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ABSTRACT

Recent advancements in artificial neural networks (ANNs) have significantly im-
proved our ability to predict neural activities in the ventral visual stream of the
human brain in response to visual stimuli. However, designing visual stimuli
to elicit specific neural responses remains a considerable challenge due to high
experimental costs, the high dimensionality of stimuli, and an incomplete under-
standing of neuronal selectivity. To address these challenges, we propose a novel
electroencephalography (EEG)-based closed-loop framework for visual stim-
ulus optimization. This framework integrates an EEG encoder, treated as a non-
differentiable black-box model, to predict neural activity evoked by visual stimuli.
By leveraging this encoder, we directly analyze the relationship between the visual
stimuli and the desired neural responses. Through the combination of EEG fea-
ture extractors and a generation/retrieval module, the framework is theoretically
capable of exploring an infinite space of natural image stimuli to identify the one
that maximally activates neural activity aligned with a targeted brain state. Our
experimental validation demonstrates that, regardless of the precision of ANN-
predicted brain coding, the proposed framework effectively identifies the theoret-
ically optimal natural image stimulus within a fixed number of iterations. Fur-
thermore, the approach exhibits strong generalization across various target neu-
ral activity patterns, highlighting its robustness and potential for broader applica-
tions in brain-inspired stimulus optimization. Our code is available at https:
//anonymous.4open.science/status/closed-1loop-F2E9.

1 INTRODUCTION

Previous research has demonstrated that human visual perception exhibits a certain degree of selec-
tivity. (Epstein & Kanwisher, |1998} Qiu et al.,|2023)) indicate that higher-level visual cortex regions
preferentially process complex semantic categories. However, attempts to map this selectivity based
on responses to a fixed set of stimuli face inherent limitations, as they only reveal selectivity for the
specific attributes represented within the sampled stimuli (Luo et all |2024a). Furthermore, using
manually selected synthetic stimuli can introduce biases and may not fully capture the rich com-
plexity and variability of natural scenes. To overcome these challenges, an alternative approach is to
use counterfactual reasoning by generating visual stimuli tailored to evoke specific, desired neural
features, we can greatly reduce bias introduced by human factors.

The idea of eliciting and regulating specific brain activity holds significant potential for various ap-
plications such as clinical disease treatment and therapeutic interventions. As a result, an increasing
number of researchers are working to develop frameworks aimed at achieving precise control of
brain activity. For example, (Ponce et al., [2019; Walker et al., |2019) aim to regulate activity at the
neuronal level, though these methods often lack generalization and fail to encompass the full range
of visual features due to biases in training datasets. More recently, (Luo et al.,|2024b) introduced
VEP Booster, an Al framework designed to generate reliable and stable EEG biomarkers under
visual stimulation protocols. Although stroboscopic visual stimulation methods like this advance
neural targeting, they may still lack alignment with the prior knowledge embedded in the human
visual perception system.

A series of studies on extensive natural image datasets (Hebart et al.l 2019) and pre-trained image
generation models (Rombach et al.,[2022) allow us to further leverage state-of-the-art diffusion mod-


https://anonymous.4open.science/status/closed-loop-F2E9
https://anonymous.4open.science/status/closed-loop-F2E9

Under review as a conference paper at ICLR 2025

els to identify fine-grained brain functional specializations in an objective and data-driven manner.
In this work, we established a novel closed-loop framework as illustrated in Figure|l|containing the
black box modeling, feature extraction, and visual stimulus retrieval or generation. Our contribu-
tions are summarized as follows:

* We present a cutting-edge closed-loop visual neurofeedback framework that synthesizes
high-level images to achieve the control objective on brain activity signatures. Our frame-
work can direct mapping between synthetic visual stimuli and specific brain signatures in
visual processing regions.

* By replacing traditional human EEG experiments with brain activity predicted by the black-
box model (as the surrogate brain), we minimize dataset bias and enhance the model’s
ability to generalize to novel stimuli, providing insights for experiments on human subjects.

* We leverage state-of-the-art diffusion models to identify fine-grained brain functional spe-
cializations, and incorporate natural image priors to improve generalization, which can be
flexibly designed according to the specific control goal, such as image retrieval to approxi-
mate the neural activity generated by reference image.

2 RELATED WORK

Mapping Selectivity and Invariance from EEG. Modern neuroscience posits that specific re-
gions of the brain exhibit distinct sensitivities or preferences for particular types of stimuli (Tesileanu
et al.,|2022). Selectivity refers to the phenomenon where neurons or neural networks in these regions
display a marked preference for specific visual inputs, responding more strongly or consistently to
them. For example, (Luo et al.,[2024a)) refers to the phenomenon where neurons or neural networks
in these regions display a marked preference for specific visual inputs, responding more strongly or
consistently to them. On the other hand, invariance refers to the brain’s ability to maintain consistent
neural responses to different stimuli that effectively convey the same information. In other words,
multiple distinct stimuli can elicit similar brain activities (Baroni et al.||2023)). In order to investigate
the intrinsic invariance shared between artificial neural networks and the brain, (Feather et al.,[2023)
proposed a method to generate model equivalent stimuli (also known as model metamers). These
stimuli produce the same neuronal activation as a reference stimulus, enabling the exploration of the
internal states of Al models and their alignment with neural processes.

