
Learning Trajectories are Generalization Indicators

Jingwen Fu1∗, Zhizheng Zhang2†, Dacheng Yin3∗, Yan Lu2 , Nanning Zheng1†

fu1371252069@stu.xjtu.edu.cn
{zhizzhang,yanlu}@microsoft.com

ydc@mail.ustc.edu.cn
nnzheng@mail.xjtu.edu.cn

1National Key Laboratory of Human-Machine Hybrid Augmented Intelligence,
National Engineering Research Center for Visual Information and Applications,
and Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University,
2Microsoft Research Asia, 3University of Science and Technology of China

Abstract

This paper explores the connection between learning trajectories of Deep Neu-
ral Networks (DNNs) and their generalization capabilities when optimized using
(stochastic) gradient descent algorithms. Instead of concentrating solely on the
generalization error of the DNN post-training, we present a novel perspective for
analyzing generalization error by investigating the contribution of each update step
to the change in generalization error. This perspective enable a more direct com-
prehension of how the learning trajectory influences generalization error. Building
upon this analysis, we propose a new generalization bound that incorporates more
extensive trajectory information. Our proposed generalization bound depends on
the complexity of learning trajectory and the ratio between the bias and diversity of
training set. Experimental observations reveal that our method effectively captures
the generalization error throughout the training process. Furthermore, our approach
can also track changes in generalization error when adjustments are made to learn-
ing rates and label noise levels. These results demonstrate that learning trajectory
information is a valuable indicator of a model’s generalization capabilities.

1 Introduction

The generalizability of a Deep Neural Network (DNN) is a crucial research topic in the field of
machine learning. Deep neural networks are commonly trained with a limited number of training
samples while being tested on unseen samples. Depite the commonly used independent and identically
distributed (i.i.d.) assumption between the training and testing sets, there often exists a varying
degree of discrepancy between them in real-world applications. Generalization theories study the
generalization of DNNs by modeling the gap between the empirical risk [37] and the popular risk
[37]. Classical uniform convergence based methods [20] adopt the complexity of the function space
to analyze this generalization error. These theories discover that more complex function space results
in a larger generalization error [38]. However, they are not well applicable for DNNs [33, 22]. In deep
learning, the double descent phenomenon [6] exists, which tells that larger complexity of function
space may lead to smaller generalization error. This violates the aforementioned property in uniform
convergence methods and imposes demands in studying the generalization of DNNs.

Although the function space of DNNs is vast, not all functions within that space can be discovered by
learning algorithms. Therefore, some representative works bound the generalization of DNNs based

∗Work done during internships at Microsoft Research Asia.
†Corresponding Authors

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

on the properties of the learning algorithm, e.g. , stability of algorithm [11], information-theoretic
analysis [40]. These works rely on the relation between the input (i.e. , training data) and output
(weights of the model after training) of the learning algorithm to infer the generalization ability of the
learned model. Here, the relation refers to how the change of one sample in the training data impacts
the final weights of model in the stability of algorithms while referring to the mutual information
between the weights and the training data in the information-theoretic analysis. Although some works
[24, 11] leverage some information from training process to understand the properties of learning
algorithm, there is limited trajectory information conveyed.

The purpose of this article is to enhance our theoretical comprehension of the relation between
learning trajectory and generalization. While some recent experiments [9, 13, 29] have shown a
strong correlation between the information contained in learning trajectory and generalization, the
theoretical understanding behind this is still underexplored. By investigating the contribution of
each update step to the change in generalization error, we give a new generalization bound with rich
trajectory related information. Our work can serve as a starting point to understand those experimental
discoveries.

1.1 Our Contribution

Our contributions can be summarized below:

• We demonstrate that learning trajectory information serves as a valuable indicator of gen-
eralization abilities. With this motivation, we present a novel perspective for analyzing
generalization error by investigating the contribution of each update step to the change in
generalization error.

• Utilizing the aforementioned modeling technique, we introduce a novel generalization
bound for deep neural networks (DNNs). Our proposed bound provides a greater depth of
trajectory-related insights than existing methods.

• Our method effectively captures the generalization error throughout the training process. And
the assumption corresponding to this method is also confirmed by experiments. Furthermore,
our approach can also track changes in generalization error when adjustments are made to
learning rates and label noise levels.

2 Related Work

Generalization Theories Existing works on studying the generalization of DNNs can be divided
into three categories: the methods based on the complexity of function space, the methods based
on learning algorithms, and the methods based on PAC Bayes. The first category considers the
generalization of DNNs from the perspective of the complexity of the function space. Many methods
for measuring the complexity of the function space have been proposed, e.g. , VC dimension [39],
Rademacher Complexity [4] and covering number [33]. These works fail in being applied to DNN
models since the complexity of the function space of a DNN model is too large to deliver a trivial
result [41]. This thus motivates recent works to rethink the generalization of DNNs based on the
accessible information in different learning algorithms such as stability of algorithm [11], information-
theoretic analysis [40]. Among them, the stability of algorithm [7] measures how one sample change
of training data impacts the model weights finally learned, and the information theory [30, 31, 40]
based generalization bounds rely on the mutual information of the input (training data) and output
(weights after training) of the learning algorithm. Another line is PAC Bayes [19] based method,
which bounds the expectation of the error rates of a classifier chosen from a posterior distribution in
terms of the KL divergence from a given prior distribution. Our research modifies the conventional
Rademacher Complexity to calculate the complexity of the space explored by a learning algorithm,
which in turn helps derive the generalization bound. Our approach resembles the first category, as
we also rely on the complexity of the function space. However, our method differs as we focus on
the function space explored by the learning trajectory, rather than the entire function space. The
novelty of our technique lies in addressing the issue of dependence between training data and the
function space explored by the learning trajectory, a dependence that is not permitted by the original
Rademacher Complexity Theory.

2

Generalization Analysis for SGD The optimization plays an nonnegligible role in the success
of DNN. Therefore, there are many prior works studying the generalization of DNNs by exploring
property of SGD, which could be summarized into two categories: stability of SGD and information-
theoretic analysis. The most popular way of the former category is to analyze the stability of
the weights updating. Hardt et al. [11] is the first work to analyze the stability of SGD with the
requirements of smooth and Lipschitz assumptions. Its follow-up works try to discard the smooth [5],
or Lipschitz [25] assumptions towards getting a more general bound. Information-theoretic methods
leverage the chain rule of KL-divergence to calculate the mutual information between the learned
model weights and the data. This kind of works is mainly applied for Stochastic Gradient Langevin
Dynamics(SGLD), i.e. , SGD with noise injected in each step of parameters updating [28]. Negrea
et al. [23], Haghifam et al. [10] improve the results using data-dependent priors. Neu et al. [24]
construct an auxiliary iterative noisy process to adapt this method to the SGD scenario. In contrast to
these studies, our approach utilizes more information related to learning trajectories. A more detailed
comparison can be found in Table 2 and Appendix B.

3 Generalization Bound

Let us consider a supervised learning problem with a instance space Z and a parameter space W .
The loss function can be defined as f : W ×Z → R+. We denote the distribution of the instance
space Z as µ. The n i.i.d samples draw from µ are denoted as S = {z1, ..., zn} ∼ µn. Given
parameters w, the empirical risk and popular risk are denoted as FS(w) ≜ 1

n

∑n
i f(w, zi), and

Fµ(w) ≜ Ez∼µ[f(w, z)] respectively. Our work studies the generalization error of the learned
model, i.e. Fµ(w)− FS(w). For an optimizaiton process, the learning trajectory is represented as
a function J : N → W . We use Jt to denote the weights of model after t times updating, where
Jt = J(t). The learning algorithm is defined as A : µn × R → J, where the second input R denotes
all randomness in the algorithm A, including the randomness in initialization, batch sampling et al. .
We simply use A(S) to represent a random choice for the second input term. Given two functions
U, V ,

∫
t
U(t)dV (t) ≜

∑
t U(t)(V (t+ 1)− V (t)) and we use ∥ · ∥ to denote L2 norm. If S is a set,

then |S| denotes the number of elements in S. Et denotes taking the expectiation conditioned on
{Ji|i ≤ t}.

Let mini-batch B be a random subset sampled from dataset S, and we have |B| = b. The averaged
function value of mini-batch B is denoted as FB(w) ≜ 1

b

∑
z∈B f(w, z). The parameters updated

with gradient descent can be formulated as:
Jt+1 = Jt − ηt∇FS(Jt). (1)

where ηt is the learning rate for the t-th update. The parameter updating with stochastic gradient
descent is:

Jt+1 = Jt − ηt∇FB(Jt). (2)
Let ϵ(w) ≜ ∇FS(w) − ∇FB(w) be the gradient noise in mini-batch updating, where w is the
weights of a DNN. Then we can transform Equation (2) into:

Jt+1 = Jt − ηt∇FS(Jt) + ηtϵ(Jt). (3)
The covariance of the gradients over the entire dataset S can be calculated as:

Σ(w) ≜
1

n

n∑
i=1

∇f(w, zi)∇f(w, zi)
T −∇FS(w)∇FS(w)T. (4)

Therefore, the covariance of the gradient noise ϵ(w) is:

C(w) ≜
n− b

b(n− 1)
Σ(w). (5)

Since for any w we have E(ϵ(w)) = 0, we can represent ϵ(w) as C(w)
1
2 ϵ′, where ϵ′ is a random

distribution whose mean is zero and covariance matrix is an identity matrix. Here, ϵ′ can be any
distributions, including Guassian distribution [12] and SαS distribution [35].

The primary objective of our work is to suggest a new generalization bound that incorporates more
comprehensive trajectory-related information. The key aspects of this information are: 1) It should
be adaptive and change according to different learning trajectories. 2) It should not rely on the extra
information from data distribution µ except from the training data S.

