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Abstract

Link prediction attempts to predict whether an unseen edge exists based on only
a portion of edges of a graph. A flurry of methods have been introduced in re-
cent years that attempt to make use of graph neural networks (GNNs) for this
task. Furthermore, new and diverse datasets have also been created to better eval-
uate the effectiveness of these new models. However, multiple pitfalls currently
exist that hinder our ability to properly evaluate these new methods. These pit-
falls mainly include: (1) Lower than actual performance on multiple baselines,
(2) A lack of a unified data split and evaluation metric on some datasets, and (3)
An unrealistic evaluation setting that uses easy negative samples. To overcome
these challenges, we first conduct a fair comparison across prominent methods and
datasets, utilizing the same dataset and hyperparameter search settings. We then
create a more practical evaluation setting based on a Heuristic Related Sampling
Technique (HeaRT), which samples hard negative samples via multiple heuristics.
The new evaluation setting helps promote new challenges and opportunities in link
prediction by aligning the evaluation with real-world situations. Our implementa-
tion and data are available at https://github.com/Juanhui28/HeaRT.

1 Introduction

The task of link prediction is to determine the existence of an edge between two unconnected nodes
in a graph. Existing link prediction algorithms attempt to estimate the proximity of different pairs
of nodes in the graph, where node pairs with a higher proximity are more likely to interact [1].
Link prediction is applied in many different domains including social networks [2], biological net-
works [3], and recommender systems [4].

Graph neural networks (GNNs) [5] have gained prominence in recent years with many new frame-
works being proposed for a variety of different tasks. Corresponding to the rise in popularity of
GNNs, there has been a number of studies that attempt to critically examine the effectiveness of
different GNNs on various tasks. This can be seen for the task of node classification [6], graph
classification [7], knowledge graph completion (KGC) [8–10], and others [11].

However, despite a number of new GNN-based methods being proposed [12–15] for link prediction,
there is currently no work that attempts to carefully examine recent advances in link prediction
methods. Upon examination, we find that there are several pitfalls in regard to model evaluation that
impede our ability to properly evaluate current methods. This includes:
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(a) ogbl-collab (b) ogbl-ppa (c) ogbl-citation2

Figure 1: Common neighbor distribution for the positive and negative test samples for the ogbl-
collab, ogbl-ppa, and ogbl-citation2 datasets under the existing evaluation setting.

1. Lower than Actual Performance. We observe that the current performance of multiple mod-
els is underreported. For some methods, such as standard GNNs, this is due to poor hyperpa-
rameter tuning. Once properly tuned, they can even achieve the best overall performance on
some metrics (see SAGE [16] in Table 1). Furthermore, for other methods like Neo-GNN [14]
we can achieve around an 8.5 point increase in Hits@50 on ogbl-collab relative to the origi-
nally reported performance. This results in Neo-GNN achieving the best overall performance
on ogbl-collab in our study (see Table 2). Such problems obscure the true performance of
different models, making it difficult to draw reliable conclusions from the current results.

2. Lack of Unified Settings. For Cora, Citeseer, and Pubmed datasets [17], there exists no uni-
fied data split and evaluation metrics used for each individually. For the data split, some
works [18, 19] use a single fixed train/valid/test split with percentages 85/5/10%. More re-
cent works [13, 15] use 10 random splits of size 70/10/20%. In terms of the evaluation metrics,
some studies [13, 15] use ranking-based metrics such as MRR or Hits@K while others [20, 19]
report the area under the curve (AUC). This is despite multiple studies that argue that AUC is a
poor metric for evaluating link prediction [21, 22]. Additionally, for both planetoid (i.e., Cora,
Citeseer and Pubmed) and ogbl-collab dataset, some methods incorporate validation edges dur-
ing the testing phase [13], whereas others [14], exclude them. This lack of a unified setting
makes it difficult to compare those works and hampers our ability to determine which methods
perform best on these datasets.

3. Unrealistic Evaluation Setting. During the evaluation, we are given a set of true samples
(i.e., positive samples) and a set of false samples (i.e., negative samples). We are tasked with
learning a classifier f that assigns a higher probability to the positive samples than the nega-
tives. The current evaluation setting uses the same set of randomly selected negative samples
for each positive sample. We identify two potential problems with the current evaluation pro-
cedure. (1) It is not aligned with real-world settings. In a real-world scenario, we typically care
about predicting links for a specific node. For example, in friend recommendations, we aim
to recommend friends for a specific user u. To evaluate such models for u, we strive to rank
node pairs including u. However, this does not hold in the current setting as u is not included
in most of the negative samples. (2) The current evaluation setting makes the task too easy. As
such, it may not reflect the model performance in real-world applications. This is because the
nodes in a randomly selected negative “node pair” are likely to be unrelated to each other. As
shown in Figure 1, almost all negative samples in the test data have no common neighbors, a
typically strong heuristic, making them trivial to classify them.

