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Abstract001

Early detection of dementia, particularly002
Alzheimer’s Disease (AD), its most preva-003
lent form, is critical for slowing disease004
progression and improving quality of life005
through timely intervention. This study006
proposes a novel, scalable, and channel-007
independent approach that leverages EEG008
microstates—symbolic, linguistic-like rep-009
resentations of brain activity—combined010
with advanced text embedding and time-011
series deep learning techniques. Devel-012
oped on EEG data from 1001 partici-013
pants across multiple countries, the pro-014
posed method achieves a high accuracy of015
0.9431 in AD detection. The proposed016
approach enhances generalisability and fa-017
cilitates deployment in diverse, resource-018
limited settings by removing the need for019
fixed EEG channel configurations and ex-020
pensive modalities. Its compatibility with021
low-cost EEG devices eliminates the re-022
quirement for distinct models, thereby re-023
ducing implementation costs and enabling024
scalable, accessible AD detection in under-025
served communities.026

1 Introduction027

Dementia is recognised as the seventh lead-028

ing cause of mortality globally and plays a029

major role in increasing disability and depen-030

dence among older adults (World Health Or-031

ganization, 2023). Among the various forms032

of dementia, Alzheimer’s Disease (AD) is the033

most prevalent, accounting for approximately034

60% to 80% of all cases (The Alzheimer’s As-035

sociation, 2023), with a higher incidence ob-036

served in individuals aged 65 and above. AD037

is characterised by progressive cognitive dete-038

rioration, memory impairment, and neuronal039

loss, ultimately resulting in brain atrophy and040

tissue damage (van der Flier et al., 2023). Be-041

cause no definitive cure currently exists (The042

Alzheimer’s Association, 2023), detecting the 043

disease at an early stage is critical for decel- 044

erating its progression and enhancing individ- 045

uals’ Quality of Life (QoL) through appropri- 046

ate interventions and supportive care (Dubois 047

et al., 2016; S et al., 2019). 048

The development of Artificial Intelligence 049

(AI), including Machine Learning (ML) and 050

Deep Learning (DL), has gained traction in 051

the pursuit of early AD detection. Never- 052

theless, many of these techniques depend on 053

costly modalities such as Magnetic Resonance 054

Imaging (MRI), Positron Emission Tomogra- 055

phy (PET) (Dong et al., 2024; Ou et al., 2024; 056

Altay et al., 2021; Rallabandi and Seethara- 057

man, 2023), which are typically not viable in 058

resource-limited communities. They also de- 059

pend on invasive biomarkers such as Cere- 060

brospinal Fluid (CSF) (Gogishvili and others., 061

2023), which can cause pain, reduce willing- 062

ness to undergo testing, and limit their adop- 063

tion. Therefore, Electroencephalogram (EEG) 064

presents a non-invasive and more affordable 065

option, making it more suitable for resource- 066

constrained populations (Adebisi et al., 2024; 067

Klepl et al., 2023; Lassi et al., 2023; Sharma 068

et al., 2025). In particular, EEG microstates1 069

has emerged as a promising approach for 070

AD detection, demonstrating notable perfor- 071

mance over traditional EEG-based features 072

(Smailovic et al., 2019; Mishra et al., 2020; 073

Yang et al., 2024). 074

However, conventional AI models for EEG- 075

1EEG microstates are quasi-stable periods of elec-
trical topography across the scalp, most commonly de-
rived from clustering EEG signals at peaks in Global
Field Power (GFP). These transient states, typically
lasting 80–120 milliseconds, represent the building
blocks of spontaneous brain activity and provide in-
sight into the temporal organisation of large-scale neu-
ral dynamics (Haydock et al., 2025).
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based decision-making systems typically re-076

