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Abstract

Real-world applications are stretching context windows to hundreds of thousand
of tokens while Large Language Models (LLMs) swell from billions to trillions
of parameters. This dual expansion send compute and memory costs skyrocket-
ing, making token compression indispensable. We introduce VISION CENTRIC
TOKEN COMPRESSION (VIST), a slow–fast compression framework that mirrors
human reading: the fast path renders distant tokens into images, letting a frozen,
lightweight vision encoder skim the low-salience context; the slow path feeds the
proximal window into the LLM for fine-grained reasoning. A Probability-informed
Visual Enhancement (PVE) objective masks high-frequency tokens during training,
steering the Resampler to concentrate on semantically rich regions—just as skilled
reader gloss over function words. On eleven in-context learning benchmarks, VIST
achieves the same accuracy with 2.3× fewer tokens, cutting FLOPs by 16% and
memory by 50%. This method delivers remarkable results, outperforming the
strongest text encoder-based compression method CEPE by 7.6% on average over
benchmarks like TriviaQA, NQ, PopQA, NLUI, and CLIN, setting a new standard
for token efficiency in LLMs. The source code will be released.

1 Introduction

Large language models (LLMs) excel at short snippets, yet many real-world tasks, e.g., long-document
understanding [1, 2] and question answering [3, 4]—already require inputs far beyond the thousand-
token regimes of early GPT-3 [1]. At the same time, parameter counts have leapt from billions to
trillions [5, 6, 7]. In this dual squeeze of longer context & larger models, compression shifts from a
convenience to a necessity: without shrinking the input, even the most powerful LLM cannot afford
to reason over the information we want it to see.

Psycholinguistics shows that our eyes dance across text: we fixate on rare, content-rich words and
skip almost one-third of high-frequency function words [8, 9, 10]. This selective-reading strategy
forms a natural slow-fast circuit. A fast visual pass skims distant, low-salience context to maintain
global context, while a slow cognitive pass focuses on nearby sentences that matter. (Figure 1 (a)).

Motivated by this circuit, we present VISION CENTRIC TOKEN COMPRESSION (VIST), a slow-fast
token compression framework that mirrors human skimming. As illustrated in Figure 1 (b), VIST first
converts loosely relevant long context into images, which are processed by a frozen vision encoder
and a trainable Resampler to produce semantically compact visual tokens. These compressed tokens
and the main input tokens are then consumed by the LLM. In this slow-fast setup, the vision encoder
acts like the human eye—selectively attending to salient information—while the LLM functions as
the brain, concentrating on the most informative content for deeper reasoning.
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Figure 1: Our method VIST adopts a lightweight vision encoder to process loosely relevant long contexts,
offering a more cost-efficient alternative to full LLM processing. However, the inherent redundancy in long text
leads to redundant visual tokens. Motivated by Selective Reading Strategy where low-frequency (content) words
receive longer fixations while high-frequency function words are often skipped, we design Probability-informed
Visual Enhancement (i.e., LPVE). This guides the Resampler to prioritize informative content over redundancy,
resulting in a 75% reduction in the number of visual tokens and yielding semantically dense tokens.

Specifically, the frozen visual encoders (e.g., CLIP [11]) trained on paired image-text data naturally
acquire OCR capabilities [11, 12], making them a powerful tool for image-based text understanding.
However, the inherent redundancy in long text leads to redundant visual tokens. To address the
problem, we design Probability-informed Visual Enhancement (PVE), a contrastive scheme that
enforces Resampler to prioritize informative content over redundancy. Concretely, PVE applies
frequency-based masking strategy to text token embeddings from the LLM tokenizer, suppressing
high-frequency (less informative) text tokens. This semantically rich text supervision guides the
Resampler to focus on informative content, bridging the semantic gap between visual and text tokens,
and enabling more effective token compression. Unlike previous work [13, 14, 15, 16, 17] that rely
on LLMs to compute token-level information entropy for assessing importance, VIST adopts token
frequency as a simple yet effective proxy, and further reveals rare tokens are key contributors to
overall semantic meaning (cf. Figure 3 and §5).

VIST leverages a lightweight vision encoder to compress loosely relevant long contexts, offering
a cost-efficient alternative to full-scale LLM computation. Furthermore, the vision encoder serves
as a visual text tokenizer, offering several compelling advantages over traditional text tokenizers.
❶ Simplified Tokenization. Text tokenizers rely on complex tokenization rules and vocabulary
constraints, typically involving nearly ten human-defined preprocessing steps (e.g., lowercasing,
punctuation and stop word removal, and tokenization) [18]. However, the vision encoder processes
text more directly by treating rendered text images as visual inputs. ❷ Vocabulary Bottleneck
Mitigation. Text tokenization, constrained by a finite vocabulary, becomes a bottleneck when scaling
to many languages. A larger vocabulary increases memory and computational costs in the embedding
matrix and output layer. However, vision encoder eliminates the need for text tokenizers and unifies
various languages into a single image format that removes the need for a vocabulary [19, 20]. ❸
Robustness to Character-Level Noise. Vision encoders are more resilient to typos and low-level
orthographic attacks, as they capture holistic visual patterns rather than relying on discrete token
matching [20]. ❹ Multilingual Efficiency. While our work focuses on English, visual text tokenizer
can reduce the number of tokens compared to traditional text tokenizer for languages (e.g., 62% for
Japanese, 78% for Korean, and 27% for Chinese). This reduction is particularly impactful in long-text
scenarios. Taken together, leveraging vision encoders for long-context compression is a promising
and worthwhile direction to explore.

To validate the effectiveness of VIST, we primarily compare with the text-encoder-based token
compression counterpart CEPE [21]. VIST requires 2.3× fewer visual tokens than text tokens for
the same input, reducing FLOPs by 16% and memory usage by 50%. VIST also delivers consistent
gains over CEPE on both In-Context Learning and Open-domain Question Answering tasks, with
average gains of 3.6% across 11 datasets and 5.7% across 3 datasets, respectively—highlighting
the effectiveness of visual representations for long-context modeling in LLMs.

2



Tokenization && Embedding

Perceiver Resampler
Large Language 

Model

Vision

Encoder

Feedforward

Cross-attention

Self-attention

Frequency-based Masking Strategy 

The “primary identification” with the father in individual pre
Render Text 

as Image   3.2 

Pooling

The

…

Pooling

CLS 

Token
Frozen 

Parameter

Trained 

Parameter

Masked 

Token

Probability-Informed 

Visual Enhancement

M  Images

The “ primary identification” with the father in individual pre

3.4

Next token prediction

(Eq. 1)

Rare Frequent

… …

The “ primary identification” with the father in individual pre

history would be the means, the

Figure 2: Overview of VIST. VIST, a slow-fast token compression framework, efficiently processes long texts
by mimicking human skimming. First, the fast visual path converts long context into images and employs a
lightweight vision encoder to capture semantically compact visual features. These features are then integrated
into the LLM via cross-attention in the slow cognitive path, allowing LLM to focus on salient content for deeper
reasoning. To prioritize informative content in text images, VIST employs Frequency-based Masking on text
token embeddings from text tokenizer, suppressing high-frequency but low-information token (e.g., “the” and
“with”). Such refined embeddings guide the Resampler in extracting critical semantics from the images.

2 Related Work

Token Compression. There has been a growing interest in expanding the context window for LLMs.
A line of methods leverages LLM itself to compress raw long input. One may classify these works
into two principal groups. i) soft prompt-based methods that adapt LLMs to compress context into
fewer tokens [22, 23, 24, 25, 26]. ii) selection-based methods that remove redundant tokens based on
information entropy computed by LLMs [13, 14, 15, 16, 17, 27]. All the long inputs typically need
to be handled by the heavy LLMs, which incur high costs. Another line of work [28, 29] augments
LLMs with the capacity to memorize previous long context information by external memory bank and
retrieve relevant knowledge [30, 31, 32, 33]. Our method is orthogonal to these existing strategies and
can be combined with them to achieve longer context length. The most related work is CEPE [21],
which employs a lightweight text encoder to handle long contexts and integrates the information into
LLM via cross-attention. While CEPE reduces workload on the LLM, it overlooks the redundancy
in long text, making it harder for LLMs to effectively allocate attention to key content. In contrast,
VIST compresses long text into compact visual tokens guided by high-density semantic text tokens.

