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Abstract

Many causal systems such as biological processes in cells can only be observed indirectly
via measurements, such as gene expression. Causal representation learning—the task of
correctly mapping low-level observations to latent causal variables—could advance scientific
understanding by enabling inference of latent variables such as pathway activation. In
this paper, we develop methods for inferring latent variables from multiple related datasets
(environments) and tasks. As a running example, we consider the task of predicting a
phenotype from gene expression, where we often collect data from multiple cell types or
organisms that are related in known ways. The key insight is that the mapping from
latent variables driven by gene expression to the phenotype of interest changes sparsely
across closely related environments. To model sparse changes, we introduce Tree-Based
Regularization (TBR), an objective that minimizes both prediction error and regularizes
closely related environments to learn similar predictors. We prove that under assumptions
about the degree of sparse changes, TBR identifies the true latent variables up to some
simple transformations. We evaluate the theory empirically with both simulations and
ground-truth gene expression data. We find that TBR recovers the latent causal variables
better than related methods across these settings, even under settings that violate some
assumptions of the theory.

1 Introduction

Discovering new knowledge using machine learning is made ever more possible with the growing amounts
of unstructured data that we collect, from images, video, and text to experimental measurements from
large-scale biological assays. However, scientific discovery from such low-level measurements requires repre-
sentation learning, the task of mapping low-level observations to a high-level feature space.

As a running example, consider learning about drivers of disease from gene expression measurements, where
genes drive protein abundance levels that mediate disease. If we want to discover meaningful features that
could be causally linked to outcomes, we need methods to learn a disentangled representation via an encoder
that maps observations to causally relevant latent variables and not to transformations of these variables
that change their meaning.

Disentanglement is impossible from independent and identically distributed (IID) data without assumptions
to constrain the solution space (Hyvärinen & Pajunen, 1999; Locatello et al., 2019), but by leveraging known
structure such as non-stationarity (Hyvarinen & Morioka, 2017; Hyvarinen et al., 2019) or sparsity (Brehmer
et al., 2022; Ahuja et al., 2022c; Lachapelle et al., 2022b), it is possible to identify latent variables. The chal-
lenge is in finding assumptions that are strong enough to rule out spurious solutions, while remaining flexible
enough to fit the domain of interest. To this end, this paper proposes Tree-Based Regularization (TBR), a
new disentangled representation learning method that is particularly well-suited to biological settings. TBR
leverages non-stationarity from multiple datasets – called environments – that are hierarchically related via
a known tree.

In our running biology example, the environments are defined by cell types, and their relations come from
the tree describing the cell-type differentiation process Enver et al. (2005). We assume that the relationship
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Figure 1: The causal directed acyclic graph (DAG) relating observations X, latents Z and target variable of
interest Y . The marginal of X and Z → Y relationship is specific to environment e.

between low-level observations and latent variables, represented by P (Z|X), is constant across these envi-
ronments as it is driven by the underlying physics of the cell. However, the mechanism driving the outcome
(e.g., disease), Pe(Y |Z), changes across environments, reflecting processes like variation across cell types or
evolution.

The key assumption we make is that across closely related environments, the effects of only a sparse set
of true latents will vary. That is, changes to the conditional distributions Pe(Y |Z) are sparse, such that
environments that are siblings in the known tree share the same functional form up to a few parameters,
while more distant environments will have accumulated more changes. TBR enforces this structure via a
sparsity-inducing penalty. These constraints reflect biological settings, where it is common to observe data
across multiple cell types or model organisms with known relationships, and allow us to learn representations
that identify the true latent variables up to irrelevant transformations.

We show both theoretically and empirically that by enforcing this sparsity assumption on changes of the
conditional distributions, it is possible to identify the ground truth latent variables up to a permutation and
scaling factor. We further analyze the sensitivity of TBR to assumption violations and find that it remains
robust up to a point. Then, we apply TBR to a dataset of gene expression measurements across different cell
types, where we hold out some genes as latent variables and simulate phenotypes derived from these latents.
We find that TBR recovers the true latent variables with higher fidelity than standard representation learning
approaches, which then leads to higher transfer learning performance, demonstrating a concrete benefit of
the TBR approach.

2 Problem Formulation

We consider an input vector X (e.g., gene expression) and a target variable of interest Y (e.g., disease
phenotype). We observe n iid samples (xe

i , ye
i )n

i=1 from E different environments where each e denotes the
environment that produced the sample. Figure 1 illustrates the causal model of the data generating process.
The inputs X drive latent features Z that mediate the effect on Y . P (Y |Z) varies across environments while
P (Z|X) remains invariant. Specifically, we consider the following generative process:

Z = Ψ(X) + η; Y e = w⊤
e Ze + ϵ (1)

There exists an environment-invariant function relating X to Z, with noise term η, and an environment-
specific function Φe that relates latent factors Ze to Y e. In particular, we consider the case where Φe is
a linear mapping with weights we ∈ Rk where k = |Z|, and ϵ is an environment-independent noise term.
Linearity of the output map is clearly restrictive, but given that Φ(·) can be a basis function expansion of
Z, this process could still capture a variety of nonlinear maps between latents and targets.

Critically, we posit that the environments have diverged according to some evolution-like process. We denote
directed tree T = (E , A), where environments E are the nodes of the tree, and A ⊂ E2 denotes the set of
arcs1 between environments. The environment 0 ∈ E is assumed to be the root environment. In practice,
we will often observe samples only from leaf environments, and not from internal nodes in the tree (which
represent historical environments, such as ancestral species or transient progenitor cells), but our framework
is agnostic to this.

