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Abstract

Video diffusion models are able to generate high-quality videos by learning strong
spatial-temporal priors on large-scale datasets. In this paper, we aim to investi-
gate whether such priors derived from a generative process are suitable for video
recognition, and eventually joint optimization of generation and recognition. Build-
ing upon Stable Video Diffusion, we introduce GenRec, the first unified frame-
work trained with a random-frame conditioning process so as to learn generalized
spatial-temporal representations. The resulting framework can naturally supports
generation and recognition, and more importantly is robust even when visual in-
puts contain limited information. Extensive experiments demonstrate the efficacy
of GenRec for both recognition and generation. In particular, GenRec achieves
competitive recognition performance, offering 75.8% and 87.2% accuracy on
SSV2 and K400, respectively. GenRec also performs the best on class-conditioned
image-to-video generation, achieving 46.5 and 49.3 FVD scores on SSV2 and
EK-100 datasets. Furthermore, GenRec demonstrates extraordinary robustness
in scenarios that only limited frames can be observed. Code will be available at
https://github.com/wengzejia1/GenRec.

1 Introduction

Diffusion models have achieved significant success in the field of image and video generation over
the past few years. A variety of generative tasks have been revolutionized by using diffusion models
trained on Internet-scale data, such as text-to-image generation [33, 30], image editing [23], and more
recently, text-to-video generation [15, 2, 52] and text&image-to-video generation [56, 18, 21]. The
excellent generative capabilities of diffusion models suggest that informative representation is learned
during the generative training and strong visual priors are captured by the backbone models [9,
43, 6]. Therefore, recent work has explored leveraging the image diffusion models for image
understanding tasks, including image recognition [9, 8], object detection [7, 57], segmentation [55]
and correspondence mining [39]. However, the capability of video diffusion models to effectively
capture spatial-temporal information is not fully understood, and their potential for downstream video
understanding tasks remains under-explored.

In this paper, we study the potential of video diffusion models [28, 1, 27], particularly the uncondi-
tioned or image-conditioned models, for video understanding by addressing the three key problems:
(a) Does the backbone model trained for video generation extract effective spatial-temporal represen-
tations for semantic video recognition? (b) Can we retain the video generation capability by jointly
optimizing generation and recognition? (c) Will such a unified training framework further benefit
video understanding, especially in noisy scenarios where only limited frames are available [3, 25].
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Figure 1: Comparison of classical pipelines for video classification and generation tasks with our
proposed GenRec method. (a) Classification: Typical video classification focus on understanding
complete videos. (b) Diffusion Generation: Diffusion models learn the noise reduction trajectory
from videos with varying levels of noise. These two distinct training paradigms present challenges
for task unification. To bridge this gap, we propose (c) GenRec: a learning framework that processes
mask frames VM using a masking function M(·) and noise videos Vσ with noise sampling N (·, σ),
aiming to simultaneously learn video understanding and content completion with the same partially
observed visual content.

While conceptually appealing, unifying video generation and recognition into a diffusion framework
is non-trivial. Prior work either views the diffusion models as frozen feature extractors [9, 55, 39],
or deconstructs them for new tasks while sacrificing their original generation capability [8]. One
major challenge comes from their distinct training and inference processes. Diffusion models are
typically optimized using corrupted inputs, optionally augmented with a single conditioning frame, to
achieve unconditioned or image-conditioned generation during inference [27, 1]. In contrast, video
recognition models require access to multiple frames to reason about temporal relationships and
expect clean inputs during inference [49, 51, 48]. Consequently, training a recognition model using
corrupted videos and single-image conditions tends to suffer from inferior model optimization and a
more significant training-inference gap.

To this end, we propose GenRec, a unified video diffusion model that enables joint optimization for
video generation and recognition. Our model is built upon the open-source, image-conditioned Stable
Video Diffusion model (SVD) [1], which encodes strong spatial-temporal priors by pretraining on
large-scale image and video data. However, instead of conditioning on the same image across all
video frames, we propose to condition on a random subset of frames while masking the remaining
ones (see Figure 2). This simple random-frame conditioning process effectively bridges the gap
between the learning processes of the two tasks. On the one hand, the generation capability of SVD
is extended to handle arbitrary frame prediction, which provides more flexible and unambiguous
video generation. On the other hand, conditioning on a random subset of frames allows the model to
learn more discriminative and robust features for the recognition task. As shown in Figure 1, the
model is jointly optimized using both generative supervision (i.e., noise prediction) and classification
supervision.

We conduct extensive experiments to evaluate the performance of GenRec for both recognition and
generation. Without sacrificing the generation capabilities, GenRec demonstrates competitive video
recognition performance, offering 75.8% and 87.2% accuracy on SSV2 and K400, respectively.
Furthermore, GenRec demonstrates extraordinary robustness in scenarios that only limited frames
can be observed. For example, when only the front half of the video can be observed, GenRec
achieves the 57.7% accuracy, which corresponds to 76.6% of the accuracy (75.3%) when the entire
video is visible, emonstrating a higher accuracy retention ratio than other methods. By leveraging
the recognition model for classifier guidance [11], GenRec also achieves superior class-conditioned
image-to-video generation results, with FVD scores of 46.5 and 49.3 on the SSV2 and EK-100
datasets, respectively.

