D), but also low twirled prediction error.
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Figure 2: Training dynamics of learning equivariance in EScAIP (Force field prediction). (a-c) Validation
losses and percent validation loss from equivariance error during training, early in training (a), with log-log
axes (b), and decomposed into separate terms (c). (d-f) Impact of varying training set size (d), model size (e),
and optimizer or learning rate (f).
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Figure 3: Training dynamics of learning equivariance in Proteina (Flow matching). Colors indicate flow
matching time, with noise at ¢t = 0 and data at ¢ = 1. (a) Percent validation loss from equivariance error
during training. (b) Bar plot of the percent validation loss from equivariance error, by flow matching time, at a
final checkpoint after 1M training steps. (c-d) Validation losses by training step. (e-h) Impact of varying
model size (e), training set size (f-h).

3.3 Denoising voxelized atomic densities with VoxMol

We trained VoxMol 111M on GEOM-drugs, a dataset of 3D structures of drug-like molecules with
1.1M training examples. We also trained models on 1% (11k), 10% (110k), 25% (275k), and 50%
(550k) examples, and and models of varying size: full (111 M parameters), small (28 M), and tiny
(7 M).. We observe:

* The equivariance learning dip occurs early for all ¢, in a manner robust to training set and
model size. Across the training set sizes, all models rapidly reduce their percent validation loss
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Figure 4: Training dynamics of learning equivariance in VoxMol (Denoising voxelized atomic densities). (a)
Percent validation loss from equivariance error during training. (b-c) Validation losses by training step.

from equivariance error from an initial 60% to 3% or less within 1k-10k training steps (Fig. 4A-B).
At 50k training steps, models have around 5-10% validation loss from equivariance error. Beyond
50k training steps, the twirled prediction error continues to decrease while the equivariance error
plateaus, or decreases more slowly, below 1le-5 (Fig. 4C).

4 Learning Dynamics when Lequiy < Lmean

Our empirical results revealed a two-phase learning process, starting with a rapid initial reduction in
equivariance error. What happens once the model is approximately equivariant, i.e., when Lequiy <
Lmean? In this section, we investigate the implications this has on learning dynamics, focusing on
three fundamental quantities illustrated in Figure 5: the relative magnitudes of the loss components
(Lequiv V8. Limean), the norms of their respective gradients (||V Lequiv|| 8. ||V Lmean||), and the model’s
parameter deviation from the subspace of perfectly equivariant functions (f¢ ). By analyzing this
interplay, we characterize the second stage of learning, which we call stochastic equivariant learning
dynamics.

»Cequiv(a) VS. »Cmean(e)

IV Lequiv(0)]] V8. [V Lincan(6) |

Figure 5: Diagram of theoretical relationships studied here.

‘We summarize our results as:

* Props. 2, 3: Under mild conditions, we prove lower bounds on the gradient purity in terms of the
loss ratio. As the loss ratio shrinks, the worst possible gradient purity increases, so that learning
gradients focus more on Lyeqn.

* Props. 4, 5: We show that ||f¢ | || has a quadratic relationship with Lequiv(#) for ESCAIP, a modern
graph transformer architecture.

* Prop. 6: We show that when ||0¢ || is small, ||V Lequiv(6)|| cannot be too large.

Due to space constraints, we relegate our analysis to the appendix.

5 Discussion

In this work, we found that 3D-rotational equivariance is learned easily and quickly. We described
a two-phase learning dynamic: initially, model rapidly learn equivariance. This occurs because
learning equivariance is an easier task, with a smoother and better-conditioned loss landscape, than
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the main prediction task. We then theoretically analyzed learning dynamics for nearly equivariant
models. After training, the final percent loss from equivariance error is small for all models, but it
is notably smaller for EScAIP at 0.006% than for Proteina and VoxMol (j 5%). While all of these
loss penalties are small, and easily remedied by test-time postprocessing techniques like twirling or
input frame canonicalization, this observation may also motivate research on architecture design to
narrow this gap.

Intriguingly, equivariance is learned rapidly despite significant differences in model architectures.
EScAIP is “nearly equivariant”, as it becomes exactly equivariant with only a small change to its
final linear head, yet its initial dip occurs just as quickly as Proteina and VoxMol, which are distant
from being architecturally equivariant. It is also interesting that each model’s latents learn (or fail to
learn) to respect symmetries in different ways.