Closed-loop Control of Brain Activity. Closed-loop control of brain activity is a sophisticated
approach for regulating brain function by leveraging real-time monitoring and feedback mecha-
nisms. This method holds great promise in neuroscience and neural engineering, particularly for
developing advanced treatments for neurological disorders such as epilepsy, Parkinson’s disease,
and depression. Traditionally, studies in this area have employed cutting-edge algorithms to en-
hance the efficiency and precision of signal processing and decision-making, thereby advancing the
intelligence of closed-loop systems. (Bashivan et al.l [2019) applied gradient descent to optimize
the characteristics of target neuron excitation or inhibition and used the resulting gradients to update
the ANN-based stimulus image generator, effectively regulating the activity of specific target neu-
rons. (Walker et al.,2019) proposed an innovative experimental paradigm called “inception loops”,
which combines in vivo recordings with in silico modeling to synthesize optimal visual stimuli that
can stimulate specific neuronal responses. (Luo et al.l 2024b) employed a closed-loop strategy
wherein a trained generative model to continuously refine the VEP image of the biomarker. This it-
erative process produced higher-quality EEG data, demonstrating the utility of closed-loop methods
in improving biomarker-driven optimization framework.

Brain-conditioned Image generation. Gradient-based brain condition generation is becoming a
pivotal technique in optimizing visual stimulus design, particularly for neurofeedback and brain-
computer interface (BCI) applications (Luo et al.,[2024bfja). This method relies on iteratively refin-
ing stimuli by backpropagating the gradients of neural activity representations to steer brain states
toward desired conditions or achieve specific cognitive effects. Such an approach enables precise,
adaptive stimulus optimization in response to real-time neural feedback, forming the basis for per-
sonalized brain modulation.
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Figure 1: Conceptualization. The closed-loop visual stimulation framework includes three core
components. (1) The black box model is used as a surrogate brain to generate neural responses
to visual stimulation, and can be replaced by EEG data recorded from human participants in real
closed-loop experiments. (2) The feature extractor extracts the brain features associated with the
target neural activity, which can be designed flexibly according to specific control goals. (3) The
controllable image generator to synthesize some candidate images. Through closed-loop iteration,
the system continuously refines the visual stimulation to achieve the desired brain response.

Recent advances have expanded the scope of gradient-based techniques by integrating more so-
phisticated neural models and leveraging high-dimensional neural representations captured by EEG,
fMRI (Gu et al.| 2023), and other brain imaging modalities. These advances have significantly
enhanced the precision of stimulus generation, accounting for individual variability in neural re-
sponses. Moreover, by incorporating deep learning models, such as guided diffusion models (Ye
et al., |2023)), researchers can now generate highly detailed and context-specific stimuli tailored to
align closely with target neural states, further advancing the field of brain condition generation.

3 METHOD

We aim to find the optimal stimulus image through either image retrieval or editing within a search-
able space to produce specific neural activity in the brain. This closed-loop system is adaptable
to various control objectives, enabling it to perform a wide range of tasks.Configuring the feature
extractor for semantic representations enables image retrieval tasks, allowing the system to progres-
sively locate the optimal stimulus image from a dataset. Alternatively, aligning the feature extractor
with Power Spectral Density (PSD) features facilitates iterative image generation, producing stimuli
tailored to evoke the desired neural activity. Specifically, if the roulette wheel algorithm repeatedly
selects images with specific colors or textures, the system recognizes how relevant of these features
to the target class and assigns them greater weight in subsequent iterations. Through this closed-loop
process, the system refines the visual stimulus to evoke the desired EEG responses. We illustrate
our overall framework in Figure[T]

3.1 CLOSED-LOOP FRAMEWORK

Let the EEG signals be denoted as X, where T represents the length of the time window of the data,
C is the number of EEG channels, and €) denotes a database of N images, labeled 1,2, ..., N for
simplicity. Concurrently, we use the encoding model g to predict brain activity signal X = g(U) €
RNXEXT - Qur objective is to derive brain activity embeddings Y = f(g(U)) € RV*¥ from the
images I € RV*3XHXW “where f is the feature mapping function from X to Y, U is the set of
stimulus images set, and F' represents the dimension of embedding. Our iteration process can be
approximated as a value-based iterative Markov Decision Process (MDP). The state is represented
as the probability distribution of each image P(u) in the image database belonging to target category
Utarget- The state updated after each iteration corresponds to a state transition in the MDP. In each
iteration, the framework determines which image to select, represented as an action in the MDP.
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Figure 2: Closed-loop EEG-based visual stimulation framework for controllable generation.
(A) Our framework relies on a closed-loop iterative algorithm to approximate neural features. The
image with a higher similarity score is selected through heuristic algorithm and passed back to the
image generator to generate optimized stimuli with a natural image. (B) A case of semantic feature
from pre-trained EEG encoder, which is aligned with images. (C) The other case of channel-wise
energy, using PSD feature.