3

3.1 Investigating generalization alone learning trajectory

As annotated before, the learning trajectory is represented by a function J : N → W , which defines
the relationship between the model weights and the training timesteps t. Jt denotes the model weights
after t times updating. Note that J depends on S, because it comes from the equation J = A(S). We
simply use f(Jt) : Z → R+ to represent the function after t-times update. Our goal is to analyze the
generalization error, i.e., Fµ(JT)− FS(JT), where T represents the total training steps.

We reformulate the function corresponding to the finally obtained model as:

f(JT) = f(J0) +

T∑
t=1

(f(Jt)− f(Jt−1)). (6)

Therefore, the generalization error can be rewritten as:

Fµ(JT)− FS(JT) = Fµ(J0)− FS(J0)︸ ︷︷ ︸
(i)

+

T∑
t=1

[(Fµ(Jt)− Fµ(Jt−1))− (FS(Jt)− FS(Jt−1))]︸ ︷︷ ︸
(ii)t

.

(7)
In this form, we divide the generalization error into two parts. (i) is the generalization error before
the training. (ii)t is the generalization error caused by t-step update.

Typically, there is independence between J0 and the data S. Therefore, we have E(i) = 0. Combining
with this, we have:

E[Fµ(JT)− FS(JT)] = E
T∑

t=1

(ii)t. (8)

Analyzing the generalization error after training can be transformed into analyzing the increase of
generalization error for each update. This is a straighforward and quite different way to extract the
information from learning trajectory compared with previous work. Here, we list two techniques that
most used by previous works to extract the information from learning trajectory.

• (T1). This method leverages the chaining rule of mutual informaton to calculate a upper
bound of the mutual information between JT and the training data S, i.e. I(S;JT) ≤
I(S;Jt≤T) ≤

∑T
t=0 I(S;Jt|Ji<t). I(S;JT) is the value of concerning for their theory.

• (T2). This method assumes we have another data S′, which is obtained by replacing one
sample in data S with another sample drawing from distribution µ. J′ is the learning
trajectory trained from data S′ with same randomness value as J. Denote ∆k ≜ ∥Jk − J′

k∥
and assume ∆0 = 0. Then, the value of concerning is ∆T . The upper bound of ∆T is
calculate by iterately apply the formular ∆k ≤ ck−1∆k−1 + ek−1.

(T1) is commonly utilized in analyzing Stochastic Gradient Langevin Dynamics(SGLD) [18, 2, 28],
while (T2) is frequently employed in stability-based works for analyzing SGD [11, 15, 5]. Our
method offers several benefits, including: 1) We directly focus on the change in generalization
error, rather than intermediate values such as ∆k and I(S;Jt|Ji<t), 2) The generalization error is
equivalent to the sum of (ii)t, while (T1) and (T2) takes the upper bound value of I(S;JT) and
∆T , and 3) From this perspective, We can extract more in-depth trajectory-related information.
For (T1), the computation of I(S;Jt|Ji<t) primarily involves the information of ∇Fµ(Jt), which
is inaccessible to us (Detail in Appendix D and Neu et al. [24]). (T2) faces the challenge that
only the upper bounds of ck and ek can be calculated. The upper bounds remain unchanged across
various learning trajectories. Consequently, both (T1) and (T2) have difficulty conveying meaningful
trajectory information.

3.2 A New Generalization Bound

In this section, we introduce the generalization bound based on our aforementioned modeling. Let us
start with the definition of commonly used assumptions.
Definition 3.1. The function f is L-Lipschitz, if for all w1,w2 ∈ W and for all z ∈ Z , wherein we
have ∥f(w1, z)− f(w2, z)∥ ≤ L∥w1 −w2∥.

4

Definition 3.2. The function f is β-smooth, if for all w1,w2 ∈ W and for all z ∈ Z , wherein we
have ∥∇f(w1, z)−∇f(w2, z)∥ ≤ β∥w1 −w2∥.

Definition 3.3. The function f is convex, if for all w1,w2 ∈ W and for all z ∈ Z , wherein we have
f(w1, z) ≥ f(w2, z) + (w1 −w2)

T∇f(w2, z).

Here, L-lipschitz assumption implies that the ∥∇f(w, z)∥ ≤ L holds. β-smooth assumption indicates
the largest eignvalue of ∇2f(w, z) is smaller than β. The convexity indicates the smallest eigenvalue
of ∇2f(w, z) are positive. These assumptions tell us the constraints of gradients and Hessian matrices
of the training data and the unseen samples in the test set. Since the values of gradients and Hessian
matrices in the training set are accessible, the key role of these assumptions is to deliver knowledge
about the unseen samples in the test set.

In the following, we introduce a new generalization bound. We give the assumption required by our
new generalization bound in the following.

Assumption 3.4. There is a value γ, so that for all w ∈ {Jt|t ∈ N}, we have ∥∇Fµ(w)∥ ≤
γ∥∇FS(w)∥.

Remark 3.5. Assumption 3.4 gives a restriction with the norm of popular gradient ∇Fµ(w). This
assumption is easily satisfied when n is a large number, because we have lim

n→∞
∥∇FS(w)∥ =

∥∇Fµ(w)∥. When the n is not large enough, the assumption will hold before SGD enter the
neighbourhood of convergent point. Under the case that SGD enters the neighbourhood of convergent
point, we give a relaxed assumption and its corresponding generalization bound in Appendix B.
According to paper [42], this case will ununsually happen in real situation. Section 4 gives experiments
to explore the assumption.

Theorem 3.6. Under Assumption 3.4, given S ∼ µn, let J = A(S), where A denoted the SGD or
GD algorithm training with T steps, we have:

E[Fµ(JT)− FS(JT)] ≤ −2γ′VmE
∫
t

dFS(Jt)√
n

√
1 +

Tr(Σ(Jt))

∥∇FS(Jt)∥22
+O(ηm) (9)

where V(w) = ∥∇FS(w)∥
EU⊂S∥ |U|

n ∇FU (w)−n−|U|
n ∇FS/U (w)∥

, Vm = max
t

V(Jt), γ′ =

max{1, max
U⊂S;t

|U |∥∇FU (Jt)∥
n∥∇FS(Jt)∥ }γ and ηm ≜ max

t
ηt.

Remark 3.7. Our generalization bound mainly relies on the information from gradients. V(w) is
related to the variance of the gradient. When the variance of the gradients across different samples in
the training set S is large, then the value of V(w) is small, and vice versa. Note that we have |U | < n

due to U ⊂ S. Our bound will became trival if EU⊂S∥ |U |
n ∇FU (w) − n−|U |

n ∇FS/U (w)∥ = 0.
This rarely happens in real case, because it requires that for all U ⊂ S, we have |U |∇FU (w) =
(n− |U |)∇FS/U (w). We also give a relaxed assumption version of this theorem in Appendix B. The
generalization bound provides a clear insight into how the reduction of training loss leads to a
increase in generalization error.

Proof Sketch The proof of this theorem is placed in Appendix A. Here, we give the sketch for this
proof.

Step 1 Beginning with Equation (8), we decomposite the Fµ(JT) − FS(JT) into a linear part
(genlin(JT)) and nonlinear part(gennl(JT)). We have genlin(JT) =

∑T
t=1(ii)

lin
t , where (ii)lint ≜

(Jt−Jt−1)
T(∇Fµ(Jt−1)−∇FS(Jt−1)). The nonlinear part is gennl(JT) = Fµ(JT)−FS(JT)−

genlin(JT). We takle these two parts differently. Here, we focus on analyzing genlin(JT) because it
dominates under small learning rate. Detail discussion of gennl(JT) is given in Appendix (Propositon
A.1 and Subsection C.3)

Step 2 We construct the addictive linear space LJ|S ≜ {
∑T−1

t=0 wt
T∇f(Jt) | ∥wt∥ ≤ ∆t},

where ∆t ≜ ∥ηt∇FS(Jt)∥. Then E[genlin(JT)] ≤ 2γ′VmERS(LJ|S), where RS(LJ|S) ≜
Eσ sup

h∈LJ|S

(1n
∑n

i=1 σih(zi)).

5

Table 1: Comparison of the generalization bounds with stability based method for SGD learning
algorithms. T.R.T is an abbreviation for the term related to trajectory. T.R.T is defined as the term
that 1) varies based on different learning trajectories, and 2) don’t rely on the extra information of
data distribution µ except from training data S. We can infer that the proposed bound incorporates
a greater amount of information pertaining to the trajectory. Other related works are discussed in
Appendix D.

Method β-Smooth L-Lipschitz Convex Small LR Other Conditions Generalization Bound T.R.T
Hardt et al. [11] ✓ ✓ ✓ ✓ 2L2

n

∑T
t=1 ηt

∑T
t=1 ηt

Hardt et al. [11] ✓ ✓ ✓ f ∈ [0, 1], ηt <
c
t O(1nL

2
βc+1T

βc
βc+1) T

βc
βc+1

Zhang et al. [43] ✓ ✓ ✓ T > n, ηt =
c
βt

16L2T c

n1+c T c

Zhou et al. [44] ✓ ✓ ✓ Ez∈S∥∇f(w, z)−∇FS(w)∥2 ≤ B2 O(

√
1
nL
√

2βFµ(J0) +
1
2EB2 log T)

√
log T

Bassily et al. [5] ✓ ✓ Projected SGD 2L2

√∑T−1
t=1 η2t +

4L2

n

∑T−1
t=1 ηt

∑T−1
t=1 ηt

Lei and Ying [16] ✓ ✓ Projected SGD O((1 + T
n2)
∑T

t=1 η
2
t) T

∑T
t=1 η

2
t

Ours (Theorem 3.6) ✓ ∥∇Fµ(w)∥ ≤ γ∥∇FS(w)∥ Theorem 3.6
∫
t
dFS(Jt)

√
1 + Tr(Σ(Jt))

∥∇FS(Jt)∥2

Step 3 Finally, we compute the upper bound of RS(LJ|S), which follows same techniques used in
Radermacher Complexity theory. By combining this with Proposition A.1, we establish the theorem.