Our work establishes a principled and unified framework for quantifying equivariance error in rela-
tion to the loss. We focused our empirical study on 3D rotations, as this is a physically important
symmetry group for biomolecules, but other symmetry groups may be easier or harder to learn.
Looking forward, our framework could be used to study the learning dynamics of equivariance on
other symmetry groups.
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A Appendix

A.1 Related Work

Prior work have measured learned equivariance with a wide variety of approaches (15; 13; 10; 24;

; 20; 7), but to our knowledge, this work is the first to derive a measure of equivariance error that is
interpreted as a percent of loss. Notably, many prior measures effectively estimate equivariance error
as a pairwise deviation using only two samples per datapoint, whereas we estimate variance around
a mean using enough samples of the twisted prediction as necessary to obtain stable estimates. (27)
use the variance of the normalized twisted prediction, but this is not interpretable as a percent of
loss. They study flow matching, but their metric conflates task difficulty, which gets easier as ¢t — 1,
with equivariance error. We correct for this issue, and find that ¢ = 0.9 is the most problematic time
for non-equivariance, whereas they find ¢ = 0.5 instead. (3) find that relaxing architectures from
exact equivariance improves loss landscape conditioning and achieves better loss than perfectly
equivariant architectures on image super-resolution and fluid dynamics modeling.

A.2 Parameter space decomposition

Here, we describe in greater detail (18)’s mathematical framework for analyzing the geometry of
neural network parameters in terms of equivariant and non-equivariant parameter subspaces.

The foundation of this framework is the representation of a network’s parameters in all of its linear
layers as a point in a high-dimensional vector space, denoted H. This captures the dominant set
of learnable parameters when non-linearities are fixed. The space is formally constructed as the
direct sum of the parameter spaces for each individual layer: H = €, Hom(X;, X;11). Specific
network architectures are assumed to have parameters in an affine subspace £ C H, referred to as
the space of “admissible layers”. This setup is shown by construction to be expressive and capable
of describing many modern neural network architectures and operations, including fully connected
layers, convolutions, residual connections, and attention layers.

To define equivariance for a multi-layer network, the framework supposes that the symmetry group
G acts on all input, hidden, and output spaces (Xo, X1, ..., X1,) through a series of representations,
pi. With this setup, the set of all parameter configurations where each linear layer is individually
equivariant forms a linear subspace of H, denoted H¢. This set is a linear subspace because the
group actions p;(g) is a linear operator, which means any linear combination of equivariant linear
maps remains equivariant. For instance in the setting of rotations on 3D molecules, consider a linear
layer with matrix A with a rotation matrix R — if it is equivariant, we have ARr = RAxz. If Aand B
are both equivariant to R, then C' = ¢; A+ co B is also equivariant to R: RCx = R(c; A+ coB)x =
(c1A + c2B)Rx = CRx. Hg is thus a linear subspace that is closed under addition and scalar
multiplication.

Algebraic manipulations show that 7'C;x = C;Tx, using:

TCix =T(c14; + c2B;)x
=c1ATr + coB;Tx
= (1 Ai + c2B;)Tx
=C/Tx

This subspace’s linearity follows from the group’s actions being linear transformations.

The parameters that are both architecturally admissible and perfectly equivariant then lie in the
intersection of these spaces, & = £ N H¢. It further follows that if non-linearities are equivariant,
which is true for the common case of nonlinearities applied element-wise, then the entire neural
network function is equivariant when its parameters are in £.

This geometric structure guarantees that any admissible parameters ¢ in £ can be uniquely decom-
posed via orthogonal projection into two components: § = 8¢ + 6, . This is possible because H
being an inner product space allows for a unique projection onto the tangent space of the subspace £.
The component 8¢ is the projection of the parameters onto the subspace of equivariant functions (&),
while f¢ is the component in the orthogonal complement of this subspace, representing deviation
from perfect equivariance.

12



393

394

395

396

397
398

399

400
401
402
403
404

406
407
408

409
410

411
412

413

414
415
416
417
418
419

420
421
422

423
424
425
426

427
428

B Theoretical Analysis of Learning Dynamics when Lequiv < Lmean

B.1 Smaller loss ratios imply purer learning gradients

Under MSE loss, our loss decomposition also applies to gradients:

VL(EO) = VLnean(8) + V Lequiv(0) (7

Denote the relative loss ratio from equivariance error as:

A ﬁe uiv 0

This quantity is closely related to the percentage of total loss from equivariance error (which is

%9()9)). As €(0) shrinks, it is plausible that V Lypean(6) can increasingly dominate V.£(#), so that

we have VL(0) = VLyean(0).