In our model, let j € [1, N], the reward is defined as the similarity score between the selected or
generated image u; from database and the features of the target category usqrges:

— f (g<uj)> i f (g(utarget)>
1S (g(u;)) N1Lf (9(warger))

Let u; be any image in the search space, which is the target of model evaluation. During the iteration
of the t to t + 1 step, we update S;y;(u;) based on w;. The weight coefficient « controls the
cumulative probability increment. Let u be the image that the system considers to be closest to the
target category by computing EEG feature similarity. For the history subset H of selected images k,
the posterior probability that u; is the most similar to the target image is updated as follows:

(D

3im<uj ) utarget>

Siv1(u) = a - Si(u; 1—a)- exp (5(t, i) - S (u; 2)
+1(wi) (u;) + ( ) ST oxp (s(ut ) (ui)

where s is the cosine similarity of CLIP (Radford et al.,|2021) embedding. The update probability
Py y1(u;) for u; is computed by normalizing the exponentiated value of the updated score Sy41(u;)
over the sum of exponentiated scores for all u; in the dataset, ensuring that the probabilities across
all u; sum to 1:

exp (Sp1(ui))
S0t exp (Siga(uy))

In step t iteration, our framework operates as follows. First, we initialize a set of random images
Uop = {u1,us, ..., u;}. Using the pretrained encoding model g to synthesize EEG signals X; from
these stimuli. Second, for any given representation function Y;, we calculate the neural activity
representation Y; = f(g(U;)) € RV*F from the predicted signal z;, to estimate the difference
based on the target neural representation Y;qrge¢. Third, the similarity score sim(u;, Uarger) between
each neural representation derived from each current stimulus u; and the target representation is
computed. Subsequently, stimulus images exhibiting higher similarity scores are more likely to be
selected. Based on sim(u;, Urarget), Stimulation is probabilistically sampled, favoring images that are
closer to the target representation. Finally, the sampled images are used to retrieve similar images
for the step ¢ + 1 or input into the diffusion model to generate new stimulus samples.

Pt+1(ui) = 3)

3.2 BLACK-BOX ENCODING MODEL

An image-computable brain encoder is a learned function gg that maps an image I; € R3*H>xW

to a synthetic EEG X;. Instead of collecting real EEG, we employ encoding models to generate
neural responding to visual stimuli, which can later be replaced with EEG recordings obtained from



Under review as a conference paper at ICLR 2025

human participants in real experiments. We assume that our framework remains effective regardless
of the specific structure of the encoding model, allowing us to focus on the advancements of the
framework itself rather than the details of the encoding model’s architecture. To ensure robustness,
we use two different CNN models, AlexNet (Krizhevskyl [2014) and CORnet-S (Kubilius et al.,

2019), as feature extractors and train regressors to predict the ground truth of EEG X.

In the encoding model, we modify the CNN’s 1000-neuron output layer to a C' x T-neuron layer,
where each neuron corresponds to one of the flattened EEG data ponits C' x T. Each subject is
assigned unique model parameters, achieved by randomly initializing independent instances of the
model for each participant and across all EEG time points 7'. Given the input training images [
and the corresponding target EEG data X, the model updates its weights by minimizing the mean
squared error (MSE) between predicted EEG X and the X. This setup ensures a personalized and
accurate prediction of synthetic neural activity.

3.3 INTERACTIVE SEARCH

In order to find the optimal stimulus image that causes the target neural activity, we search for
images that produce similar neural activity based on the target neural feature. However, the entire
target query image is assumed to be unknown. In this experiment, we set the transition probability
as the global cumulative probability and then sample new image stimuli in each step using a roulette
wheel method. To solve the problem of how to start retrieval when there is no clear query image, we
use the mathematical framework of (Ferecatu & Geman, 2007), based on mind matching, starting
from a random sample of images, and iteratively let the user select the image that is closest to the
category in his mind. In our question, Our specific algorithm process is shown in Algorithm

Algorithm 1 Closed-loop Retrieval Iteration Algorithm

1: Initialize: Set initial set Uy = {uq, us, ..., ux}, where Uy C Q.

2: repeat

3: Action Selection: U; = {u1,us, ..., ux} from Q based on p;(u).
4: Reward Calculation:

$1Mmax = Max Sim (U, Uarget)

5: if simmax < threshold;:

6: Go to Step 3.