quire a fixed number of input channels, neces-077

sitating the development of separate models078

for each EEG channel configuration. This con-079

straint poses a significant barrier to the prac-080

tical and cost-effective deployment of EEG-081

based AI systems for AD detection, partic-082

ularly in resource-limited settings. In most083

clinical environments, EEG devices are ex-084

pected to function in various medical appli-085

cations, making it neither practical nor effi-086

cient to dedicate a specific system solely to087

AD detection or develop bespoke AI models088

for each device across different premises. De-089

veloping and maintaining multiple models for090

varying channel configurations imposes sub-091

stantial resource demands, increases develop-092

ment and maintenance costs, and undermines093

the generalisability of these systems in real-094

world and clinical contexts. Therefore, devel-095

oping AI models compatible with executing096

EEG data across varying channel configura-097

tions for AD detection is paramount, enhanc-098

ing scalability, facilitating broader adoption,099

and improving clinical applicability to better100

support individuals in need.101

Recently, text embedding models2 have sig-102

nificantly advanced, transforming natural lan-103

guage inputs into semantically informative104

vector representations. This has enhanced105

performance across various Natural Language106

Processing (NLP) tasks, such as text classifica-107

tion and information retrieval (Kalidindi et al.,108

2024; Darrin et al., 2024; Enevoldsen et al.,109

2024). Notably, EEG signals also contain se-110

mantic representations (Wang et al., 2024a;111

Mohammadi Foumani et al., 2024a; Feng et al.,112

2023; Wang and Ji, 2022). Thus, the ap-113

proach of leveraging text embedding mod-114

els to convert EEG microstates, which orig-115

inate from different channel configurations,116

into standardised representations is relevant.117

This study utilises a dataset of 1001 partici-118

pants from multiple countries and achieves an119

accuracy of 0.9431 using an advanced text em-120

bedding model (Darrin et al., 2024; Enevold-121

sen et al., 2024), text-embedding-3-small (Ab-122

dullahi et al., 2024), and a deep learning time-123

series model (Mohammadi Foumani et al.,124

2Text embeddings are numerical representations of
language that capture its semantic information (Wang
et al., 2024b).

2024b), Recurrent Neural Network (RNN) 125

(Zucchet and Orvieto, 2024). This approach 126

enables the development of an adaptive, high- 127

performing AI model that generalises across 128

heterogeneous EEG datasets. By removing 129

the dependency on a fixed number of EEG 130

channels, the framework eliminates the need 131

for separate configuration-specific models, re- 132

ducing financial and computational cost and 133

clinical deployment complexity. In summary, 134

this research addresses the following Research 135

Questions (RQs): 136

• RQ1: Is it feasible to leverage text em- 137

bedding models to capture meaningful 138

and distinguishable representations from 139

EEG data for AD detection? 140

• RQ2: How can text embedding mod- 141

els be utilised to standardise EEG mi- 142

crostates across varying channel configu- 143

rations, allowing for an adaptive AI model 144

applicable to multiple EEG channel se- 145

tups in AD detection? 146

• RQ3: To what extent do the vector rep- 147

resentations of Normal Control (NC) and 148

AD cases reveal meaningful and statisti- 149

cally significant distinctions? 150

2 Related Work 151

Many studies have explored AI-based ap- 152

proaches for AD detection using EEG data, 153

incorporating various ML and DL techniques 154

across different channel configurations and 155

sample sizes. This section summarises promi- 156

nent contributions in the literature. Puri et 157

al. (Puri et al., 2023) proposed LCOWFBs-6 158

with 16 channels, reaching 0.9860 accuracy us- 159

ing 11 NC and 12 AD participants. Similarly, 160

Zhao et al. (Yifan et al., 2019) applied a k-NN 161

classifier to 19-channel EEG data, reporting 162

0.9000 accuracy on a balanced 20 NC and 20 163

AD cases dataset. Stefanou et al. (Stefanou 164

et al., 2025) developed a CNN-based model 165

using 128 channels and achieved 0.7945 ac- 166

curacy with 29 NC and 36 AD participants. 167

Nour et al. (Nour et al., 2024) presented the 168

DEL model, obtaining 0.9790 accuracy with 169

19 channels and 36 NC and 104 AD partici- 170

pants. Likewise, DICE-Net by Miltiadous et 171
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Figure 1: Proposed method of utilising Electroencephalogram (EEG) microstates with text embedding
model and time-series deep learning for Alzheimer’s Disease (AD) detection. NC: Normal Control, RNN:
Recurrent Neural Network.