We will formalize this gradient alignment in terms of €(6) in a two-stage analysis. To gain theoretical
insights into the optimization dynamics, we study the ideal, full-batch gradients including exact
expectations over the symmetry group. First, we derive a general result that holds everywhere in
parameter space but can be vacuous near critical points. Second, we show a result that holds near
global optima. Importantly, we show both results in mild conditions that hold for typical deep neural
networks. Together, these results show that broadly, when €(6) becomes smaller, learning gradients
on the total loss become increasingly pure towards the group-averaged prediction task, indicating
that non-equivariant models increasingly adopt equivariant learning dynamics as their approximate
equivariance improves.

Our first result relies only on a mild smoothness assumption on the loss ratio ¢(6), a condition
satisfied for typical neural networks.

Proposition 2. Let ¢(0) be M.-smooth. For the MSE loss, the approximation VL(0) = ¥V Lyean(0)
holds with relative error bounded by:

HV‘C<9) — v‘cmean(e)” M c
Vora® = O F Wyt V2 Me® ©

Proof. Provided in D.2 O

In well-behaved regions where the gradient norm ||Lpean(0)|| is large (i.e., where learning does
not plateau or stall), when ¢(6) becomes small, the learning gradient becomes increasingly pure at
focusing on the group-averaged learning task. While this upper bound holds globally, it becomes
less meaningful near saddle points of Lyean Where the loss value can be large, but the gradient norm
can become very small. In such situations, when ¢(6) # 0, the equivariance error gradient can assist
in escaping these undesired saddle points or suboptimal local minima of £ean.

In the basin of attraction of global optima where L yean(6) = 0, we can derive another bound on the
learning gradient purity. This bound also relies on mild assumptions satisfied by typical deep neural
networks, and avoids the coefficient that explodes when || Lyean ()] — 0.

Proposition 3. Let the model fy be a deep neural network constructed from analytic activation
Sfunctions, and let the data distribution p(x,y) have compact support. In the basin of attraction of a
global minimum 6* where L0, (0*) = 0, for the MSE loss, the approximation ¥V L(6) = V L eqn(6)
holds with relative error bounded by:

HVﬁ(@) — v‘cmean(e)H < /% . LequiV(e) (10)
||v£mean(9) ” - c Lnean (g)a
where M is the resulting smoothness constant of L.quiv(8), and ¢ > 0, o € [1,2) are the constants
of the Kurdyka-Eojasiewicz (KL) inequality that L,..,(0) is guaranteed to satisfy.
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Proof. Provided in §D.3. O

Experimental validation. Our theory suggests that when the loss ratio is small, the gradient norm
ratio is also small. We empirically investigated this and found strong log-log correlations of Pearson
R =0.75 over training in EScAIP, and R = 0.41 to 0.90 for Proteina at ¢ > 0.2. The only exception
was Proteina at ¢ = 0, which had negative correlation of -0.32.

B.2 Parameter space decomposition

In the proceeding analysis, we adopt (18)’s mathematical framework for analyzing neural network
parameters in terms of equivaraint and non-equivariant parameter subspaces, which enables express-
ing parameters into orthogonal components: § = 0¢ + 0¢ . In this framework, the total parameter
space of a neural network is shown to have a subspace £ corresponding to perfectly equivariant func-
tions. It is shown that under mild conditions, the total parameter space is an inner product space,
and £ is a linear subspace, which together enable the orthogonal decomposition § = ¢ + 6¢ ;. This
framework is shown to apply to a broad class of modern neural network operations and architec-
tures, including fully connected layers with non-linearities, convolutions, residual connections, and
attention layers. It also includes a broad class of symmetry groups including SO(3) and all groups
studied in this work. We provide more detail in §A.2 and refer the interested reader to (18).

B.3 Relating equivariance error to the deviation from equivariant parameter subspace

We will study the relationship between Lequiv and ||f¢ 1 ||. In general for neural networks, Lequiy is a
complex, highly non-linear function of # = 0¢ +0¢ | . However, we know that L.q, is non-negative,
continuous, and equal to zero iff fg; = 0. By these properties, we know that if ||0g_ || is small,
then Lequiv is small. More formally, for any € > 0, there exists a > 0 such that if the parameter
deviation is small (|| 1 || < J), then the equivariance error is also small (Lequiy < €).