7: else:

8: Optimal Action Reference:

exp (Sim<uk; Utarget>)
Ugopl ; Utop2 } = AT Mmax - -
{topt wop2 } “?;Sl{‘ Zuh,eH exp (sim{un, Utarget)) + ZukeUt exp (sim{ug, Uarget))

9: if sim(Uiarget, Utop1) OF SIM(Utarget, Utopz) > thresholdy:
10: CLIP-based Retrieval: Using wp1 and wp, retrieve the top-k images {u}, ub, ..., u}}

from (2 that have the highest similarity s:

uy, = argmax {s(u, Uop1 ), S(U, Uop2) }-
uelU

11: Update Action Set: Update the subset U, 1:
Upr1 = {ul, b, oo ul )
12: Recurse on U, : Repeat the process for the new action set Uy, 1, treating it as the

current action set U; for the next iteration.
13: until 5., > thresholdyrimary
14: Return: Return the best action set U; as the final set of retrieved images.

In our framework, the Closed-loop Retrieval Iteration Algorithm can be interpreted as a series of
state transitions aimed at maximizing the similarity between current neural feature and a target
neural response. Initially, our framework randomly selects a set of images Uy, without knowing the
specific image features of the target class. We use a roulette wheel algorithm to select from current
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images according to sim(u;, Uarget). The system updates the probability p;(u;) of each image in
the database belonging to the target class based on the response model’s prediction Y = f(g(U)) €
RN *FOnce one image is selected, the system increases the probability that the image belongs to
the target class. The system calculates the distance between the brain activity feature vector of the
target image and the brain activity feature vector predicted by the image selected by the roulette
wheel algorithm (i.e., the image that is considered to be closer to the target class).

The algorithm begins by initializing equal selection probabilities for each image in the candidate
set, denoted as po(u) = %, where N is the total number of images in the retrieval set. This
initialization phase serves as an exploratory step, with equal probabilities reflecting the absence
of prior information. In each iteration (representing a state in the MDP framework), a subset of
images U; = {u1,us,...,u;} is selected from the candidate images set U based on the current

selection probabilities p; (u).

For each image u; in the subset U; the algorithm computes a similarity score sim(uj, utargeQ by
comparing the image’s representation with the target. This similarity score acts as an immediate
reward signal within the MDP framework. The maximum similarity score among the subset is iden-
tified as a measure of the effectiveness of the current action. If sim,.x does not meet a predefined
threshold;, the reward is considered insufficient, and the algorithm returns to the image selection
step, effectively trying a new action within the same state. If sim,,,x meets or exceeds the thresh-
old, the algorithm proceeds to identify the two images u¢,p1 and uop2 With the highest similarity
scores. These two images act as reference points for updating the probabilities of other images in
the subsequent state.

As for each image u; in U that surpasses thresholds with either usop1 Or Usop2, its selection proba-
bility P;y1(u;) is updated by multiplying with a constant factor, representing a policy improvement
step that prioritizes images likely to yield higher rewards. After updating, a Softmax function is ap-
plied to normalize the probabilities, focusing selection weight on images more similar to the target.
This normalization step reflects the transition to a new state with an updated policy. The iteration
continues, with the algorithm transitioning through states by selecting new subsets based on the
refined probabilities, until simy,,x reaches threshold,,imary. At this point, the loop stops, as the
algorithm has effectively found an optimal subset of images that maximizes the similarity reward
with respect to the target.

3.4 HEURISTIC SOLUTION

Retrieving the optimal image stimulus only in the image feature space limits the potential to get
closer to the target brain activity. To design an optimal stimulus to the greatest extent, we use
StableDiffusion XL-turbo for gradient-guided optimal stimulus generation. The pretrained guided
diffusion model G(U;) generates new visual stimuli via image-to-image. Based on MDP, we use
a genetic algorithm to assist the generator in generating image stimuli in the direction of the target
neural activity while ensuring global optimality. Our specific algorithm process is shown in Algo-
rithm[2] Unlike Algorithm [T} after sampling the stimulus image in each step of roulette, we partially
cross the image features, and randomly sample new image samples from the image space. Mutation
is performed based on the obtained image features and the original image features retained by the
population to ensure that normal semantic images that are understandable to humans can still be
generated after mutation.

4 EXPERIMENTS

4.1 SETUP

Datasets We conducted our experiments using the training set of the THINGS-EEG2 dataset (Gif-
ford et al.| 2022; |Grootswagers et al., 2022), which consists of a large EEG corpus from 10 hu-
man subjects performing a visual task. The experiments used the Rapid Serial Visual Presentation
(RSVP) paradigm for orthogonal target detection tasks to ensure participants’ attention to the visual
stimuli. All 10 participants underwent 4 equivalent experiments, resulting in 10 datasets with 16,540
unique training image conditions, each repeated 4 times, and 200 unique testing image conditions,
each repeated 80 times. In total, this yielded (16,540 training image conditions x 4 repetitions)
+ (200 testing image conditions X 80 repetitions) = 82,160 image trials. The original data were
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Algorithm 2 Closed-loop Generative Iteration Algorithm

1: Initialize: Set initial set Uy = {uq, us, ..., ux}, where Uy C Q.

2: repeat

3: Selection: U; = {uq,us, ..., u;} from Q based on p:(u).