To account for these issues, we propose to first conduct a fair and reproducible evaluation among cur-
rent link prediction methods under the existing evaluation setting. We then design a new evaluation
strategy that is more aligned with a real-world setting and detail our results. Our key contributions
are summarized below:

• Reproducible and Fair Comparison. We conduct a fair comparison of different models
across multiple common datasets. To ensure a fair comparison, we tune all models on the same
set of hyperparameters. We further evaluate different models using multiple types of evaluation
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metrics. For the Planetoid datasets [17], we further use a unified data split to facilitate a point
of comparison between models. To the best of our knowledge, there are no recent efforts to
comprehensively benchmark link prediction methods (several exist for KGC [10, 9, 8]). Fur-
thermore, we open-source the implementation in our analysis to enable others in their analyses.

• New Evaluation Setting. We recognize that the current negative sampling strategy used in
evaluation is unrealistic and easy. To counter these issues, we first use a more realistic setting
of tailoring the negatives to each positive sample. This is achieved by restricting them to be
corruptions of the positive sample (i.e., containing one of its two nodes as defined in Eq. (3)).
Given the prohibitive cost of utilizing all possible corruptions, we opt instead to only rank
against K negatives for each positive sample. In order to choose the most relevant and difficult
corruptions, we propose a Heuristic Related Sampling Technique (HeaRT), which selects them
based on a combination of multiple heuristics. This creates a more challenging task than the
previous evaluation strategy and allows us to better assess the capabilities of current methods.

The rest of the paper is structured as follows. In Section 2 we introduce the models, datasets, and
settings used for conducting a fair comparison between methods. In Section 3 we show the results of
the fair comparison under the existing evaluation setting and discuss our main observations. Lastly,
in Section 4 we introduce our new evaluation setting. We then detail and discuss the performance of
different methods using our new setting.

2 Preliminaries

2.1 Task Formulation

In this section we formally define the task of link prediction. Let G = {V, E} be a graph where V
and E are the set of nodes and edges in the graph, respectively. Furthermore, let X ∈ R|V |×d be a
set of d-dimensional features for each node. Link prediction aims to predict the likelihood of a link
existing between two nodes given the structural and feature information. For a pair of nodes u and
v, the probability of a link existing, p(u, v), is therefore given by:

p(u, v) = p(u, v | G, X). (1)

Traditionally, p(u, v) was estimated via non-learnable heuristic methods [23, 24]. More recently,
methods that use learnable parameters have gained popularity [12, 13]. These methods attempt to
estimate p(u, v) via a learnable function f such that:

p(u, v) = f(u, v | G, X,Θ), (2)

where Θ represents a set of learnable parameters. A common choice of f are graph neural net-
works [25]. In the next subsection we detail the various link prediction methods used in this study.

2.2 Link Prediction Methods

In this section we given an overview of the different methods used in this study. Conventional
methods [23, 24] often exploit hand-craft graph structural properties (i.e., heuristics) between node
pairs. GNNs attempt to learn the structural information to facilitate link prediction [26, 15, 13].
Given the strong performance of pairwise-based heuristics [14, 15], some recent works use both
GNNs and pairwise information, demonstrating strong performance.

For our study, we consider both traditional and state-of-the-art GNN-based models. They can be
roughly organized into four categories. 1) Heuristic methods: Common Neighbor (CN) [27],
Adamic Adar (AA) [28], Resource Allocation (RA) [29], Shortest Path [24], and Katz [30]. These
methods define a score to indicate the link existence based on the graph structure. Among them,
CN, AA, and RA are based on the common neighbors, while Shortest Path and Katz are based on
the path information. 2) Embedding methods: Matrix factorization (MF) [23], Multilayer Percep-
tron (MLP) and Node2Vec [31]. These methods are trained to learn low-dimensional node embed-
dings that are used to predict the likelihood of node pairs existing. 3) GNN methods: GCN [32],
GAT [18], SAGE [16], and GAE [20]. These methods attempt to integrate the multi-hop graph struc-
ture based on the message passing paradigm. 4) GNN + Pairwise Information methods: Standard
GNN methods, while powerful, are not able to capture link-specific information [26]. As such,
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works have been proposed that augment GNN methods by including additional information to bet-
ter capture the relation between the nodes in the link we are predicting. SEAL [26], BUDDY [13],
and NBFNet [19] use the subgraph features. Neo-GNN [14], NCN [15], and NCNC [15] are based
on common neighbor information. Lastly, PEG [33] uses the positional encoding derived from the
graph structure.

2.3 Datasets and Experimental Settings

In this section we summarize the datasets and evaluation and training settings. We note that the
settings depend on the specific dataset. More details are given in Appendix C.

Datasets. We limit our experiments to homogeneous graphs, which are the most commonly used
datasets for link prediction. This includes the small-scale datasets, i.e., Cora, Citeseer, Pubmed [17],
and large-scale datasets in the OGB benchmark [34], i.e., ogbl-collab, ogbl-ddi, ogbl-ppa, and ogbl-
citation2. We summarize the statistics and split ratio of each dataset in Appendix C.

Metrics. For evaluation, we use both the area under the curve (AUC) and ranking-based metrics,
i.e., mean reciprocal rank (MRR) and Hits@K. For Cora, Citeseer, and Pubmed we adopt K ∈
{1, 3, 10, 100}. We note that K = 100 is reported in some recent works [13, 15]). However due to
the small number of negatives used during evaluation (e.g., ≈ 500 for Cora and Citeseer) K = 100
is likely not informative. For the OGB datasets, we adopt K ∈ {20, 50, 100} to keep consistent with
the original study [34]. Please see Appendix B.1 for the formal definitions of the various evaluation
metrics.