We will be able to make a stronger statement specifically for the EScAIP architecture, a modern
graph transformer architecture that achieved strong results on NNIP energy and force prediction
tasks (24). The EScAIP architecture uses rotation-invariant features derived from an input molecu-
lar graph. Its hidden representations for atoms and edges, denoted h, are rotation-invariant through-
out the network. Force prediction outputs a 3D force vector at each atom in a molecule. For a single
atom with a set of 3D edge vectors E (the vectors pointing from one atom to another atom) in a
molecule x, EScAIP predicts force vectors as:

0z e - WxTh(e, x)
oy| = Z ey - WyTh(e, x) (11)
(073 ecE L€z - WzTh(ea X)

where e € R?, h(e,x) € R" is the last hidden representation of the edge e in molecule x, and
W = [wy, Wy, w,], where each w € R”, are the parameters for a linear head with no bias. The
3D edge vectors e are rotation-equivariant with respect to the input molecule, while the hidden
representation h(e) is rotation-invariant to the input molecule, but composing these to form the
output prediction generally breaks both invariance and equivariance.

In particular, force predictions are equivariant if and only if the scalar projections of the hidden
features are independent of the coordinate axis, i.e., wxTh(e,x) = wy,Th(e,x) = w,Th(e, x),
for all inputs. Under the mild assumption of a non-degenerate learned embedding function h(e, x),
such that the set of all possible hidden vectors spans the feature space, this condition holds if and
only if the parameter vectors themselves are identical: wx = w, = w,. This condition defines
the subspace £ for the EScalP architecture. Using this, we decompose W = W + W¢ with an
equivariant part We = [w, w, w] € £ where w = £(Wx + Wy + W), and a non-equivariant part
Wei = [d;,dy,d.] € £L where d, = wyx — w, and same for y, 2.

With this setup, we can now establish that the equivariance error of the EScalP architecture has a
quadratic relationship with the magnitude of the parameter deviation from &, the space of perfectly
equivariant functions.

Theorem 4. For the EScAIP architecture trained with mean-squared error loss on a non-degenerate
dataset, for any fixed set of upstream parameters 0 \ W, there exist positive constants 0 < \yin <
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Amax (Which depend on the model architecture, data distribution, and other parameters 6 \ W) such
that:

Mnin * [We L |3 < Leguiv(0) < Aar - [[Wer |5 (12)

Proof. Provided in D.4. O

We can generalize the preceding analysis to a broader class of neural networks. Applying a Taylor
expansion to Lequiv(6) for the neural net f on an input x, we have: f(x;0g + 0g1) = f(z;6g) +
Joe, f(z30g) - 01 + O(]|01||?) where Jo, | f(x;0¢) is the Jacobian of the network output with
respect to parameter components ¢ | , evaluated at f¢. The key structure, analogous to the EScAIP
argument, is the decomposition of the neural net output into a purely equivariant term, and a term
linear in ¢ , as well as a remainder term in this setting. With this setup, for a broad class of neural
network architectures, we can relate locally near £ that Leqyy is quadratic in ||f¢ 1 || (Thm. 5), and
its grad norm is linear in ||f¢ | || (Thm. D.6).

Theorem 5. For any neural network whose parameters can be expressed as 0 = Og + 0¢ with
O € € and Og1 € EL, and for equivariance error Leq., defined by the variance of the output
with respect to transformations, there exist positive constants 0 < Amin < Amaz Such that for a

non-degenerate dataset, using || - || to denote Lo-norm:
M| L1 + Ol LIIP) < Lequiv(0) < Mnaclife L] + O L]*) (13)
Proof. Provided in D.5. O

Theorem 6. Under the same conditions as Thm. 5, the norm of the gradient of the equivariance
loss with respect to the non-equivariant parameters is bounded by the deviation itself. Specifically,
there exists a constant C' such that:

||v05¢£eqtliv(9)” <C- ||‘95J-H

Proof. Provided in D.6. O
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matching time. Colored line indicates smoothed exponential moving average, colored by training step.