4: Sampling: Based on the calculated similarity scores, sample from U, using:

exp (sim(ug, Ugarger) )

P Uk ) = -
( ) Zukl cu, €XP (Szm<uk’7 utarget>)

where P(uy) is the sampling probability for each uy € Us.
5: Crossover: Draw two distinct samples u,, up from Uy based on P(uy), and output new
samples by combining the partial embedding of u,, and wu:

Flul)) + a- F(ug) + (1 — @) - F(u)

Fuls)) « a- F(up) + (1 — a) - Fug)
where « is a crossover control factor.
6: Mutation: Based on P(uy), apply mutation to the drawn images u. from Uy, and another
image uq is drawn from the remaining U; (i.e., Uz \ {uc}):
F(ugy) ¢ 8- Fluc) + (1= 8) - Fluq)
where (3 is a mutation control factor.

7: Generation: Generate a new set of images Ugen = {ug,),, uézr)“ ug’,)l} according to the out-
puts of crossover and mutation phase.
8: Selection: Combine Uy, with U; and randomly selected samples Ugndom =
1
{uﬁan), Upgn(2) 5 - - - ,ur(;fl)}, where Uy C Q.

9: Update Action Set: Update the subset U 1:
Ut+1 <~ {Ut7 Ugen, Urandom}

10: Replace the old population with the new set of images U, ;.
11: until similarity score converges or reach the maximum number of cycles.

recorded using a 64-channel EEG system with a 1000 Hz sampling rate. After signal denoising,
the data were downsampled to 100 Hz, focusing on 17 channels over the occipital and parietal re-
gions. For preprocessing, we segmented the EEG data into trials from 0 to 1000 ms post-stimulus
onset, with baseline correction applied using the mean of the 200 ms pre-stimulus period. All elec-
trodes were retained, and the data were downsampled to 250 Hz for analysis. Multivariate noise
normalization was applied to the training data (Guggenmos et al., 2018)).

Encoding Model In the training phase, we used a batch size of 64 images and the Adam optimizer
with a learning rate of 1075, a weight decay term of 0, and default values for other hyperparameters.
Training was conducted over 50 epochs, with EEG responses for test image conditions synthesized
using the model weights from the epoch that yielded the lowest validation loss. For each participant,
the models generated EEG signals with a shape of 17 EEG channels x 250 EEG time points as the
output corresponding to the input images.

4.2 REGULATION OF BRAIN SEMANTIC REPRESENTATION

In order to verify the effectiveness of our EEG-based closed-loop visual stimulation framework for
achieving the target neural activity representation, we first conducted a retrieval task in the image
space. We regarded the encoding model g as a black box model to ensure that the gradient is not used
to update the parameters of the encoding model, so as to better focus on the closed-loop regulation
framework itself. We performed the retrieval task in the test set of THINGS-EEG2 dataset with
200 x 12 = 2400 images. We use the EEG encoder in (Li et al., [2024) to obtain EEG semantic
representations aligned with 1 x 1024 CLIP image features. Before the retrieval begins, random
initialization ensures 10 initial points are scattered as much as possible in the image feature space.
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During the search process, each initial image sample calculates the cosine similarity with the global
image features, and uses the cumulative probability to have more reasonable opportunities to select
image samples that can produce new and closer to the target EEG neural representation. In the
image feature space, through the initial initial image sample point, it continuously expands to form
a small area and iterates, and finally approaches the theoretically optimal stimulus image sample.
The condition for the iteration to terminate is similarity s(u.,u;) > 0.97.

Based on semantic representation, our retrieval results are shown in Figure 3] In Figure 3(A), we
plotted the similarity scores of stimuli and random stimuli at different time steps of the iteration
process. Figure [3(B) shows the average similarity and mean square error with the expected EEG
features at different iteration time steps for subject 8. Figure [3(C) illustrates the convergence pat-
terns from initial to final positions for selected iterations (e.g., iterations 1 and 10) over multiple
cycles. In each iteration, ten images are viewed, with points representing the closest match to the
target stimulus at each step. Notably, these points show a gradual approach toward the target stim-
ulus, marked by a red pentagram, across successive iterations. For a given target neural activity
representation, our framework iteratively predicts intermediate EEG results and retrieves stimulus
images at each iteration. Notably, only the neural activity representation evoked by the reference
image is known throughout this process. Through successive iterations in [3(D), the framework re-
fines its selection, ultimately retrieving an image (outlined in red) that closely matches the semantic
representation of the reference image.
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Figure 3: Results of our framework in the retrieval task. (A) Similarity between the neural repre-
sentation obtained by our framework at different iteration steps (i.e., step-1, step-2, step-second-last,
step-last) and the target neural representation compared to random stimulus (i.e., random). (B) The
evolution of EEG representation similarity (blue) and loss curves (yellow) on Subject 8 at different
iteration steps. (C) The t-SNE visualization of Subject 8’s latent trajectories within the feature space
across all iterations. (D) The images retrieved by our framework at different iteration steps. Note
that only the neural activity representation evoked by the reference image is known during the iter-
ation process.