Hyperparameter Ranges. We conduct a grid hyperparameter search across a comprehensive range
of values. For Cora, Citeseer, and Pubmed this includes: learning rate (0.01, 0.001), dropout (0.1,
0.3, 0.5), weight decay (1e-4, 1e-7, 0), number of model layers (1, 2, 3), number of prediction
layers (1, 2, 3), and the embedding size (128, 256). Due to the large size of the OGB datasets, it’s
infeasible to tune over such a large range. Therefore, following the most commonly used settings
among published hyperparameters, we fix the weight decay to 0, the number of model and prediction
layers to be 3, and the embedding size to be 256. The best hyperparameters are chosen based on
the validation performance. We note that several exceptions exist to these ranges when they result
in significant performance degradations (see Appendix C for more details). We further follow the
existing setting and only sample one negative sample per positive sample during training.

Existing Evaluation Settings. In the evaluation stage, the same set of randomly sampled negatives
are used for all positive samples. We note that one exception is ogbl-citation2, where they randomly
sample 1000 negative samples per positive sample. For Cora, Citeseer, and Pubmed the number
of negative samples is equal to the number of positive samples. For the OGB datasets, we use
the existing fixed set of randomly chosen negatives found in [34]. Furthermore, for ogbl-collab
we follow the existing protocol [34] and include the validation edges in the training graph during
testing. This setting is adopted on ogbl-collab under both the existing and new evaluation setting.

3 Fair Comparison Under the Existing Setting

In this section, we conduct a fair comparison among link prediction methods. This comparison is
spurred by the multiple pitfalls noted in Section 1, which include lower-than-actual model perfor-
mance, multiple data splits, and inconsistent evaluation metrics. These pitfalls hinder our ability
to fairly compare different methods. To rectify this, we conduct a fair comparison adhering to the
settings listed in section 2.3.

The results are split into two tables. The results for Cora, Citeseer, and Pubmed are shown in
Table 1 and OGB in Table 2. For simplicity, we only present the AUC and MRR for Cora, Citeseer,
and Pubmed. For OGB datasets, we include AUC and the original ranking metric reported in [34]
to allow a convenient comparison (Hits@20 for ogbl-ddi, Hits@50 for ogbl-collab, Hits@100 for
ogbl-ppa, and MRR for ogbl-citation2). We use “>24h" to denote methods that require more than
24 hours for either training one epoch or evaluation. OOM indicates that the algorithm requires over
50Gb of GPU memory. Since ogbl-ddi has no node features, we mark the MLP results with a “N/A".
Additional results in terms of other metrics are presented in Appendix F. We have several noteworthy
observations concerning the methods, the datasets, the evaluation settings, and the overall results.
We highlight the main observations below.
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Table 1: Results on Cora, Citeseer, and Pubmed(%) under the existing evaluation setting. High-
lighted are the results ranked first, second, and third.

Models Cora Citeseer Pubmed
MRR AUC MRR AUC MRR AUC

Heuristic

CN 20.99 70.85 28.34 67.49 14.02 63.9
AA 31.87 70.96 29.37 67.49 16.66 63.9
RA 30.79 70.96 27.61 67.48 15.63 63.9

Shortest Path 12.45 81.08 31.82 75.5 7.15 74.64
Katz 27.4 81.17 38.16 75.37 21.44 74.86

Embedding
Node2Vec 37.29 ± 8.82 90.97 ± 0.64 44.33 ± 8.99 94.46 ± 0.59 34.61 ± 2.48 93.14 ± 0.18

MF 14.29 ± 5.79 80.29 ± 2.26 24.80 ± 4.71 75.92 ± 3.25 19.29 ± 6.29 93.06 ± 0.43
MLP 31.21 ± 7.90 95.32 ± 0.37 43.53 ± 7.26 94.45 ± 0.32 16.52 ± 4.14 98.34 ± 0.10

GNN

GCN 32.50 ± 6.87 95.01 ± 0.32 50.01 ± 6.04 95.89 ± 0.26 19.94 ± 4.24 98.69 ± 0.06
GAT 31.86 ± 6.08 93.90 ± 0.32 48.69 ± 7.53 96.25 ± 0.20 18.63 ± 7.75 98.20 ± 0.07

SAGE 37.83 ± 7.75 95.63 ± 0.27 47.84 ± 6.39 97.39 ± 0.15 22.74 ± 5.47 98.87 ± 0.04
GAE 29.98 ± 3.21 95.08 ± 0.33 63.33 ± 3.14 97.06 ± 0.22 16.67 ± 0.19 97.47 ± 0.08

GNN+Pairwise Info

SEAL 26.69 ± 5.89 90.59 ± 0.75 39.36 ± 4.99 88.52 ± 1.40 38.06 ± 5.18 97.77 ± 0.40
BUDDY 26.40 ± 4.40 95.06 ± 0.36 59.48 ± 8.96 96.72 ± 0.26 23.98 ± 5.11 98.2 ± 0.05