D Proofs

D.1 Proof of Proposition 1

Proposition. Ifl(z,y) =

18

|z — y||? is mean-squared error, then the total loss decomposes as:
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D
E(f) = EI,U[Z(M(m)7 y)] + %Ez,y lz Va”T[(T_1 °© f o T) (‘r)z] (14)

L i=1
prediction error

equivariance error

Proof. For mean-squared error, the Hessian is constant: H;(z,y) = %I where [ is the D x D iden-
tity matrix. Furthermore, higher-order derivatives are zero, so the decomposition has no additional
terms. The equivariance error simplifies as:

;%4u«;0cwﬁqﬂzé&“m®wph] (15)

D.2  Proof of Proposition 2

Proposition. Let ¢(6) be M.-smooth. For the MSE loss, the approximation VL(0) = ¥V Lyean(0)
holds with relative error bounded by:

||V£(9) - vL:mean(g) || ['mean(g)

Vra® = T L peantn] VM (19
Proof. The total loss gradient is £(0) = (1 + €(8)) Lmean(0).
VL) = V(1 + €(6)) Lmean(6)] an
= Ve ( ) mean(e) ( ( ))VEmean(o) (18)
V£(9) - Vﬁmean( ) = ( ) mean(e) + Emean( )VE(G) (19)

Now, we bound the norm of this difference using the triangle inequality:
||V£(9) - vﬁmeam(e)” < 6(G)HV*Cmean(e)” + Cmean(9)||V€(9)|| (20)
Using the smoothness assumption that ||e(0)|| < 1/2M.e(6), we obtain the final result:

[VL(O) = V Linean(0) |
IV Linean () |

Emean(o)
IV Linean (0)]]

<e(0) + 2M,e(6) 1)

D.3 Proof of Proposition 3

Proposition 7. Let the model fy be a deep neural network constructed from analytic activation
functions, and let the data distribution p(x,y) have compact support. In the basin of attraction of a
global minimum 6* where L04,(0*) = 0, for the MSE loss, the approximation V L(6) = V L eqn(0)
holds with relative error bounded by:

‘ ‘ Vﬁ( ) vAcmean equlv
<4 / 22
| | VEmean mean ( )

where M is the resulting smoothness constant of L.quiv(8), and ¢ > 0, o € [1,2) are the constants
of the Kurdyka-Eojasiewicz (KL) inequality that L,..,(0) is guaranteed to satisfy.
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Proof. The network fy is a composition of analytic functions, making it analytic in 6. Further, the
loss functions Lequiv, Lmean Preserve analyticity. Thus, both are also analytic functions of 8. Lequiy
is thus M -smooth for some constant M in any compact parameter set. A foundational result states
that any real-analytic function satisfies the Kurdyka-Lojasiewicz inequality (14; 4). From the M-
smoothness Of Lequiv(6), we have: ||V Lequiv(0)||* < 2M - Lequiv(f). From the KE condition on
Linean(0), we have: ||V Lmean(0)]|? > ¢+ Limean(0)® for some constants ¢ > 0 and « € [1,2) in the
basin. The result follows from combining these properties. O

D.4 Proof of Proposition 4

Theorem. For the EScAIP architecture trained with mean-squared error loss on a non-degenerate
dataset, for any fixed set of upstream parameters 0 \ W, there exist positive constants 0 < \pin <
Amax Such that:

)\min : HWEL”% < Eequi\/(a) < )‘max : ||W5L||%“ (23)

Remarks. The constants Ay, and Ay.x depend on the model architecture, data distribution, and
other parameters § \ W.

Proof. For a molecule z, the k-th component of the predicted force vector decomposes into a sum
of contributions from Wg and Wg¢ | :

op(m; W) = e (w'h(e)+ Y ey (dih(e)) (24)
ecE ecE
Ocq,k(x;We) Aoy (z;We 1)

where the final hidden representation h depends on 6 \ W, the set of upstream parameters. Recall
the equivariance error from Proposition 1, and observe that the variance of o, = 0. + Aoy, depends
only on Aoy, as o, is equivariant by construction. Thus, the equivariance error of the entire model,
for a fixed set of upstream parameters and expressed as a function of the force prediction head
parameters, is:

»Cequiv(g) = Em,T [HAO(T{E, ng_) - ET/ [AO(T/(E; WSJ_)]Hz}

Now, let us denote: g(T,z,We,) =T 1Ao(Tz; Wg, ). Observe that this function g is linear in
our deviation parameters W¢, . By vectorizing the i x 3 parameter matrix Wg, into a 3k x 1
column vector p = vec(Wg_ ), we can express this linear relationship as a matrix-vector product,
for some matrix My, with shape 3 x 3h: ¢g(T,z,Wg1) = My p. Similarly, the rotation-
averaged prediction §(z; Wey) = Ep[g(T,z, We )] is also a linear function, so we associate it
with the matrix M. The equivariance error term with these linear matrix forms is:

Eorlllg(T, 2, We 1) — gz, We1)||?) = pTOp (25)

where the matrix Q = E, r[(Myr , — M,)T (M, — M,)]. Finally, observe that Q is positive defi-
nite, as the as equivariance error is strictly positive on a non-degenerate dataset whenever We | # 0.
By the properties of a positive definite matrix, the quadratic form pT Op is lower-bounded by the
smallest eigenvalue of Q, denoted A, (Q), which is positive. It is also upper bounded by the

largest eigenvalue ;4. (Q). This establishes the quadratic relationship on the equivariance loss as
stated in the theorem.

O
D.5 Proof of Proposition 5

Theorem. For any neural network whose parameters can be expressed as 0 = 0g+0¢ | withfg € £
and Oc | € E1, there exist positive constants 0 < Amin < Amaz Such that for a non-degenerate
dataset:
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Min|Og 1153+ 00 113) < Loguiv(0) < Anax|021]3 + O(|0e1|3) (26)

Proof. Applying a Taylor expansion to Lequiy (€) for the neural net f on an input = around equivariant
parameters 6¢, we have:

f(@;0s +0c1) = f(2;08) + Jop, f(2302)0c1 + O(||01|?) (27

where Jy,, f(x;0g) is the Jacobian of the network output with respect to parameter components
Oc 1 , evaluated at f¢. As before, the term f(x; 0¢) is equivariant by construction, and thus drops out
of the equivariance error term. The term Jy,. | f(x;0¢)0¢ is linear in 6¢ , which creates a quadratic
dependence on 0¢ | in the variance term in Lequiy-

The deviation from the twirled mean is the difference between the canonicalized prediction and its
average over transformations. Let’s expand this difference:

(T_1 ofoT)(x;0) — u(x;0) = (T_1 ofoT)(x;0) —Ep [(T/_1 ofoT)(z;0)] (28)

Substituting the Taylor series and using the equivariance of f(x;0¢):

= (f(x;0g) + [T J0e 1 f(T(2); 0¢)]0s L + O(|01[%))
|

)
—Ep [f(z;0g) + [T J0e L f(T' (2); 95)]9u+0( 0c11%)] (29)
O¢)]

= (T_nggLf( (x);0¢) — ET/[T/ 1J9[-:J_f )ggj_ + O( |0$J_| ) 30)
Let Ad,r £ T g, f(T(2);0g) — Eq/[T'~ lJg“f( '(x);0¢)]. The expression becomes
Ay 0e1 +O(|0e1]?)
1 2\(2
Lequiv(0) = EEx,T ATz - 0L 4+ O(10s %) (31)
1
= 5Eer [[ATer 01 [* + 2(Ad0r - 0e1) Ol L") + 010 L)1) (32)

The orders of the terms are:

* |ATz7 - Oe1|*is O([|0s L[%).
* The cross-term is O(||0z L ||) - O(|0e L [|?) = O([|0cL|?).
s The final term is (O(||0g1||?))? = O(||0e 1 ||*).

We will study the leading term, which is quadratic in 6, and subsume the remainder into
O(||0s1]|?). As AJ, 7 is a linear function, we can define a matrix O that represents the aver-

aged outer product of the Jacobian deviations: O £ LE, 7 [(AJ,,1)" (AJ,,7)]. The equivariance
error can now be expressed concisely:

Lequiv(0s + 0g1) ~ 0%, Qb1 (33)

The matrix Q is positive definite for a non-degenerate dataset when g, # 0. Using the Rayleigh-
Ritz theorem, this quadratic form is thus bounded by the smallest and largest eigenvalues:

)\min”eSLH% S egLQGEL S AmaxHeé‘Lng

Reincorporating the remainder term in our Taylor expression, we arrive at:

)\min|9£L|§ + O(\agﬂg) S Eequiv(e) S >\max|0£L|§ + O(IQELB) (34)
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D.6 Proof of Proposition 6