Technical Novety Directly applying the Rademacher complexity to calculate the generalization
error bound fails because the large complexity of neural network’s function space leads to trival
bound[41]. In this work, we want to calculate the complexity of the function space that can be
explored during the training process. However, there are two challenges here. First, the trajectory
of neural network is a "line", instead of a function space that can be calculated the complexity. To
solve this problem, we indroduce the addictive linear space LJ|S . This space contains the local
information of learning trajectory, and can serve as the pseudo function space. Second, the function
space LJ|S has a dependent on the sample set S, while the theory of Rademacher complexity requires
that the function space is independent with training samples. To decouple this dependence, we adapt
the Rademacher complexity and we obtain that E[genlin(JT)] ≤ 2γ′VmERS(LJ|S). Here, γ′ is
indroduced to decouple the dependent fact mentioned above.

Next, in order to draw a clearer comparison with the stability-based method, we present the following
corollary. This corollary employs the β-smooth assumption to bound gennl(JT) and leverages a
similar learning rate setting to that found in stability based works.

Corollary 3.8. If function f(·) is β-smooth, under Assumption 3.4 given S ∼ µn, let J = A(S),
ηt =

c
β(t+1) , M2

2 = max
t

Et−1(∥∇FS(Jt)+ ϵ(Jt)∥2) and M4
4 = max

t
Et−1(∥∇FS(Jt)+ ϵ(Jt)∥4)

, where A denoted the SGD or GD algorithm training with T steps, we have:

E[Fµ(JT)− FS(JT)] ≤− 2γ′VmE
∫
t

dFS(Jt)√
n

√
1 +

Tr(Σ(Jt))

∥∇FS(Jt)∥22

+ 2c2γ′VmM2
4

√
E
∫
t

dt

nβ2(t+ 1)4

(
1 +

Tr(Σ(Jt))

∥∇FS(Jt)∥22

)
+ 2c2

M2
2

β
.

(10)

where V(w) = ∥∇FS(w)∥
EU⊂S∥ |U|

n ∇FU (w)−n−|U|
n ∇FS/U (w)∥

, Vm = max
t

V(Jt) and γ′ =

max{1, max
U⊂S;t

|U |∥∇FU (Jt)∥
n∥∇FS(Jt)∥ }γ.

6

3.3 Further Analysis

3.3.1 Interpreting the Generalization Bounds

We rewrite the obtained generalization bound here:

E[Fµ(JT)− FS(JT)] ≤ γ′︸︷︷︸
Bias of Training Set

1
Diversity of Training Set︷︸︸︷

Vm

(
−2E

∫
t

dFS(Jt)√
n

√
1 +

Tr(Σ(Jt))

∥∇FS(Jt)∥22

)
︸ ︷︷ ︸

Complexity of Learning Trajectory

+O(ηm)

(11)
The "Bias of Training Set" refers to the disparity between the characteristics of the training set and
those of the broader population. To measure this difference, we use the distance between the norm
of the popular gradient and that of the training set gradient, as specified in Assumption 3.4. The
"Diversity of Training Set" can be understood as the variation among the samples in the training
set, which in turn affects the quality of the training data. The ratio Bias of Training Set

Diversity of Training Set gives us the
property of information conveyed by the training set. It is important to consider the properties of the
training set, as the data may not contribute equally to the generalization[36]. The detail version of
the equation can be found in Theorem 3.6.

3.3.2 Asymptotic Analysis

We will first analyze the dependent of n for V. The V is calculated as V(w) =
∥∇FS(w)∥

EU⊂S∥ |U|
n ∇FU (w)−n−|U|

n ∇FS/U (w)∥
. Obviously, the gradient of individual sample is unrelated

to the sample size n. And |U | ∼ n. Therefore, V = O(1). Similarly, we have

E
∫
t
dFS(Jt)√

n

√
1 + Tr(Σ(Jt))

∥∇FS(Jt)∥2
2

= O(1√
n
). As for the O(ηm) term in Theorem 3.6, we have

lim
n→∞

O(ηm) = 0 according to Proposition A.1. We simply assume that O(ηm) = O(1
nc). Therefore,

our bound has O(1
nmin{0.5,c}).

3.3.3 Comparison with Stability-based methods

We first compare our method with the stability-based methods in terms of the trajectory
information. In Table 1, we present a summary of stability-based methods, while other methods
are outlined in Appendix D. We focus on generalization bounds from previous works that eliminate
terms dependent on extra information about data distribution µ, apart from the training data S,
using assumptions such as smoothness or Lipschitz continuity. Analyzing Table 1 reveals that most
prior works primarily depend on the learning rate η and the total number of training steps T . This
suggests that we can achieve the same bound by using an identical learning rate schedule and total
training steps, which does not align with our practical experience. Our proposed generalization bound
considers the evolution of function values, gradient covariance, and gradient norms throughout the
training process. As a result, our bounds encompass more comprehensive information about the
learning trajectory.

Table 2: Detail comparison with Hardt et al. [11]. The β refers to the β-smooth assumption (see in
Definition 3.2). S denotes the training set.

Uniform Stability[11] Ours
Assumption ∀w ∈ W ∀z′ ∈ Z ∥∇f(w, z′)∥ ≤ L ∀w ∈ {Jt|t ∈ N} ∥Ez′∼µ∇f(w, z′)∥ ≤ γ∥Ez∈S∇f(w, z′)∥

Modelling Method of SGD Epoch Structure Full Batch Gradient + Stochastic Noise
Batch Size 1 ≤ n

Trajectory Information in Bound Learning rate and number of training step Values in Trajectory (gradient norm and covariance)
Perspective Stability of Algorithm Complexity of Learning Trajectory

Next, we give a detail comparison with Hardt et al. [11] in Table 2. The concept of uniform
stability is commonly used to evaluate the ability of SGD in generalizaton, by assessing its stability
when a single training sample is altered. Our primary point of comparison is with Hardt et al. [11], as
their work is considered the most representative in terms of analyzing the stability of SGD. We find
that First, the assumption of Uniform Stability requires the gradient norm of all input samples for all
weights being bounded by L, whereas our assumption only limits the expectation of the gradients

7

for the weights during the learning trajectory. Secondly, Uniform Stability uses an epoch structure
to model the stochastic gradient descent, whereas our approach regards each stochastic gradient
descent as full batch gradient descent with added stochastic noise. The epoch structure complicates
the modelling process because it requires a consideration of sampling. As a result, in Hardt et al. [11],
the author only considers the setting with batch size 1. Thirdly, the bound of Uniform Stability only
uses hyperparameters setting such as learning rate and number of training step. In contrast, our bound
contains more trajectory-related information, such as the gradient norm and covariance. Finally,
the Uniform Stability provides the generalization bound based on the stability of the algorithm,
while our approach leverages the complexity of the learning trajectory. In summary, there are some
notable differences between our approach and Uniform Stability, such as the assumptions made, the
modelling process, the type of information used in the bound, and the perspectives.

4 Experiments

4.1 Tightness of Our Bounds

Table 3: Numeric comparison with stability-based work on toy examples. The reason for the
value of Zhang et al. [43] is large is because that our and Hardt et al. [11] has dependent on L2

β , while
Zhang et al. [43] depends on L2. L and β are usually large numbers.

Gen Error Ours Hardt et al. [11] Zhang et al. [43]
1.49 3.62 4.04 4417

In a toy dataset setting, we compare our generalization bound with stability-based methods.

Reasons for toy examples 1) Some values in the bounds are hard to be calculated. Calculating
β (under the β-smooth assumption) and L (under the L-Lipschitz assumption) in stability-based
work, as well as the values of V and γ in our proposed bound, are challenging. 2) Stability-based
methods require a batch size of 1. The training is hard for batch size of 1 with learning rate setting
ηt =

1
t in complex datasets.

Constuction of the toy examples In the following, we discuss the construction of the toy dataset
used to compare the tightness of the generalization bounds. The training data is Xtr = {xi}ni=1. All
the data xi is sampled from Guassian distribution N (0, Id). Sampling w̃ ∼ N (0, Id),the ground
truth is generated by yi = 1 if w̃Txi > 0 else 0. The weights for learning is denoted as w. The
predict ỹ is calculated as ỹi = wTxi. The loss for a simple data point is li =

∥∥yi −wTxi

∥∥
2
. The

training loss is L =
∑n

i=1 li. The test data is Xte = {x′
i}, where x′

i = x̃′
i and x̃′

i ∼ N (0, Id). We
use 100 samples for training and 1,000 samples for evaluation. The model is trained using SGD for
200 epochs.

We evaluate the tightness of our bound by comparing our results with those in Hardt et al. [11]
and Zhang et al. [43] from the original paper. We set the learning rate as ηt =

1
βt . Our reasons

for comparing with these two papers are: 1) Hardt et al. [11] is a representative study, 2) Both
papers have theorems using a learning rate setting of ηt = O(1t), which aligns with Corollary 3.8
in our paper, and 3) They do not assume convexity. The generalization bounds we compare include
Corollary 3.8 from our paper, Theorem 3.12 from Hardt et al. [11], and Theorem 5 from Zhang et al.
[43].

Our results are given in Table 3. Our bound is tighter under this setting.

4.2 Capturing the trend of generalization error

In this section, 1) we conduct the deep learning experiment to verify Assumption 3.4 and 2) Verify
whether our proposed generalization bound can capture the changes of generalization error. In this

experiment, we mainly consider the term C(Jt) ≜ −2
∫ t

i=0
dFS(Ji)√

n

√
1 + Tr(Σ(Ji))

∥∇FS(Ji)∥2
2

. We omit the
term γ′ and Vm, because all the trajectory related information that we want to explore is stored in
C(Jt). Capturing the trend of generalization error is regarded as an important problem in Nagarajan
[21]. Unless further specified, we use the default setting of the experiments on CIFAR-10 dataset [14]

8

Figure 1: Exploration of Assumption 3.4 for different dataset. The γ̃t is stable before training loss
reaches a relative small value. Assumption holds if the training is stop before extremely overfitting. A
relaxed assumption and its corresponding generalization bound are given in Appendix B for extremely
overfitting situation

Figure 2: Exploration of C(Jt) during the training process. Left: The curve FS(Jt) + C(Jt)
exhibits a comparable Pattern with the curve FS′(Jt). Center: After the early stage, C(Jt) and
∇FS′(Jt)−∇FS(Jt) have a similar trend. Right: The value of dC(Jt)

dFS(Jt)
alone the training process.

with the VGG13 [34] network. The experimental details for each figure can be found in Appendix
C.2.