2



2 Preliminary

Representing the data distribution as pdata(z) with a standard deviation of σdata, we can obtain a family
of smoothed distributions p(z;σ) by adding independent and identically distributed Gaussian noise
with standard deviation σ. In the spirit of diffusion models, the generation process begins with a
noise image zN ∼ N(0, σ2

maxI) and iteratively denoises it at decreasing noise levels σN = σmax >
σN−1 > . . . > σ0 = 0. The final denoised result z0 is thus distributed according to the original data.

In the EDM [22] framework, the original z0 will be diffused as:

zσ = z0 + σ ·N(0, I), (1)

and the corresponding PF-ODE [34] follows:

dzσ = −σ · ∇z log pσ(zσ)dσ, (2)

where ∇z log pt(zt) is the score function. Noise schedule σ(t) is set as time step t. The training
objective is to minimize the L2 loss with the denoiser network Dθ for different σ:

Ez0∼pdata
||Dθ(zσ)− z0||22, (3)

with the relation between Dθ and the score function ∇z log p(z;σ) as follows:

∇z log p(z;σ) = (D(zσ)− z)/σ2. (4)

SVD [31] utilizes the EDM framework to perform generative training on large-scale video datasets,
resulting in a high-quality video generation model. An image-to-video generation model capable
of forecasting future frames given the first frame has been released. Following SVD method, we
also process videos in latent space. Given an input video V ∈ RT×H×W×3, a pretrained VAE
encoder is used to project it into the latent space frame by frame, resulting in the latent representation
z0 ∈ RT×h×w×D. We then build GenRec based on SVD, inheriting its strong spatial-temporal priors
as foundation for the subsequent generation and classification tasks.

3 GenRec

We now introduce GenRec, a simple yet efficient framework, that can not only generate temporally-
coherent videos conditioned on an arbitrary number of provided frames but also is able to recognize
actions and events with the help of encoded spatial-temporal priors. To this end, GenRec explores
the strong spatial-temporal priors learned by a video diffusion model. In this work, we instantiate
GenRec with the powerful open-source Stable Video Diffusion model (SVD) [1], which is pretrained
on large-scale video datasets and is able to produce a photo-realistic video when provided a single
frame. Then, for generation, GenRec follows the classical EDM framework to learn noise reduction
trajectories. For recognition, on the other hand, GenRec operates on intermediate decoded features
using a recognition head. Furthermore, to generate videos in a more free fashion, i.e. an arbitrary
collection of frames used as condition, we design a latent masking strategy that “interpolates” masked
frames. Such a strategy also benefits recognition by easing the training process. More importantly,
by doing so GenRec supports a multitude of downstream tasks, particularly when limited visual
information is provided.

3.1 Pipeline Overview

Latent diffusion and latent masking. During the diffusion process, the Gaussian noise with a
certain noise level is added to the latent representation z0, creating a noisy latent representation z̃i
following Equation (1). Recall that while SVD contains powerful spatial-temporal priors, it can only
perform generation when the first frame is provided. To allow a more “free” generation with an
arbitrary number of frames as inputs, we design a latent masking strategy. More specifically, we
apply a random mask m to the latent representation z0, producing a masked latent representation
z0. Such a strategy encourages the model to reconstruct the original video content from incomplete
frames, which is in a similar spirit to MAE [19]. Note that when only the first latent is available, it
degrades to the same as SVD; if all latents are masked out, this degrades to unconditional generation.
Furthermore, doing so also benefits recognition tasks when limited visual clues are available. For
example, in scenarios with limited bandwidth leading to reduced frame rates, the ability of video
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Figure 2: The pipeline of our proposed video processing method. The input video is first processed
by a pretrained encoder E to produce a latent representation z0, then undergoes diffusion to generate
a noisy latent z̃t. The random mask m is used to create the masked latent z0. During training, the
noisy latent is concatenated with the masked latent as condition and fed into a Spatial-Temporal UNet,
resulting in both reconstruction and recognition outputs. The reconstructed latent can be decoded by
the pretrained decoder D to produce the final generated video.

frame complementation enables the model to better predict and perceive complete video information.
In practice, we simulate such conditions by randomly erasing half to all video conditions, retaining
on average only about one-fourth of the original video information. This technique allows the model
to effectively fill in the missing information, enhancing its ability to recognize and understand the
video content despite the reduced data availability.

Unifying generation and understanding. To unify generation with masked latents, GenRec
predicts pixel-level and semantic-level contents with the combination of the noisy latent z̃i and
the masked latent z0 gained by the aforementioned latent diffusion and latent masking. The two
latents are channel-wise concatenated [z̃i, z0] and are fed into a Spatial-Temporal UNet, together
with features from observed frames, to learn spatial and temporal representations, following [1].
The weights of the UNet are initialized from [1] to obtain spatial and temporal priors, learned on
large-scale video datasets.