4.3 REGULATION OF INTENSITY OF NEURAL ACTIVITY

We implemented a closed-loop stimulus image generation framework using the 200 x 1 =200 image
space of THINGS-EEG?2 as initialization. We set the crossover rate « to 0.6, the mutation rate 3 to
0.2, and randomly select 10 images from 200 images during initialization. We used StableDiffusion
XL-turbo (Rombach et al.}[2022)) integrated by IP-Adapter to generate new samples
each time based on the new stimulus images obtained after crossover and mutation, and randomly
selected 2 samples from the image feature space, calculated the similarity of EEG activity repre-
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sentation, and selected the next step of stimulation according to the roulette method of cumulative
probability.

The results of our stimulus generation experiments are shown in Figure ] Figure f(A) shows the
similarity and mean square error between the EEG features generated by the step stimulation image
at different iterations and the target EEG features. In addition, we calculated the explained variance
of different channels and selected the three channels O;, O,, and O, with the largest variance for
regulation. Figure @{B) shows the comparison of the PSD of the EEG predicted by the random and
step-best samples relative to the target EEG representation. Figure @(DEF) plots the synthetic EEG
of three different channels obtained by step-best, random and target stimulation images respectively.
All three channels show that the EEG corresponding to step-best, random and target images is quite
different before 100 data points (corresponding to 0.4s). After 0.4s, due to the limitations of the
encoding model itself, the synthetic EEG of the target image is not much different from the synthetic
EEG of the optimal stimulation and the synthetic EEG of the random image. This corresponds to
Fig.4 in (Gifford et al [2022). Using the tick image as an example, Figure f(C) shows the image
and its corresponding time-frequency features, as well as the generated image and corresponding
features at each iteration. The image enclosed by a red border represents the image synthesized by
the generator, while the unbordered image is a sample selected from the original dataset.
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Figure 4: Results of our framework in the generation task. (A) Similarity and loss curves of
EEG neural representations for Subject 8. (B) The difference of PSD between the neural activity
representations evoked by the final step of generated and random stimulus, with the target neural
representations used as the relative baseline. (C) For a given target EEG semantic representation,
our framework iteratively predicts synthetic data, extract feature and synthesizes images at each it-
eration. (D) EEG timing diagram generated by our stimulus images for O; channel. (E) EEG timing
diagram generated by our stimulus images for O, channel. (F) EEG timing diagram generated by
our stimulus images for Oy channel.

4.4 REGULATION OF INDIVIDUAL VARIABILITY

Table [I] summarizes the results in the retrieval setting (corresponding to the representation score,
SS) and the generation model setting (corresponding to the intensity score, IS), highlighting the
results of our framework in achieving the optimal number of iterations in a given search space. The
data show that for different target EEG features, our method has a good improvement in feature
similarity across different subjects. For instance, the similarity score (SS) of the semantic feature of
Subject 7 is improved from 0.874 in step-1 to 0.974, with an improvement of 10.04%. Similarly, the
feature similarity score (IS) of the channel intensity of Subject 8 is improved from 0.913 in step-1
to 0.990, accompanied by a 7.744% improvement. Even on the subjects with poor performance,
our framework achieves a positive performance, which shows that our framework has a generalized
improvement effect across different subjects, highlighting its potential in practical applications.
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Table 1: Performance (EEG semantic representation and intensity) of brain responses. We
provide two metrics: EEG semantic representation score (i.e., SS) and EEG response intensity score
(i.e., IS) to measure the difference between the neural activity generated by the optimal stimulation
image we obtained and the target EEG neural activity.

\ Step-1 | Step-Best | Improvement

Subject | SS IS SS IS | ASS (%) AIS (%)
1 0871 0989 [ 0967 0997 | 9.593 0.801
7 0.874 0960 | 0.974 0995 | 10.040  3.444
8 0904 0913 | 0.976 0990 | 7.162 7744
10 | 0915 0986 | 0961 0.998 | 4.587 1.163

5 DISCUSSION AND CONCLUSION

In this study, we propose a novel and feasible EEG-based closed-loop visual stimulation frame-
work for controllable generation. To our knowledge, this is the first framework that successfully
implements closed-loop stimulus generation to modulate brain activity using natural priors on EEG.

Technical Impact: We present a closed-loop iterative strategy that samples new random stimuli
each time a new round of stimulus images is generated. By passing the gradient of the target neural
activity representation to the diffusion model in a proxy manner, we eliminate the need to train the
generative model or update its weights. In both the feature space interactive retrieval task and the
image stimulus generation task, we obtained effective stimulus images that are closest to the target
EEG activity features. This demonstrates that our framework is an efficient and optimal closed-loop
stimulus generation method that does not require any model parameter updates.