Our observations are:

• Assumption 3.4 is valid when SGD is not exhibiting extreme overfitting.
• The term of C(Jt) can depict how the generalization error varies along the training process.

And it can also track the changes in generalization error when adjustments are made to
learnling rates and label noise levels

Exploring the assumption 3.4 for different dataset during the training process To explore the
Assumption 3.4, we define γt ≜

∥∇Fµ(Jt)∥
∥∇FS(Jt)∥ and γ̃t ≜

∥∇FS′ (Jt)∥
∥∇FS(Jt)∥ , where S′ is another data set i.i.d

sampled from distribution µ. Because S′ is independent with S, we have γ̃t ≈ γt. We found that γ̃t
is stable around 1 during the early stage of training(Figure 1). When the training loss is reaching a
relative small value, γ̃t increases as we continue training. This phenomenon remain consistant aross
the Cifar10, Cifar100 and SVHN datasets. The γ in Assumption 3.4 can be assigned as γ = maxt γ̃t.
We can always find such γ if the optimizer is not extreme overfitting. Under the extremely overfitting
case, we can use the relaxed theorem in Appendix B to bound the generalization error.

The bound capturing the trend of generalization error during training process The generaliza-
tion error and the C(Jt) both changes as the training continues. Therefore, we want to verify whether
they correlate with each other during the training process. Here, we use the term ∇FS′(Jt)−∇FS(Jt)
to approximate the generalization error. We find that ∇FS′(Jt)−∇FS(Jt) has similar trend with
C(Jt) (Figure 2 Center). What’s more, we also find that the curve of ∇FS(Jt) + C(Jt) exhibits
a comparable pattern with the curve FS′(Jt) (Figure 2 Left). To explore whether C(Jt) reveals
influence of the change of FS(Jt) to the generalization error, we plot dC(Jt)

dFS(Jt)
(Figure 2 Right) during

9

Figure 3: C(JT) correlates with ∇FS′(Jt) −∇FS(Jt). Left: C(Jt) and the generalization error
under different label noise level. Right: C(Jt) and the generalization error under learning rate. The
C(Jt) can capture the trend of generalization error cased by learning rate when learning rate is small.
Appendix E provides proof that a large learning rate results in a smaller proposed generalization
bound. Further discussions on why a small learning rate leads to a larger generalization error can be
found in Li et al. [17], Barrett and Dherin [3].

the training process. dC(Jt)
dFS(Jt)

increases slowly during the early stage of training, but surge rapidly
afterward. This discovery is aligned with our intuition about the overfitting.

The complexity of learning trajectory correlates with the generalization error In Figure 3, we
carry out experiments under various settings. Each data point in the figure represents the average
of three repeated experiments. The results demonstrate that both the generalization error and C(Jt)
increase as the level of label noise is raised (Figure 3 Left). The another experiments measure C(Jt)
and generalization error for different learning rate and discover that C(Jt) can capture the trend
generalization error. The reasons behind a larger learning rate resulting in a smaller generalization
error have been explored in Li et al. [17], Barrett and Dherin [3]. Additionally, Appendix E discusses
why a larger learning rate can lead to a smaller C(Jt).

5 Limitation

The assumption of small learning rate is required by our method. But this assumption is also common
use in previous works. For example, Hardt et al. [11], Zhang et al. [43], Zhou et al. [44] explicitly
requires that the learning rate should be small and is decayed with a rate of O(1t). Some methods have
no explict requirements about this but show that large learning rate pushes the generalization bounds
to a trivial point. For example, the generalization bounds in works [5, 16] have a term

∑T
t=1 η

2
t that

is not decayed as the data size n increases. The value of this term is unignorable when the learning
rate is large. The small learning assumption widens the gap between theory and practice. Eliminating
this assumption is crucial for future work.

6 Conclusion

In this study, we investigate the relation between learning trajectories and generalization capabilities
of Deep Neural Networks (DNNs) from a unique standpoint. We show that learning trajectories
can serve as reliable predictors for DNNs’ generalization performance. To understand the relation
between learning trajectory and generalization error, we analyze how each update step impacts the
generalization error. Based on this, we propose a novel generalization bound that encompasses
extensive information related to the learning trajectory. The conducted experiments validate our
newly proposed assumption. Experimental findings reveal that our method effectively captures
the generalization error throughout the training process. Furthermore, our approach can also track
changes in generalization error when adjustments are made to learning rates and the level of label
noises.

7 Acknowledgement

We thank all the anonymous reviewers for their valuable comments. The work was supported in part
with the National Natural Science Foundation of China (Grant No. 62088102).

10

References
[1] K. Ahn, J. Zhang, and S. Sra. Understanding the unstable convergence of gradient descent. In

International Conference on Machine Learning, pages 247–257. PMLR, 2022.
[2] A. Banerjee, T. Chen, X. Li, and Y. Zhou. Stability based generalization bounds for exponential

family langevin dynamics. arXiv preprint arXiv:2201.03064, 2022.
[3] D. G. Barrett and B. Dherin. Implicit gradient regularization. arXiv preprint arXiv:2009.11162,

2020.
[4] P. L. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk bounds and

structural results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.
[5] R. Bassily, V. Feldman, C. Guzmán, and K. Talwar. Stability of stochastic gradient descent on

nonsmooth convex losses. Advances in Neural Information Processing Systems, 33:4381–4391,
2020.

[6] M. Belkin, D. Hsu, S. Ma, and S. Mandal. Reconciling modern machine-learning practice and
the classical bias–variance trade-off. Proceedings of the National Academy of Sciences, 116
(32):15849–15854, 2019.

[7] O. Bousquet and A. Elisseeff. Stability and generalization. The Journal of Machine Learning
Research, 2:499–526, 2002.

[8] N. Chandramoorthy, A. Loukas, K. Gatmiry, and S. Jegelka. On the generalization of learning
algorithms that do not converge. arXiv preprint arXiv:2208.07951, 2022.

[9] J. M. Cohen, S. Kaur, Y. Li, J. Z. Kolter, and A. Talwalkar. Gradient descent on neural networks
typically occurs at the edge of stability. arXiv preprint arXiv:2103.00065, 2021.

[10] M. Haghifam, J. Negrea, A. Khisti, D. M. Roy, and G. K. Dziugaite. Sharpened generalization
bounds based on conditional mutual information and an application to noisy, iterative algorithms.
Advances in Neural Information Processing Systems, 33:9925–9935, 2020.

[11] M. Hardt, B. Recht, and Y. Singer. Train faster, generalize better: Stability of stochastic gradient
descent. In International conference on machine learning, pages 1225–1234. PMLR, 2016.

[12] S. Jastrzebski, Z. Kenton, D. Arpit, N. Ballas, A. Fischer, Y. Bengio, and A. Storkey. Three
factors influencing minima in sgd. arXiv preprint arXiv:1711.04623, 2017.

[13] S. Jastrzebski, D. Arpit, O. Astrand, G. B. Kerg, H. Wang, C. Xiong, R. Socher, K. Cho, and
K. J. Geras. Catastrophic fisher explosion: Early phase fisher matrix impacts generalization. In
International Conference on Machine Learning, pages 4772–4784. PMLR, 2021.

[14] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.
[15] Y. Lei. Stability and generalization of stochastic optimization with nonconvex and nonsmooth

problems. arXiv preprint arXiv:2206.07082, 2022.
[16] Y. Lei and Y. Ying. Fine-grained analysis of stability and generalization for stochastic gradient

descent. In International Conference on Machine Learning, pages 5809–5819. PMLR, 2020.
[17] Y. Li, C. Wei, and T. Ma. Towards explaining the regularization effect of initial large learning

rate in training neural networks. Advances in Neural Information Processing Systems, 32, 2019.
[18] X. Luo, B. Luo, and J. Li. Generalization bounds for gradient methods via discrete and

continuous prior. Advances in Neural Information Processing Systems, 35:10600–10614, 2022.
[19] D. A. McAllester. Pac-bayesian model averaging. In Proceedings of the twelfth annual

conference on Computational learning theory, pages 164–170, 1999.
[20] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine learning. MIT press,

2018.
[21] V. Nagarajan. Explaining generalization in deep learning: progress and fundamental limits.

arXiv preprint arXiv:2110.08922, 2021.
[22] V. Nagarajan and J. Z. Kolter. Uniform convergence may be unable to explain generalization in

deep learning. Advances in Neural Information Processing Systems, 32, 2019.
[23] J. Negrea, M. Haghifam, G. K. Dziugaite, A. Khisti, and D. M. Roy. Information-theoretic

generalization bounds for sgld via data-dependent estimates. Advances in Neural Information
Processing Systems, 32, 2019.

11

[24] G. Neu, G. K. Dziugaite, M. Haghifam, and D. M. Roy. Information-theoretic generalization
bounds for stochastic gradient descent. In Conference on Learning Theory, pages 3526–3545.
PMLR, 2021.

[25] K. E. Nikolakakis, F. Haddadpour, A. Karbasi, and D. S. Kalogerias. Beyond lipschitz: Sharp
generalization and excess risk bounds for full-batch gd. arXiv preprint arXiv:2204.12446, 2022.

[26] B. Oksendal. Stochastic differential equations: an introduction with applications. Springer
Science & Business Media, 2013.