Neo-GNN 22.65 ± 2.60 93.73 ± 0.36 53.97 ± 5.88 94.89 ± 0.60 31.45 ± 3.17 98.71 ± 0.05
NCN 32.93 ± 3.80 96.76 ± 0.18 54.97 ± 6.03 97.04 ± 0.26 35.65 ± 4.60 98.98 ± 0.04

NCNC 29.01 ± 3.83 96.90 ± 0.28 64.03 ± 3.67 97.65 ± 0.30 25.70 ± 4.48 99.14 ± 0.03
NBFNet 37.69 ± 3.97 92.85 ± 0.17 38.17 ± 3.06 91.06 ± 0.15 44.73 ± 2.12 98.34 ± 0.02

PEG 22.76 ± 1.84 94.46 ± 0.34 56.12 ± 6.62 96.15 ± 0.41 21.05 ± 2.85 96.97 ± 0.39

Table 2: Results on OGB datasets (%) under the existing evaluation setting. Highlighted are the
results ranked first, second, and third.

Models ogbl-collab ogbl-ddi ogbl-ppa ogbl-citation2
Hits@50 AUC Hits@20 AUC Hits@100 AUC MRR

Heuristic

CN 61.37 82.78 17.73 95.2 27.65 97.22 74.3
AA 64.17 82.78 18.61 95.43 32.45 97.23 75.96
RA 63.81 82.78 6.23 96.51 49.33 97.24 76.04

Shortest Path 46.49 96.51 0 59.07 0 99.13 >24h
Katz 64.33 90.54 17.73 95.2 27.65 97.22 74.3

Embedding
Node2Vec 49.06 ± 1.04 96.24 ± 0.15 34.69 ± 2.90 99.78 ± 0.04 26.24 ± 0.96 99.77 ± 0.00 45.04 ± 0.10

MF 41.81 ± 1.67 83.75 ± 1.77 23.50 ± 5.35 99.46 ± 0.10 28.4 ± 4.62 99.46 ± 0.10 50.57 ± 12.14
MLP 35.81 ± 1.08 95.91 ± 0.08 N/A N/A 0.45 ± 0.04 90.23 ± 0.00 38.07 ± 0.09

GNN

GCN 54.96 ± 3.18 97.89 ± 0.06 49.90 ± 7.23 99.86 ± 0.03 29.57 ± 2.90 99.84 ± 0.03 84.85 ± 0.07
GAT 55.00 ± 3.28 97.11 ± 0.09 31.88 ± 8.83 99.63 ± 0.21 OOM OOM OOM

SAGE 59.44 ± 1.37 98.08 ± 0.03 49.84 ± 15.56 99.96 ± 0.00 41.02 ± 1.94 99.82 ± 0.00 83.06 ± 0.09
GAE OOM OOM 7.09 ± 6.02 75.34 ±15.96 OOM OOM OOM

GNN+Pairwise Info

SEAL 63.37 ± 0.69 95.65 ± 0.29 25.25 ± 3.90 97.97 ± 0.19 48.80 ± 5.61 99.79 ± 0.02 86.93 ± 0.43
BUDDY 64.59 ± 0.46 96.52 ± 0.40 29.60 ± 4.75 99.81 ± 0.02 47.33 ± 1.96 99.56 ± 0.02 87.86 ± 0.18

Neo-GNN 66.13 ± 0.61 98.23 ± 0.05 20.95 ± 6.03 98.06 ± 2.00 48.45 ± 1.01 97.30 ± 0.14 83.54 ± 0.32
NCN 63.86 ± 0.51 97.83 ± 0.04 76.52 ± 10.47 99.97 ± 0.00 62.63 ± 1.15 99.95 ± 0.01 89.27 ± 0.05

NCNC 65.97 ± 1.03 98.20 ± 0.05 70.23 ± 12.11 99.97 ± 0.01 62.61 ± 0.76 99.97 ± 0.01 89.82 ± 0.43
NBFNet OOM OOM >24h >24h OOM OOM OOM

PEG 49.02 ± 2.99 94.45 ± 0.89 30.28 ± 4.92 99.45 ± 0.04 OOM OOM OOM

Observation 1: Better than Reported Performance. We find that for some models we are able
to achieve superior performance compared to what is reported by recent studies. For instance, in
our study Neo-GNN [14] achieves the best overall test performance on ogbl-collab with a Hits@50
of 66.13. In contrast, the reported performance in [14] is only 57.52, which would rank seventh
under our current setting. This is because the original study [14] does not follow the standard setting
of including validation edges in the graph during testing. This setting, as noted in Section 2.3,
is used by all other methods on ogbl-collab. However it was omitted by [14], resulting in lower
reported performance. Furthermore, on ogbl-citation2 [34], our results for the heuristic methods are
typically around 75% MRR. This significantly outperforms previously reported results, which report
an MRR of around 50% [26, 13]. The disparity arises as previous studies treat the ogbl-citation2 as a
directed graph when applying heuristic methods. However, for GNN-based methods, ogbl-citation2
is typically converted to a undirected graph. We remedy this by also converting ogbl-citation2 to an
undirected graph when computing the heuristics, leading to a large increase in performance.