1An arc is a directed edge between two nodes.
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We assume that the environment-specific parameters we are subject to mutations between parent-child
environment pairs. In addition, we assume that these mutations are sparse, such that across each arc
a = (em, en), there exists a subset of indices S ⊂ {1, ...k} such that ∀i ∈ S, wem [i] ̸= wen [i], and the
components of wem

and wen
are equal otherwise. We denote the vector of differences in parameters across

arc a as δa = wen
− wem

. Note that the weights for any environment we can be expressed as the sum of the
root weights w0 and the relevant mutation vectors:

we := w0 +
∑

a∈path(0,e)

δa (2)

where path(0, e) denotes the set of arcs forming the path from the root environment 0 to environment e. We
denote ∆ ∈ R|A|×k as the matrix whose rows are the set of vectors δa for each arc a ∈ A.

The proposed evolution-like process relating environments via sparse local changes causes the distributions
P e(Y | Z) to gradually change. This model of evolution aligns with many observed processes in nature
where sparse genetic or epigenetic changes alter the process leading to a given phenotype, such as cell type
differentiation and species evolution.

2.1 Tree-based regularization

We approximate Ψ with an arbitrary deep neural network Ψ̂θ with parameters θ:

Ẑ = Ψ̂θ(X) (3)

We estimate a set of weights ŵ0 ∈ Rk, along with a matrix ∆̂ ∈ R|A|×k, whose rows contains the estimates
δ̂a for each a ∈ A, permitting estimation of each ŵe in the form of Eq. 2.

We jointly optimize Ψ̂θ, ŵ0 and ∆̂ to produce optimal predictions Ŷe across all environments. Additionally,
we regularize our estimate ∆̂ with a sparsity-inducing norm ||∆̂||0.

Assuming that we only observe data samples in a subset of environments L ⊂ E , typically the leaves in T ,
this yields the following loss function:

Loss =
∑
e∈L

(w⊤
e Ψ̂θ(Xe) − Y e)2 + λ||∆̂||0 (4)

where λ > 0 is a scaling parameter. The first term in Eq. 4 is a standard prediction error term, minimizing the
mean-squared error (MSE) for predictions of Ŷ . The second term regularizes the L0 norm of the matrix ∆.
Since parameters in ∆ are the differences across each arc in A, by maximizing the sparsity of ∆, we encourage
parent-child environment pairs to learn similar predictors. This captures the essence of our motivation, that
the mechanisms controlling P (Y | Z) should only change rarely. We will denote our method, optimizing
Eq. 4, as tree-based regularization (TBR). Figure 2 illustrates an example data-generating process involving
a tree with 5 environments and 3 leaves.

3 Identifiability via Sparse Tree-Based Regularization

This section presents our main theoretical contribution on disentanglement. More formally, we will show
that the learned Ẑ identifies the true latent variables Z up to permutation and element-wise rescaling, i.e.,
Ẑ = DPZ where D is an invertible diagonal matrix and P is a permutation.

The problem of non-identifiability arises because the first term in the loss function in Eq. 4, which penalizes
prediction errors, admits many solutions for Ẑ. Consider the generative process specific to environment A
in Figure 2:

Y = (w0 + δA)⊤Z + ϵ (5)
We can see that the distribution of Y remains unchanged if Z is subject to some linear transformation L, so
long as an inverse transformation is applied to w0 and ∆:

Y = (w⊤
0 L−1 + δ⊤

AL−1)LZ + ϵ (6)
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E[yA |X] = (w0 + δE,A)⊤Ψ(X)

E[yB |X] = (w0 + δE,D + δD,B)⊤Ψ(X)

E[yC |X] = (w0 + δE,D + δD,C)⊤Ψ(X)

Figure 2: An example of posited DGP and corresponding TBR parameterization for a dataset with samples
originating from three different environments (A, B, and C). A set of weights W0 is associated to the root. A
trainable update We is associated to each edge e. The prediction function fu at node u will make predictions
on data samples originating from environment u. Adapted from Layne et al. (2020).

However, the solution Ẑ = LZ potentially linearly entangles the components of the true features Z. For
tasks that require the learned features to be semantically faithful to the true features, e.g., inferring causal
effects of the features, this entanglement will lead to biased conclusions.

The second term in the loss in Eq. 4 plays a key role in selecting disentangled solutions among all solutions
that achieve optimal prediction error. This is because the regularization term λ||∆̂||0 is generally not
invariant to linearly entangled solutions such as LZ, as because for most choices of L, ||∆||0 ̸= ||∆L−1||0,
unless L = PD (when the representation is disentangled).

The core of the theory in this section lies in establishing assumptions under which the only linear transfor-
mations that can be applied to ∆ while maintaining the same level of sparsity, and thus the regularization
penalty in equation 4, are permutation and scaling operations. Combined with a result demonstrating the
identifiability of Z up to linear transformation, this regularization constraint permits disentanglement of
both ∆ and the latent features Z.

Our intuition focused on linearly entangled solutions Ẑ = LZ but in general, the hidden layer of a neural
network could produce arbitrarily entangled solutions. As such, we prove the identifiability of features learned
using tree-based regularization in two parts. First, we establish conditions under which the features learned
with a nonlinear function, e.g., a neural network, are identified up to linear transformations, bringing us back
to the linearly entangled case. This result builds on proof techniques found in the literature Khemakhem
et al. (2020b;a); Roeder et al. (2021); Ahuja et al. (2022a); Lachapelle et al. (2022a).