For the generation task, the UNet aims to reconstruct the original latent representation from the
combined noisy and masked inputs. Representing UNet as the mapping function Fθ, its goal is to
predict clean latent, which, according to the EDM framework, takes the form of a representation
mapping as follows:

Dθ(z̃i; z0, σ) = cskip(σ)z̃i + cout(σ)Fθ([cin(σ)z̃i, z0]), (5)

in which we set the same skip connection cskip, scaling factor cout and cin as [1].

For the recognition task, we break down the UNet mapping function as F = Ftail · Fhead. And we
consider Fhead([cin(σ)z̃, z]) ∈ RT×h

′
×w

′
×D

′

as the compact video representation extracted from
the intermediate layer of the UNet model, which is then fed into the classifier head ϕθ, consisting of
an attentive pooler and a fully connected layer to predict video categories:

ŷ = ϕ(Fhead([cin(σ)z̃i, z0])). (6)

3.2 Optimization

We train GenRec with both generation and classification objectives, encouraging the model to learn
high-quality video generation and accurate video understanding.

The generative loss uses a L2 loss to measure the difference between the original latent representation
and the reconstructed output produced by the UNet, and is defined as:

LG(z0, z̃i, z0;σ) = λ(σ)∥Dθ(z̃i; z0, σ)− z0∥2, (7)
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where Dθ(z̃i; z0, σ) is the denoised output mentioned in Equation (5), and λ(σ) is a weighting
function based on the noise level σ referring to [1, 22]. While the classification loss uses a cross-
entropy loss to measure the discrepancy between the true labels and the predicted labels, and is
defined as:

LD(y, ŷ) = −
∑
i

yi log(ŷi), (8)

where y denotes the ground truth labels, and ŷ represents the predicted labels referring to Equa-
tion Equation (6).

To balance the learning of generative and recognition tasks, we set a balancing weight γ to control
the relative importance of each loss in the overall objective function. The total loss L is given by:

L = LD + γLG, (9)

3.3 Inference for Different Downstream Tasks

With the above training strategies, we now introduce how GenRec can flexibly support different types
of generation and recognition tasks.

Video generation conditioned on frames. Once trained, GenRec is able to generate high-quality
videos conditioned on an arbitrary number of given frames, thanks to the latent masking strategy.
Particularly, following the EDM stochastic sampler framework and Equation (2), GenRec iteratively
denoises the video conditioned on the masked latent z0, as shown below:

zi−1 = ẑi + ϵθ(ẑi; z0) = ẑi + (ti−1 − t̂i)
dẑi

dt̂i
(10)

= ẑi + (ti−1 − t̂i)(−1)
Dθ(ẑi; z0, σ)− ẑi

t̂i
, (11)

where ẑi is derived from z̃i adding a perturbation. With an iteratively denoising process, we can
finally obtain the denoised video latent z0 which can be decoded as a complete video.

Video generation conditioned on classes. When the number of visible frames is extremely limited,
the motion trajectory becomes unpredictable and thus it would be hard to make a reliable prediction
of the future. To mitigate this issue, GenRec supports adding category information to guide video
generation in the expected desired direction.

Formally, we simplify Equation (11) with Equation (4), and obtain:

ϵθ(ẑi; z0) = (ti−1 − t̂i)(−1)
Dθ(ẑi; z0, σ)− ẑi

t̂i
(12)

= (−1)(ti−1 − t̂i)t̂i∇ẑi
log pθ(ẑi). (13)

We substitute the score function ∇ẑi
log pθ(ẑi) with the conditional form ∇ẑi

log pθ(ẑi|y), in which
y denotes the conditional class. By applying Bayes‘ Theorem, the original score function can be
replaced by p(ẑi)p(y|ẑi), and we can get the conditional version of residual, denoted as ϵ∗θ(ẑi; z0):

ϵ∗θ(ẑi; z0) = (−1)(ti−1 − t̂i)t̂i∇ẑi
log p(ẑi)p(y|ẑi) (14)

= (−1)(ti−1 − t̂i)t̂i[∇ẑi
log p(ẑi) +∇ẑi

log p(y|ẑi)] (15)

= ϵθ(ẑi; z0)− (ti−1 − t̂i)t̂i∇ẑi
log p(y|ẑi) (16)

Considering the scaling factor of ẑi: cin(σ) = 1√
σ2+σdata

(following [22], and σi = ti), that would

pre-scale the input as c(zi) = cin(ti) · zi before model processing, the formulation can be further
transferred as:

ϵ∗θ(ẑi; z0) = ϵθ(ẑi; z0)−
(ti−1 − t̂i)t̂i√
t̂i
2
+ σdata

∇c(ẑi) log p(y|c(ẑi)) (17)

Following [11], we sharpen the distribution of p(y|z) by multiplying a scaling factor s > 1, shown as
s · ∇z log p(y|z) = ∇z log

1
Z p(y|z)s where Z is an arbitrary constant. Larger scaling value would
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bring more attention to the target category. Here, p(y|c(ẑi)) comes from the classification branch in
GenRec. Finally, we can use the same EDM sampling procedure with the derived class information
to generate samples.