Furthermore, with proper tuning, conventional baselines like GCN [25] and GAE [20] generally
exhibit enhanced performance relative to what was originally reported across all datasets. For ex-
ample, we find that GAE can achieve the second best MRR on Citeseer and GCN the third best
Hits@20 on ogbl-ddi. A comparison of the reported results and ours are shown in Table 3. We
note that we report AUC for Cora, Citeseer, Pubmed as it was used in the original study. These
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Table 3: Comparison of ours and the reported results for GCN and GAE.
ogbl-collab ogbl-ppa ogbl-ddi ogbl-citation2 Cora Citeseer Pubmed

GCN Hits@50 Hits@100 Hits@20 MRR GAE AUC AUC AUC

Reported 47.14 ± 1.45 18.67 ± 1.32 37.07 ± 5.07 84.74 ± 0.21 Reported 91.00 ± 0.01 89.5 ± 0.05 96.4 ± 0.00
Ours 54.96 ± 3.18 29.57 ± 2.90 49.90 ± 7.23 84.85 ± 0.07 Ours 95.08 ± 0.33 97.06 ± 0.22 97.47 ± 0.08

observations suggest that the performance of various methods are better than what was reported in
their initial publications. However, many studies [13, 15, 26] only report the original performance
for comparison, which has the potential to lead to inaccurate conclusions.

Observation 2: Divergence from Reported Results on ogbl-ddi. We observe that our results in
Table 2 for ogbl-ddi differ from the reported results. Outside of GCN, which reports better perfor-
mance, most other GNN-based methods report a lower-than-reported performance. For example,
for BUDDY we only achieve a Hits@20 of 29.60 vs. the reported 78.51 (see Appendix D for a
comprehensive comparison among methods). We find that the reason for this difference depends on
the method. BUDDY [13] reported 2 using 6 negatives per positive sample during training, leading
to an increase in performance. Neo-GNN [14] first pretrains the GNN under the link prediction task,
and then uses the pretrained model as the initialization for Neo-GNN.3 For a fair comparison among
methods, we only use 1 negative per positive sample in training and we don’t apply the pretraining.
For other methods, we find that a weak relationship between the validation and test performance
complicates the tuning process, making it difficult to find the optimal hyperparameters. Please see
Appendix E for a more in-depth study and discussion.

Observation 3: High Model Standard Deviation. The results in Tables 1 and 2 present the mean
performance and standard deviation when training over 10 seeds. Generally, we find that for multiple
datasets the standard deviation of the ranking metrics is often high for most models. For example,
the standard deviation for MRR can be as high as 8.82, 8.96, or 7.75 for Cora, Citeseer, and Pubmed,
respectively. Furthermore, on ogbl-ddi the standard deviation of Hits@20 reaches as high as 10.47
and 15.56. A high variance indicates unstable model performance. This makes it difficult to compare
results between methods as the true performance lies in a larger range. This further complicates
replicating model performance, as even large differences with the reported results may still fall
within variance (see observation 2). Later in Section 4.3 we find that our new evaluation can reduce
the model variance for all datasets (see Table 6). This suggests that the high variance is related to
the current evaluation procedure.

Observation 4: Inconsistency of AUC vs. Ranking-Based Metrics. The AUC score is widely
adopted to evaluate recent advanced link prediction methods [20, 19]. However, from our results in
Tables 1 and 2 we observe that there exists a disparity between AUC and ranking-based metrics. In
some cases, the AUC score can be high when the ranking metric is very low or even 0. For example,
the Shortest Path heuristic records a Hits@K of 0 on ogbl-ppa. However, the AUC score is > 99%.
Furthermore, even though RA records the third and fifth best performance on ogbl-ppa and ogbl-
collab, respectively, it has a lower AUC score than Shortest Path on both. Previous works [22, 21]
argued that AUC is not a proper metric for link prediction. This is due to the inapplicability of AUC
for highly imbalanced problems [35, 36].

4 New Evaluation Setting

In this section, we introduce a new setting for evaluating link prediction methods. We first discuss
the unrealistic nature of the current evaluation setting in Section 4.1. Based on this, we present our
new evaluation setting in Section 4.2, which aims to align better with real-world scenarios. Lastly,
in Section 4.3, we present and discuss the results based on our new evaluation setting.

4.1 Issues with the Existing Evaluation Setting

The existing evaluation procedure for link prediction is to rank a positive sample against a set of K
randomly selected negative samples. The same set of K negatives are used for all positive samples

2https://github.com/melifluos/subgraph-sketching
3https://github.com/seongjunyun/Neo-GNNs
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(a) Negative sample genera-
tion for one positive sample.

(b) Process of determining negative samples that contain a node a.

Figure 2: Pipeline for generating the hard negative samples for a positive sample (a, b).

(with the exception of ogbl-citation2 which uses 1000 per positive sample). We demonstrate that
there are multiple issues with this setting, making it difficult to properly evaluate the effectiveness
of current models.

Issue 1: Non-Personalized Negative Samples. The existing evaluation setting uses the same set
of negative samples for all positive samples (outside of ogbl-citation2). This strategy, referred to
as global negative sampling [37], is not a commonly sought objective. Rather, we are often more
interested in predicting links that will occur for a specific node. Take, for example, a social network
that connects users who are friends. In this scenario, we may be interested in recommending new
friends to a user u. This requires learning a classifier f that assigns a probability to a link existing.
When evaluating this task, we want to rank links where u connects to an existing friend above those
where they don’t. For example, if u is friends with a but not b, we hope that f(u, a) > f(u, b).
However, the existing evaluation setting doesn’t explicitly test for this. Rather it compares a true
sample (u, a) with a potentially unrelated negative sample, e.g., (c, d). This is not aligned with the
real-world usage of link prediction on such graphs.