al. (Miltiadous et al., 2023a) utilised 19 chan-172

nels to attain 0.8328 accuracy on 29 NC and 36173

AD samples. A graph neural network (GNN)174

approach by Klepl et al. (Klepl et al., 2022)175

achieved 0.9200 accuracy using 128-channel176

EEG from 20 NC and 20 AD subjects, while177

Si et al. (Si et al., 2023) employed a Gaussian178

Näıve Bayes (GNB) classifier on 128-channel179

EEG, achieving 0.8100 accuracy with 19 NC180

and 36 AD participants.181

Additionally, Cao et al. (Cao et al., 2024)182

proposed a hybrid model, DSL-GN, which183

used 23 EEG channels and reached 0.9400 ac-184

curacy on 20 NC and 20 AD participants.185

Puri et al. (Puri, 2024) developed LEADNet186

with 16 channels, reporting the highest accu-187

racy of 0.9924 on a small dataset of 11 NC188

and 12 AD. Alessandrini et al. (Alessandrini189

et al., 2022) applied an LSTM model using190

16-channel EEG and achieved 0.9790 accuracy191

with 15 NC and 20 AD samples. A compara-192

tive study by Lal et al. (Lal et al., 2024) using193

k-NN and 19 channels reported 0.9300 accu-194

racy on a dataset of 29 NC and 36 AD. Lastly,195

Sen et al. (Sen et al., 2023) employed a CNN196

with 19 channels, achieving 0.9860 accuracy197

with 11 NC and 15 AD participants.198

Despite promising results, three key re-199

search limitations exist in the current liter-200

ature. First, most existing work is trained201

and validated on a single private dataset with202

a fixed EEG channel configuration, which re-203

stricts their ability to generalise across differ- 204

ent EEG devices and clinical settings. Sec- 205

ond, the limited sample sizes—often compris- 206

ing tens of participants per group—undermine 207

the generalisability of the models. Finally, the 208

emphasis on achieving high predictive accu- 209

racy often overlooks the importance of thor- 210

ough error analysis and group-level pattern in- 211

terpretation. These analyses are essential for 212

enhancing the transparency of AI systems, fos- 213

tering user trust, and enabling more reliable 214

systems. 215

3 Proposed Methods 216

3.1 Background 217

3.1.1 Primer of EEG Microstates 218

The EEG microstate technique models brain 219

signals as a sequence of discrete, non- 220

overlapping topographic maps (Haydock et al., 221

2025), which are aligned with the original 222

EEG data using spatial correlation methods 223

(Tarailis et al., 2024). These signals are 224

viewed as sequences of topographical patterns 225

(Khanna et al., 2014). EEG microstates have 226

been proven to effectively detect various neu- 227

rological diseases due to their informative rep- 228

resentations, such as AD (Lassi et al., 2023; 229

Smailovic et al., 2019), Parkinson’s disease, 230

Mild Cognitive Impairment (MCI) (Chun- 231

guang et al., 2022), and epilepsy (SA et al., 232

2024). 233
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The microstate extraction procedure was234