Vision-centric Method. Text tokenization [34, 35, 36] breaks down text into tokens, serving as
a fundamental step in natural language processing. However, tokenization-based methods lack
robustness against spelling errors and face vocabulary bottlenecks. A new line of work tackles these
issues in a tokenizer-free paradigm [37, 20, 38]. The representative method Pixel [20] renders text
as images and learns to reconstruct masked image patches at the pixel level. It demonstrates strong
cross-language translation capabilities and tolerance for text perturbation. Along this direction, recent
work explores different pre-training objectives [39, 40], e.g., contrastive learning [41], patch-and-text
prediction [38]. Despite advancements, these methods overlook long-text scenarios and rely on
complicated training pipelines, e.g., OCR-based text understanding [19]. In contrast, VIST directly
processes text images by leveraging a vision encoder pretrained on image-text pairs with strong OCR
capabilities, and enhancing visual features using enriched text embeddings from LLM tokenizer.
An emerging family of multimodal methods [42, 43, 44, 45, 46] leverage visual representations to
process text and images together, enabling a wide range of applications involving visually-situated
text, e.g., webpage parsing [43], tables images analysis [47], and document understanding [42, 48].
In this work, we explore incorporating long-context information into LLMs from a visual perspective.

3 Methodology

In this section, we present our method VIST, which processes long in-context text by a lightweight
visual encoder, effectively and efficiently extending the context length of LLMs.
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3.1 Overall Pipeline

Our VIST, a slow-fast compression framework, is designed to efficiently process long texts by mim-
icking human reading. The fast visual path skims distant, low-salience long context via a lightweight
vision encoder, while the slow cognitive path performs fine-grained reasoning on important content by
LLM. As illustrated in Figure 2, the input long text (i.e., T text tokens) is split into two parts: the first
Te text tokens processed in a visual view and the remaining Td raw text tokens given to LLM, where
T = Te +Td. Specifically, the Te text tokens are evenly rendered into M images and fed into a frozen
vision encoder. Then VIST employs a learnable Perceiver Resampler to compress text-rendered
image features into a fixed count of tokens. Such compressed visual tokens are integrated into the
LLM via cross-attention for the next-token prediction. The Perceiver Resampler is jointly trained
with the LLM during tuning the cross-attentions in an end-to-end manner.

To empower the model with the ability to comprehend dense text in images, we devise Probability-
informed Visual Enhancement (PVE, §3.4). PVE maximizes agreement between visual features
obtained from the Perceiver Resampler and text token embeddings extracted from LLM tokenizer.
This alignment bridges the global semantic gap between visual tokens and raw text tokens. Fur-
thermore, to address token redundancy, VIST incorporates a frequency-based masking mechanism
within PVE that selectively masks high-frequency, low-information text tokens, thereby improving the
information density of the text embeddings. These refined embeddings serve as enriched supervision
signals, encouraging visual features to be more compact and semantically meaningful.

3.2 Vision-centric Implementation

VIST transforms raw textual data into M uniformly distributed RGB images X = {xm ∈
RH×W×C}Mm=1, where M can be dynamically adjusted based on the length of the input text. Con-
cretely, each image is configured with height H = 14, width W = 3, 584, and C = 3 RGB channels,
which corresponds to a square color image with a resolution of 224× 224. Text is rendered using
a 10px font size and Google Noto Sans typeface. If text incompletely fill the image, white empty
patches are masked to exclude them from attention score computation and loss calculation. Compared
to text tokenizer-based methods, this rendering method does not lead to slower training speeds [44].

3.3 Token Reduction

The M text-rendered images are first processed by frozen vision encoder, specifically the ViT-
L/14 [11] from OpenCLIP. The extracted features F ∈ RM×L×D are then fed into a trainable
Perceiver Resampler [49], producing a fixed set of N+1 visual tokens per image (including a CLS
token), denoted as F

′ ∈ RM×(N+1)×D, where N = 64 and D is the feature dimension. During
training, raw text data (Te = 4096 text tokens) is rendered onto M = 28 images, resulting in
64× 28 = 1792 visual tokens, passed to the cross-attention layer in LLM. This compression reduces
the computational complexity of the cross-attention layer within the LLM. Moreover, the number of
images M and tokens N can be dynamically adjusted during both training and inference, allowing
VIST to flexibly control the compression ratio. VIST using a lightweight vision encoder, offers a more
efficient approach than processing all text tokens directly within the LLM.

3.4 Probability-informed Visual Enhancement

In VIST, the frozen vision encoder is pre-trained primarily on general visual data (such as natural
images) without exposure to rendered text images. Hence its ability to interpret dense textual
information within images is constrained. To alleviate this problem, we develop a novel training
objective, named Probability-informed Visual Enhancement (PVE). PVE enhances the understanding
capabilities of Perceiver Resampler for rendered text images, enabling them to serve as robust
substitutes for traditional text tokenizers.

Text-anchored Semantic Consistency. PVE encourages the Perceiver Resampler to learn a shared
embedding space, aligning visual text features F

′
with text token embeddings from text tokenizer.

Concretely, PVE is formulated as a contrastive loss:

Lij
PVE = − log

exp(⟨F̂ ′

i , F̂
t
j⟩/τ)∑B

k=1 exp(⟨F̂
′
i , F̂

t
k⟩/τ)

, (1)
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Figure 3: Token-Level Information Gain (IG) in sentence “So transference is a therapeutic device but also
something that has always operated in creation.”. The red dashed line masks of 50% the most frequent tokens
based on training set statistics. This strategy preserves tokens with higher information gain, while eliminating
statistically prevalent but low-value tokens, enhancing semantic density.

where B is batch size and F̂
′

i is obtained by applying average pooling to the CLS tokens from F
′

i . F̂ t
j

is the averaged text token embedding after frequency-based masking and pooling. τ is the temperate
parameter. Importantly, F̂

′

i and F̂ t
i are different representations derived from the same text.

Frequency-based Masking. PVE employs text token embeddings as supervision signals to guide the
Resampler in extracting textual information from text images. However, long-form text is inherently
redundant, where structural components and function words may dominate the token distribution.
Such redundancy introduces noise that impedes Resampler from capturing key semantic content.

Our solution draws inspiration from Shannon information theory [50], which provides a formal way
to quantify the information content of an event or a message. The formula is given by:

I(y) = − log2 P (y), (2)

where I(y) is the information content of event or messages y and P (y) is the probability of y. It
highlights the inverse relationship between the probability of an event and the information it carries.
When applied to tokens in a corpus: Rare tokens (low-frequency) are treated as high-information
tokens because they often carry domain-specific or contextually important information. Frequent
tokens (high-frequency) have lower information content because they may serve more structural
or grammatical purposes, contributing less to the unique meaning of the text. Figure 3 shows
that masking 50% of the most frequent tokens based on corpus-level (i.e., training set) frequency
distribution still preserves most high-information-gain (IG) tokens, ensuring minimal loss of critical
information while reducing redundancy. This aligns with the selective reading strategies [10, 51]
observed in skilled readers. Based on this principle, we devise frequency-based masking strategy that
uses token frequency as a proxy for semantic importance. This strategy masks frequent tokens but
low-information tokens to improve the information density of text token embeddings. The importance
score for each token is calculated as follows:

sw = log
|S|

1 + count(w)
, (3)

where |S| denotes the total number of samples, count(w) is the count of the token w (subword), and
sw is the importance score of token w. Token frequency statistics can be easily computed online
with negligible overhead or precomputed. Based on the importance score for each token, we apply a
50% masking rate, where tokens are randomly masked with tokens of lower importance score being
more likely to be masked. This ensures the Resampler prioritizes key content-bearing tokens, learning
richer semantic representations and improving its ability to interpret dense text in rendered images.

4 Experiment

4.1 Experimental Setup

Pretraining. We validate VIST with TinyLlama [52]. The frozen vision encoder in our model is ViT-
L/14 [11]. To reduce computational overhead, our model employs float16 precision and DeepSpeed
Zero-2 with CPU off-loading[53]. Refer to Appendix B for details.