[27] S. Park, U. Simsekli, and M. A. Erdogdu. Generalization bounds for stochastic gradient descent
via localized ϵ-covers. Advances in Neural Information Processing Systems, 35:2790–2802,
2022.

[28] A. Pensia, V. Jog, and P.-L. Loh. Generalization error bounds for noisy, iterative algorithms.
In 2018 IEEE International Symposium on Information Theory (ISIT), pages 546–550. IEEE,
2018.

[29] Y. Ren, S. Guo, and D. J. Sutherland. Better supervisory signals by observing learning paths.
arXiv preprint arXiv:2203.02485, 2022.

[30] D. Russo and J. Zou. Controlling bias in adaptive data analysis using information theory. In
Artificial Intelligence and Statistics, pages 1232–1240. PMLR, 2016.

[31] D. Russo and J. Zou. How much does your data exploration overfit? controlling bias via
information usage. IEEE Transactions on Information Theory, 66(1):302–323, 2019.

[32] L. Sagun, U. Evci, V. U. Guney, Y. Dauphin, and L. Bottou. Empirical analysis of the hessian
of over-parametrized neural networks. arXiv preprint arXiv:1706.04454, 2017.

[33] S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

[34] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

[35] U. Simsekli, L. Sagun, and M. Gurbuzbalaban. A tail-index analysis of stochastic gradient noise
in deep neural networks. In International Conference on Machine Learning, pages 5827–5837.
PMLR, 2019.

[36] B. Sorscher, R. Geirhos, S. Shekhar, S. Ganguli, and A. Morcos. Beyond neural scaling laws:
beating power law scaling via data pruning. Advances in Neural Information Processing Systems,
35:19523–19536, 2022.

[37] V. Vapnik. Principles of risk minimization for learning theory. Advances in neural information
processing systems, 4, 1991.

[38] V. Vapnik. The nature of statistical learning theory. Springer science & business media, 1999.
[39] V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative frequencies of

events to their probabilities. In Measures of complexity, pages 11–30. Springer, 2015.
[40] A. Xu and M. Raginsky. Information-theoretic analysis of generalization capability of learning

algorithms. Advances in Neural Information Processing Systems, 30, 2017.
[41] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning (still)

requires rethinking generalization. Communications of the ACM, 64(3):107–115, 2021.
[42] J. Zhang, H. Li, S. Sra, and A. Jadbabaie. Neural network weights do not converge to stationary

points: An invariant measure perspective. In International Conference on Machine Learning,
pages 26330–26346. PMLR, 2022.

[43] Y. Zhang, W. Zhang, S. Bald, V. Pingali, C. Chen, and M. Goswami. Stability of sgd: Tightness
analysis and improved bounds. In Uncertainty in Artificial Intelligence, pages 2364–2373.
PMLR, 2022.

[44] Y. Zhou, Y. Liang, and H. Zhang. Understanding generalization error of sgd in nonconvex
optimization. Machine Learning, 111(1):345–375, 2022.

[45] Z. Zhu, J. Wu, B. Yu, L. Wu, and J. Ma. The anisotropic noise in stochastic gradient de-
scent: Its behavior of escaping from sharp minima and regularization effects. arXiv preprint
arXiv:1803.00195, 2018.

12

A Proof of Theorem 3.6

We rewrite the Equation (7) and Equation (8):

Fµ(JT)− FS(JT) = Fµ(J0)− FS(J0)︸ ︷︷ ︸
(i)

+

T∑
t=1

[(Fµ(Jt)− Fµ(Jt−1))− (FS(Jt)− FS(Jt−1))]︸ ︷︷ ︸
(ii)t

,

(12)

and

E[Fµ(JT)− FS(JT)] = E
T∑

t=1

(ii)t. (13)

Using Taylor expansion for the function f(·), we have:

f(Jt)− f(Jt−1) = (Jt − Jt−1)
T∇f(Jt−1) +O(∥Jt+1 − Jt∥2). (14)

Therefore, we can define (ii)lint as:

(ii)lint ≜ (Jt − Jt−1)
T(∇Fµ(Jt−1)−∇FS(Jt−1)). (15)

The (ii)t can be decomposed as (ii)t = (ii)lint + (ii)nlt , where (ii)nlt ≜ (ii)t − (ii)lint .

Then Equation 13 can be decomposited as:

E[Fµ(JT)− FS(JT)] = E
T∑

t=1

(ii)lint︸ ︷︷ ︸
genlin(JT)

+E
T∑

t=1

(ii)nlt︸ ︷︷ ︸
gennl(JT)

. (16)

Proposition A.1. For the gradient descent or the stochastic gradient descent algorithm, we have:

E[genlin(JT)] = E[
T−1∑
t=0

ηt∇FS(Jt)
T(∇FS(Jt)−∇Fµ(Jt))]. (17)

If T = O(1
ηm

), we have:
| gennl(JT)| = O(ηm), (18)

where ηm ≜ max
t

ηt, and we have:

lim
n→∞

| gennl(JT)| = 0. (19)

Remark A.2. We give an experimental exploration of the gennl(JT) in Appendix C.3. We discover
that if the optimizer doesn’t enter the EoS (Edge of Stability) regime [9], we have gennl(JT) ≈ 0.

Proof. Analyzing of genlin(JT)

Because of ϵ(w) = C(w)
1
2 ϵ′ and E[ϵ′] = 0 (detail in Equation (3) and Equation (5)d), we can get:

Et−1[ϵ
T
t (∇Fµ(Jt)−∇FS(Jt))]

= Et−1[(ϵ
′)T(C(Jt)

1
2)T(∇Fµ(Jt)−∇FS(Jt))]

= Et−1[ϵ
′]TEt−1[(C(Jt)

1
2)T(∇Fµ(Jt)−∇FS(Jt))]

= 0.

(20)

Combining with Formula (3), we have

E[genlin(JT)] = E[
T−1∑
t=0

ηt∇FS(Jt)
T(∇FS(Jt)−∇Fµ(Jt))]. (21)

13

Analyzing of gennl(JT)

Here, we denote M ≜ max
t

∥∇FS(Jt)∥. According to the definition of gennl(JT).

| gennl(JT)| ≤ |Fµ(JT)− F lin
µ (JT)|+ |FS(JT)− F lin

S (JT)|

= |
T∑

t=1

O(∥Jt+1 − Jt∥2)|+ |
T∑

t=1

O(∥Jt+1 − Jt∥2)|

=

T∑
t=1

O(η2t ∥∇FS(Jt)∥2)

= O(Tη2mM2)

= O(
1

ηm
η2mM2)

= O(ηm)

(22)

Because all the elements of training set S are sampled from distribution µ, we have lim
n→∞

∇FS(w) =

Fµ(w), Therefore:

lim
n→∞

(ii)lint = lim
n→∞

(Jt − Jt−1)
T(∇Fµ(Jt−1)−∇FS(Jt−1)) = 0. (23)

What’s more, we also have:

lim
n→∞

[Fµ(JT)− FS(JT)] = 0. (24)

Because Fµ(JT)− FS(JT) =
∑T

t=1(ii)
lin
t +

∑T
t=1(ii)

nl
t , we have:

lim
n→∞

| gennl(JT)| = lim
n→∞

∣∣∣∣∣
T∑

t=1

(ii)nlt

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣Fµ(JT)− FS(JT)−
T∑

t=1

(ii)lint

∣∣∣∣∣ = |0− 0| = 0

(25)

According to the Equation (17), we analyze the generalization error of FJ|S ≜

{
∑T−1

t=0 wt
T∇f(Jt) | wt = δt

∇f(Jt)
∥∇f(Jt)∥} as a proxy for analyzing generalization error of the

function trained using SGD or GD algorithm. The value of genlin(JT) is equal to the gen-
eralization error of FJ|S . To analyze FJ|S , we construct an addictive linear space as LJ|S ≜

{
∑T−1

t=0 wt
T∇f(Jt) | ∥wt∥ ≤ δt}, where δt ≜ ∥ηt∇FS(Jt)∥. Here, we use J|S to emphasize that

J depends on S.

Under Assumption 3.4 (that is introduced in the main paper), we can have the following lemma.

Lemma A.3. Under Assumption 3.4, given S ∼ µn, let J = A(S), we have:

E[genlin(JT)] ≤ 2γ′VmERS(LJ|S), (26)

where V(w) = ∥∇FS(w)∥
EU⊂S∥ |U|

n ∇FU (w)− |S|−|U|
n ∇FS/U (w)∥

, Vm = max
t

V(Jt) and γ′ =

max{1, max
U⊂S;t

|U |∥∇FU (Jt)∥
n∥∇FS(Jt)∥ }γ.

14

Proof. For a function h, we define that hµ ≜ Ez∼µ[g(z)] and hS = 1
n

∑
zi∈S h(zi). Given a function

space, the maximum generalization error of the space can be defined as: Φ(S,H) ≜ sup
h∈H

(hµ − hS)

Φ(S,H|S) = sup
h∈H|S

(hµ − hS)

= sup
h∈H|S

(ES′hS′ − hS)

≤ ES′ sup
h∈H|S

(hS′ − hS)

= ES′,σ sup
h∈H|S

(
1

n

n∑
i

σi(h(z
σi
i)− h(z−σi

i)))

≤ ES′,σ sup
h∈H|S

(
1

n

n∑
i

σi(h(z
σi
i))) + ES′,σ sup

h∈H|S
(
1

n

n∑
i

σi(h(z
σi
i)))

= 2ES′,σ sup
h∈H|S

(
1

n

n∑
i

σi(h(z
σi
i))),

(27)

where S′ is another i.i.d sample set drawn from µn and σ denotes the Rademacher variable. The σi

in zσi
i denotes zσi

i that belongs to S or S′. if σi = −1 zσi
i ∈ S, otherwise, zσi

i ∈ S′.