Theorem 8. Under the same conditions as the Taylor expansion theorem above, the norm of the
gradient of the equivariance loss with respect to the non-equivariant parameters is bounded by the
deviation itself. Specifically, there exists a constant C' such that:

IVoe  Lequv(@)]| < C - [0 L]l

Proof. From previous theorems, we know Eeguiv(ﬂ) ~ pTQp, where p = vec(f¢ ). The gradient
of a quadratic form is linear: VpLequiv = 2Qp. Taking norms, we get ||VpLequv|| = [29p] <
2|1Qlllp||- Setting C' = 2,44 or 2|| Q|2 gives the result. O

E Code Availability, Methods & Experimental Details

Code repository for this project: jtbd; Our code repositories are minor modifications on the orig-
inal codebases. We added callbacks to track metrics during training, added configuration files for
controlling training, and added helper scripts for computing and plotting some metrics.

E.1 EScAIP

We trained EScAIP 6M on a subset of SPICE with 950k training examples used by (24) for 30
epochs with batch size 64. SPICE is a dataset with of small molecule 3D conformers with energies
and forces computed by quantum-mechanical density functional theory (5). We varied model size
from 1M, 4M and 6M, varied training set size from 950k, 50k, 5k, and 500 (with batch size 1), and
varied the optimizer or learning rate. The model predicts a 3D force vector for each atom based on
density functional theory, mapping an input molecule with N atoms to an output in R3Y . This task
is physically equivariant to the special orthogonal group SO(3) acting on atom coordinates in R3.

We follow the same training recipe as the original repository, which does not use data augmentation.
We suspect that data augmentation is not as important for ESCAIP because it operates on rotation-
invariant features.

For further details and configuration files, please refer to our code repository.

E.2 Proteina

We trained Proteina at 60M without triangular attention and 400M with triangular attention on the
full Protein databank (PDB) dataset with 225k training examples. We also trained models on 1%
of the PDB with 2k examples and 0.1% with 200 examples. Flow matching trains a model jointly
over t, flow matching time, ranging from ¢ = 0 for noise and ¢ = 1 for data. We measure metrics
att = 0,0.2,0.4,0.6,0.8,0.9,0.95, and 0.99, and use red colors for high ¢ close to the data, and
blue-purple colors for low ¢ near noise in Figure 3. The model learns to approximate the velocity
field of a probability flow that transforms random noise into structured protein backbones. For
a molecule with [NV alpha carbon atoms, the network maps noised atom coordinates and a time
t € [0,1] to a velocity vector in RN, The learning task is made rotationally equivariant through
data augmentation, aligning it with SO(3) acting on atom coordinates in R3.

For further details and configuration files, please refer to our code repository.

E.3 VoxMol

Following (23), we represent each molecule using a 3D voxel grid by placing a continuous Gaussian
density at each atom’s position. Each atom type is assigned a distinct input channel, producing a 4D
tensor of shape [c X | x [ x [], where ¢ denotes the number of atom types and [ is the edge length of
the voxel grid. The voxel values are normalized between 0 and 1.

The denoising task arises from the use of walk-jump sampling for generating molecules (25).
This uses a two-step score-based sampling method. The “walk” phase involves running k steps
of Langevin Markov chain Monte Carlo on a randomly initialized noisy voxel grid, simulating a
stochastic trajectory along a manifold. The “jump” phase applies a denoising autoencoder (DAE) to
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clean up the noisy sample using a forward pass of the trained model at step k. The DAE is trained
on voxelized molecules corrupted with isotropic Gaussian noise, with a mean squared error (MSE)
loss between prediction and ground truth. WIS provides a fast alternative to diffusion models by
requiring only a single noise and denoise step (23; 19).

Architecture The VoxMol architecture is based on a 3D U-Net with convolutional layers spanning
four resolution scales, and includes self-attention modules at the two coarsest levels (23). During
training, data augmentation is performed by applying random rotations and translations to each
sample. For further architectural and training details, refer to Pinheiro et al. (23).

Measuring whether latent representations learn to respect equivariance To evaluate whether
VoxMol learns equivariant latent features, we analyze cosine similarity between latent embeddings
under two scenarios.