Competitors. i) Long-context models: Replug [54] and Stream [55] with TinyLlama [52]. ii)
Text-encoder-based compression method: To compare the effectiveness of leveraging text tokens
v.s.visual tokens for processing long contexts in LLM, we implement CEPE∗ by applying CEPE [21]
to TinyLlama [52], replacing the vision encoder in VIST with a lightweight text encoder. All other
architectural and training settings are kept identical. iii) Vision-centric compression methods:
ToMe [56] merges, and FastV [57] prunes visual features from frozen vision encoders. For fairness,
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Table 1: Text perplexity on the last 256 tokens of long-context language modeling for ArXiv and Book datasets,
PG19, Proof, and Code. Te is token length for encoder, and Td is for LLM. † denotes methods with the Resampler
and PVE in our VIST. We report the Throughput of each model relative to TinyLlama. ∆ is compression ratio.

Method Te Td ArXiv Book PG19 Proof Code Throughput ∆ TFLOPs MEM(GB)

TinyLlama [52] - 4096 > 103 > 103 > 103 > 103 > 103 1.0× - 8.47 5.46
Replug [54] - 4096 3.220 15.394 14.685 3.921 3.011 0.2× - 9.15 6.12
Stream [55] - 4096 3.116 15.188 14.372 2.876 2.764 1.6× - 8.31 6.41
ToMe† [56] 2048 2048 3.536 15.607 16.213 4.128 3.234 3.8× 2.3 7.93 4.59
FastV† [57] 2048 2048 3.491 15.711 16.016 4.216 3.111 3.8× 2.3 7.88 4.59
CEPE∗ [21] 2048 2048 3.071 15.619 11.737 2.888 2.151 1.8× - 8.26 4.80
VIST 2048 2048 2.993 14.973 13.205 3.057 2.247 3.8× 2.3 7.72(0.75↓) 4.59(0.87↓)

CEPE∗ [21] 6144 2048 3.005 14.919 11.112 2.719 2.100 2.1× - 13.27 7.74
VIST 6144 2048 2.989 14.894 12.737 3.003 2.183 5.3× 2.3 11.65(1.62↓) 4.94(2.80↓)

CEPE∗ [21] 14,336 2048 3.003 14.921 10.909 2.715 2.162 3.3× - 23.30 13.59
VIST 14,336 2048 2.965 14.815 11.933 2.971 2.032 7.6× 2.3 19.52(3.78↓) 6.75 (6.84↓)

we match their compression rates to ours. Directly using these visual features in LLMs leads to high
perplexity (>1k) due to the mismatch between visual and text tokens. Thus, we retain the Resampler
and PVE in our VIST, denoting ToMe† and FastV†. See Appendix B.5 for more details.

Pretraining Dataset. Our pertaining dataset is an official sample of the RedPajama dataset [58],
including 1B tokens from seven domains: ArXiv, Book, C4, Commoncrawl, GitHub, StackExchange,
and Wikipedia. The training set of the corpus is preprocessed into 4608 text token sequences, where
the first 4096 text token sequences are fed into the vision encoder (or text encoder for CEPE∗) and
the remaining 512 text tokens are provided to LLM.

Downstream Evaluation. We primarily evaluate tasks requiring long context processing, revealing
vision tokens effectively handle extended context, outperforming previous text-encoder-based model.
Comparisons across more methods and datasets are provided in the Appendix B.6.

4.2 Long-context Language Modeling

To assess the long-context language modeling (LCM) ability, we evaluate on ArXiv and Book from
RedPajama [58] test split, alongside long-context datasets: PG19 [59], Proof [60], and Code [61]. The
evaluation metric is perplexity (PPL) over the last 256 tokens of each input. Early tokens (typically
farther from the current prediction point) are handled by the vision encoder, while the more recent
tokens are passed to the LLM, under the assumption that proximity correlates with relevance.

Impact of Increased Text Length. Table 1 summarizes the results across different input lengths.
Long-context language modeling can benefit from previous long contextual information. However,
TinyLlama [52] supports only fixed-size inputs of 2048 tokens. Beyond this length, its performance
drops sharply, with perplexity exceeding 103. In contrast, VIST demonstrates a consistent decrease in
perplexity as the input text length increases. Vision-centric token compression models ToMe† and
FastV† focus on natural images, where redundancy arises from local visual similarity. However, they
are ill-suited for text redundancy and struggle to preserve key semantic content in text image, yielding
higher perplexity than our VIST. Moreover, VIST obtains the lowest PPL (14.973) on Book datasets,
when Te and Td are 2048. These results prove that VIST effectively enhances the capability of
modeling long-form language.

Comparison on Inference Cost. In Table 1, VIST renders text into multiple images of size 224×224.
1024 text tokens need 7 images and VIST requires 56% fewer visual tokens than text tokens for the
same input (i.e., compression ratio ∆ is 2.3, from 1024 text tokens to 448 = 7×64 visual tokens). We
report the throughput of each model relative to TinyLlama. VIST achieves comparable performance
with text-encoder-based compression model CEPE∗, with 16% fewer FLOPs, 50% less memory
usage, and higher throughput when processing 16k tokens.

4.3 In-context Learning

We evaluate VIST on In-Context Learning (ICL) tasks across 11 widely-used text-classification
datasets: SST2 [62], MR [63], AGN [64], SST5 [62], TREC, TREF [65], DBP [64], NLUS, NLUI [66],
BANK [67], and CLIN [68]. Following [21], we randomly sample 250 text examples per dataset. The
ICL results in Table 2 are reported as the average accuracy over three random seeds. For VIST and
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Table 2: In-context learning accuracy averaged across 3 seeds (42, 43 and 44). Green highlights the gain from
the additional demos. ne is the number of demos for encoder and nd for decoder (LLM).

Method ne nd SST2 MR AGN SST5 NLUS NLUI TREC TREF DBP BANK CLIN Avg.

TinyLlama [52] - 2 76.0 67.7 63.4 27.6 5.2 4.4 28.8 9.6 38.0 23.0 22.4 33.3

TinyLlama [52] - 20 87.6 71.7 75.0 30.1 46.1 32.6 72.0 38.5 80.4 42.9 53.7 57.3(24.0↑)
CEPE∗ [21] 18 2 76.9 82.3 66.9 29.1 9.6 30 39.2 12.7 71.1 27.2 39.8 44.1(10.8↑)
VIST 18 2 77.7 79.2 61.5 42.7 15.6 40.6 36.5 14.6 71.9 25.0 43.8 46.3(13.0↑)

TinyLlama [52] - 50 88.6 64.8 21.4 42.5 34.2 30.4 81.1 44.7 3.4 49.7 39.7 45.5(12.2↑)
CEPE∗ [21] 48 2 82.9 79.4 63.9 42.3 28.1 31.1 32.6 14.7 71.5 29.0 39.1 46.8(13.5↑)
VIST 48 2 78.9 85.2 71.9 44.4 27.2 43.1 38.3 18.4 73.1 25.4 48.1 50.4(17.1↑)

CEPE∗, we provide two demonstrations directly to the decoder, while the rest are processed by the
encoder. More details in Appendix C.2.

Results. Table 2 examines the influence of increasing the number of demonstrations, where ne
is the number of demos for encoder and nd for LLM. VIST shows a 13% accuracy improvement
(from 33.3% to 46.3%) as more demonstrations (ne is 18) are provided to the visual encoder,
showcasing the capacity of LLM to comprehend text within visual signals when integrated with
VIST. Furthermore, VIST outperforms CEPE∗ in average accuracy across all 11 datasets, which
indicates visual-based text understanding can effectively match or even surpass text encoder
performance. Though VIST and CEPE∗ (ne = 18, nd = 2) underperform TinyLlama (nd = 20),
they achieve lower computational cost by processing most demonstrations (18) with lightweight
encoder. The performance gap on NLUS, TREC and TREF may stem from high category diversity,
where the weak relevance between queries and demonstrations makes the lightweight encoding less
effective than using the full LLM for all demos. Notably, the performance of TinyLlama declines
with 50 demonstrations due to context window limit, while VIST remains efficient and stable.

4.4 Open-domain Question Answering

Open-domain Question Answering (QA) is a challenging task that requires model to generate accurate
answers based on retrieved relevant information. Experiments are conducted on three open-domain
QA datasets, including TriviaQA [69], NQ [70], and PopQA [71]. We use Contriever [72] to retrieve
relevant k passages from Wikipedia, as in CEPE [21]. We prioritize passing the most relevant
passages to the decoder to enhance performance. In Table 3, we report the exact match (EM) scores.