RS(LJ|S) ≜ Eσ sup
h∈LJ|S

(
1

n

n∑
i

σih(zi))

= Eσ sup
h∈LJ|S

(
1

n
(
∑
z∈S+

h(z)−
∑
z∈S−

h(z)))

= Eσ(
1

n

T∑
t=0

δt∥gS+(Jt)− gS−(Jt)∥),

(28)

where S+ ≜ {zi | σi = +1} and S− ≜ {zi | σi = −1}, and gS(w) ≜ |S|∇FS(w).

ES′,σ sup
h∈FJ|S

(
1

n

n∑
i

σi(h(z
σi
i))) = ES′,σ sup

h∈FJ|S

(
1

n
(
∑
z∈S′

+

h(z)−
∑
z∈S−

h(z)))

= ES′,σ(
1

n

T−1∑
t=0

δt
gS(Jt)

∥gS(Jt)∥
(gS′

+
(Jt)− gS−(Jt)))

= ES′,σ(
1

n

T−1∑
t=0

δt
gS(Jt)

∥gS(Jt)∥
(|S+|∇Fµ(Jt)− gS−(Jt)))

(29)

where S′
+ is a subset of S′ with |S′

+| = |S+|. Defining k ≜ γ′Vm, we have:

15

kEσ sup
h∈LJ|S

(
1

n

n∑
i

σih(zi))− ES′,σ sup
h∈FJ|S

(
1

n

n∑
i

σi(h(zi)))

= kEσ(
1

n

T∑
t=0

δt∥gS+
(Jt)− gS−(Jt)∥)− ES′,σ(

1

n

T∑
t=0

δt
gS(Jt)

∥gS(Jt)∥
(gS′

+
(Jt)− gS−(Jt)))

= kEσ(
1

n

T∑
t=0

δt∥gS+
(Jt)− gS−(Jt)∥ −

1

n

T∑
t=0

δt
gS(Jt)

∥gS(Jt)∥
(|S+|∇Fµ(Jt)− gS−(Jt)))

≥ kEσ(
1

n

T∑
t=0

δt∥gS+(Jt)− gS−(Jt)∥ −
1

n

T∑
t=0

δt∥|S+|∇Fµ(Jt)− gS−(Jt)∥)

≥ k
1

n

T∑
t=0

δtEσ(∥gS+
(Jt)− gS−(Jt)∥)−

T∑
t=0

δtγ
′∥∇FS(Jt)∥

≥ 0

(30)

Therefore, combining Equation (27) and (30), we have E[genlin(JT)] ≤ 2γ′VmERS(LJ|S).

Lemma A.4. Given J = A(S), the formula RS(LJ|S) can be upper bounded with:

RS(LJ|S) ≤ −E
∫
t

dFS(Jt)√
n

√
1 +

Tr(Σ(w))

∥∇FS(w)∥22
. (31)

Proof. Let us start with the calculation of RS(w
T∇f(Jt)):

RS({wT∇f(Jt)|∥w∥ ≤ δ}) = 1

n
Eσ

(
sup

∥w∥≤δ

wT
n∑

i=1

σi∇f(Jt, zi)

)

=
δ

n
Eσ


√√√√∥∥∥∥∥

n∑
i=1

σi∇f(Jt, zi)

∥∥∥∥∥
2


≤ δ

n


√√√√Eσ

∥∥∥∥∥
n∑

i=1

σi∇f(Jt, zi)

∥∥∥∥∥
2


▲
≤ δ

n

√√√√Eσ

n∑
i=1

∥σi∇f(Jt, zi)∥2


=
δ

n

√√√√ n∑
i=1

∥∇f(Jt, zi)∥2,

(32)

where ▲ represents using the relation that for i, j satisfying i ̸= j, we have Eσiσj = 0.

16

Because wi is independent of wj if i ̸= j, we have:

RS(LJ|S) = RS({f(J0) +

T−1∑
t=0

wt
T∇f(Jt) | ∥wt∥ ≤ δt})

=

T−1∑
t=0

RS({wt
T∇f(Jt)|∥wt∥ ≤ δt})

≤
T−1∑
t=0

δt
n

√√√√ n∑
i=1

∥∇f(Jt, zi)∥2.

(33)

The covariance of gradient noise can be calculated as:

Tr[Σ(w)] = Tr[
1

n

n∑
i=1

∇f(w, zi)∇f(w, zi)
T −∇FS(w)∇FS(w)T]

=
1

n

n∑
i=1

Tr[∇f(w, zi)∇f(w, zi)
T]− Tr[∇FS(w)∇FS(w)T]

=
1

n

n∑
i=1

∥∇f(w, zi)
2∥ − ∥∇FS(w)∥2

(34)

Taking Equation (33) and δt ≜ ∥ηt∇FS(Jt)∥ into Equation (34), we have :

RS(LJ|S) ≤
T−1∑
t=0

δt
n

√√√√ n∑
i=1

∥∇f(Jt, zi)∥2

=

T−1∑
t=0

δt√
n

√
Tr[Σ(Jt)] + ∥∇FS(Jt)∥2

=

T−1∑
t=0

ηt∥∇FS(Jt)∥√
n

√
Tr[Σ(Jt)] + ∥∇FS(Jt)∥2

(35)

When ηt is small, δt ≈ −Eϵ
(Jt+1−Jt)

T∇FS(Jt)
∥∇FS(Jt)∥ ≈ −Eϵ

FS(Jt+1)−FS(Jt)
∥∇FS(Jt)∥ holds, therefore we have:

ERS(LJ|S) ≤ E
T−1∑
t=0

δt
n

√√√√ n∑
i=1

∥∇f(Jt, zi)∥22

≈ −E
T−1∑
t=0

FS(Jt+1)− FS(Jt)√
n

√
1 +

Tr(Σ(w))

∥∇FS(w)∥22

≈ −E
∫
t

dFS(Jt)√
n

√
1 +

Tr(Σ(w))

∥∇FS(w)∥22

(36)

Theorem A.5. Under Assumption 3.4, given S ∼ µn, let J = A(S), where A denotes the SGD or
GD algorithm training with T steps, we have:

E[Fµ(JT)− FS(JT)] ≤ −2γ′VmE
∫
t

dFS(Jt)√
n

√
1 +

Tr(Σ(Jt))

∥∇FS(Jt)∥22
+O(ηm), (37)

where V(w) = ∥∇FS(w)∥
EU⊂S∥ |U|

n ∇FU (w)− |S|−|U|
n ∇FS/U (w)∥

, Vm = maxt V(Jt) and γ′ =

max{1, max
U⊂S;t

|U |∥∇FU (Jt)∥
n∥∇FS(Jt)∥ }γ.

17

Proof. We rewrite Equation 2 of the update of SGD with batchsize b here:
Jt = Jt−1 − ηt∇FS(Jt−1) + ηtϵt (38)

where we simplify the ϵ(wt) as ϵt, then we can expand the function at f(JT) as:

f lin(JT) ≜ f(J0) +

T−1∑
t=0

(ηt∇FS(Jt) + ϵ)T∇f(Jt)

= f(J0) +

K−1∑
t=0

ηt∇FS(Jt)
T∇f(Jt) +

T−1∑
t=0

ϵTt ∇f(Jt)

(39)

Note that when the learning rate is small, we have f(JT) ≈ f lin(JT).

The difference between the distributional value and the empirical value of the linear function can be
calculated as:

E[Fµ(J0) +

T−1∑
t=0

(ηt∇FS(Jt) + ϵ)T∇Fµ(Jt)]− E[FS(J0) +

T−1∑
t=0

(ηt∇FS(Jt) + ϵ)T∇FS(Jt)]

= E[Fµ(J0)− FS(J0) +

T−1∑
t=0

(ηt∇FS(Jt) + ϵ)T∇Fµ(Jt)−
T−1∑
t=0

(ηt∇FS(Jt) + ϵ)T∇FS(Jt)]

= E[
T−1∑
t=0

ηt∇FS(Jt)
T(∇Fµ(Jt)−∇FS(Jt)) +

T−1∑
t=0

ϵTt (∇Fµ(Jt)−∇FS(Jt))]]

▲
= E[

T−1∑
t=0

ηt∇FS(Jt)
T(∇Fµ(Jt)−∇FS(Jt))]

≤ Φ(S,FJ|S),
(40)

where ▲ using the equation that E[ϵTt (∇Fµ(Jt)−∇FS(Jt))] = 0, according to Equation 20.

Because of E[Fµ(JT)−FS(JT)] = E[F lin
µ (JT)+O(ηm)−F lin

S (JT)−O(ηm)] = E[F lin
µ (JT)−

F lin
S (JT)] +O(ηm)(from Proposition A.1), by applying Lemma A.3 and Lemma A.4, the theorm is

proved.

Corollary A.6. If function f(·) is β-smooth, under Assumption 3.4 given S ∼ µn, let J = A(S),
ηt =

c
β(t+1) , M2

2 = max
t

Et−1(∥∇FS(Jt)+ ϵ(Jt)∥2) and M4
4 = max

t
Et−1(∥∇FS(Jt)+ ϵ(Jt)∥4)

, where A denoted the SGD or GD algorithm training with T steps, we have:

E[Fµ(JT)− FS(JT)] ≤− 2γ′VmE
∫
t

dFS(Jt)√
n

√
1 +

Tr(Σ(Jt))

∥∇FS(Jt)∥22

+ 2c2γ′VmM2
4

√
E
∫
t

dt

nβ2(t+ 1)4

(
1 +

Tr(Σ(Jt))

∥∇FS(Jt)∥22

)
+ 2c2

M2
2

β
.

(41)

where V(w) = ∥∇FS(w)∥
EU⊂S∥ |U|

n ∇FU (w)− |S|−|U|
n ∇FS/U (w)∥

, Vm = max
t

V(Jt) and γ′ =

max{1, max
U⊂S;t

|U |∥∇FU (Jt)∥
n∥∇FS(Jt)∥ }γ.