completed by the GFP (Thomas et al., 2011) is235

initially calculated at each time instance using236

the following formula:237

GFP (t) =

√∑n
i=1(vi(t)− v̄(t))2

n
, (1)238

where vi(t) represents the voltage recorded239

at electrode i, v̄(t) is the average voltage across240

all electrodes at time t, and n is the total241

number of electrodes. EEG scalp maps cor-242

responding to GFP peaks—points of high-243

est signal-to-noise ratio (SNR)—are selected244

and clustered using a modified k-means al-245

gorithm (Pascual-Marqui et al., 1995). The246

Global Map Dissimilarity (GMD) (Pascual-247

Marqui et al., 1995) is used to quantify the248

similarity between two topographic maps and249

is computed as:250

GMDu,v =

√√√√ 1

n

n∑
i=1

(
ui

GFPu
− vi

GFPv

)2

(2)251

As we can see in Figure 1, this study em-252

ploys four standard microstates—A, B, C, and253

D—widely recognised in resting-state EEG lit-254

erature for representing core functional net-255

works: auditory, visual, salience, and atten-256

tion (Armen et al., 2022). An additional cate-257

gory, microstate E, includes all scalp patterns258

that do not conform to the above four (Férat259

et al., 2022).260

3.1.2 Text Embedding Models for261

EEG262

Recent advances in pre-trained models origi-263

nally developed for NLP have opened new av-264

enues for their application to non-text modal-265

ities, particularly time-series data (Zhang266

et al., 2024). For example, Liu et al. intro-267

duced AutoTimes, which leverages pre-trained268

architectures for autoregressive forecasting by269

encoding time series into a token-based em-270

bedding space and generating future values se-271

quentially (Liu et al., 2024). Yongquan et al.272

leveraged the use of Large Language Models273

(LLMs) in mental health domains, focusing on274

the classification of depression and emotional275

states (Hu et al., 2024). Tan et al. demon-276

strate the effectiveness of LLMs in handling277

forecasting tasks involving multivariate time 278

series data (Tan et al., 2024). Kaur et al. em- 279

ployed text embedding models to encode time 280

series data, which were subsequently used as 281

input to classification models across multiple 282

temporal tasks (Kaur et al., 2024). Especially, 283

EEG signals have been shown to contain se- 284

mantic representations (Wang et al., 2024a; 285

Mohammadi Foumani et al., 2024a; Feng et al., 286

2023; Wang and Ji, 2022). 287

According to these foundations, leveraging 288

text embedding models to process EEG mi- 289

crostates data for AD detection can be a rele- 290

vant approach as it aligns naturally with both 291

time-series dynamics and symbolic representa- 292

tions of discrete states. In this paper, we ex- 293

plore using pre-trained text embedding models 294

to encode sequences of EEG microstates. By 295

translating microstate dynamics into a struc- 296

tured token-like format, our approach facil- 297

itates consistent and scalable representation 298

across heterogeneous EEG configurations (Jin 299

et al., 2024), which is utilised as input for 300

a time-series model (Mohammadi Foumani 301

et al., 2024b) to detect AD. 302

3.2 Proposed Method 303

As illustrated by Figure 1,let 304

M = {A,B,C,D,E} 305

denote the finite set of EEG microstates. For a 306

subject’s EEG recording, the entire microstate 307

sequence is represented as a function 308

m : {1, 2, . . . , T} → M, 309

where T = 200 × 60 × 5 = 60000 is the total 310

number of time points for a 5-minute recording 311

sampled at 200 Hz. This yields a symbolic 312

sequence of the form 313

x = [m(1),m(2), . . . ,m(T )] ∈ MT . 314

Step 1: Temporal Segmentation 315

(Chunking) 316

Define the segmentation operator 317

SN : MT −→
N∏
i=1

MT ′
,

T ′ = T/N = 12000,

N = 5.

318
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For each chunk i ∈ {1, . . . , 5}, define the319

corresponding time interval320

Ii = {(i− 1)T ′ + 1, . . . , iT ′},321

and extract the chunk as322

xi = x|Ii ∈ MT ′
.323

Step 2: Text Embedding324

Transformation325

Let text-embedding-3-small3 be a pre-326

trained language embedding model adapted327

for EEG microstate sequences. Define the em-328

bedding function329

Φtext-embedding-3-small : MT ′ → Rdz , dz = 128,330

which maps each symbolic sequence xi331

(treated as a character string) into a contin-332

uous vector space:333

zi = Φtext-embedding-3-small(xi) ∈ R128.334

All embedded segments are concatenated into335

a matrix336

Z =


z1
z2
...
z5

 ∈ R5×128.337

Step 3: RNN-based Classifier338

Let the RNN (Zucchet and Orvieto, 2024) be339

defined as340

fRNN : R5×128 → Rdh ,341

which aggregates temporal embeddings into a342

latent representation:343

h = fRNN(Z) ∈ Rdh .344

A dense layer fdense maps the RNN output345

to logits s = fdense(h) ∈ R2, from which class346

probabilities over Y = {NC,AD} are com-347

puted. The predicted class is348

ŷclass = argmax
y∈Y

ŷ(y).349

3The best performing model in this research among
others (see Section 5).