Issue 2: Easy Negative Samples. The existing evaluation setting randomly selects negative samples
to use. However given the large size of most graphs (see Table 7 in Appendix C), randomly sampled
negatives are likely to choose two nodes that bear no relationship to each other. Such node pairs
are trivial to classify. We demonstrate this by plotting the distribution of common neighbors (CN),
a strong heuristic, for all positive and negative test samples in Figure 1. Almost all the negative
samples contain no CNs, making them easy to classify. We further show that the same problem
afflicts even the smaller datasets in Figure 3 in Appendix A.

These observations suggest that a more realistic evaluation strategy is desired. At the core of this
challenge is which negative samples to use during evaluation. We discuss our design for solving this
in the next subsection.

4.2 Heuristic Related Sampling Technique (HeaRT)

In this subsection, we introduce new strategy for evaluating link prediction methods. To address the
concerns outlined in Section 4.1, we design a new method for sampling negatives during evaluation.
Our strategy, HeaRT, solves these challenges by: (a) personalizing the negatives to each sample
and (b) using heuristics to select hard negative samples. This allows for the negative samples to
be directly related to each positive sample while also being non-trivial. We further discuss how to
ensure that the negative samples are both personalized and non-trivial for a specific positive sample.

From our discussion in Section 4.1, we are motivated in personalizing the negatives to each positive
sample. Since the positive samples in the current datasets are node pairs, we seek to personalize
the negatives to both nodes in the positive sample. Extending our example in Section 4.1, this is
analogous to restricting the negatives to contain one of the two users from the original friendship
pair. As such, for a positive sample (u, a), the negative samples will belong to the set:

S(u, a) = {(u′, a) | u′ ∈ V} ∪ {(u, a′) | a′ ∈ V}, (3)
where V is the set of nodes. This is similar to the setting used for knowledge graph completion
(KGC) [38] which uses all such samples for evaluation. However, one drawback of evaluating each
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Table 4: Results on Cora, Citeseer, and Pubmed (%) under HeaRT. Highlighted are the results ranked
first, second, and third.

Models Cora Citeseer Pubmed
MRR Hits@10 MRR Hits@10 MRR Hits@10

Heuristic

CN 9.78 20.11 8.42 18.68 2.28 4.78
AA 11.91 24.10 10.82 22.20 2.63 5.51
RA 11.81 24.48 10.84 22.86 2.47 4.9

Shortest Path 5.04 15.37 5.83 16.26 0.86 0.38
Katz 11.41 22.77 11.19 24.84 3.01 5.98

Embedding
Node2Vec 14.47 ± 0.60 32.77 ± 1.29 21.17 ± 1.01 45.82 ± 2.01 3.94 ± 0.24 8.51 ± 0.77

MF 6.20 ± 1.42 15.26 ± 3.39 7.80 ± 0.79 16.72 ± 1.99 4.46 ± 0.32 9.42 ± 0.87
MLP 13.52 ± 0.65 31.01 ± 1.71 22.62 ± 0.55 48.02 ± 1.79 6.41 ± 0.25 15.04 ± 0.67

GNN

GCN 16.61 ± 0.30 36.26 ± 1.14 21.09 ± 0.88 47.23 ± 1.88 7.13 ± 0.27 15.22 ± 0.57
GAT 13.84 ± 0.68 32.89 ± 1.27 19.58 ± 0.84 45.30 ± 1.3 4.95 ± 0.14 9.99 ± 0.64

SAGE 14.74 ± 0.69 34.65 ± 1.47 21.09 ± 1.15 48.75 ± 1.85 9.40 ± 0.70 20.54 ± 1.40
GAE 18.32 ± 0.41 37.95 ± 1.24 25.25 ± 0.82 49.65 ± 1.48 5.27 ± 0.25 10.50 ± 0.46

GNN+Pairwise Info

SEAL 10.67 ± 3.46 24.27 ± 6.74 13.16 ± 1.66 27.37 ± 3.20 5.88 ± 0.53 12.47 ± 1.23
BUDDY 13.71 ± 0.59 30.40 ± 1.18 22.84 ± 0.36 48.35 ± 1.18 7.56 ± 0.18 16.78 ± 0.53

Neo-GNN 13.95 ± 0.39 31.27 ± 0.72 17.34 ± 0.84 41.74 ± 1.18 7.74 ± 0.30 17.88 ± 0.71
NCN 14.66 ± 0.95 35.14 ± 1.04 28.65 ± 1.21 53.41 ± 1.46 5.84 ± 0.22 13.22 ± 0.56

NCNC 14.98 ± 1.00 36.70 ± 1.57 24.10 ± 0.65 53.72 ± 0.97 8.58 ± 0.59 18.81 ± 1.16
NBFNet 13.56 ± 0.58 31.12 ± 0.75 14.29 ± 0.80 31.39 ± 1.34 >24h >24h

PEG 15.73 ± 0.39 36.03 ± 0.75 21.01 ± 0.77 45.56 ± 1.38 4.4 ± 0.41 8.70 ± 1.26

positive sample against the entire set of possible corruptions is the high computational cost. To
mitigate this issue we consider only utilizing a small subset of S(u, a) during evaluation.