Proof. If f(·) is β-smooth, we have:

f(Jt+1)− f(Jt) ≤ (Jt+1 − Jt)
T∇f(Jt) +

1

2
β∥Jt+1 − Jt∥2 (42)

f(Jt+1)− f(Jt) ≥ (Jt+1 − Jt)
T∇f(Jt)−

1

2
β∥Jt+1 − Jt∥2. (43)

18

Combining the two equations, we obtain:

|Rµ(JT)−RS(JT)| ≤ |Fµ(JT)− F lin
µ (JT)|+ |FS(JT)− F lin

S (JT)|

≤ β

2

T−1∑
t=0

∥Jt+1 − Jt∥2 +
β

2

T−1∑
t=0

∥Jt+1 − Jt∥2

= β

T−1∑
t=0

∥Jt+1 − Jt∥2.

(44)

The generalization error can be divided into three parts:

E[Fµ(JT)− FS(JT)] ≤− 2γ′VmE
∫
t

dFS(Jt)√
n

√
1 +

Tr(Σ(Jt))

∥∇FS(Jt)∥22

−2γ′VmE
∫
t

dF lin
S (Jt)− dFS(Jt)√

n

√
1 +

Tr(Σ(Jt))

∥∇FS(Jt)∥22︸ ︷︷ ︸
(A)

+ βE
T−1∑
t=0

∥Jt+1 − Jt∥2︸ ︷︷ ︸
(B)

.

(45)

The term“(A)” is caused by using FS(Jt+1)− FS(Jt) to replace F lin
S (Jt+1)− F lin

S (Jt). The term
"(B)" is induced by gennl(JT). Then, we want to give a upper bound of (A) using M4

4 :

(A)
(⋆)

≤ 2γ′VmE
T−1∑
t=0

β∥Jt+1 − Jt∥2√
n

√
1 +

Tr(Σ(Jt))

∥∇FS(Jt)∥22
(⋆⋆)

≤ 2c2γ′VmE
T−1∑
t=0

∥∇FS(Jt) + ϵ(Jt)∥2

β
√
n(t+ 1)2

√
1 +

Tr(Σ(Jt))

∥∇FS(Jt)∥22

= 2c2γ′Vm

T−1∑
t=0

Et−1
∥∇FS(Jt) + ϵ(Jt)∥2

β
√
n(t+ 1)2

√
1 +

Tr(Σ(Jt))

∥∇FS(Jt)∥22
(⋆⋆⋆)

≤ 2c2γ′Vm

T−1∑
t=0

√
Et−1∥∇FS(Jt) + ϵ(Jt)∥4

β2n(t+ 1)4
Et−1

(
1 +

Tr(Σ(Jt))

∥∇FS(Jt)∥22

)

≤ 2c2γ′Vm

T−1∑
t=0

√
M4

4

β2n(t+ 1)4
Et−1

(
1 +

Tr(Σ(Jt))

∥∇FS(Jt)∥22

)

≤ 2c2γ′VmM2
4

√√√√E
T−1∑
t=0

1

β2n(t+ 1)4

(
1 +

Tr(Σ(Jt))

∥∇FS(Jt)∥22

)
.

(46)

19

where (⋆) is due to the Equation 44, (⋆⋆) is due to the update rule of Jt and (⋆ ⋆ ⋆) is que to Hölder’s
inequality. In the following, we use M2

2 to give a upper bound for (B):

(B) ≤ c2

β

T−1∑
t=0

1

(t+ 1)2
E∥∇F (Jt) + ϵ(Jt)∥2

≤ c2

β

T−1∑
t=0

1

(t+ 1)2
M2

2

≤ c2

β

(
M2

2 +

T−1∑
t=1

1

(t+ 1)2
M2

2

)

≤ c2

β

(
M2

2 +

T−1∑
t=1

(
1

t
− 1

t+ 1

)
M2

2

)

≤ c2

β

(
2M2

2 − 1

T
M2

2

)
≤ 2c2

M2
2

β

(47)

Taking the upper bound value of "(A)" and "(B)" into Equation 45, we obtain the result.

B Relaxed Assumption and Corresponding Bound

Assumption B.1. There is a value γ, T0 and ζ, so that for all w ∈ {Jt|t ∈ N ∧ t < T0}, we
have ∥∇Fµ(w)∥ ≤ γ∥∇FS(w)∥ and for all w ∈ {Jt|t ∈ N ∧ t ≥ T0}, we have ∥∇Fµ(w)∥ ≤
γ∥∇FS(w)∥+ ζ.

Theorem B.2. Under Assumption B.1, given S ∼ µn, let J = A(S), where A denotes the SGD or
GD algorithm training with T steps, we have:

E[Fµ(JT)−FS(JT)] ≤ −2γ′VmE
∫
t

dFS(Jt)√
n

√
1 +

Tr(Σ(Jt))

∥∇FS(Jt)∥22
+
1

2

T∑
t=T0

ηt∥∇FS(Jt)∥ζ+O(ηm),

(48)
where V(w) = ∥∇FS(w)∥

EU⊂S∥ |U|
n ∇FU (w)−n−|U|

n ∇FS/U (w)∥
, Vm = maxt V(Jt) and γ′ =

max{1, max
U⊂S;t

|U |∥∇FU (Jt)∥
n∥∇FS(Jt)∥ }γ.

Proof. Most of the proofs in this part are the same as those in Appendix A, except for Equation 30.
The Equation 30 is replaced by:

20

kEσ sup
h∈LJ|S

(
1

n

n∑
i

σih(zi))− ES′,σ sup
h∈FJ|S

(
1

n

n∑
i

σi(h(zi)))

= kEσ(
1

n

T∑
t=0

δt∥gS+
(Jt)− gS−(Jt)∥)− ES′,σ(

1

n

T∑
t=0

δt
gS(Jt)

∥gS(Jt)∥
(gS′

+
(Jt)− gS−(Jt)))

= kEσ(
1

n

T∑
t=0

δt∥gS+
(Jt)− gS−(Jt)∥ −

1

n

T∑
t=0

δt
gS(Jt)

∥gS(Jt)∥
(|S+|∇Fµ(Jt)− gS−(Jt)))

≥ kEσ(
1

n

T∑
t=0

δt∥gS+(Jt)− gS−(Jt)∥ −
1

n

T∑
t=0

δt∥|S+|∇Fµ(Jt)− gS−(Jt)∥)

≥ k
1

n

T∑
t=0

δtEσ(∥gS+
(Jt)− gS−(Jt)∥)−

T∑
t=0

δtγ
′∥∇FS(Jt)∥ −

1

2

T∑
t=T0

δtζ

≥ −1

2

T∑
t=T0

ηt∥∇FS(Jt)∥ζ.

(49)

Remark B.3. Compared of Theorem 3.6, we have a extra term
∑T

t=T0
ηt∥∇FS(Jt)∥ζ here. Since the

unrelaxed assumption ∥∇Fµ(w)∥ ≤ γ∥∇FS(w)∥ is not satisfied only when ∥∇FS(w)∥ is relative
small, the term

∑T
t=T0

ηt∥∇FS(Jt)∥ζ is small value.

C Experiments

C.1 Calculation of C(J)

To reduce the calculation, we construct a randomly sampled subset Ssp = {zsp1 , ..., zspn } ⊂ S.

∫
t

dFS(Jt)√
n

√
1 +

Tr(Σ(Jt))

∥∇FS(Jt)∥22
=

∫
t

dFS(Jt)√
n

√∑n
i=1 ∥∇f(Jt, zi)∥22

n

1

∥∇FS(Jt)∥22

≈
∫
t

dFS(Jt)√
n

√∑nsp

i=1 ∥∇f(Jt, z
sp
i)∥22

nsp

1

∥∇FS(Jt)∥22
Denote the weights after t-epoch training as Xt. We can roughly calculated C(Jt)

T∑
t=1

FS(Xt)− FS(Xt−1)√
n

√∑nsp

i=1 ∥∇f(Xt, z
sp
i)∥22

nsp

1

∥∇FS(Xt)∥22

C.2 Experimental Details

Here, we give a detail setting of the experiment for each figure.

Figure 1 The learning rate is fixed to 0.05 during all the training process. The batch size is 256.
All experiments is trained with 100 epoch. The test accuracy for CIFAR-10, CIFAR-100, and SVHN
are 87.64%, 55.08%, and 92.80%, respectively.

Figure 2 The initial learning rate is set to 0.05 with the batch size of 1024. We use the Cosine
Annealing LR Schedule to adjust the learning rate during training.

Figure 3 Each point is an average of three repeated experiments. We stop training when the training
loss is small than 0.2.

21

C.3 Experimental exploration of gennl(JT)

In this section, our aim is to investigate the conditions under which gennl(JT) ≈ 0. Since directly
calculating the difference |Rµ(JT)−RS(JT)| is challenging, we concentrate on the upper bound
value |Rµ(JT)|+ |RS(JT)|.
We conduct the experiment using cifar10-5k dataset and fc-tanh network, following the setting of
paper [9]. Cifar10-5k[9] is a subset of cifar10 dataset. Building upon the work of [1], we compute the
Relative Progress Ratio (RP) and Test Relative Progress Ratio (TRP) throughout the training process.
We initially consider the case of gradient descent. The definitions of RP and TRP for gradient descent
are as follows:

RP(Jt) ≜
FS(Jt+1)− FS(Jt)

η∥∇FS(Jt)∥2
(50)

TRP(Jt) ≜
FS′(Jt+1)− FS′(Jt)

η∇FS(Jt)T∇FS′(Jt)
. (51)

Therefore, we have:

FS(J0) +

T∑
t=1

(FS(Jt)− FS(Jt−1))− FS(J0)−
T−1∑
t=0

(Jt − Jt−1)
T∇FS(Jt−1)

=

T∑
t=1

[
(FS(Jt)− FS(Jt−1))− (Jt − Jt−1)

T∇FS(Jt−1)
]

=

T∑
t=1

[
(FS(Jt)− FS(Jt−1)) + η∥∇FS(Jt−1)∥2

]
=

T∑
t=1

[
ηt(1 + RP(Jt−1))∥∇FS(Jt−1)∥2

]
(52)

Following the same way, we have:

FS′(J0) +

T∑
t=1

(FS′(Jt)− FS′(Jt−1))− FS′(J0)−
T−1∑
t=0

(Jt − Jt−1)
T∇FS′(Jt−1)

=

T∑
t=1

[
ηt(1 + TRP(Jt−1))∇FS(Jt−1)

T∇FS′(Jt−1)
] (53)

Combining Equation (52) and Equation (53), we have:

| gennl(JT)| ≤
T∑

t=1

ηt
[
(1 + TRP(Jt−1))|∇FS(Jt−1)

T∇FS′(Jt−1)|+ (1 + RP(Jt−1))∥∇FS(Jt−1)∥2
] (54)

Therefore, if we have for all t,RP(Jt) ≈ −1 and TRP(Jt) ≈ −1, then | gennl(JT)| ≈ 0.