Standard video recognition. Based on Equation (6), GenRec can do the classical video recognition
by setting constant no-mask, and thus z0 is replaced by z0 and the prediction follows:

ŷ = ϕ(Fhead([cin(σ)z̃i, z0])). (18)

Video recognition with partially observed frames. Based on Equation (6), GenRec can be applied
to video recognition with partially observed frames, e.g., early action prediction that aims to predict
future events based on the initial frames, sparse video recognition where videos are sparsely encoded
and transmitted due to bandwidth limitations. By masking the invisible frames to get z̃i, and replacing
the noisy latent with random noise ∼ obeying Gaussian distribution, GenRec can do the prediction
for partially visible videos, following:

ŷ = ϕ(Fhead([∼, z0])). (19)

4 Experiments

4.1 Experimental Setup

Datasets. In our experiments, we use the following four datasets: Something-Something V2
(SSV2) [17], Kinetics-400 (K400) [24], UCF-101 [35] and Epic-Kitchen-100 (EK-100) [10]. SSV2
dataset is designed for fine-grained action recognition and it contains 174 action classes, 220,847
short video clips with an average duration of 4 seconds. K400 contains 400 action classes, 306,245
video clips with an average duration of 10 seconds. The UCF-101 dataset comprises 13,320 videos
from 101 action categories and is widely utilized for human action recognition. The EK-100 dataset
focuses on egocentric vision. It contains a total of 90,000 annotated action segments, encompassing
97 verb classes and 300 noun classes.

Evaluation protocols. GenRec performs both generation and recognition tasks. For generation,
we use the Fréchet Video Distance (FVD) [41] metric to assess the quality of the generated videos.
A lower FVD score indicates higher fidelity and realism. For recognition, we measure the top-1
accuracy that reflects the portion of correctly classified videos. We validate our model performance
in formal video recognition, partial video recognition, class-conditioned image-to-video generation
and frame completion with the above metrics.

Implementation details. We initially set the learning rate to 1.0 × 10−5 and set the total batch
size as 32. Only generation loss will be retained for model adaptation on specific datasets. We train
200k steps on EK-100 and UCF, and 300k steps on SSV2 and K400, respectively. Subsequently, we
finetune GenRec with both generation and recognition losses. The learning rate is set to 1.25× 10−5

and decayed to 2.5×10−7 using a cosine decay scheduler. We warm up models with 5 epochs, during
which the learning rate is initially set as 2.5× 10−7 and linearly increases to the initial learning rate
1.25× 10−5. The loss balance ratio γ is set to 10, and the learning rate for the classifier head is ten
times higher than the base learning rate. We drop out the conditions 10% of the time for supporting
classifier-free guidance [20], and we finetune on K400 for 40 epochs and 30 epochs on other datasets.
The training is executed on 8 A100s and each contains a batch of 8 samples. We sample 16 frames
for each video.

4.2 Main Results

Comparison to state-of-the-art in video recognition and video generation. We compare with
state-of-the-art methods in terms of their recognition accuracy and generation quality. The results are
summarized in Table 1. The first two blocks of the table presents current advanced video recognition
models, while the third block demonstrates the performance of the diffusion-based class-guided
image-to-video generation.

As shown in the table, GenRec achieves optimal results or performs on par with the state-of-the-art
approaches. In terms of video recognition, GenRec achieves 75.8% accuracy on SSV2 dataset,
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Table 1: Performance of Video Recognition and Generation Methods. We evaluate on video recog-
nition and class-conditioned image-to-video generation tasks. SEER† predicts 16 frames, while
others predict 12 frames. Top-1 accuracy and FVD scores are reported. Baseline I adapts SVD to
datasets with generative fine-tuning and then uses attentive-probing for classification. Baseline II
fully finetunes SVD with classification supervision only in traditional classification framework.

Classification Acc (↑) Generation FVD (↓)
Method Resolution Param. SSV2 K400 SSV2 EK-100

w/o multi-modal align.
VideoMAE-L [40] 224×224 305M 74.3 85.2 - -
VideoMAE-H [40] 224×224 633M - 86.6 - -
OmniMAE-H [16] 224×224 650M 75.5 85.4 - -

MVD-H [44] 224×224 633M 77.3 87.2 - -
Hiera-L [32] 224×224 214M 75.1 87.3 - -
Hiera-H [32] 224×224 673M - 87.8 - -

MaskFeat-L [47] 312×312 218M 75.0 86.4 - -

w/ multi-modal align.
InternVideo [45] 224×224 1.3B 77.2 91.1 - -

InternVideo2 [46] 224×224 6B 77.4 92.1 - -
OmniVec [36] - - 85.4 91.1 - -

OmniVec-2 [37] - - 86.1 93.6 - -

TATS [14] 128×128 - - - 428.1 920.0
MCVD [42] 256×256 > 3.5B - - 1407 4804
SimVP [13] 64×64 - - - 537.2 1991

VideoFusion [28] 256×256 1.8B - - 163.2 349.9
Tune-A-Video [50] 256×256 > 860M 291.4 365.0