Neuroscience Insights: Our results demonstrate that closed-loop, controllable generation of visual
stimuli based on EEG signals is not only feasible but also effective in two distinct contexts. First,
we successfully modulated the activity of specific electrode channels, indicating that fine-tuning
neural activity in targeted brain regions can be achieved through controlled visual stimulation. Sec-
ond, we showcased our framework’s capability to guide the brain in generating specific neural rep-
resentations, which is crucial for understanding how different regions of the brain process visual
information and respond to external stimuli.

This study provides significant insights into the neural mechanisms underlying visual perception
and stimulus processing. The successful implementation of EEG-driven closed-loop generation of-
fers a novel real-time approach for manipulating brain activity, revealing the possibility of targeted
modulation of cognitive functions. Additionally, by linking specific EEG patterns to visual rep-
resentations, our work contributes to a broader understanding of how neural signatures correlate
with perceptual experiences. This opens new avenues for applications in brain-computer interfaces,
neurofeedback systems, and therapeutic interventions for neurological disorders where precise reg-
ulation of brain activity is needed (Jang et al., 2021; |Alamia et al., [2023)).

Interesting Phenomena and Future Directions: Since different stimulus images in our framework
can produce the same or similar EEG features, this suggests the existence of Metamers (Feather
et al., 2023), which may not be unique. The presence of Metamers complicates feature discrimi-
nation in our analysis, and these Metamers vary across different subjects. Future research should
delve deeper into understanding the underlying neural mechanisms that lead to the generation of
similar EEG features from different stimuli. This can be approached by incorporating real-time
EEG data from a diverse set of subjects, facilitating more individualized and precise modulation of
neural activity. Another promising direction involves integrating more sophisticated models that ac-
count for inter-individual variability in neural responses, aiming to fine-tune the stimulus generation
process for enhanced brain-computer interaction (Alamia et al.l [2021)). For instance, it is expected
to combine other modes of stimulation to regulate the electrical characteristics of the brain similar
to gamma oscillations, and realize a new idea of depression treatment (L1 et al., 2023). Further
exploration could involve combining this closed-loop framework with other brain imaging modali-
ties, such as fMRI or MEG, to gain a more comprehensive understanding of the multimodal neural
representations of visual stimuli.
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A APPENDIX

A.1 VALIDITY VERIFICATION OF SYNTHETIC EEG

To evaluate the performance of our EEG encoding models, we compare the synthetic EEG signals
generated by two deep neural networks (DNNs)—AlexNet and CORnet-S—with real EEG data.
Here’s a step-by-step breakdown of how we processed and compared the data.

We selected 17 specific channels from the original 63-channel EEG dataset. These channels were
chosen based on their relevance to visual processing, ensuring that we focused on neural regions
most closely related to the visual stimuli. For each stimulus, we averaged the EEG signals across
all trials, resulting in a representative dataset for each stimulus. This reduced the dimensionality
of the data, making it easier to compare with synthetic data. We used a pretrained end-to-end
encoding model to generate synthetic EEG signals based on the visual stimuli. The model captures
the mapping between the visual input and the resulting EEG signals using deep neural networks.
These synthetic signals represent the neural responses that the model predicts based on the stimuli.

Table 2: MSE Values for synthesized EEG

Subject Pretrained Random Init Average

AlexNet CORnet-S AlexNet CORnet-S

Sub-01  0.1095 0.1126 0.1161 0.0994 0.1094
Sub-02  0.0764 0.0788 0.0840 0.0994 0.0847
Sub-03  0.0787 0.0806 0.0816 0.0910 0.0830
Sub-04  0.0652 0.0664 0.0662 0.1011 0.0747
Sub-05  0.0493 0.0515 0.0704 0.0975 0.0672
Sub-06  0.0690 0.0719 0.0498 0.0966 0.0718
Sub-07  0.1267 0.1300 0.0914 0.1312 0.1198
Sub-08  0.0718 0.0727 0.1038 0.1165 0.0912
Sub-09  0.0529 0.0563 0.0781 0.0756 0.0657
Sub-10  0.1122 0.1151 0.0961 0.1149 0.1096

Average  0.0810 0.0832 0.0838 0.1023 0.0876

Table [2] presents the mean squared error (MSE) between the synthetic EEG signals generated by
AlexNet and CORnet-S, and the real EEG signals for 10 subjects. The MSE was computed for each
individual test sample and then averaged across the entire test set. Lower MSE values indicate better
alignment between the synthetic and real EEG signals.

From the comparison shown in the Figure[5] the retrieval accuracy for S-S (both training and testing
sets consist of generated signals) is significantly higher than other categories, including T-T (both
training and testing sets consist of real signals), T-S (training set consists of real signals, testing set
consists of generated signals), and S-T (training set consists of generated signals, testing set consists
of real signals), under both AlexNet and CORnet-S models. This indicates:

Advantages of generated signals Supported by black-box ANN models (e.g., AlexNet and
CORnet-S), generated signals perform significantly better in retrieval tasks compared to real sig-
nals. In particular, the highest retrieval accuracy for S-S demonstrates the consistency and model
adaptability of generated signals in this retrieval task.