The key challenge is how to generate a subset of S(u, a). If we randomly sample from S(u, a), we
risk only utilizing easy negative samples. This is one of the issues of the existing evaluation set-
ting (see Issue 2 in Section 4.1), whereby randomly selecting negatives, they unknowingly produce
negative samples that are too easy. We address this by selecting the negative samples via a combi-
nation of multiple heuristics. Since heuristics typically correlate well with performance, we ensure
that the negative samples will be non-trivial to classify. This is similar to the concept of candidate
generation [39, 40], which only ranks a subset of candidates that are most likely to be true.

An overview of the generation process is given in Figure 2. For each positive sample, we generate K
negative samples. To allow personalization to both nodes in the positive sample equally, we sample
K/2 negatives with each node. For the heuristics, we consider RA [29], PPR [41], and feature
similarity. A more detailed discussion on the negative sample generation is given in Appendix G.
It’s important to note that our work centers specifically on negative sampling during the evaluation
stage (validation and test). This is distinct from prior work that concerns the negatives sampled used
during the training phase [42, 43]. As such, the training process remains unaffected under both the
existing and HeaRT setting.

4.3 Results and Discussion

In this subsection we present our results when utilizing HeaRT. We follow the parameter ranges
introduced in Section 2.3. For all datasets we use K = 500 negative samples per positive sample
during evaluation. Furthermore for ogbl-ppa we only use a small subset of the validation and test
positive samples (100K each) for evaluation. This is because the large size of the validation and test
sets (see Table 7 in Appendix C) makes HeaRT prohibitively expensive.

The results are shown in Table 4 (Cora, Citeseer, Pubmed) and Table 5 (OGB). For simplicity, we
only include the MRR and Hits@10 for Cora, Citeseer, Pubmed, and the MRR and Hits@20 for
OGB. Additional results for other metrics can be found in Appendix I. We note that most datasets,
outside of ogbl-ppa, exhibit much lower performance than under the existing setting. This is though
we typically use much fewer negative samples in the new setting, implying that the negative samples
produced by HeaRT are much harder. We highlight the main observations below.

Observation 1: Better Performance of Simple Models. We find that under HeaRT, “simple" base-
line models (i.e., heuristic, embedding, and GNN methods) show a greater propensity to outperform
their counterparts via ranking metrics than under the existing setting. Specifically, we focus on MRR
in Table 1, 4, and 5, and the corresponding ranking-based metrics in Table 2. Under the existing
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Table 5: Results on OGB datasets (%) under HeaRT. Highlighted are the results ranked first, second,
and third.

Models ogbl-collab ogbl-ddi ogbl-ppa ogbl-citation2
MRR Hits@20 MRR Hits@20 MRR Hits@20 MRR Hits@20

CN 12.60 27.51 6.71 38.69 25.70 68.25 17.11 41.73
AA 16.40 32.65 6.97 39.75 26.85 70.22 17.83 43.12
RA 28.14 41.16 8.70 44.01 28.34 71.50 17.79 43.34

Shortest Path 46.71 46.56 0 0 0.54 1.31 >24h >24h
Katz 47.15 48.66 6.71 38.69 25.70 68.25 14.10 35.55

Node2Vec 12.10 ± 0.20 25.85 ± 0.21 11.14 ± 0.95 63.63 ± 2.05 18.33 ± 0.10 53.42 ± 0.11 14.67 ± 0.18 42.68 ± 0.20
MF 26.86 ± 1.74 38.44 ± 0.07 13.99 ± 0.47 59.50 ± 1.68 22.47 ± 1.53 70.71 ± 4.82 8.72 ± 2.60 29.64 ± 7.30

MLP 12.61 ± 0.66 23.05 ± 0.89 N/A N/A 0.98 ± 0.00 1.47 ± 0.00 16.32 ± 0.07 43.15 ± 0.10

GCN 18.28 ± 0.84 32.90 ± 0.66 13.46 ± 0.34 64.76 ± 1.45 26.94 ± 0.48 68.38 ± 0.73 19.98 ± 0.35 51.72 ± 0.46
GAT 10.97 ± 1.16 29.58 ± 2.42 12.92 ± 0.39 66.83 ± 2.23 OOM OOM OOM OOM

SAGE 20.89 ± 1.06 33.83 ± 0.93 12.60 ± 0.72 67.19 ± 1.18 27.27 ± 0.30 69.49 ± 0.43 22.05 ± 0.12 53.13 ± 0.15
GAE OOM OOM 3.49 ± 1.73 17.81 ± 9.80 OOM OOM OOM OOM

SEAL 22.53 ± 3.51 36.48 ± 2.55 9.99 ± 0.90 49.74 ± 2.39 29.71 ± 0.71 76.77 ± 0.94 20.60 ± 1.28 48.62 ± 1.93
BUDDY 32.42 ± 1.88 45.62 ± 0.52 12.43 ± 0.50 58.71 ± 1.63 27.70 ± 0.33 71.50 ± 0.68 19.17 ± 0.20 47.81 ± 0.37