SEER [18] 256×256 > 860M - - 112.9 271.4
SEER† [18] 256×256 > 860M - - 355.4 -

Baseline I 256×256 2.1B 63.7 82.0 50.3 53.6
Basline II 256×256 1.9B 75.9 86.6 - -
GenRec 256×256 2.1B 75.8 87.2 46.5 49.3

surpassing the majority of current state-of-the-art methods. On K400, GenRec achieves 87.2%
accuracy, which is on par with the performance of MVD-H (87.2%) and Hiera (87.3%, 87.8%),
and surpasses other advanced methods. These results indicate the effectiveness of our approach in
video recognition. In addition, GenRec shows a slight performance gap compared to the methods
in the second block. It is important to note that these advanced methods benefit significantly from
pretraining on large-scale multimodal alignment datasets, which provide extensive cross-modal
supervision that enhances their ability to capture semantic relationships across video frames.

We further construct two strong baselines. Baseline I adapts SVD to the respective dataset through
generative fine-tuning, followed by attentive-probing for classification, where the backbone is frozen
and all frames are used as input. Baseline II involves fully fine-tuning the original SVD model with
classification supervision only, ensuring that all frames are visible during training. Compared with
them, GenRec performs on par or better. GenRec performs good in supporting not only classification
but also generation, demonstrating its comprehensive capability in handling both tasks effectively.

In terms of video generation, we evaluate the model on class-conditioned image-to-video generation
task following [18]. Comparing the FVD scores of SEER:112.9 and SEER†:355.4, it can be inferred
that generating longer videos with 16 frames is more difficult than generating 12 frames. GenRec
generates videos with 16 frames and achieves much lower FVD scores than the other methods,
demonstrating the effectiveness of our approach in video generation.

It is worth highlighting that, current research always treats video recognition and generation tasks
in a separate manner, and most of the advanced methods focus primarily on either recognition or
generation tasks. For instance, SEER method excels in class-conditioned image-to-video generation,
but lacks the ability to do video recognition. While current research on representation learning, shown
as the first and second blocks in Table 1, lacks the ability to do video generation tasks. In contrast,
GenRec not only unifies these tasks, but also achieves competitive results compared to the specialized
methods.
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Table 2: Early action prediction and limited interpolation problem on Something-Something V2
dataset, with one temporal crop. ρ denotes the visible ratio according to the whole video. Acc
denotes to the top-1 accuracy. Ratio metric represent the percentage of maximum performance that
the model can maintain at various frame rates. The ’w/o G’ experiment refers to the results obtained
by removing the generative supervision from our method.

Early Action Prediction (ρ) Limited Inter. Frames
Method Metric 0.1 0.3 0.5 0.7 1.0 2 fs 3 fs 4 fs 16 fs

TemPr [38] Accuracy 20.5 28.6 41.2 47.1 66.3 - - - -
Retention 30.9% 43.1% 62.1% 71.3% 100% - - - -

MVD [44] Accuracy - - - - - 34.2 54.3 64.4 75.0
Retention - - - - - 45.6% 72.4% 85.9% 100%

MVD† [44] Accuracy 26.9 39.8 55.6 70.2 75.0 53.6 65.0 68.8 75.0
Retention 35.9% 53.1% 74.1% 93.2% 100% 71.5% 86.7% 91.7% 100%

w/o G Accuracy 27.3 ↓1.6 39.6 ↓2.3 56.3↓1.4 71.6↓0.8 75.0↓0.3 53.5↓2.2 65.8↓1.5 69.8↓1.0 75.0↓0.3

GenRec Accuracy 28.9 41.9 57.7 72.4 75.3 55.7 67.3 70.8 75.3
Retention 38.4% 55.6% 76.6% 96.1% 100% 74.0% 89.4% 94.0% 100%

Figure 3: Early action prediction on EK-100 and UCF-100 datasets, with one temporal crop.

Comparison to state-of-the-art in video recognition with limited frames. GenRec supports
video recognition when only partial frames can be observed. We evaluate this capability on the SSV2
and EK-100 datasets. Our evaluation includes two tasks: an early prediction task, where the model
has access only to previous continuous frames following the setting of [38], and a recognition task
where videos are sparsely sampled, and the model is expected to make correct predictions. For fair
comparisons, we construct two strong baselines. We first apply MVD [44] to directly deal with
the recognition task by constructing a dense video through nearest neighbor interpolation. We also
construct another baseline similar to our training pipeline, where we apply frame dropout in the
training process of MVD [44] for better fitting on task with partial frames, and is named as MVD†.
In all settings, the number of fully observed frames is 16.

Table 2 shows the results under these settings, in which ρ denotes the visible ratio (there are a total
of 16 frames). In the early action prediction task, GenRec achieves the highest accuracy and ratio
metrics at all observation levels. Notably, GenRec and MVD† exhibit similar performance when
all frames are observed, but as the number of observed frames decreases, GenRec demonstrates
higher accuracy. GenRec also shows superior performance when videos are sparsely sampled,
maintaining high accuracy even with fewer observed frames (e.g., 55.7% for 2 frames and 70.8% for
4 frames), indicating its robustness in handling sparse data. Moreover, we compute the ratio metric
representing the percentage of maximum performance that the model can maintain at various frame
rates, mitigating the unfairness caused by different backbone networks. In this scenario, GenRec still
achieves the best performance.