4 Experiences 350

4.1 Datasets 351

This research includes eyes-closed resting- 352

state wet EEG data from 1001 participants, 353

comprising 715 individuals classified as NC 354

(mean age 58.02±8.91) and 286 as AD (mean 355

age 74.84±8.25). Medical domain profession- 356

als clinically assessed and labelled the partic- 357

ipants in ten countries. All EEG recordings 358

were acquired by trained technicians following 359

a standardised acquisition protocol, ensuring 360

consistency in resting-state conditions. More 361

information about the included datasets can 362

be found in the Appendix in Table 3. 363

To maintain consistency and ensure cross- 364

participant compatibility, all EEG data were 365

resampled to 200Hz—a frequency demon- 366

strated to be effective for AD detection in var- 367

ious studies (Rezaee and Zhu, 2025; Gutiérrez- 368

de Pablo et al., 2024; Moguilner et al., 2024). 369

For model training and evaluation, a fixed seg- 370

ment of 5 minutes (300 seconds) was extracted 371

from each participant. EEG preprocessing 372

steps (Haydock et al., 2025) included re- 373

referencing to average reference, band-pass fil- 374

tering (1–40Hz), down-sampling, and artefact 375

removal via Independent Component Analysis 376

(ICA). These are proven to be necessary for 377

microstate analysis in previous studies (Hay- 378

dock et al., 2025). 379

4.2 Experimental Settings 380

The microstates are extracted using the Py- 381

crostate library (Férat et al., 2022). RNN was 382

configured with 32 units, followed by a dense 383

output layer with softmax activation for bi- 384

nary classification (NC vs. AD). The model 385

was trained using the Adam optimiser (α = 386

0.001) and categorical cross-entropy loss, for 387

up to 300 epochs with early stopping (patience 388

= 30) and a batch size of 32. We utilised Ope- 389

nAI’s text-embedding-3-small API4 to gener- 390

ate fixed-dimensional embeddings from sym- 391

bolic EEG microstate sequences, enabling con- 392

sistent input representations. A 5-fold cross- 393

validation was employed to comprehensively 394

evaluate the model’s performance across differ- 395

ent data subsets. Evaluation metrics included 396

accuracy, F1-score (Rainio et al., 2024), and 397

the Brier score (Ovadia et al., 2019), providing 398

4https://platform.openai.com
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a thorough assessment of both classification399