Table 3: Open-domain QA results. ke represents the
number of passages provided to the encoder, while kd
denotes the number of passages given to the LLM. We
report the exact match score.

Method ke kd TriviaQA NQ PopQA

TinyLlama [52] - 10 21.45 8.45 10.79

TinyLlama [52] - 15 < 1 < 1 < 1

VIST 10 0 21.27 8.51 10.67

CEPE∗ [21] 5 10 16.41 6.09 4.92

VIST 5 10 25.20(8.79↑) 8.71(2.62↑) 11.44(6.52↑)

CEPE∗ [21] 20 10 16.56 6.75 5.78

VIST 20 10 25.67(9.11↑) 8.81(2.06↑) 11.84(6.06↑)

Results. TinyLlama is limited by a maximum
context window of 2048 tokens, restricting it
to processing no more than 10 passages at a
time. Beyond this limit, performance drops
sharply, with EM score falling below 1. For
passages kd = 10, the input already approaches
or even exceeds the 2048-token limit of TinyL-
lama, so we truncate the input to avoid perfor-
mance degradation. When processing 5 extra
passages (i.e., ke = 5, kd = 10), VIST results in
an EM score improvement of 3.75 compared to
TinyLlama on TriviaQA [69] dataset. Moreover,
it even surpasses text encoder-based approach
CEPE∗ under the same input conditions, e.g.,
delivering an EM score 9.11 points higher on the TriviaQA dataset when ke = 20, kd = 10. This
enhancement may be attributed to PVE in VIST which leverages enriched text embeddings to guide
the Resampler in capturing key semantics. By emphasizing critical details and filtering out noise
from lengthy inputs, our VIST prioritizes relevant information—a crucial factor for success in open-
domain QA tasks. In contrast, CEPE∗ degrades when more passages are provided to the encoder,
as additional passages introduce more noise and redundancy, making it harder to extract relevant
answers. We also investigate the effectiveness of using only the fast path of VIST (i.e., vision encoder)
on the Open-domain QA task, which requires the model to generate accurate answers based on given
relevant passages. Specifically, we feed only the top-10 relevant passages to the visual encoder (i.e.,
ke = 10), without providing any passages to the LLM directly (i.e., setting kd = 0). Surprisingly,
this configuration yields performance on par with TinyLLaMA, despite the latter processing all 10
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Table 4: The effect of visual token count for each image.
Tokens ICL Open-domain QA

Per Image TREC MR TriviaQA NQ PopQA

32 32.7 78.8 19.38 7.85 8.16
64 36.5 79.2 25.20 8.71 11.44
96 32.0 79.7 14.57 7.19 4.88

128 32.9 87.0 20.01 7.77 8.51

Table 5: The effect of different masking strategies in
PVE. FM is frequency-based masking strategy, RM is
random masking. The masking ratio is set to 50%.

ICL Open-domain QA
RM FM NLUS NLUI TriviaQA NQ PopQA

9.9 26.4 17.14 6.51 5.72
✓ 8.3 30.2 24.88 8.35 10.19

✓ 15.6 40.6 25.20 8.71 11.44

Table 6: Ablation on the length of text inputs (in tokens).
Encoder ICL Open-domain QA

Input Length SST5 MR TriviaQA NQ PopQA

1024 39.6 85.9 19.77 6.47 6.63
2048 39.3 73.8 22.85 8.08 9.77
4096 42.7 79.2 25.20 8.71 11.44
6144 37.8 90.5 27.52 9.24 13.49

Table 7: VIST effectively reduces PPL on LCM and
improves accuracy on ICL by processing additional con-
text. ‡ means our implementation on Mistral 7B [73].

LCM ICL
Method

Arxiv Book SST2 DBP

Mistral 2.93 12.82 89.1 93.6
CEPE‡ 2.83(0.10↓) 12.64(0.18↓) 90.8(1.7↑) 94.2(0.6↑)
VIST‡ 2.82(0.11↓) 12.61(0.21↓) 92.8(3.7↑) 95.3(1.7↑)

Figure 4: Effect of frequent vs. rare tokens on semantic integrity. Masking rare tokens (red) significantly
disrupts semantic representation, increasing text-visual embedding distance, while masking frequent tokens
(blue) has minimal impact, demonstrating that rare tokens are critical for preserving semantic meaning.

passages with a much heavier LLM. This demonstrates that the fast path of our method can distill and
preserve the critical information from long contexts, providing a compact yet effective representation.

4.5 Ablation Study

We explore the effects of ❶ the masking strategy employed in PVE, ❷ the length of text provided to
the encoder during training, ❸ the number of compressed tokens in each image (i.e., N in §3.3), and
❹ extension to other LLM. In open-domain QA tasks, the model is fed 10 passages for LLM and
5 for encoder. ICL tasks use a fixed setup of 18 demonstrations for encoder and 2 for LLM. (More
details in Appendix G.)

Number of Tokens in Each Image. The Resampler transforms image features into a fixed number
of visual tokens. Table 4 analyzes the impact of visual token count for each image. Increasing the
number of visual tokens reduces compression ratio, but as shown, a lower compression ratio does
not always yield better results. With 64 visual tokens, the model performs best on 4 out of 5 datasets,
whereas 128 tokens only perform best on MR dataset. This discrepancy could be attributed to the
trade-off between the amount of information preserved and the noise introduced during compression.
Fewer tokens risk losing critical details, while more tokens may retain irrelevant information, which
can hinder generalization. These findings emphasize that achieving a balance between compression
and information retention is crucial for optimal performance across different datasets.

Masking Strategy in PVE (§3.4). Long texts often contain significant redundancy. To address this,
we integrate a Frequency-based Masking (FM) strategy into PVE, improving the information density
of text token embeddings. Table 5 compares the performance of VIST with FM, w/o FM, and with
random masking. Excluding FM causes a notable decline in ICL and open-domain QA performance.
This highlights the critical role of information-dense text token embeddings in guiding the visual
encoder to capture more semantically meaningful and discriminative features.

In-context Text Length. Table 6 investigates the impact of in-context text length (measured in text
tokens) provided to the visual encoder during training. Our model, trained with a longer encoder
input length, generally yields higher EM scores on open-domain QA tasks. This may be because
exposure to more lengthy texts during training helps our model better extract key information from
extensive contexts, which is crucial for open-domain QA. Table 6 shows that longer training text
inputs often boost ICL task accuracy. For instance, the best result on SST5 (42.7) was achieved with
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Figure 5: Impact of Frequency-based Masking on
Text-Visual Semantic Distance. Compared to model
without FM, VIST with FM consistently reduces the
semantic distance between text token embeddings and
visual features, across all masking ratios.

The "primary identification" with the "father in individual
prehistory" would be the means, the link that might enable
one to become reconciled with the loss of the Thing. Primary
identification initiates a compensation for the Thing and at
the same time secures the subject to another dimension, that
of imaginary adherence, reminding one of the bond of faith,
which is just what disintegrates in the depressed person.

Figure 6: Visualization of Masking Frequent To-
kens. Though we mask the top 50% most frequent
tokens (based on training statistics), key nouns are
completely preserved, proving that frequent tokens
contribute less to semantic meaning.

an encoder input length of 4096 text tokens, while the highest accuracy on MR (90.5) was obtained
with the longest input length of 6144 tokens. Interestingly, we observed that training with an input
length of 1024 tokens performed comparably to 2048 tokens, possibly because the total demo length
for the encoder was close to 1024 tokens.

Extension to Other LLM. Mixture-of-expert models effectively scale model capacity while saving
resources. To prove the generality of VIST, we also apply VIST to Mistral 7B [73]. In LCM task,
VIST‡ and CEPE‡ process 4096 tokens, compared to the 2048 tokens processed by Mistral. For
ICL, VIST‡ and CEPE‡ use 20 demonstrations, while Mistral uses only 2. As shown in Table 7,
VIST‡ demonstrates superior performance over CEPE‡, by effectively leveraging additional context.
To further validate the scalability of our method, results on larger-scale LLMs are included in
Appendix G.

5 Discussion

Exploring Token Frequency as a Proxy for Semantic Importance. To assess the impact of rare
versus frequent text tokens on global semantics across in-domain (Book [58]) and out-of-domain
datasets (PG19 [59], Proof [60], and Code [61]), we first calculate importance score for each token
using Eq. 3 based on training-set token frequency statistics. Two masking operations are then applied
to the text token embeddings: ❶ Masking tokens with high importance scores (red line in Figure 4).
❷ Masking tokens with low importance scores (blue line in Figure 4). The distance between masked
text embeddings and visual features is computed.