We further investigate the contributions of generation supervision for recognition. As seen in Table 2,
removing generation supervision results in noticeable performance degradation across various tasks,
especially when the number of visible frames get less. For example, in the early prediction task, the
accuracy decreases by 0.3% at ρ = 1.0 and by 2.3% at ρ = 0.3. These results suggest that generation
supervision is essential for maintaining high performance, particularly when the model has to make
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Table 3: Relation between generation and recognition.

Early Frames Limited Inter. Frames
Method Metric 2 fs 5 fs 8 fs 12fs 2 fs 3 fs 4 fs

GenRec Acc ↑ 28.9 41.9 57.7 72.4 55.7 67.3 70.8
FVD↓ 57.8 44.0 30.3 16.6 46.7 31.7 24.3

Table 4: Choice of UNet lay-
ers for feature extraction.

Up Index 1 2 3

SSV2 71.8 75.8 75.2

Table 5: Ablation study on different masking strategies.

Expectation of SSV2
Method masking ratio Acc (↑) FVD (↓)

GenRec
75%(our choice) 75.8 46.5

50% +0.3 +0.5
87.5% -0.9 -0.3

predictions with limited visual information. By incorporating generation supervision, the model can
better handle scenarios with incomplete data, improving robustness and accuracy.

We also evaluate the early action prediction on EK-100 and UCF-101. EK-100 is a temporally
sensitive dataset similar to SSV2, demanding in terms of the model’s temporal modeling capability,
while UCF-101 demands more on appearance modeling. We conduct early prediction evaluation
on them to further reveal the robustness of our GenRec. As shown in Figure 3, GenRec clearly
outperforms TemPr and MVD†. In particular, the improvement becomes more significant as the
number of observed frames decreases. More evaluation results can be seen in Appendix A.1.

These results collectively demonstrate that GenRec effectively handles missing video frames. The
robustness and high accuracy of GenRec across different datasets and observation ratios highlight its
potential for real-world applications where video data might be incomplete or sparsely sampled.

The relationships between generation and recognition . We further investigate the consistency
between video generation and recognition, as shown in Table 3. We evaluate the performance of video
recognition and generation with limited frames and find that the recognition accuracy not only depends
on the number of visible frames but also significantly on the location of these frames. Interestingly,
uniform sampling appears to facilitate video recognition better than dense sampling from the video
prefix. Specifically, with the same number of frames, early prediction consistently shows lower
accuracy compared to uniformly sampled frames (e.g., 28.9% vs. 55.7% with 2 frames) and worse
FVD scores (e.g., 57.8 vs. 46.7 with 2 frames). When only three interpolated frames are visible, the
31.7 FVD score is comparable to that of an eight-frame prefix (30.3), while achieving much higher
recognition accuracy. These results highlight the importance of complete state observation for action
recognition and also suggest that video generation performance can potentially reflect task difficulty.

Choice of UNet layers. As described in Section 3, the UNet mapping function F is decoupled into
Ftail · Fhead, where Fhead serves as the feature extractor for video recognition. Our UNet model
contains 4 main up-sampling blocks. We investigate which one is best suited for recognition. As
shown in Table 4, using the second up-sampling block (Up Index 2) yields the best performance with
an accuracy of 75.8%. The third block (Up Index 3) followed with 75.2%, while the first block (Up
Index 1) has the lowest accuracy. As such, we choose the second block for feature extraction.

Explore the influence of the masking strategy. We also conduct an ablation study on the masking
schemes using different expected masking ratios, as shown in Table 5. The results show that the
FVD scores remain similar across different ratios, and a larger masking ratio might be beneficial
for generation, as it closely resembles our class-conditioned frame prediction scenario with one or
two given frames. However, an excessively large masking ratio (87.5%) negatively impacts action
recognition accuracy, leading to a 0.9% decrease compared to our selected ratio.

Noise incorporation during inference for video recognition. In the inference stage for action
recognition, GenRec applies a specific level of noise to video inputs before extracting visual features,
as formulated in Equation 18. This added noise helps maintain consistency with the noisy training
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Table 6: SSV2 action recognition accuracy with different random seeds.

Seed 0 1 2 3 4 5 AVG

SSV2 Acc (%) 75.83 75.82 75.83 75.83 75.86 75.84 75.835 ± 0.0125

process. To further understand the influence of noise randomness on classification accuracy, we
conducted an experiment on the SSV2 dataset, using multiple random seeds to generate the noise, as
presented in Table 6. The results demonstrate remarkable consistency in accuracy across different
random seeds, with a standard deviation of only 0.0125%. This minimal variation highlights the
model’s robustness to noise fluctuations during inference, suggesting that the model’s performance
remains stable despite noise introduced by random sampling. If fully deterministic outcomes are
desired, fixing the random seed for noise sampling will eliminate any remaining variability and
guarantee consistent predictions across runs.