effectiveness and confidence calibration—key400

indicators of reliability in clinical AI applica-401

tions.402

5 Results403

5.1 Model Results404

Across all evaluated configurations, text-405

embedding-3-small emerged as the best-406

performing model, particularly when using407

an embedding size of 32 and a chunk size408

of 12000. Under this configuration, it409

achieved an accuracy of 0.9431±0.0288, F1-410

score of 0.9023±0.0379, and a Brier score411

of 0.0464±0.0192, marking the highest accu-412

rate classification and calibration among all413

tested setups. These results indicate that text-414

embedding-3-small is not only highly effec-415

tive in capturing discriminative patterns from416

EEG microstate sequences but also benefits417

substantially from longer input chunks while418

maintaining compact embedding dimensional-419

ity. Its stable and superior performance across420

both evaluation settings makes it a strong can-421

didate for EEG-based AD detection tasks.422

With embedding size fixed at 32 (see Ta-423

ble 1, Figure 4a in the Appendix), increas-424

ing the chunk size led to notable performance425

improvements for text-embedding-3-small, ris-426

ing from 0.8701±0.0483 accuracy at 3000 to427

0.9431±0.0288 at 12000. This trend was428

not universally observed across all models.429

While some models like Solon-embeddings-430

large-0.1 maintained relatively stable perfor-431

mance across chunk sizes, others like granite-432

embedding-278m-multilingual and bge-m3 ex-433

perienced declining accuracy and F1 scores434

with longer chunks. For instance, granite-435

embedding-278m-multilingual dropped in ac-436

curacy from 0.7832±0.0198 to 0.7343±0.0376437

as chunk size increased. This highlights that438

while longer sequence contexts can enrich439

temporal patterns for classification, model-440

specific architectural design dictates the ex-441

tent to which such information can be effec-442

tively utilised.443

At a fixed chunk size of 12000 (see Table 2,444

Figure 4b in the Appendix), smaller embed-445

ding sizes generally resulted in better perfor-446

mance across models. text-embedding-3-small447

again led with an accuracy of 0.9431±0.0288448

at embedding size 32, while its perfor- 449

mance gradually decreased at 64 and 128 450

dimensions. For other models, the perfor- 451

mance drop was more noticeable; for exam- 452

ple, Solon-embeddings-large-0.1 saw a de- 453

crease in F1-score from 0.5721±0.0807 at size 454

32 to just 0.2879±0.3288 at size 128. These 455

findings suggest that lower-dimensional em- 456

beddings may more effectively retain task- 457

relevant signal representations, potentially 458

mitigating the risk of overfitting and reducing 459

the propagation of irrelevant noise often as- 460

sociated with high-dimensional latent spaces, 461

particularly in EEG microstates. 462

Compared to prior studies (see Table 4 in 463

the Appendix), the proposed method offers 464

greater generalisability and reliability by sup- 465

porting diverse EEG channel configurations 466

(19/64/128 channels) and a significantly larger 467

participant cohort, making it especially suit- 468

able for real-world clinical applications. 469

5.2 Error Analysis 470

This section details the error analysis of 471

the best-performing model (text-embedding- 472

3-small) as presented in the previous section. 473

The model demonstrates consistent perfor- 474

mance in classifying AD and NC cases across 475

all validation folds (see Figure 3 in the Ap- 476

pendix). True positive counts for AD range 477

from 45 to 56, while true negatives for NC re- 478

main high at 124 to 146, indicating strong sen- 479

sitivity and specificity. Misclassifications are 480

infrequent, with false positives ranging from 1 481

to 7 and false negatives between 4 and 13, re- 482

flecting balanced model behaviour. Notably, 483

even in Fold 4—where AD misclassification 484

was highest—the model preserved a strong de- 485

tection rate. 486

This stability is further proven by the 487

model’s confidence scores (see Figure 5 and 488

Table 5 in the Appendix), which are a vi- 489

tal component of a reliable AI model. Cor- 490

rectly classified NC cases consistently exhibit 491

high confidence (0.953–0.977), and AD cases 492

follow closely (0.882–0.955), though the latter 493

suggests potential for improvement. Impor- 494

tantly, across all folds, confidence scores for 495

correctly predicted samples are significantly 496

higher than those for incorrect predictions 497

(p < 0.001), with most misclassified sam- 498

ples exhibiting scores below 0.80, allowing the 499
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Table 1: Results of text embedding models with embedding size 32 and different chunk sizes.

Text Embedding Model Chunk Accuracy ↑ F1 ↑ Brier ↓
Solon-embeddings-large-0.1 3000 0.8042±0.0354 0.6264±0.1132 0.1299±0.0182

Solon-embeddings-large-0.1 6000 0.8002±0.0238 0.6248±0.0166 0.1308±0.0145

Solon-embeddings-large-0.1 12000 0.7912±0.0271 0.5721±0.0807 0.1409±0.0125

bge-m3 3000 0.8052±0.0128 0.6379±0.0627 0.1422±0.0058

bge-m3 6000 0.7782±0.0356 0.5052±0.1040 0.1550±0.0255

bge-m3 12000 0.7752±0.0171 0.5038±0.0863 0.1598±0.0106

granite-embedding-278m-multilingual 3000 0.7832±0.0198 0.5753±0.0619 0.1478±0.0104

granite-embedding-278m-multilingual 6000 0.7612±0.0129 0.4463±0.1123 0.1632±0.0087

granite-embedding-278m-multilingual 12000 0.7343±0.0376 0.4122±0.1191 0.1685±0.0209