Neo-GNN 21.90 ± 0.65 38.40 ± 0.29 10.86 ± 2.16 51.94 ± 10.33 21.68 ± 1.14 64.81 ± 2.26 16.12 ± 0.25 43.17 ± 0.53
NCN 17.51 ± 2.50 37.07 ± 2.97 12.86 ± 0.78 65.82 ± 2.66 35.06 ± 0.26 81.89 ± 0.31 23.35 ± 0.28 53.76 ± 0.20

NCNC 19.02 ± 5.32 35.67 ± 6.78 >24h >24h 33.52 ± 0.26 82.24 ± 0.40 19.61 ± 0.54 51.69 ± 1.48
NBFNet OOM OOM >24h >24h OOM OOM OOM OOM

PEG 15.68 ± 1.10 29.74 ± 0.95 12.05 ± 1.14 50.12 ± 6.55 OOM OOM OOM OOM

setting, such methods only rank in the top three for any dataset a total of 5 times. However, under
HeaRT this occurs 10 times. Furthermore, under the existing setting only 1 “simple" method ranks
best overall while under HeaRT there are 4. This suggests that recent advanced methods may have
benefited from the easier negative samples in the existing setting.

Another interesting observation is that on ogbl-collab, heuristic methods are able to outperform more
complicated models by a large margin. Specifically, we find that Katz is the best ranked method,
Shortest Path the second, and RA the fourth. Furthermore, the MRR gap between the second ranked
method (Shortest Path) and the third (BUDDY) is very large at 14.29 points. We observe that this
result is caused by the dynamic nature of the graph, where node pairs that are linked in the training
data may also be present as positive samples in the test. We further expound on this observation in
Appendix H.

Observation 2: Lower Model Standard Deviation. We observed earlier that, under the existing
evaluation setting, the model variance across seeds was high (see observation 3 in Section 3). This
complicates model comparison as the model performance is unreliable. Interestingly, we find that
HeaRT is able to dramatically reduce the variance for all datasets. We demonstrate this by first
calculating the mean standard deviation across all models on each individual dataset. This was
done for both evaluation settings with the results compared. As demonstrated in Table 6, the mean
standard deviation decreases for all datasets. This is especially true for Cora, Citeseer, and Pubmed,
which each decrease by over 85%. Such a large decrease in standard deviation is noteworthy as it
allows for a more trustworthy and reliable comparison between methods.

Table 6: Mean model standard deviation for the
existing setting and HeaRT. We use Hits@20 for
ogbl-ddi, Hits@50 for ogbl-collab, Hits@100 for
ogbl-ppa, and MRR otherwise.

Dataset Existing HeaRT % Change

Cora 5.19 0.79 -85%
Citeseer 5.94 0.88 -85%
Pubmed 4.14 0.35 -92%
ogbl-collab 1.49 0.96 -36%
ogbl-ppa 2.13 0.36 -83%
ogbl-ddi 6.77 3.49 -48%
ogbl-citation2 1.39 0.59 -58%

We posit that this observation is caused by a
stronger alignment between the positive and
negative samples under our new evaluation set-
ting. Under the existing evaluation setting, the
same set of negative samples is used for all pos-
itive samples. One consequence of this is that
a single positive sample may bear little to no
relationship to the negative samples (see Sec-
tion 4.1 for more discussion). However, under
our new evaluation setting, the negatives for a
positive sample are a subset of the corruptions
of that sample. This allows for a more natu-
ral comparison via ranking-based metrics as the
samples are more related and can be more eas-
ily compared.
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Observation 3: Lower Model Performance. We observe that the majority of datasets exhibit a
significantly reduced performance in comparison to the existing setting. For example, under the
existing setting, models typically achieve a MRR of around 30, 50, and 30 on Cora, Citeseer, and
Pubmed (Table 1), respectively. However, under HeaRT the MRR for those datasets is typically
around 20, 25, and 10 (Table 4). Furthermore for ogbl-citation2, the MRR of the best performing
model falls from a shade under 90 on the existing setting to slightly over 20 on HeaRT. Lastly, we
note that the performance on ogbl-ppa actually increases. This is because we only utilize a small
subset of the total test set when evaluating on HeaRT, nullifying any comparison between the two
settings.

These outcomes are observed despite HeaRT using much fewer negative samples than the original
setting. This suggests that the negative samples generated by HeaRT are substantially more chal-
lenging than those used in the existing setting. This underscores the need to develop more advanced
methodologies that can tackle harder negatives samples like in HeaRT.

5 Conclusion

In this work we have revealed several pitfalls found in recent works on link prediction. To overcome
these pitfalls, we first establish a benchmarking that facilitates a fair and consistent evaluation across
a diverse set of models and datasets. By doing so, we are able to make several illuminating obser-
vations about the performance and characteristics of various models. Furthermore, based on several
limitations we observed in the existing evaluation procedure, we introduce a more practical setting
called HeaRT (Heuristic Related Sampling Technique). HeaRT incorporates a more real-world eval-
uation setting, resulting in a better comparison among methods. By introducing a more rigorous and
realistic assessment, HeaRT could guide the field towards more effective models, thereby advancing
the state of the art in link prediction.
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