5 Related Work

Video diffusion models for generation. The great success of diffusion models in image generation
has led to rapid advancements in video generation, including text-to-video generation [15, 2, 52,
54], image&text-to-video generation [56, 18, 21], and video editing [4, 5, 26, 29, 12, 53]. Many
current works [52, 18] adapts the diffusion models from images to videos by incorporating temporal
convolutions and attention mechanisms. One typical and excellent work, Stable Video Diffusion [1],
follows the above description and has provided valuable foundations for generating high-quality,
diverse, and temporally consistent videos. Different from the previous work, in our paper, we pursue
not only the quality of generation, but also the unity of model generation capability and classification
ability.

Diffusion models for visual understanding. Recently, researchers start to uncover the significance
of diffusion models for discrimination tasks. A notable approach involves utilizing pretrained visual
diffusion models for various downstream tasks, such as image segmentation [55] and visual content
correspondence [39]. Additionally, some studies treat diffusion learning as a self-supervised method to
acquire valuable feature representations [8]. However, most current works either use stable diffusion
networks as pretrained backbones for downstream tasks or completely destroy their generative
capabilities. Consequently, the potential benefits of integrating generation and classification abilities
into a single model remain under-explored, which is the primary focus of our paper.

6 Conclusion

In this work, we presented GenRec, a unified video diffusion model that enables joint optimization
for both video generation and recognition. GenRec exploits the significant temporal modeling
power embedded in the diffusion model, allowing for mutual reinforcement between generation and
recognition tasks. Extensive experiments were conducted to evaluate the performance of GenRec,
demonstrate our approach contains strong generation and recognition capabilities at the same time
in different kinds of scenarios, including normal or partial video recognition, video completion and
class-conditioned image-to-video generation. Our findings highlight the potential of combining
generation and classification tasks within a single unified model, providing valuable insights into the
development of more sophisticated and versatile video analysis models. Future work will focus on
further refining this integration and exploring its applications across various real-world scenarios.
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A Appendix / supplemental material

A.1 Early Prediction on EK-100 and UCF-101

More detailed evaluation results of the video recognition with limited frames on EK-100 and UCF-101
can be seen here.

Table 7: Early action prediction on EK-100.

Method Verb Obs. Ratio(ρ) Noun Obs. Ratio(ρ) Action Obs. Ratio(ρ)
0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

TemPr [38] 21.4 34.6 54.2 63.8 67.0 22.8 32.3 43.4 49.2 53.5 7.4 15.4 28.9 37.3 40.8
MVD† [44] 49.3 60.0 64.7 68.8 71.3 35.7 44.7 49.1 53.4 55.2 22.5 32.2 37.5 42.3 44.5

GenRec 55.8 63.6 67.9 71.7 73.1 40.1 47.8 52.0 55.3 56.7 28.1 36.1 40.8 45.0 46.6

Table 8: Early action prediction on UCF dataset.

Method Observation Ratio(ρ)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

TemPr [38] 88.6 93.5 94.9 94.9 95.4 95.2 95.3 96.6 96.2
MVD† [44] 90.8 94.2 94.8 95.7 95.5 96.2 96.5 96.8 96.9

GenRec 94.4 96.0 96.5 96.6 96.9 97.4 97.8 97.9 97.9

A.2 Training and Inference Time Cost Compared with Previous Classification Methods

We compare the training and inference time cost between MVD-H, Baseline II and GenRec, fairly
on the same hardware resource: 4-nodes * 8 V100s, and same batch size. Baseline II refers to fully
fine-tuning the original SVD model with classification supervision only.

As shown in the Table 9, GenRec and the Baseline II consumes more testing time than MVD-H.
The difference primarily arises from the varying number of parameters. Our model is derived
from a generative model, and the complexity of the generative task necessitates a larger number
of parameters for effective learning. Compared with Baseline II, since GenRec requires additional
decoder blocks for video generation training, the training time will get increased a little bit. As the
additional up-sampling blocks will not be used when doing action recognition, GenRec shares the
same testing time with Baseline II. It is worth noting that ”†” in MVD-H is to highlight that MVD
method would use repeated augmentation technique during training, but such augmentation will
significantly increase the training time. Our approach does not need to use that augmentation. All the
methods do the down-stream finetuning for 30 epochs.

Table 9: Comparison with recognition methods in terms of parameters, training time, and test time.

Method Trainable Total Training Training Test Time
Params Params Time Epochs (2 × 3 clips)

MVD-H† 633M 633M 3038 s/Epoch 30 441 s
Baseline II 1.3B 1.9B 2954 s/Epoch 30 1500 s
GenRec 1.5B 2.1B 3751 s/Epoch 30 1500 s

A.3 Ablation on Loss Balance Ratio

We conduct an ablation study on the loss balance ratio λ as shown in Equation 9. Results presented in
Table 10 show that varying the loss ratio has a minor impact on action recognition accuracy. However,
setting the ratio too low negatively affects the generation performance. In particular, when the ratio is
set to zero, significant forgetting occurs, severely compromising the model’s generation ability.
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Table 10: Ablation study on the effect of different loss balance ratios on SSv2 accuracy and FVD.
Higher SSV2 accuracy and lower FVD indicate better performance.