At low masking ratios (0.0 to 0.4), masking rare tokens causes a sharp increase in distance, while
masking frequent tokens has minimal impact and even reduces distance. This suggests that rare
tokens carry more critical semantic information, and their removal disrupts the alignment between
text and visual tokens. In contrast, frequent tokens may contain more redundant or less informative
content, so masking them has little impact or even improves the alignment by reducing noise. These
findings support the hypothesis that token frequency is a reasonable indicator of semantic importance,
with rare tokens playing a more pivotal role in preserving semantic integrity.

The Effect of Frequency-based Masking on Text-Visual Semantic Gap. VIST employs Frequency-
based Masking (FM) within the Probability-informed Visual Enhancement to improve the semantic
richness of text token embeddings. Figure 5 presents the impact of FM on the semantic alignment
between text token embeddings and visual features extracted by the Perceiver Resampler. We
experimented with random masking ratios (0.0 to 0.9) on text token embeddings and calculated the
sum of cosine distances across all test samples in the Arxiv and Book datasets [58]. Across all ratios,
VIST with FM consistently exhibits smaller semantic distances than VIST without FM, highlighting
FM effectively enhances semantic coherence.

Token Redundancy Visualization. We study the semantic contribution of frequent tokens by
selectively masking the top 50% most frequent tokens (based on training set statistics). Figure 6
illustrates key nouns are fully preserved. The masked tokens mainly include function words (e.g.,
“the”, “of”), primarily serving grammatical roles rather than conveying core semantic meaning. This
proves FM strategy can preserve critical semantic information while filtering out less relevant
noise, thereby enhancing the ability of the model to focus on meaningful content.
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6 Conclusion

In-context learning with longer input sequences remains a prominent yet challenging topic in large
language models (LLMs). In this work, we introduce a fully novel perspective to address this challenge
by leveraging much lightweight visual encoder. To support longer input sequences in LLMs, we
present VIST, a vision-centric token expansion method built upon a visual encoder framework. Our
analysis further reveals there exists significant redundancy in text tokens, further validating the
effectiveness and efficiency of our vision-encoder-based approach. With these advancements, VIST
surpasses text-encoder-based token compression counterparts in both performance and efficiency. In
future work, we plan to evaluate VIST across a broader range of downstream tasks and conduct a
deeper investigation into text token redundancy.
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contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of this work is discussed and the related details can be found
in Appendix I.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This paper does not include theoretical results. Instead, we provide compre-
hensive ablation study on our provided method.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We disclose all the information needed to reproduce the main experimental
results of this paper and the data used in this paper is publicly available (see §4).
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The code of this paper will be released later while the data used in this paper is
publicly available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all the training and test details in §4 and Appendix B to understand
the experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the average results over 3 different random seeds in In-context
Learning Task in Table 2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We conduct all experiments on NVIDIA V100 GPUs which is provided in
Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the broader impacts of this work in Appendix J
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have correctly and respectfully cited the original paper that produced the
dataset used in this paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: About the code and model of this paper, they will be publicly available as soon
as the paper is published.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: There is no research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core methodology and experimental pipeline of this study do not involve
the use of any large language models (LLMs).
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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The document is organized as follows:

• §A Token-Level Information Gain Calculation for Text.
• §B Experimental Details.
• §C Downstream Task Evaluation Details.
• §D Masking Empty Tokens.
• §E The Impact of Different Rendering Strategies.
• §F Comparison on Inference Cost.
• §G More Study Results.
• §H Visualization of Masking Frequent Tokens in Text.
• §I Limitations and Future Work.
• §J Broader Impacts.

A Token-Level Information Gain Calculation for Text

This section describes the method used to calculate the information gain (IG) for tokens in a given
text using the TinyLlama [52]. Given a sequence of 2048 tokens, we compute token-level information
gain (IG) by leveraging token frequency statistics and the predictions of TinyLlama. The process
involves calculating global entropy, conditional entropy, and deriving IG as their difference.

Global Entropy: Compute the global entropy H(T ) using token frequency:

H(T ) = −
∑
w∈T

P (w) · log2 P (w), (4)

where P (w) is the frequency of token w in the text T .

Conditional Entropy: The conditional entropy H(T |w1:i) is computed using the predicted logits
from TinyLlama. The formula is:

H(T |w1:i) = −
∑
wi+1

P (wi+1|w1:i) · log2 P (wi+1|w1:i). (5)

Here, P (wi+1|w1:i) is the probability of the next token wi+1 given the preceding tokens w1:i, as
predicted by the model.

Information Gain: The IG for each token wi is:

IG(wi) = H(T )−H(T |w1:i). (6)

In Figure 3, we present only the results for the final part of the given 2048 text tokens.

B Experimental Details

B.1 Pretraining Details

We provide the data and optimization hyperparameters during the pre-training of VIST in Table 8.
We conduct the experiments on NVIDIA V100 GPUs. The cross-attention layer is placed between
the self-attention and feed-forward layers in each decoder (LLM) layer. When we first insert
the cross-attention layers into the decoder, we initialize the weights of the key, value, and query
projection matrices with the respective weights from the self-attention layer of the decoder in the
same transformer block. Since the hidden dimension of the encoder D = 1024 is smaller than
the hidden dimension of the decoder D′, D < D′, we only copy the first D rows of the key and
value projection matrices from the self-attention module to the cross-attention module. The output
projection matrix is initialized with norms. The τ for PVE is 0.07. The weight of PVE is 1.

The rendered text images are shown in Figure 7. We also have several special design choices: (1)
we do not attend to the white patches after the end-of-sequence text (following PIXEL [20]); (2) we
normalize the input pixel values in each image.
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We follow the Perceiver Resampler design used in Flamingo [49], as mentioned in Sec. 3.3. The
Perceiver Resampler maps visual features from the frozen Vision Encoder to a fixed number of output
tokens. Concretely, this transformer has a predefined number (e.g., 64) of learnable latent vectors
as queries, and the keys and values are a concatenation of the visual features with the learnable
latent vectors. This mechanism allows the latent input queries to cross-attend to the visual features,
producing compact visual representations. Note that the number of output tokens is equal to the
number of latent vectors.

B.2 FLOPs Estimation

We estimate the FLOPs by calculating the number of operations involved in the forward pass for a
single input instance. S pecifically, for each instance, we feed Te tokens into the visual encoder and
Td tokens into the LLM. Only the forward pass is considered; decoding is excluded from FLOPs
measurement. This provides a theoretical measure of computational complexity for a static input.

B.3 Throughput Measurement

Throughput is a practical measure reflecting the actual generation speed on specific hardware, defined
as the number of output tokens generated per second during autoregressive decoding. For each input,
our VIST processes Te tokens via the visual encoder and Td tokens by LLM, and then generates
256 tokens. We calculate Throughput as: 256

end-to-end latency , where end-to-end latency refers to the total
wall-clock time from receiving the input to the completion of generation (including text tokenization,
image rendering, encoding, and decoding). For fair comparison, we ensure all models generate the
same number of tokens from inputs of identical length. Note that we normalize the Throughput
against TinyLLaMA under the same input-output setting to highlight relative speedups in Table 1.

Table 8: Hyperparameters in VIST pretraining.

Parameter Value
Data

Image size (height, width) (224, 224)
Image mode RGB
Font Google Noto Sans
Font size 10

Optimization
Peak learning rate 3.0e−4

Warmup ratio 4%
Learning rate scheduler Cosine decay [74]
Optimizer AdamW [75]
β1 0.9
β2 0.999
ϵ 10−8

Mixed precision training fp16
Number of steps 2000 steps

B.4 Text Encoder-based Model

In this work, we additionally implement CEPE∗. The text encoder in CEPE∗follows the configuration
of RoBERTa-large [76], as in CEPE [21]. The encoder contains approximately 400M parameters,
while our visual encoder has around 300M parameters. Following CEPE [21], the encoder input
tokens are segmented into 256-token chunks for parallel processing and then concatenated together
for cross-attention in the LLM.