Second, we show that with some assumptions, the sparsity constraint on ||∆̂||0 permits further identification
of Z up to permutation and scaling. Specifically, we show that any ∆ with at most one non-zero value per
row cannot be entangled without a resulting increase in regularization cost.

3.1 Linear Identification of Z

Assumption 3.1 (Data-generating process (DGP)). For each environment e, we assume the pairs (x, y) are
drawn i.i.d from a distribution satisfying

E[Y | X, e] = w⊤
e Ψ(X) . (7)

Additionally, we assume the support of p(x | e), denoted by X ∈ Rd, is fixed across environments.
Assumption 3.2 (Sufficient task variability). We assume that there exist environments e1, . . . , ek ∈ E such
that the matrix [we1 , ...wek

] is invertible.
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Assumption 3.3 (Sufficient representation variability). We assume there exist x1, ..., xk ∈ X such that the
matrix [Ψ(x1), ..., Ψ(xk)] is invertible.

Taken together, these assumptions establish our first requirement, by implying that the latents are identified
up to a linear transformation L,
Proposition 3.4. Suppose Assumptions 3.1, 3.2 & 3.3 hold. Moreover, consider the learned parameters
ŵ0 and {δ̂a}a∈A and the learned encoder function Ψ̂(x). Analogously to Equation equation 2, we define
ŵe := ŵ0 +

∑
a∈path(0,e) δ̂a for all e ∈ E. If for all X ∈ X and all e ∈ E we have E[Y |X, e] = ŵ⊤

e Ψ̂(X), then,
there exists an invertible matrix L ∈ Rk×k such that

1. For all x ∈ X , Ψ(x) = LΨ̂(x);

2. For all e ∈ E, w⊤
e L = ŵ⊤

e ; and

3. For all a ∈ A, δ⊤
a L = δ̂⊤

a .

The proof is included in Appendix A.1.

Identification Up To Scaling and Permutation

The previous section shows that we can identify every δa up to some common invertible linear transformation
L. Recall ∆, ∆̂ ∈ R|A|×k are simply the concatenations of the δa and δ̂a, respectively. This means we can
write ∆L = ∆̂. We now show that penalizing the L0-norm of our estimate ∆̂ allows us to identify ∆ up to
a permutation and scaling.
Assumption 3.5 (1-sparse perturbations). Each δa has at most one nonzero value.
Assumption 3.6 (Sufficient perturbations). For all i ∈ {1, . . . , k}, there exists a ∈ A such that δa,i ̸= 0.
Proposition 3.7 (Disentanglement via 1-sparse perturbations). Suppose Assumptions 3.5 & 3.6 hold, let L
be an invertible matrix and let ∆̂ := ∆L. If ||∆̂||0 ≤ ||∆||0, then L is a permutation-scaling matrix.

Proof sketch To understand the crux of proving this result, recall the aspect of TBR that drives the result
in the first place: the L0 norm prefers solutions ∆̂ that are sparse. For this regularization to choose the
disentangled solution, Ẑ = ZDP, we have to show that ∆̂ = Z⊤L−1, the result of linearly entangled solution,
cannot be sparser than ∆̂ for the disentangled solution. To this end, our strategy will be to fix the amount
of sparsity in the ground-truth matrix ∆. Then, we will show by contradiction that there exists a mapping
between the columns of ∆ and ∆̂ such that each column in ∆ is at least as sparse as the corresponding
column in ∆̂. Using this result, we then show that to meet our constraint on the sparsity of ∆̂, it must be
the case that L is a permutation-scaling matrix.

While Assumption 3.5, which requires all rows in ∆ to have at most 1 non-zero entry, is unlikely to hold in
many practical applications of interest, we do note that we empirically consider violations of this assumption
in § 4, and find the results promising. Some further discussion about relaxation of the 1-sparse assumption
is included in Appendix A.2.

3.2 Proof of Proposition 3.7

This result builds on arguments from both Freyaldenhoven (2020) and Lachapelle et al. (2022b).

Proof. By Lemma A.1, there exists a permutation π such that for each column i in L, there is an index π(i)
where Lπ(i),i is a non-zero value α. Thus ∆̂:,i is equal to some linear combination of columns in ∆ where
column ∆:,π(i) has coefficient α. Details are included in Appendix A.

We use operator S to denote the “sparsity pattern” of a matrix. The sparsity pattern of ∆ is denoted as S∆,
and is equal to the set of indices of non-zero elements in ∆. Sc

∆ indicates the complement of the sparsity
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pattern: the set of indices corresponding to entries with value zero. Similarly, S∆:,i
denotes the sparsity

pattern of ∆ at column i.

Our proof builds upon a series of column-wise comparisons. For each index i ∈ {1, . . . , k}, we compare the
L0 norm of column ∆:,π(i) and column ∆̂:,i.

We define two sets of indices, Ωi and Γi,

Ωi := S∆:,π(i) ∩ Sc
∆̂:,i

(8)

Γi := Sc
∆:,π(i)

∩ S∆̂:,i
(9)

Thus, Ωi represents nonzero entries that were present in ∆:,π(i), but not in ∆̂:,i and Γi represents the opposite,
i.e. nonzero entries that were not present in ∆:,π(i) but that are present in ∆̂:,i. Thus, the following equality
holds:

||∆̂:,i||0 = ||∆:,π(i)||0 + |Γi| − |Ωi| (10)

We now show that Ωi is empty by contradiction. Assume there exists a ∈ Ωi. This means ∆a,π(i) ̸= 0
and ∆̂a,i = ∆a,:L:,i = 0. By the 1-sparse assumption, ∆a,−π(i) = 0. This further implies that ∆a,:L:,i =
∆a,π(i)Lπ(i),i = 0, which is a contradiction. We thus conclude that Ωi is empty.