Model adaptability: Different ANN models (e.g., AlexNet and CORnet-S) show consistent supe-
riority in the retrieval tasks for generated signals, indicating that generated signals are more easily
captured and distinguished by black-box models.

In Figure [6] we computed the variance across all samples and time points for each channel. This
allows us to quantify the overall variability of the EEG signals for different visual stimuli and their
temporal dynamics. The variance analysis provides insights into the spatial distribution of neural

13



Under review as a conference paper at ICLR 2025

A sub-01-Pretrained B sub-08-Pretrained
50 100 50 100
---+ Chance Level (0.5%) --- Chance Level (2.5%) -=--+ Chance Level (0.5%) --- Chance Level (2.5%)
AlexNet mmm AlexNet AlexNet mmm AlexNet
40 B CORnet_S 80 4 I CORnet_S 20 B CORnet S 80 I CORnet S

Top-1 Retrieval Accuracy(%)
Top-5 Retrieval Accuracy(%)
Top-1 Retrieval Accuracy(%)
Top-5 Retrieval Accuracy(%)

ss TS

2 bk ST % 2 55 5 T 5T
Methods Methods Methods Methods
sub-01-Random Init sub-08-Random Init
C 50 100 q D 50 100
---- Chance Level (0.5%) --- Chance Level (2.5%) --- Chance Level (0.5%) --- Chance Level (2.5%)
AlexNet mmm AlexNet AlexNet m AlexNet
ad = CORnet S 0] m CORnet S 20 == CORnet S o = CORnet S

Top-1 Retrieval Accuracy(%)
Top-5 Retrieval Accuracy(%)
Top-1 Retrieval Accuracy(%)
Top-5 Retrieval Accuracy(%)

SS 5 TT ST - S5 Ts
Methods

T - 5 ss Ts T
Methods Methods Methods

ST

Figure 5: Retrieval accuracy under different training and test datasets. Zero-shot retrieval perfor-
mance of EEG data from different sources in Subject 1 and Subject 8 using ATM-S in different
Settings. AlexNet and CORnet-S used in the first row were both pre-trained end-to-end models, and
the second row was randomly initialized end-to-end.

responses to stimuli, highlighting how different channels vary in their responsiveness. This can
guide the selection of specific channels for further analysis or modulation.

In Figure[7] showing the variance and standard deviation of the EEG signals computed across sam-
ples (stimuli) for each time point, and then averaged across channels. This analysis allows us to
assess how signal variability changes over time. By comparing the real EEG data with synthetic
data (generated by AlexNet and CORnet-S), we can evaluate how well each model captures the
temporal variability of the real EEG signals.

In Figurd8] we computed the Pearson correlation coefficient between the averaged real EEG data and
the synthetic data for each stimulus. This gives a measure of how well the synthetic data matches
the real EEG data on a per-sample basis. The resulting histogram shows the distribution of Pearson
correlation coefficients across all samples for both AlexNet and CORnet-S. Higher correlation values
indicate better alignment between the synthetic EEG signals and the real EEG data. The comparison
of distributions for both models provides insights into which model better replicates the real neural
activity, with higher peaks in the histogram representing better performance.truth data.

In Figure0] we analyze the time-resolved Pearson correlation between real and synthetic EEG signals
over time. For each time point (from 1 to 250), we compute the Pearson correlation between the real
EEG signal and the synthetic signals from both AlexNet and CORnet-S. This time-resolved analysis
allows us to visualize how well each model replicates the temporal structure of real neural responses
to visual stimuli. Shaded regions in the plot represent the standard deviation across samples, showing
the variability in model performance over time. The results provide a detailed view of how each
model performs at different time points, highlighting which model more accurately captures the
temporal dynamics of EEG signals.stimuli.

From the above analysis, we observe that the synthetic EEG signals generated by AlexNet and
CORnet-S closely replicate the variability patterns of real EEG data. Both models perform well,
showing comparable results in terms of MSE, spatial (channel-wise) variability, and temporal (time-
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resolved) variability. The Pearson correlation analysis further confirms that both models are able to
generate synthetic EEG signals that align well with real data, with subtle differences in performance
across models. These findings highlight the robustness of our EEG encoding models, demonstrating
their ability to generate synthetic EEG signals that not only mimic the structural features of real
EEG data but also capture the realistic variability seen in neural responses to visual stimuli. This
suggests that our models are effective in approximating the neural representations underlying visual
processing.
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Figure 7: Variance across different time points for different visual stimuli and channels.
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A.1.1 ADDITIONAL RETRIEVAL EXAMPLES OF SEMANTIC REPRESENTATION

A.1.2 SOME FAILURE EXAMPLES OF RETRIEVAL

top1 top2 top3 top4d top5 top6 top7 top8 top9

Noaka: 2 0 @Y

top10

step
2

groundtruth

Figure 10: Some retrieval failure examples. By setting different targets, we show examples where
the stimulus retrieved at the end of the iteration is far from the true category.
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