gte-multilingual-base 3000 0.8172±0.0344 0.6409±0.0631 0.1325±0.0241

gte-multilingual-base 6000 0.7972±0.0406 0.5448±0.1002 0.1397±0.0188

gte-multilingual-base 12000 0.7702±0.0339 0.5445±0.0602 0.1547±0.0131

multilingual-e5-large-instruct 3000 0.7673±0.0410 0.5532±0.0620 0.1505±0.0179

multilingual-e5-large-instruct 6000 0.7882±0.0268 0.5805±0.0558 0.1422±0.0201

multilingual-e5-large-instruct 12000 0.7772±0.0199 0.5350±0.0842 0.1455±0.0080

snowflake-arctic-embed-l-v2.0 3000 0.8382±0.0390 0.7048±0.0325 0.1122±0.0225

snowflake-arctic-embed-l-v2.0 6000 0.8002±0.0277 0.6100±0.0517 0.1410±0.0166

snowflake-arctic-embed-l-v2.0 12000 0.7602±0.0310 0.3688±0.1957 0.1599±0.0134

text-embedding-3-small 3000 0.8701±0.0483 0.7735±0.0432 0.0922±0.0249

text-embedding-3-small 6000 0.9141±0.0224 0.8490±0.0450 0.0595±0.0149

text-embedding-3-small 12000 0.9431±0.0288 0.9023±0.0379 0.0464±0.0192

Table 2: Results of text embedding models with chunk size 12000 and different embedding sizes.

Text Embedding Model Embedding Size Accuracy ↑ F1 ↑ Brier ↓
Solon-embeddings-large-0.1 32 0.7912±0.0271 0.5721±0.0807 0.1409±0.0125

Solon-embeddings-large-0.1 64 0.7752±0.0367 0.5155±0.1429 0.1549±0.0202

Solon-embeddings-large-0.1 128 0.7552±0.0375 0.2879±0.3288 0.1710±0.0249

bge-m3 32 0.7752±0.0171 0.5038±0.0863 0.1598±0.0106

bge-m3 64 0.7422±0.0528 0.3500±0.2228 0.1781±0.0299

bge-m3 128 0.7233±0.0388 0.0917±0.2050 0.1940±0.0186

granite-embedding-278m-multilingual 32 0.7343±0.0376 0.4122±0.1191 0.1685±0.0209

granite-embedding-278m-multilingual 64 0.7153±0.0383 0.0182±0.0407 0.1946±0.0172

granite-embedding-278m-multilingual 128 0.7143±0.0388 0.0000±0.0000 0.2004±0.0158