Balance Ratio λ 0 1 5 10 20

SSv2 Acc ↑ 75.6 75.5 75.6 75.8 75.5
SSv2 FVD ↓ 1579.2 52.0 47.4 46.5 46.9

A.4 Comparision with SVD Baseline

Comparing with the open-source Stable Video Diffusion directly is meaningful. We conduct frame
prediction tests using SVD model on the SSV2 and Epic-Kitchen datasets, as shown in Table 11. Since
the SVD model performs better at higher resolutions, we generated videos at 512x512 resolution and
then downsampled them to 256x256 for FVD calculations. The results show that while SVD achieves
competitive scores compared to previous state-of-the-art methods shown in Table 1, it is suboptimal
compared to GenRec. This is likely due to SVD’s design for general scenarios. Baseline I represents
our enhanced SVD baseline, which fine-tunes SVD on the target datasets for better results and fairer
comparison with GenRec.

Table 11: Comparison of SSv2 FVD and Epic FVD scores in frame prediction tests.

Method SSv2 FVD Epic FVD

SVD 99.7 180.8
Baseline I 50.3 53.6
GenRec 46.5 49.3

A.5 Impact of Classification Training on Generative Ability

To demonstrate classification and generative can coexist well in our training without negatively
impacting each other, we construct the comparison with "Baseline I (SVD baseline)", which adapts
SVD on the target dataset without classification supervision, and then trains another classifier head
freeze the generation backbone, ensuring no influence from classification supervision. We conduct
comparisons on SSv2: FP (frame prediction) and CFP (class-condition frame prediction), as shown
in Table 12. By comparing the FP results, the similar scores between the two methods conclude that
classification loss does not degrade the model’s generative ability in our approach. Moreover, the
CFP results indicate that our method, with its more accurate classification performance, can guide the
model to achieve higher-quality video frame predictions.

Table 12: Comparison of SSv2 Acc and SSv2 FVD scores for Baseline I and GenRec methods in FP
(frame prediction) and CFP (class-condition frame prediction) scenarios.

Method SSv2 Acc ↑ SSv2 FVD ↓
Baseline I (FP) - 55.5
GenRec (FP) - 55.3

Baseline I (CFP) 63.7 50.3
GenRec (CFP) 75.8 46.5

A.6 Case Study for Class-Conditioned Image-to-Video Generation and Video Interpolation

We show the generated visualization of the GenRec. The model can support video generation given
various numbers of frames, as well as category-guided generation. We show two of the most difficult
generative scenarios, which are: (1) given the first frame and different action categories to guide the
video generation, and (2) given the start and end frames, the model is expected to complement the
video. We also compare our methods with SEER [18] with cases picked from its official website. The
generation results can be seen in Figure 4, Figure 5 and Figure 6.
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GT Video: Covering something with something

Pulling something from left to right 

Pulling something from right to left 

Covering something with something

Lifting up one end of something, then letting it drop down

Lifting up one end of something, without letting it drop down

Figure 4: Video generation case study. We generate videos given the first frame together with the
classifier guidance for various categories.

A.7 Limitations and Broader Impacts

Limitations and Future Work The objective of our paper is to unify the tasks of generation
and recognition, achieving or even surpassing the state-of-the-art experimental performance across
various tasks. However, our method is based on fine-tuning a pretrained video diffusion model, using
more pretraining data and having a larger number of parameters compared to previous methods. This
is an issue we need to address in the future, and exploring the distillation of a well-pretrained video
diffusion model into a smaller model is a worthwhile future endeavor.

Broader Impacts The broader impact of the GenRec framework extends into various fields,
enhancing capabilities in content creation, security, and accessibility. In the media industry, it allows
for the automated generation of tailored, high-quality videos, reducing production costs and fostering
creativity. For surveillance, its robustness in limited information scenarios improves monitoring
effectiveness, particularly in challenging environments. Additionally, advancements of GenRec in
video prediction can aid in developing assistive technologies, making digital content more accessible
and interactive, particularly for individuals with visual impairments.
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Figure 5: Video generation case study. We generate videos given the first frame and the last frame.
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Action: Pushing something from left to right.

GT

Ours

SEER

Action: Covering something with something.

GT

SEER

Ours

Action: Dropping something in front of something

GT

SEER

Ours

Figure 6: Video generation case study. We compare our methods with SEER [18] in the setting of
generating videos given the first frame together with the classifier guidance. Cases are picked from
the official website of SEER [18].
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We properly claim our contribution in abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations in Appendix.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper has provided the proof in main text.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided all the details in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We will release the code in the feature.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The training and test details have been reported in this paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The cost of training required to report error bars is excessively high.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provided the computation resources in this paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper conform the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We provided the broader impacts in appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper did not release data or models for the main contribution.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: This paper follows the CC-BY 4.0 license in experiments.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper did not introduce new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing experiments in this paper.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing experiments in this paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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