From Figure 4 we find that in stable regime, where the sharpness is below the 2
η , we have TRP ≈

RP ≈ −1. Under small learning rate, the gradient descent doesn’t enter the regime of edge of
stability and we have TRP ≈ RP ≈ −1 during whole training process and gennl(JT) ≈ 0.

Next, we consider the case of Stochastic Gradient Descent (SGD). Due to the stochastic estimation
of the gradient, we need to rely on some approximations. Let Xi

t represent the weights after the
t-epoch and i-th iteration of training. We assume a constant learning rate η for SGD. The gradient is
approximated as follows:

η∇FS(X
i
t) ≈

B

n
(Xt −Xt+1) =

B

n

n
B∑

i=1

∇FS(X
i
t), (55)

22

Figure 4: Exploration of gennl(JT) on Gradient descent. Experiments is conducted on cifar10-5k
dataset with cross entropy loss. The blue dash line in fourth row denotes 2

η . Gradient descent enter the
EoS regime when the sharpness is above 2

η . Both RP and TRP have values around -1 when sharpness
is below the 2

η .

and we appximate ∇FS′(Xi
t) as:

η∇FS(X
i
t) ≈ η∇FS(Xt). (56)

Therefore, we have:

RP(Xt) ≈
η(FS(Xt+1)− FS(Xt))

∥Xt+1 −Xt∥
(57)

TRP(Xt) ≈
FS′(Xt+1)− FS′(Xt)

(Xt −Xt+1)T∇FS′(Xt)
. (58)

Figure 5: Exploration of gennl(JT) on SGD case. Here, the effective learning rate is defined as
ηef ≜ n

B η. We still have gennl(JT) ≈ 0 under small learning rate.

We calculated the effect learning rate for SGD as ηef ≜ n
B η. Figure 5 shows that the conclusions of

SGD are similar as GD, except that the conditions of entering EoS are different.

23

Table 4: Comparison of trajectory based generalization bounds. Only our proposed method can
apply to the SGD with rich trajectory related information.

Method Conditions T.R.T
Nikolakakis et al. [25] Gradient Descent, ηt ≤ c

t ≤ 1
β , β-smooth

∑T
t=1 ηt

1
n

∑n
i=1 ∥∇f(Jt, zi)∥2

Neu et al. [24] β-smooth, E [∥∇f(w, z)−∇Fµ(w)∥] ≤ v, f(·) is subguassian distribution
√
Tη2

Park et al. [27] Weak Lipschitz continuity, Piecewise β′-smooth, f(·) is bounded, η < 2
β T

Ours Small Learning Rate, ∥∇Fµ(w)∥ ≤ γ∥∇FS(w)∥
∫
t
dFS(Jt)

√
1 + Tr(Σ(Jt))

∥∇FS(Jt)∥2

D Other Related Work

This part compares the works that is not listed in Table 2. Table 4 gives other trajectory based general-
ization bounds. [25] is a stability based work designed mainly for generalization of gradient descent.
It removes the Lipschitz assumption, and replaced by the term

∑T
t=1 ηt

1
n

∑n
i=1 ∥∇f(Jt, zi)∥2 in the

generalization bounds. This helps enrich the trajectory information in the bounds. The limitation of
this work is that it can only apply to the gradient descent and it is hard to extend to the stochastic
gradient descent. Neu et al. [24] adapt the information-theretical generalization bound to the stochas-
tic gradient descent. The Theorem 1 in Neu et al. [24] contains rich information about the learning
trajectory, but most is about ∇Fµ(w), which is unavailable for us. Therefore, we mainly consider
the result of Corollary 2 in Neu et al. [24], which removes the term ∇Fµ(w) by the assumption
listed in Table 4. For this Collorary, the remained information within trajectory is merely the

√
Tη2.

Althouth Neu et al. [24] dosen’t require the assumption of small learning rate, the bound contains
the dimension of model, which is large for deep neural network. Compared with these work, our
proposed method has advantage in that it can both reveal rich information about learning trajectory
and applied to stochastic gradient descent.

Chandramoorthy et al. [8] analyzes the generalization behavior based on statistical algorithmic
stability. The proposed generalization bound can be applied into algorithms that don’t converge.
Let S(i) be the dataset obtained by replace zi in S with another sample z′i draw from distribu-
tion µ.The generalization bound relies on the stability measure m ≜ sup{ 1

T

∑T−1
t=0 f(Jt|S, z) −

1
T

∑T−1
t=0 f(Jt|S(i), z)|z ∈ Z, i ∈ [n]}. We don’t directly compare with this method because the

calculation of m relies on S(i) which contains sample outside of S. Therefore, we treat this result as
intermediate results. More assumption is needed to remove this dependence of the information about
the unseen samples, i.e., the samples outside set S.

E Effect of Learning Rate and Stochastic Noise

In this part, we want to analyze how learning rate and the stochastic noise jointly affect our pro-
posed generalization bound. Specifically, we denote pt(w) as the distribution of the Jt during the
training with multiple training steps. Following the work [12], we consider the SDE function as an
approximation, which is shown as below:

dw = −∇FS(w)dt+
√
ηC

1
2 dW(t). (59)

The SDE can be regarded as the continuous counterpart of Equation(3) when sets the distribution of
noise term ϵ′ in Equation(3) as Gaussian distribution. The influence of the noise ϵ on pt(w) is shown
in the following theorem.
Theorem E.1. When the updating of the weight w follows Equation (59), the covariance matrix C is
a hessian matrix of a function with a scalar output, then we have:

∂pt(w)

∂t
= −

d∑
i=1

∂

∂wi
[∇FS(w)pt(w)− η

2
[∇Tr(C(w)) + C(w)∇w log(pt(w))︸ ︷︷ ︸

dampling factor

]pt(w)]. (60)

Remark E.2. Previous studies [45, 32, 12] tell that the covariance matrix C is proximately equal to the
hessian matrix of the loss function with respect to the parameters of DNN. Thus, the above condition
that the covariance matrix C is a hessian matrix of a function with scalar output is easy to be satisfied.
Formula (60) contains three parts. The item FS(w)pt(w) enlarge the probability of parameters being
located in the parameter space with low FS(w). ∇Tr(C(w)) and C(w)∇w log(pt(w)) ususally

24

contradict with each other. ∇Tr(C(w)) enlarge the probability of parameters being located in the
parameter space with low Tr(C(w)) value, while C(w)∇w log(pt(w)) serves as a damping factor
to prevent the probability from concentrating on a small space. Therefore, setting larger learning rate
gives stronger force for the weight to the area with lower Tr(C(w)) values. According to Equation 5,
we also have a lower Σ(w). As a result, large learning rate causes a small lower bound in Theorem
3.6

Proof. Based on the condition described above, we can infer that C(w) = ∇∇G(w), where G is a
function with a scalar output.

We first prove that ∇ · C(w) = ∇Tr(C(w)) as below:

[∇ · C(w)]j = [∇ · ∇∇G(w)]j

=
∑
i

∂

∂wi

∂

∂wi

∂

∂wj
G(w)

=
∂

∂wj

∑
i

∂

∂wi

∂

∂wi
G(w)

=
∂

∂wj
Tr(C(w)).

(61)

So far, we can infer that ∇ · C = ∇Tr(C). According to Fokker-Planck equation([26]), we have:

∂pt(w)

∂t
= −

d∑
i=1

∂

∂wi
[∇FD(w)pt(w)] +

1

2
η

d∑
i=1

∂

∂wi

 d∑
j

∂

∂wj
[C(w)pt(w)]


= −

d∑
i=1

∂

∂wi
[∇FD(w)pt(w)] +

1

2
η

d∑
i=1

∂

∂wi
[pt(w)∇ · C + pt(w)C∇w log pt(w)]

= −
d∑

i=1

∂

∂wi

[
∇FD(w)pt(w)− 1

2
η [∇ · C(w) + C(w)∇w log pt(w)] pt(w)

]

= −
d∑

i=1

∂

∂wi

[
∇FD(w)pt(w)− 1

2
η [∇Tr(C(w)) + C(w)∇w log pt(w)] pt(w)

]
.

(62)
Therefore, the theorem is proven.

25

	Introduction
	Our Contribution

	Related Work
	Generalization Bound
	Investigating generalization alone learning trajectory
	A New Generalization Bound
	Further Analysis
	Interpreting the Generalization Bounds
	Asymptotic Analysis
	Comparison with Stability-based methods

	Experiments
	Tightness of Our Bounds
	Capturing the trend of generalization error

	Limitation
	Conclusion
	Acknowledgement
	Proof of Theorem 3.6
	Relaxed Assumption and Corresponding Bound
	Experiments
	Calculation of C(J)
	Experimental Details
	Experimental exploration of gennl(JT)

	Other Related Work
	Effect of Learning Rate and Stochastic Noise