B.5 Vision-centric Compression Models

For fairness, we set the number of tokens to merge per layer to 8 for ToMe [56] and the reduction
ratio to 75% for FastV [57] to match our compression rate. ToMe merges visual features from the
frozen vision encoder, while FastV prunes them.
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Figure 7: Rendered text image. We demonstrate the result of rendering 256 text tokens onto two
224x224 images.

Table 9: Comparison with vision-centric and Long-context models. on In-context Learning (SST5
and DBP) and Open-domain QA (TriviaQA, NQ, and PopQA) tasks.

Method ne nd SST5 DBP ke kd TriviaQA NQ PopQA

Replug - 20 29.1 7.3 - 15 16.07 6.32 4.77
Stream - 20 29.7 70.5 - 15 15.13 7.11 5.12
ToMe† 18 2 22.0 68.0 5 10 14.37 6.92 4.13
FastV† 18 2 24.8 65.4 5 10 14.69 6.08 4.96
VIST 18 2 42.7 71.9 5 10 25.20 8.71 11.44

B.6 Comparison with Vision-centric and Long-context Models on More Datasets

Owing to space constraints, we present extended comparisons with vision-centric and long-context
models on more datasets in the Appendix. We compare our method with vision-centric models
(ToMe [56] and FastV [57]) and long-context models (Replug [54] and Stream [55]) on In-context
Learning (SST5 and DBP) and open-domain QA (TriviaQA, NQ, and PopQA) tasks, as shown in
Table 9. ne is the number of demonstrations for encoder and nd for decoder. ke is the number of
passages for encoder and kd for decoder. To ensure a fair comparison, we provide a total of 20
demonstrations for the in-context learning tasks and 15 passages for the open-domain QA tasks.
Since RePlug and Stream do not incorporate an encoder module, all inputs are fed into the decoder.
Table 9 shows our VIST achieves the best performance.

B.7 Extension to other LLM

When applying VIST or CEPE∗ to Mistral 7B, we leverage DeepSpeed Zero-2 with CPU offloading
and use the SDPA attention mechanism. We further optimize the model by quantizing it to 4-bit
precision.

C Downstream Task Evaluation Details

C.1 Long-context Language Modeling

Following CEPE [21], we evaluate VIST on three long context datasets: PG19 [59], Proof [60],
and Code [61], sampling 5000 sequences for each dataset. During inference, VIST optimizes the
efficiency and performance of long-text processing tasks by converting text input for vision encoders
into images and masking out attention to the empty white patches in such images after the end of the
text sequence.
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Table 10: The impact of masking empty tokens on In-context Learning (ICL). ICL accuracy
averaged across 3 seeds (42, 43 and 44). VIST* does not mask attention to the empty white patches
after the end of the text sequence. VIST* and VIST use 2 demonstrations in the decoder, and the
remaining demonstrations to the encoder.

Method SST2 MR AGN SST5 NLUS NLUI TREC TREF DBP BANK CLIN Avg.

Total Demonstrations = 20

VIST* 88.7 88.9 65.2 36.9 8.4 24.8 38.8 11.4 61.2 18.0 42.0 44.0
VIST 77.7 79.2 61.5 42.7 15.6 40.6 36.5 14.6 71.9 25.0 43.8 46.3

Table 11: The impact of masking empty tokens on Open-domain QA. VIST* does not mask
attention to the empty white patches after the end of the text sequence. ke represents the number of
passages provided to the encoder, while kd denotes the number of passages given to the LLM. We
report the exact match score.

Method ke kd TriviaQA NQ PopQA

VIST* 5 10 21.82 7.53 8.71
VIST 5 10 25.20(3.38↑) 8.71(1.18↑) 11.44(2.73 ↑)

C.2 In-Context Learning

For our in-context learning experiments, we follow the prompts used in [77, 21] for all datasets. We
sample the in-context learning demonstrations from the training set such that each label has an equal
number of demonstrations (except for possible remainders).

For CEPE∗, the demonstrations for the text encoder are processed in parallel. In contrast, in Table 2,
our approach renders all demonstrations into a suitable number of images based on text length, inserts
blank lines at the end of each demonstration (similar to the role of “\n” in text processing), and then
masks empty, text-free patches to eliminate distractions and enhance focus on meaningful content.
More rendering strategies are discussed in Sec. E.

C.3 Open-domain Question Answering

For CEPE∗, additional passages are encoded separately by the text encoder. For our approach, we
first consolidate all passages and then render them into an appropriate number of images based on
text length. The blank regions at the end of the images are excluded from attention computation.

C.4 Semantic Distance

In Figure 5 and 4, we calculate the global semantic distance between text token embeddings and
visual features from Perceiver Resampler by computing the cosine distance for each sample and then
summing the results. For the arXiv and Book datasets, we use the test set for this calculation, while
for PG19, ProofPile, and CodeParrot, we randomly sample 100 samples from the test set to compute
the distance.

In Figure 5, we fixed the random seed to ensure that the masked content is consistent for methods
with and without FM. As the mask ratio increases from 0.1 to 0.5, the distance first rises and then falls.
This is may be because random masking at ratios of 0.1 to 0.3 removes more critical information,
while at 0.4 and 0.5, it may mask mostly redundant information.

D Masking Empty Tokens

We investigate the impact of masking out attention to the empty white patches after the end of
the text sequence during both the training and inference stages. By comparing models that attend
to these patches versus those that mask them, we analyze their effect on task performance. In
Table 10, we present the results for In-context learning tasks, demonstrating that masking empty
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white patches leads to improved perplexity scores, as the model avoids unnecessary computations on
non-informative regions. In Table 11, we show the results for open-domain QA tasks, where masking
these patches enhances answer accuracy. These findings highlight the benefits of masking empty
patches across different tasks, emphasizing its role in optimizing performance.

Table 12: Different Rendering Strategies for 18 demonstrations.
Method Description

2-Image Rendering All 18 demonstrations rendered into 2 images (high compression).
3-Image Rendering All 18 demonstrations rendered into 3 images (balanced compression).
Dynamic Rendering All demonstrations rendered into a suitable number of images based on text length.
Dynamic + Blank Lines All demonstrations rendered into a suitable number of images with blank lines between demos.

E The Impact of Different Rendering Strategies

In this section, we investigate the impact of different rendering strategies on the in-context learning
task. Specifically, we provide the vision encoder with 18 demonstrations and the LLM with 2
demonstrations, and experiment with the following rendering approaches: ❶ Rendering all 18
demonstrations into 2 images: This approach tests the ability of the model to handle highly
condensed visual representations. ❷ Rendering all 18 demonstrations into 3 images: This strategy
balances text density and image count, potentially improving readability by achieving a lower
compression rate. ❸ Rendering all demonstrations into a suitable number of images based on
text length: This dynamic approach ensures that each image contains an optimal amount of text,
avoiding overcrowding or excessive fragmentation. ❹ Rendering all demonstrations into a suitable
number of images with blank lines inserted between demonstrations: This method adds visual
separation between demonstrations, mimicking the role of paragraph breaks in text processing.

The results, as shown in Table 13, reveal several key insights. The 3-Image Rendering strategy
outperforms 2-Image Rendering primarily because it achieves a lower compression ratio, allowing
for more detailed visual representations of the text. By distributing the 18 demos across 3 images
instead of 2, the text is less densely packed, reducing the risk of information loss and improving
the ability of the model to extract meaningful features. The Dynamic Rendering approach, which
adapts the number of images based on text length, further improved performance. This indicates
that dynamically adjusting the rendering process to match the content complexity is beneficial for
maintaining contextual integrity. Finally, the Dynamic+Blank Lines method, which adds blank lines
between demos, achieved the highest accuracy. These blank lines introduce clear visual separation,
mimicking natural paragraph breaks and acting as visual cues to help the vision encoder distinguish
between different text segments. This is particularly important as different demonstrations may belong
to distinct categories or contexts. By visually separating them, the model can more easily process each
segment independently, reducing the risk of confusion or misinterpretation and improving overall
performance. For in-context learning, we adopt Dynamic+Blank Lines as the default rendering
strategy.