Therefore, for arbitrary column i, it will always be the case that ||∆̂:,i||0 ≥ ||∆:,π(i)||0.

We rewrite the original sparsity constraint:

||∆̂||0 ≤ ||∆||0 (11)∑
i

||∆̂:,i||0 ≤
∑

i

||∆:,i||0 (12)∑
i

||∆̂:,i||0 ≤
∑

i

||∆:,π(i)||0 (13)∑
i

(||∆̂:,i||0 − ||∆:,π(i)||0) ≤ 0 (14)

The above combined with ||∆̂:,i||0 − ||∆:,π(i)||0 ≥ 0 implies that, for all i, ||∆̂:,i||0 = ||∆:,π(i)||0. This means
Γi is empty as well.

Because Γi is empty for all i, we have that

∀i, a, ∆a,π(i) = 0 =⇒ ∆̂a,i = 0 , (15)

or, equivalently,

∀i, a, ∆a,i = 0 =⇒ ∆̂a,π−1(i) = 0 , (16)

Choose an arbitrary i. By Assumption 3.5 & 3.6, there exists an a such that ∆a,π(i) ̸= 0 and ∆a,−π(i) = 0.
By equation 16, we have

∆a,−π(i) = 0 =⇒ ∆̂a,π−1(−π(i)) = 0 (17)
∆̂a,−i = 0 (18)

∆a,:L:,−i = 0 (19)
∆a,π(i)Lπ(i),−i = 0 , (20)

which implies Lπ(i),−i = 0 (since ∆a,π(i) ̸= 0). This holds for all i, thus L is a permutation-scaling matrix.
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4 Empirical Studies

The goal of the empirical studies is to demonstrate that TBR recovers disentangled latents, which further
lead to accurate causal inference and transfer learning. To that end, we conduct studies with simulated data
and gene expression data across cell types to investigate the behaviour of TBR under various generative
settings, robustness to violations of Assumption 3.5 , and potential downstream benefits to disentangled
representations. For all these experiments, we compare the representations produced by TBR to those
from a baseline method: a standard linear map fit to the target label Y on top of the learned nonlinear
representation Ψ̂. Additional implementation details are included in Appendix A.5. All results are averaged
over 10 repetitions unless otherwise specified.

Performance metric In Figure 4a, we evaluate the disentanglement of Ẑ using the mean correlation
coefficient (MCC). The MCC between Z and Ẑ is defined by:

arg max
π∈P

1
k

k∑
i=1

|| Pearson((Ẑπ(i)), Zi) ||, (21)

where P is the set of possible permutations of Ẑ and we calculate the Pearson correlation coefficient.

An MCC score of 1.0 indicates an estimated representation is equal to the ground truth up to permutation
and scaling.

Simulation details The general simulation procedure is: we generate a balanced binary tree T , of depth
7 with a total of 128 leaves. In each non-root environment, we sample 3000 datapoints according to,

x ∈ R16 ∼ N (0, 1)
z ∈ R5 ∼ N (Φ(x), 0.1)

Φ(x) = tanh(w⊤x); w ∼ N (0, 1)
w0 ∼ N (0, 1)

(22)

Each arc a in T is assigned a sparse δa ∈ R5, with non-zero Gaussian values (σ2 = 0.25) at a random subset
of S indices, where S denotes the number of non-zero entries and is varied throughout experimentation. we

is generated using Equation 2, and the target Y is sampled according to Equation 1, with ϵ ∼ N (0, 0.1). In
Appendix A.5, we show results for an equivalent simulation where only leaf nodes are observed, more closely
matching biological applications.

Disentanglement. To study the first question about validating our disentanglement theory, we evaluated
the MCC of the representations learned by TBR and the baseline method while varying the level of sparsity
in ∆, from S = 0, indicating that each δ ∈ ∆ is a null vector, to S = 5, resulting in a fully dense ∆. The
results, displayed in Figure 4a, align with our theoretical findings. With S = 0, ∆ is completely sparse, and
Ψ̂ is free to entangle Ẑ without any increase in regularization cost. In this setting, both TBR and the baseline
method learn entangled representations, exhibiting mean MCC of 0.52 ± 0.05 and 0.44 ± 0.05 respectively.

In the S = 1 setting, which uniquely satisfies Assumption 3.5, TBR elicits mean MCC scores of 0.98 ± 0.03
indicating that the representations of Ẑ are almost fully disentangled.

Sensitivity to assumption violations. The settings of S ≥ 2 test the robustness of our method to
violations of Assumption 3.5, which require 1-sparse changes across environments. As S increases, we see that
the MCC scores obtained by TBR gradually decline, a reasonable result given that the guarantees of § 3 no
longer hold. However, TBR remains notably stronger than baseline, indicating that tree-based regularization
incentivizes partial disentanglement even in settings not covered by our theory. Some additional results
exploring further variations on our simulation setting are included in Appendix A.5, showing robustness to
all-linear DGPs, and more stochastic amounts of variation in ∆.