First, we examine representations of the same molecule under rotation. Let x be a molecule and Ry
a discrete rotation operator (e.g., 90° around an axis). Using the encoder ¢(-) € REXPXHXW ith
C = 512 and spatial dimensions 8 x 8 x 8, we define the spatially pooled latent vector:

We then compute:

SiMgme = COS (QZ)(Rk (%)), Rk(q_b(x)))

This measures whether encoding a rotated molecule is equivalent to rotating the latent vector of the
original input—a key signature of learned equivariance.

Second, to obtain a baseline, we compute cosine similarities between embeddings of randomly
selected different molecules:

simgir = cos (¢(x;), d(x;)), withx; # x;

We compute these metrics across 1000 molecules for various rotation angles along all three axes.
Cosine similarities are calculated over the 512-dimensional latent vectors and visualized using violin
plots to capture the distributional differences in Figure 9.

Findings. Cosine similarity between rotated versions of the same molecule tends to decrease as
rotation angle increases, reflecting imperfect latent equivariance. While same-molecule embeddings
remain more similar to each other than to embeddings of different molecules, the overlap between
their distributions grows with rotation. This suggests that although the encoder partially preserves
geometric structure, the latent space does not fully achieve rotation equivariance, indicating potential
for improved regularization or architectural design.
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Cosine Similarity of Latent Embeddings
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Figure 9: VoxMol: Cosine similarity of molecule latent representations with different rotations. X, y, z indicate
rotation axes, and numbers 0, 0.5, 1, 1.5, 2 correspond to 0, 90, 180, 270, 360 degrees of rotation. The last
column depicts cosine similarity between different molecules.

E.4 Metrics

To compute equivariance error, twirled prediction, error, percent MSE loss from equivariance error,
and gradient norms, 10 rotations per sample were used in EScAIP and Proteina. This number was
found to be sufficient to provide a stable signal for metrics which was robust to randomness and
resampling. For EScAIP, these metrics were computed on the first four (fixed) validation batches
with batch size of 16, for a total of 64 samples. For Proteina, these metrics were computed on the
first eight (fixed) validation batches with batch size of 3, for a total of 24 samples. The total MSE
loss on these subsets was indicative of the total validation MSE loss, indicating these sample sizes
were sufficient to provide a stable and representative signal for these metrics.

To plot the loss landscape, we selected a subset of parameters in each architecture. For EScAIP,
we used the final FFN (with a non-linearity) and the final linear head, for a combined total of
33k parameters. For Proteina, we used the final linear head with 1.5k parameters. We computed
the Hessian of this parameter subset for the total MSE loss using one fixed training batch with
ten rotations. We then performed eigendecomposition of the total MSE loss Hessian to find the
eigenvectors for the largest positive eigenvalue, and minimum positive eigenvalue, which formed
the two axes for plotting the loss landscape. We selected a step size approximately 2-3x the training
step size at that checkpoint, which is estimated by multiplying the training learning rate with the
total parameter gradient norm at that checkpoint. We then create a 2D grid of perturbations to the
parameter subset, and compute Lpean and Lequiv at each point on the grid. Importantly, the axes and
the step size are the same for both Lpean and Leguiv-

To compute the condition numbers, we computed the Hessian of the same parameter subsets for
Lmean and Lequiy separately, and performed eigendecomposition on them separately. We reported
the condition number as the ratio between the largest positive eigenvalue and the minimum positive
eigenvalue.

E.5 Loss Landscape Analysis

To better understand the initial dip, we studied loss landscapes for Lpean and Lequiv at early check-
points (500 steps). We computed the Hessian of each loss on a training batch for a subset of 33k
parameters including non-linear layers for EScAIP, 1.5k parameters in Proteina’s linear head, and
6.9k parameters in a final layer of VoxMol. For EScAIP, we measured condition numbers of 1e9
for Liyean and 1e6 for Leqiv (1,000x smaller). For Proteina, we measured 2e10 for Lyean and 1e8
for Lequiv (100x smaller). For VoxMol, we measured 5¢9 and 6e8 respectively (10x smaller). We
calculate condition numbers for Lyean and Lequiv using the largest positive and smallest positive

24



676
677
678
679

eigenvalues for each loss. For loss landscape plotting, we chose two axes for plotting using the
largest positive and smallest positive eigenvector on the total loss, and used the same step size and
grid for Liyean and Lequiv. In both models, we find that L.q, has a substantially smoother loss

landscape than Lyc,, (Fig. 1C).
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