Comparing Visual Token Counts to Text Token Counts under Different Settings. At font size
10, the number of visual tokens (256) from the frozen visual encoder slightly exceeds that of text
tokens (218). However, with the Perceiver Resampler, our method reduces the final number of visual
tokens per image to just 64. Despite this compression, VIST achieves comparable or even superior
performance to the text-encoder-based baseline CEPE, as shown in the Table 14. These showcase
that leveraging visual tokens for long-context compression is a promising and worthwhile direction
to explore. At font sizes ≤ 8, the visual token count (256) is even lower than the text token count
(310), demonstrating the intrinsic efficiency of the rendered text image. Even at font size 7, where
compression is more aggressive, VIST outperforms the CEPE and performs on par with the font size
10 setting. These highlight the robustness of our method to font size variations and further support
the effectiveness of using visual tokens for long-context compression.

F Comparison on Inference Cost

In Figure 8, we compared the memory usage and computational cost (FLOPs) of three meth-
ods—VIST, CEPE∗, and TinyLlama—processing inputs of varying lengths. For VIST and CEPE∗,
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Table 13: Performance of Different Rendering Strategies on In-context learning tasks. ke
represents the number of demonstrations provided to the encoder, while kd denotes the number of
demonstrations given to the LLM. We report the average accuracy across three random seeds.

Method ke kd SST2 MR

2-Image Rendering 18 2 76.0 77.7
3-Image Rendering 18 2 76.6(0.6↑) 78.2(0.5↑)
Dynamic Rendering 18 2 77.0(1.0↑) 78.4(0.7↑)
Dynamic + Blank Lines 18 2 77.7(1.7↑) 79.2(1.5↑)

Table 14: Comparing visual token counts to text token counts under different settings.

Font Size Visual Token Count Tokens per Image Text Token Count Compression Ratio

10 256 64 218 3.41
9 256 64 240 3.75
8 256 64 270 4.22
7 256 64 310 4.84

Figure 8: VIST significantly increases the in-context text length from 16k to 64k at inference
stage on a single 24GB RTX 4090 GPU, compared to CEPE∗. For CEPE∗ and VIST the input
sequence is partitioned: the last 2048 tokens are processed by TinyLlama, while the remaining tokens
are handled by a lightweight encoder.

when the total input length exceeds 2048 tokens, the excess portion is entirely handled by the encoder.
For inputs shorter than or equal to 2048 tokens, the input is split equally between the encoder and the
LLM. VIST demonstrates the lowest memory consumption across all input lengths, making it the
most memory-efficient method. When processing 32k-length texts, CEPE∗and TinyLlama encounter
Out of Memory (OOM) on a 24GB GPU. Compared to CEPE∗, VIST extends the in-context text
length from 16k to 64k tokens during inference. VIST has a memory usage of 18.4 GB when
processing a sequence of 64K, and only encounters an OOM error when processing a 128K sequence.

G More Ablation Study Results

In this section, we provide the complete results of our ablation study. Table 15 evaluates the impact
of different masking strategies in Probability-informed Visual Enhancement on in-context learning
performance. We compare two masking approaches: Frequency-based Masking (FM) and Random
Masking (RM), with a fixed masking ratio of 50%. Our method with FM achieves a higher average
accuracy compared to without FM or with RM. RM indiscriminately masks text tokens without
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Table 15: The effect of different masking strategies in Probability-Informed Visual Enhancement
on In-context learning. We report the accuracy averaged across 3 seeds (42, 43 and 44). All methods
use 2 demonstrations in the decoder and 18 demonstrations in the encoder. FM denotes Frequency-
based Masking strategy, while RM is random masking strategy. The masking ratio is 50%.

FM RM SST2 MR AGN SST5 NLUS NLUI TREC TREF DBP BANK CLIN Avg.

70.1 77.3 55.3 34.5 9.9 26.4 36.3 11.2 61.3 15.2 42.8 40.0
✓ 72.8 76.2 60.1 40.5 8.3 30.2 32.6 13.3 66.0 20.1 38.9 41.7

✓ 77.7 79.2 61.5 42.7 15.6 40.6 36.5 14.6 71.9 25.0 43.8 46.3

Table 16: The effect of different visual token count for each image on In-context learning. We
report the accuracy averaged across 3 seeds (42, 43 and 44). All methods use 2 demonstrations in the
decoder and 18 demonstrations in the encoder.

Tokens Per Image SST2 MR AGN SST5 NLUS NLUI TREC TREF DBP BANK CLIN Avg.

32 85.7 78.8 63.5 38.0 11.3 27.1 32.7 12.0 73.4 22.1 40.6 44.1
64 77.7 79.2 61.5 42.7 15.6 40.6 36.5 14.6 71.9 25.0 43.8 46.3
96 83.9 79.7 58.6 37.0 9.6 29.7 32.0 11.5 69.1 20.6 37.1 42.6
128 89.6 87.0 60.3 39.6 11.2 29.4 32.9 13.3 70.4 25.1 39.8 45.3

considering their semantic relevance. This randomness can lead to the masking of critical tokens
that are essential for understanding the context, resulting in a loss of important information and a
degradation in model performance. While RM may occasionally perform well in certain datasets,
its lack of focus on semantically rich tokens makes it less reliable overall. FM specifically masks
high-frequency tokens, which are often low in semantic importance, allowing the visual features
to focus more effectively on meaningful text tokens. By removing these less informative tokens,
FM ensures that the attention of the model is directed toward text segments that carry more
significant contextual information, thereby improving the quality of the learned representations.

The Impact of Different Visual Token Counts per Image. Table 16 investigates the impact
of different visual token counts per image on in-context learning performance. The 64-token
configuration achieves the highest average accuracy. This suggests that 64 tokens strike an optimal
balance between capturing sufficient contextual information and avoiding excessive computational
complexity. The 128-token configuration also performs well, particularly on SST2 (89.6) and MR
(87.0), indicating that higher token counts can be beneficial for tasks requiring detailed context.
Interestingly, its average accuracy (45.3) is slightly lower than the 64-token setup, likely due to
increased noise or redundancy in the visual representations.

The Effect of the Length of Text Tokens Provided to the Visual Encoder. In Table 17, we examine
the effect of the length of text inputs (in tokens) provided to the visual encoder during training on
in-context learning performance. The results indicate that the 4096-token input length achieves the
highest average accuracy (46.3), outperforming other configurations across most datasets, which
provides an optimal balance between capturing sufficient context and maintaining computational
efficiency. The 6144-token configuration also performs well, particularly on MR (90.5), but its
average accuracy (45.5) is slightly lower than the 4096-token setup, likely due to increased noise or
redundancy in longer inputs. Similarly, the 1024-token and 2048-token configurations show lower
performance, with average accuracies of 45.1 and 44.4, respectively, indicating that shorter input
lengths may struggle to provide enough contextual information for the model to perform effectively.

The Impact of Different Frequency Masking Ratios. Table 18 examines the impact of different
frequency masking ratios (30%, 50%, and 70%) on model performance. We observe that a moderate
masking ratio (50%) leads to superior results, indicating the need for a trade-off between redundancy
suppression and salient information preservation. Lower ratios (e.g., 30%) may retain redundant
or noisy frequency components, potentially distracting the model. In contrast, higher ratios (e.g.,
70%) risk discarding salient cues, leading to information loss. The 50% setting effectively suppresses
irrelevant signals while preserving essential content, thus enhancing performance.
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Table 17: The effect of the length of text inputs (in tokens) provided to the visual encoder
during training. We report the accuracy averaged across 3 seeds (42, 43 and 44). All methods use 2
demonstrations in the decoder and 18 demonstrations in the encoder.

Encodr Input Length SST2 MR AGN SST5 NLUS NLUI TREC TREF DBP BANK CLIN Avg.

1024 77.6 85.9 63.4 39.6 12.2 32.9 35.3 13.9 66.1 27.1 42.4 45.1
2048 78.8 73.8 61.6 39.3 12.9 34.2 35.8 13.7 67.4 26.3 44.8 44.4
4096 77.7 79.2 61.5 42.7 15.6 40.6 36.5 14.6 71.9 25.0 43.8 46.3
6144 81.7 90.5 63.2 37.8 11.3 32.6 34.4 13.2 68.8 24.7 42.2 45.5

Table 18: The impact of masking ratio in Frequency-based Masking.