Predictive performance. We evaluate the MSE of Ŷ for each method while varying the sparsity level S
for each δ ∈ ∆. Figure 4b highlights these results. When S = 0, E[Y |Z] is invariant across environments,
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Figure 3: An analysis on the effects of changing the dimension of Ẑ on MSE, across various dimensionalities
of Z. For |Z| ∈ {4, 5, 6}, TBR achieved minimal predictive loss when |Ẑ| = |Z|. In contrast, the baseline
method had no cases where the global minimum for MSE occurred when the estimated and true latent
vectors were of the same dimension.

matching the model fit by the standard baseline as well as TBR. As expected, both methods perform well
in this case. As S increases, TBR maintains low prediction error, while the performance of the baseline
method quickly degrades. This aligns with expectations, as the baseline method lacks the capacity to fit the
environment-specific effects of the latents Z.

Prediction error and estimating latent dimension. We further find evidence that varying the di-
mension of |Ẑ| in order to minimize predictive error can enable estimation of the true dimension of |Z| if
it is unknown, satisfying a key assumption of our method. We measured the MSE of Ŷ achieved by the
baseline and TBR when varying dimensionality of Ẑ from 1 to 8, while setting the average sparsity to half
the dimensionality by setting each entry in ∆ to zero with probability 0.5. For both methods, and for four
different values of the dimension |Z|, setting |Ẑ| ≤ |Z| resulted in elevated MSE. Notably, the MSE achieved
by TBR distinctly plateaued after reaching the correct dimensionality, as is shown in Figure 3. While not
conclusive, these results suggest that there is indeed potential in the analysis of prediction error with TBR
as a method of estimating the number of latent features present.

Causal effect estimation. We estimated the causal effects of the high-level latent variables Z on the
target Y using the representation Ẑ produced by each method as a substitute for the true latents. The goal
is to investigate whether disentangled representation learning is necessary for tasks such as causal inference
where the semantics of the variables involved matter. Formally, we estimate the average treatment effect
(ATE) of each latent Zk on Y ,

ATEk = E[Y ; do(Zk = z + δ)] − E[Y ; do(Zk = z)]

which measures the change in the mean of Y when we intervene (indicated by the do operator) and increase
the value of Zk by some constant δ. Since each ATE is not identified from observational data without
assumptions, we follow the necessary assumptions that: (i) there are no hidden confounding variables affect
both Z and Y and (ii) for all values z̃ of Z−k, 0 < P (Zk = z|Z−k = z̃) < 1. Following Pearl et al. (2000),
with these assumptions, and from the graphical model in Figure 1, each causal effect is identified by,

ATEk = EZ−k

[
E[Y |Z−k, Zk = z + δ] − E[Y |Z−k, Zk = z]

]
As a consequence of the linearity in the mapping from Z to Y , each ATE can be estimated by including all
variables Z in a linear regression of Y and reading off the fitted linear coefficients.

In our experiments, we estimate ATEk in ten randomly selected environments in the 1-sparse setting. We
fit ordinary least squares regression to Y using the representations Ẑ learned using TBR and the baseline
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(a) Disentanglement performance (MCC).
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Figure 4: Assessment of model performance across various simulation settings. The x-axis indicates the
number of non-zero entries in each δ. Left: A comparison of the MCC between Z and the estimates Ẑ
produced by TBR and the baseline method. TBR achieves near perfect disentanglement when S = 1.
Right: Comparison of prediction error produced by TBR and the baseline method when estimating Y .

methods and compared the estimated effects to those estimated when using the ground truth Z. We nor-
malized the representation values and calculated the mean squared error of the absolute coefficient values,
to ignore the effects of scaling. Table 3, included in the appendix, shows the results from this study. We see
that the disentangled representation obtained by TBR yields highly accurate effects (MSE=0.05 ± 0.07) in
this setting while the baseline method produces representations that severely introduce bias into the effect
estimates (MSE=1.51 ± 1.8). Further details are presented in Appendix A.6.

4.1 Single-cell RNA-seq experimentation

In addition to analyzing the behavior of TBR in simulation, we evaluated the ability of our method to learn
disentangled representations of ground-truth gene expression data, with simulated downstream cell-state
phenotypes.

In our setup, both X and Z consisted of real gene expression data observed across different cells. We selected
genes from within a set of 11 broadly expressed house-keeping genes(Eisenberg & Levanon, 2013) to hold
out as latent variables. For X, we extracted all transcription factors (TFs) annotated as regulators of Z, in
the hTFtarget database (Zhang et al., 2020). We removed from consideration two weakly regulated house-
keeping genes, resulting in a set of nine candidate Z genes (see Appendix A.5), each regulated by 18 to 95
TFs within X. We performed all experimentation on the publicly available GTEx V8 snRNA-Seq dataset,
described by Eraslan et al. (2022). We consider the 43 epithelial cell types as the set of environments E .

Preprocessing All preprocessing of the GTEx data was performed using standard functions within the
Scanpy library (Wolf et al., 2018). To denoise the data and adjust for dropout during sequencing, we first
applied across the entire dataset the MAGIC function developed in Van Dijk et al. (2018). The resulting
dataset was highly imbalanced, with a small number of cell types comprising the majority of examples.
To prevent these cell types from dominating our analysis, we randomly selected a subset of each cell-type
population such that no individual environment had more than 1000 samples, resulting in a final dataset of
15256 cells.
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(b) Prediction error (MSE) on unseen test cell types.

Figure 5: Left panel: A comparison of the MCC between Ẑ and Z across various settings of sparsity in
the simulation procedure, when X and Z are both ground-truth gene expression measurements. Results are
averaged over 30 simulated phenotypes for each of 75 random choices of genes to serve as Z. Right panel:
MSE exhibited when generalizing trained instances of TBR and the baseline method to unseen cell types
with 1-Sparse generative parameters changes, while varying the S setting of training environments. Results
are averaged over 10 simulated phenotypes each for 50 random choices of Z and 4 held-out test cell types.

We constructed the tree T relating the cell types by running the dendrogram method in the Scanpy library,
such that the 43 epithelial cell types made up the leaves in T . We simulated phenotype Y using latent gene
expression Z and cell type tree T via the simulation procedure outlined in § 4.

Results We repeatedly sampled subsets of 5 candidate genes to serve as Z and the corresponding TF
expression X, and compared the performance of TBR and our previously described baseline method across
30 different simulated phenotypes, for each sparsity level S.

The performance of the two methods in disentangling the latent gene expression values are depicted in
Figure 5a. TBR and the baseline method exhibit equivalent average MCC scores of 0.51±0.01 and 0.50±0.01
respectively in the S = 0 setting, when there is no variation between environments. Once variation is
introduced, the performance of TBR increases, exhibiting an average MCC of 0.61 ± 0.02 with both S = 1
and S = 2, while the performance of the baseline method degrades rapidly to 0.31 ± 0.02 as K increases
to 2. Globally, MCC scores are lower than observed in simulation. We expect that much of this gap in
performance can be attributed to the high levels of endogenous noise within the X → Z relationship.

Generalization to unseen environments. Since parameter values across related environments only
sparsely vary when we consider the true latents, but densely vary when we consider incorrect transformations
of these latents, we further expect that better disentanglement should lead to lower error when we transfer
our learned predictor to an unseen but similar environment. Thus, to demonstrate the value of learning
partially disentangled representations of gene expression, we evaluated the ability of our methods to predict
phenotype in environments that were unobserved during training. We selected cell types to use as a test set,
and completely excluded them from training.

We compared the performance between our baseline method, trained on the closest neighboring cell-type
to the test type, and TBR, using the parameters from the closest environment to the test type in T . To
maximize the potential performance from the baseline, we only considered test cell types whose closest
neighbor had a large population (pop. size >= 1000). Additionally, we restricted analysis to test types with
a population size >= 100.

10
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As in the previous experiment, we repeatedly sampled random choices of genes to make up Z and generated
simulated phenotypes with varying settings of S. In all cases, the unobserved environments had wtest ex-
hibiting 1-sparse changes from the closest observed environment in T , resulting in a non-trivial generalization
challenge even when S = 0 for the training environments. The results averaged across all choices of Z are
presented in Figure 5b.

Notably, training TBR with S = 0 resulted in a test MSE of 1.10±0.58 in the unseen cell types, a significantly
higher error rate than the S = 1 and S = 2 settings (respective MSE of 0.49 ± 0.22 and 0.47 ± 0.20). This
improvement in MSE when S > 0 is expected, as the 1-sparse changes in the unseen wtest could become
more widely distributed across the entangled estimated of Ẑ. This reduction in generalization risk in the
S >= 1 setting illustrates the value of even partially disentangled representations. The baseline method
exhibits significantly higher MSE in all settings, which may be due to the inherent limitations of training on
only closely related cell types, restricting sample size.

5 Related work

Several papers have shown that with samples from multiple environments, auxiliary labels, and assumptions
on the data generating process, we can learn disentangled representations (Hyvarinen & Morioka, 2016;
2017; Hyvarinen et al., 2019; Khemakhem et al., 2020a;b; Von Kugelgen et al., 2021; Shen et al., 2021;
Klindt et al., 2021; Gresele et al., 2019). Most of these previous works assume the latent variables are causal
ancestors of the observed variables, whereas we consider latent variables which are causal descendants of
the observations, enabling use of the target distribution as a signal for latent identification, rather than a
reconstruction objective. Within the research on disentanglement, this paper relates most closely to two
lines of work that exploit sparsity to guarantee disentangled solutions to the representation learning task.

Sparse changes to latents. One line of work focuses on temporal observations (Lippe et al., 2022) or paired
samples (Locatello et al., 2019; Ahuja et al., 2022b; Von Kugelgen et al., 2021) generated by varying only
a small number of generative factors. Similarly, Lachapelle et al. (2022b; 2024) leverage sparse interactions
between latent factors across time and/or with auxiliary variables to learn disentangled representations. In
this paper, instead of leveraging sparse shifts in the distribution over latent variables, we exploit sparse
changes in the mechanism by which the latent variables affect a target variable.

Sparse mappings. Another line of work exploits sparsity in the mappings from latent to observed variables
to establish disentanglement. In the case of generative factors, Moran et al. (2022); Brady et al. (2023); Zheng
et al. (2022) assume that each latent factor affects a subset of the components of the observation. In the
latent features setting that we also study in this paper, Lachapelle et al. (2022a); Fumero et al. (2023) observe
multiple targets of interest that depend sparsely on the latent features. In contrast, in this paper, we focus
on sparse changes in the mapping from latent features to the single target variable of interest. Another key
distinction is that we leverage a hierarchical structure over environments. This allows us to enforce that
mechanism changes be sparse locally while still admitting changes that are dense between environments that
have diverged significantly. Thus we do not need to constrain all pairs of environments to vary sparsely.

Tree based regularization Our tree-based regularization scheme is similar to the phylogenetic regular-
ization presented in Layne et al. (2020) but here we rely on a sparsity penalty to encourage disentanglement,
whereas Layne et al. leveraged distributional assumptions for better generalization.