Masking Ratio TriviaQA NQ PopQA

30% 23.45 8.45 10.79
50% 25.20 8.71 11.44
70% 24.66 8.33 10.91

Swap Tokens Between the Visual Encoder and LLM. The relevance scores between passages
and the question are available in open-domain QA. We conducted a study to examine how different
passage allocation strategies affect performance. Specifically, in row 2 of the Table 19, we assign
the top − kd = 10 most relevant passages to the LLM and the less relevant ke = 5 to the vision
encoder. In row 3 of the Table 19, we swap the assignments (i.e., less relevant passages go to the
LLM while more relevant ones are compressed by the vision encoder). The performance remains
comparable across both settings (e.g., 8.71 vs. 8.56 on NQ), suggesting that even when highly relevant
inputs are compressed, our method preserves essential information, highlighting the effectiveness and
robustness of our slow-fast design.

The Impact of Different Vision Encoders. We conduct experiments using SigLIP-L [78] as the
vision encoder. As shown in the Table 20, SigLIP-L achieves comparable performance to CLIP
(ViT-L) within our VIST framework. This demonstrates the robustness and generality of our method
across different vision encoders.

Extension to More LLMs with Different Scales. We apply VIST on LLaMa2-7B and LLaMa2-
13B. Table 21 shows that our VIST with LLaMa2-7B/13B deliver consistent gains over CEPE with
LLaMa2-7B/13B (text-encoder-based baseline) and LLaMa2-7B/13B, highlighting the generalization
ability of the proposed method. For the long-context modeling (LCM) task, the encoder is given
extended 4096 tokens and the decoder 2048 tokens, with perplexity evaluated over the final 2048
tokens on Arxiv and Book datasets. For the in-context learning (ICL) task, we test on SST2 and DBP,
providing 2 demonstrations to the decoder and 18 extra demonstrations to the encoder, and report
accuracy.

The "primary identification" with the "father in individual
prehistory" would be the means, the link that might enable
one to become reconciled with the loss of the Thing. Primary
identification initiates a compensation for the Thing and at
the same time secures the subject to another dimension, that
of imaginary adherence, reminding one of the bond of faith,
which is just what disintegrates in the depressed person.

Figure 9: Visualization of Masking Frequent Tokens with a 10% masking ratio.

H Visualization of Masking Frequent Tokens

To demonstrate the effectiveness of our frequency-based masking strategy, we conduct a comparative
analysis of token masking at different rates (10% in Figure 9 and 50% in Figure 10) based on the
frequency statistics derived from the training corpus. The visualization results reveal distinct patterns
in the masked token distribution. The most frequently occurring tokens are often common stopwords
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Table 19: The impact of swapping tokens between the visual encoder and LLM.

Method ke kd TriviaQA NQ PopQA

VIST 5 top − 10 25.20 8.71 11.44
VIST top − 10 5 24.68 8.56 11.35

Table 20: The impact of different vision encoders.

Method Vision Encoder Arxiv Book SST5 NLUI

VIST CLIP 2.82 12.61 42.7 40.6
VIST SigLIP 2.79 12.71 43.8 40.1

such as “the”, “of”, “and”, “with”, which typically carry less semantic weight. By masking these
high-frequency tokens, the model is able to focus on more informative content, thereby improving
the overall representation of key semantic features.

I Limitations and Future Work

One limitation of our approach lies in the static nature of the masking ratio. A dynamic masking
ratio, adjusted based on token distribution, could improve performance. Due to resource constraints,
we provide the LLM with a fixed input length of 512 tokens during training. Exploring longer inputs
potentially enhances its ability to process more context and capture richer semantics, particularly in
scenarios involving more complex or longer texts.

Multi-turn Dialog with VIST. To mitigate the inefficiency of re-encoding the entire context in
streaming or multi-turn scenarios, a feasible solution is to adopt a lightweight memory caching
strategy, inspired by summary accumulation techniques [79, 25], where summary vectors from
all segments are concatenated to produce the summary of the entire content. Concretely, at the
first dialogue turn, we encode the rendered text images using a frozen lightweight vision encoder
followed by a Perceiver Resampler, which effectively compresses them into a small, fixed number of
visual tokens (e.g., 64 per image). These compressed visual tokens from Perceiver Resampler act
as summary vectors, capturing the essential semantics of each turn. Instead of discarding them, we
cache these memory slots for future use. For each new dialogue turn, we concatenate the new input
with all previous cached memory slots and jointly encode them using the same lightweight visual
encoder and Perceiver Resampler. This allows the current input to interact with prior context without
reprocessing the full raw history and incrementally accumulates dialogue history as a sequence of
fixed-size memory slots. Because each turn contributes only a small number of tokens through
compact visual representations, the total memory and compute overhead increases slowly—even
across many turns. Meanwhile, the memory caching strategy enables each new input to be processed
in the context of the entire conversation history. We believe this mechanism makes VIST readily
extendable to streaming or interactive tasks, and plan to further explore its application to multi-turn
multi-modal dialogue in future work.

Future work could investigate how different font sizes, types, or vision encoders impact performance,
particularly in long-context scenarios. While our method currently uses RGB images, future work
could explore techniques such as highlighting or bolding important tokens, or even transitioning from
RGB to grayscale or binary images, to further reduce computational overhead and improve efficiency.

In this work, we demonstrate that employing a frequency-based masking strategy enhances the
information density of text token embeddings. Though directly masking input tokens (i.e., identifying
and preserving more critical text tokens during the text-to-image rendering process) could further
reduce computational overhead, it may risk degrading performance. Thus VIST employs masking
strategy only to the text token embeddings used as supervision signals, while ensuring the integrity of
the input data. Certainly, this requires further experimental validation, and it is a promising avenue
for exploring a balanced method that optimizes efficiency without compromising performance.
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Table 21: Results of extending our method to LLaMa models of different scales (7B and 13B).
Our VIST consistently outperforms CEPE across model sizes, demonstrating strong scalability and
generalization.

LCM ICL
Method

Arxiv Book SST2 DBP

LLaMa2-7B 3.73 13.31 89.1 93.6
CEPE with LLaMa2-7B 3.11 12.78 90.2 94.0
VIST with LLaMa2-7B 2.82 12.61 92.8 95.3

LLaMa2-13B 3.30 11.42 92.0 94.8
CEPE with LLaMa2-13B 3.01 11.03 93.1 95.4
VIST with LLaMa2-13B 2.57 10.87 94.3 96.2

The latter encompasses the emergence of object and subject, and the 
constitution of nuclei of meaning involving categories: semantic and 
categorial fields. Designating the genotext in a text requires pointing 
out the transfers of drive energy that can be detected in phonematic 
devices (such as the accumulation and repetition of phonemes or 
rhyme) and melodic devices (such as intonation or rhythm), in the 
way semantic and categorial fields are set out in syntactic and logical 
features, or in the economy of mimesis (fantasy, the deferment of 
denotation, narrative, etc.). 

Figure 10: Visualization of Masking Frequent Tokens with a 50% masking ratio.

J Broader Impacts

In practical applications, the demand for processing long texts is increasingly critical across various
domains [2, 80], such as document summarization, legal analysis, medical record processing, and
conversational AI. Efficiently handling long texts enables models to capture broader context, leading
to more accurate and coherent outputs. In this work, we take a step to address this by leveraging
visual tokens, which not only improve the efficiency and performance of current models but also open
new avenues for further research in long-text processing. We further reveal high-frequency text tokens
often contribute less to semantic meaning. This insight may inspire new algorithms to identify, filter, or
simplify low-semantic-contribution tokens, reducing computational complexity, saving resources, and
enhancing efficiency, especially for large-scale text data. Similar approaches can be extended to other
domains, such as image or audio processing [81], to identify and eliminate redundant information,
thereby enhancing overall efficiency. This perspective may also complements recent advances in
few-shot and zero-shot generalization [82, 83], where models benefit from efficiently focusing on
semantically rich cues rather than redundant patterns. Moreover, advances in gaze estimation [84]
and visual saliency modeling further provide computational tools to simulate our frequency-mask
based mechanism, bridging human perceptual studies and machine learning implementations.

Our work on long-context compression for LLMs improves efficiency, but it also carries potential
societal risks. By enabling models to process longer contexts more effectively, it could inadvertently
facilitate misuse, such as generating more convincing disinformation or harmful content that leverages
extended context. Additionally, compressing long contexts may risk leaking sensitive information or
amplifying biases if important contextual nuances are lost. While our method focuses on foundational
algorithmic improvements, we acknowledge these risks and encourage future work on responsible
deployment practices, including access controls and bias mitigation strategies, to minimize potential
harms.
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