6 Conclusion

The ability to learn disentangled representations is an important prerequisite for the use of representation
learning in a number of scientific tasks, such as causal effect estimation. There is a growing attention in the
literature to the use of sparse variations between environments to achieve disentanglement. We make several
novel contributions towards this line of pursuit. We demonstrate that disentanglement is possible when
data originates from a set of evolving environments, such as those resulting from cellular differentiation or
species evolution, where parameter shifts along a given tree branch are sparse. Tree-branch sparsity suffices
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to enable disentanglement, even if the resulting pair-wise differences between observable environments may
be dense.

We present novel theoretical results, leveraging sparse tree-based regularization in parameter space to disen-
tangle representations of learned features, downstream from the observable inputs in the causal graph. We
validate the value of our approach through a series of simulation studies, that demonstrate improvements
in disentanglement scores, prediction error, and estimation of the causal effects of the latent features. We
further investigate the ability of TBR to learn disentangled representations of ground truth gene expres-
sion data, with simulated downstream cell phenotypes. While further improvements are required to achieve
the full potential of causal representation learning on scRNA-seq data, we observe promising trends. Our
findings suggest that there is value in leveraging information about cell-type differentiation with TBR-style
methodology, both to assist in disentangling latent molecular mechanisms and to improve generalization
performance.

There are multiple directions for future work, including relaxing linearity in the mapping from latents to the
target, better characterization of the number of environments required, further exploration into estimation of
the number of latents, and expanding our results into more flexible generative processes, such as by relaxing
the assumption that p(Z | X) remains invariant.

Software and Data

Relevant code for replicating experimentation is available at [anonymized version included for blind submis-
sion]. Gene expression data can be retrieved via the GTEx portal website.
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A Appendix

A.1 Proof of Proposition 4.4

Proof. By Assumption 3.1, and the conditions on Ŷ outlined in Proposition 4.4, we have

E[Y |X, e] = ŵ⊤
e Ψ̂(X) (23)

w⊤
e Ψ(X) = ŵ⊤

e Ψ̂(X) (24)

Let e1, . . . , ek be the environments given by Assumption 3.2. We can define matrices

U =

w⊤
e1
...

w⊤
ek

 and Û =

ŵ⊤
e1
...

ŵ⊤
ek

 .
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By Assumption 3.2, we know U is invertible, which allows us to write

UΨ(x) = Û ˆΨ(x) (25)
Ψ(x) = U−1ÛΨ̂(x) (26)
Ψ(x) = LΨ̂(x) (27)

where L := U−1Û.

By Assumption 4, we can create an invertible matrix Q = [Ψ(x1), ..., Ψ(xk)]. We can subsequently denote
Q̂ = [Ψ̂(x1), ..., Ψ̂(xk)], allowing us to write Q = LQ̂. Since Q is invertible, both L and Q̂ must also be
invertible.

Combining equation 24 and equation 27 yields

w⊤
e LΨ̂(x) = ŵ⊤

e Ψ̂(x) (28)
w⊤

e LQ̂ = ŵ⊤
e Q̂ (29)

w⊤
e L = ŵ⊤

e , (30)

where the last equation holds because Q̂ is invertible.

Choose some a ∈ A and assume a = (e0, e′
0). Since equation 30 holds for all e, it holds in particular for e0

and e′
0:

w⊤
e0

L = ŵ⊤
e0

(31)
w⊤

e′
0
L = ŵ⊤

e′
0

. (32)

By substracting both equations above, we obtain

(we′
0

− we0)⊤L = (ŵe′
0

− ŵe0)⊤ (33)
δ⊤

a L = δ̂⊤
a , (34)

where the last step above follows from the definition of we in equation 2. This concludes the proof.

A.2 Useful Lemmas

The argument for proving the following Lemma is taken from Lachapelle et al. (2022b).
Lemma A.1 (Sparsity pattern of an invertible matrix contains a permutation). Let L ∈ Rm×m be an
invertible matrix. Then, there exists a permutation π such that Li,π(i) ̸= 0 for all i.

Proof. Since the matrix L is invertible, its determinant is non-zero, i.e.

det(L) :=
∑

π∈Sm

sign(π)
m∏

i=1
Li,π(i) ̸= 0 , (35)

where Sm is the set of m-permutations. This equation implies that at least one term of the sum is non-zero,
meaning there exists π ∈ Sm such that for all i ∈ [m], Li,π(i) ̸= 0.

A.3 Remarks on § 3

A.3.1 On relaxing the 1-sparse assumption:

Assumption 3.5 is particularly stringent, and many problem settings will not adhere to it in practice. We
note some of the expected results of relaxing this assumption, as they relate to our theory.
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Table 1: Summary of hyper-parameter settings.

Experiment / Dataset Parameter name Setting or range
Simulated λ 0.001
Simulated Learning rate 0.001
Gene Expression λ {0.0, 0.1, 0.01, 0.001, 0.0001}
Gene Expression Learning rate {0.001, 0.0001}

Central to our proof are the two sets Γi and Ωi. Ωi is the set of indices where entanglement by L decreases
sparsity for column i, and Γi is the set of indices where sparsity is increased. We reformulate the definition
of Ωi

Ωi = {j ∈ S∆:,π(i) | ∆j,−π(i) · L−π(i),i = −α∆j,π(i)} (36)

One can see that the condition for index j to be in Ωi is equivalent to: ∆j,π(i) ·Lπ(i),i = 0. Thus, if the number
of indices in Ωi = a for some a ≥ 2, it implies that there is a subset of a rows in ∆ where the columns
are linearly dependent. Under the assumption that non-zero values of ∆ are generated independently, it
seems intuitive that the likelihood of finding a rows with linearly dependent columns decreases rapidly as a
increases, and the results in Figure 4a give some evidence towards this possibility. We leave for future work
the possibility for formalizing a probabilistic bound on the size of a. We also note that Lachapelle et al.
find an identification result for latent variables that holds in a setting with infinitely many environments
but more general assumptions about sparsity, which may have some connections to the probabilistic line of
reasoning we outline.

An additional possible direction for future work towards generalizing our result is to investigate the use of
"anchor environments", as used by Moran et al. to disentangle latent generative factors.

A.4 Additional experimental details

Implementation We instantiated Ψ̂ as a neural network with two hidden layers (256 units, 64 units) and
LeakyRelu activations. Performance was compared across two methods of estimating linear map Φ̂. First,
a TBR implementation was used to directly estimate ŵ0 and ∆̂ in order to predict ŷ. Regularization of
||∆̂||0 was approximated by instead regularizing ||∆̂||1. We compare against a baseline of training a single
estimation of ŵ, without accounting for variation between environments.

In each experiment, Ψ̂ and the relevant estimation of Φ̂ were jointly optimized with the Adam optimizer
Kingma & Ba (2014). We trained models on 50% of the data. A validation set of 25% of the data was used
to tune hyper-parameters (learning rate, λ for TBR models), and the remaining 25% was held out as a test
set for evaluation. All models were implemented in PyTorch Paszke et al. (2019).

Hyper-parameters

Hyper-parameters are summarized in Table 1. Gene expression experiments were tuned individually per
choice of Z and phenotype from the range listed.

List of house-keeping genes

Sets of genes for inclusion in Z described in § 4.1 were selected from the list in Table 2:

Description of error estimates

All results presented with a mean value accompanied by a ± error estimate indicate standard deviation,
computed with a call to numpy’s np.std() command. Box plots, such as Figure 4a, include quantiles and
outliers calculated by seaborn’s sns.catplot() function with default settings. Error bars on bar plots, such
as Figure 5a indicate the 0.95CI and are computed by the errorbar function included in sns.catplot with
default settings.
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Table 2: House-keeping genes

Gene Name
C1orf43
CHMP2A
EMC7
PSMB2
PSMB4
REEP5
SNRPD3
VCP
VPS29

Compute requirements

Experimentation on the fully simulated dataset was performed on a MacBook Pro with 18GB memory and
an M3 Pro CPU. Time to generate a simulated phenotype with K = 1 and fit an instance of TBR was
estimated at 42.98 ± 13.40 over 10 repetitions.

Experimentation on gene-expression data described in § 4.1 was performed on a shared compute server with
a total of 755GB of ram and 96 CPU cores. Training leveraged shared use of a Quadro RTX 6000 GPU, with
an average GPU memory usage of approximately 1GB. Run-time to fit an instance of TBR for a random
choice of Z was estimated at 25.37 ± 2.53 seconds over 10 repetitions.

A.5 Additional experiments and results

Simulation with observations exclusively at leaves

Complementary to the experimentation depicted in Figure 4, we performed an equivalent set of experiments
with the simulation altered such that only leaf nodes had observations, which more closely matches our
motivating biological applications. We increased the depth of the tree from 7 to 8, keeping the number of
observable environments similar. The results display the same trends as discussed in the main text, with an
MCC approaching 1.0 exhibited by TBR in the K = 1 setting, and a significant increase in entanglement
observed by both methods when K = 0.

Causal effect estimation in simulation experiments.

The results from estimating causal effects from the estimated Ẑ using either TBR or the baseline method,
as described in § 4, are summarized in Table 3.
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(b) Prediction error (MSE).

Figure 6: Assessment of model performance across various simulation settings, with observations available
only that the leaf nodes.

Table 3: Mean-squared error of effect size estimates calculated using Ẑ, in comparison to estimates calculated
using ground-truth Z, computed over 10 trials per environment. TBR achieves a much smaller mean error
across all environments, showing that disentangled estimates of Ẑ allow for increased accuracy in determining
the effect sizes of latent features.

Environment TBR MSE Baseline MSE
Env 1 0.05 ± 0.07 0.87±0.76
Env 2 0.05 ± 0.07 1.08±0.91
Env 3 0.03 ± 0.04 1.29±1.67
Env 4 0.06 ± 0.09 1.68±1.72
Env 5 0.05 ± 0.08 1.96±3.58
Env 6 0.06 ± 0.09 2.55±2.14
Env 7 0.05 ± 0.08 1.3±0.94
Env 8 0.05 ± 0.07 1.85±1.3
Env 9 0.04 ± 0.06 1.19±1.11
Env 10 0.04 ± 0.06 1.3±1.29
Pooled 0.05±0.07 1.51±1.8

All-linear data-generative process

We tested the effect of an all-linear DGP, where Ψ(X) was replaced with a linear map with random weights.
We maintained the neural network architecture of Ψ̂. We noticed minimal change in the MCC performance
of TBR, results are included in Figure 7.

Stochastic Deltas

Additionally, we tested the effects of randomly selecting the number of non-zero values in each δa by drawing
from a Bernoulli distribution, while varying the parameter π in order to control the expected level of sparsity.
Results are displayed in Figure 8.
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Figure 7: An equivalent plot to Figure 6a, obtained by using a linear map in place of Ψ(X).

Figure 8: An equivalent plot to Figure 6a, obtained by using a Bernoulli distribution of non-zero entries in
∆ in place of a fixed k-sparse setting.
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