gte-multilingual-base 32 0.7702±0.0339 0.5445±0.0602 0.1547±0.0131

gte-multilingual-base 64 0.7832±0.0361 0.4694±0.2695 0.1445±0.0225

gte-multilingual-base 128 0.7903±0.0691 0.4739±0.2813 0.1522±0.0500

multilingual-e5-large-instruct 32 0.7772±0.0199 0.5350±0.0842 0.1455±0.0080

multilingual-e5-large-instruct 64 0.7393±0.0115 0.1812±0.2227 0.1793±0.0129

multilingual-e5-large-instruct 128 0.7392±0.0591 0.1410±0.3152 0.1816±0.0336

snowflake-arctic-embed-l-v2.0 32 0.7602±0.0310 0.3688±0.1957 0.1599±0.0134

snowflake-arctic-embed-l-v2.0 64 0.7992±0.0391 0.5507±0.1551 0.1337±0.0235

snowflake-arctic-embed-l-v2.0 128 0.7352±0.0525 0.1322±0.2956 0.1815±0.0273

text-embedding-3-small 32 0.9431±0.0288 0.9023±0.0379 0.0464±0.0192

text-embedding-3-small 64 0.9291±0.0135 0.8701±0.0340 0.0558±0.0129

text-embedding-3-small 128 0.8761±0.0751 0.7127±0.2493 0.0899±0.0520

model to effectively signal its uncertainty and500

support clinical decision-making. However,501

occasional overconfidence in misclassified AD502

samples (e.g., 0.925 in Fold 2) and limited sta-503

tistical significance in error trends (only Fold504

4 with p < 0.05) suggest the need for further505

improvement. These issues likely stem from506

the class imbalance—smaller AD sample sizes507

(50–69 per fold) compared to NC (131–150),508

which may hinder learning and affect confi-509

dence calibration. While the imbalance be-510

tween NC and AD samples, particularly the511

limited representation of AD cases, likely con-512

tributes to variability in confidence calibra-513

tion, addressing this issue remains challeng-514

ing due to the time-intensive nature of collect-515

ing clinically validated datasets. Nonetheless, 516

the model’s current performance demonstrates 517

strong potential, and the observed trends high- 518

light an important area for future refinement 519

through more balanced data collection efforts. 520

5.3 Pattern Analysis 521

To investigate group-wise distinctions in em- 522

bedded representations generated by text- 523

embedding-3-small (see Figures 2 and 6), we 524

conducted Mann–Whitney U tests across 32 525

embedding features, segmented by five min- 526

utes and across different distance metrics. The 527

statistical analysis revealed that a substan- 528

tial number of embedding dimensions demon- 529

strated significant distributional differences 530

7



between the NC and AD groups.531

Across five one-minute segments (see Fig-532

ure 6 and Table 6 in the Appendix), features533

such as 2, 3, 5–8, 10–11, 13–14, and 18–25534

consistently yielded p < 0.001, underscor-535

ing that these are feasible to capture group-536

level divergence over time. Features such as537

1, 4, and 9 exhibited inconsistent statisti-538

cal significance across time windows and dis-539

tance metrics, suggesting that their discrim-540

inative power may be weak or highly depen-541

dent on transient, non-systematic variations542

in the data, such as inter-individual variability543

or momentary signal fluctuations unrelated to544

disease status.545

Distance-based comparisons using Eu-546

clidean, Cosine, and Manhattan metrics547

further validated the discriminative capacity548

of the embedding space (see Figure 7 and549

Table 7). Of the 32 embedding features,550

over two-thirds (22 features) demonstrated551

statistically significant differences (at least552

p < 0.05) between NC and AD groups under553

two/three distance measures. A subset554

of features (approximately 20% remained555

consistently significant (p < 0.001) across556

all three metrics, underscoring their ability557

as class-discriminative markers in the latent558

space.559

Further, Kruskal–Wallis tests conducted in-560

dependently within the NC and AD groups561

(see Table 8) revealed that more than one-562

third of the embedding features exhibited sig-563

nificant intra-group distributional differences564

(p < 0.01). This observation suggests that565

these features not only capture between-group566

separability but also reflect internal hetero-567

geneity within each clinical cohort, poten-568

tially encoding subtle variations in cognitive-569

linguistic patterns or disease stage progression.570

6 Conclusion and Discussion571

This study presents a high-performing and572

scalable approach for AD detection using EEG573

data. Leveraging a large-scale dataset of 1001574

participants, the proposed method achieves an575

accuracy of 0.9431 and a well-calibrated Brier576

score of 0.0464. The method is beneficial for577

broader community use, as it leverages the578

affordability of EEG and adapts to varying579

channel configurations, enabling scalable and580
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Figure 2: t-SNE of embedded vectors of Nor-
mal Control (NC) and Alzheimer’s Disease (AD)
groups.

cost-effective deployment in resource-limited 581

settings for early AD detection. 582

For RQ1, we demonstrate that text embed- 583

ding models can effectively extract meaningful 584

and discriminative representations from EEG 585

data. The proposed method utilises EEG mi- 586

crostate sequences as text-like symbolic inputs 587

and applies a deep learning architecture with 588

the text-embedding-3-small model and RNN as 589

key components. Furthermore, in response to 590

RQ2, this approach enables standardisation 591

across varying EEG channel configurations 592

by transforming heterogeneous microstate se- 593

quences into a unified embedding space. This 594

allows for the development of an adaptive AI 595

model having high performance across differ- 596

ent EEG setups, enhancing its generalisability 597

and clinical applicability. 598

For RQ3, statistical analyses revealed that 599

over two-thirds of the embedding features ex- 600

hibited significant differences (p < 0.05) be- 601

tween NC and AD groups across multiple time 602

segments and distance metrics. Notably, a 603

consistent subset of features remained highly 604

significant (p < 0.001), indicating that the 605

vector representations derived from EEG mi- 606

crostates effectively capture meaningful and 607

discriminative patterns associated with AD. 608

Future work will focus on expanding evalu- 609

ation across larger and more diverse popula- 610

tions, evaluating fairness among demographic 611

groups and model explainability, and opti- 612

mising performance for shorter EEG record- 613

ings—an essential step toward real-world ap- 614

plicability in time-constrained settings. 615
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Michel, and Inga Grǐskova-Bulanova. 2024. The 940
functional aspects of resting eeg microstates: a 941
systematic review. Brain topography, 37(2):181– 942
217. 943

The Alzheimer’s Association. 2023. 2023 944
alzheimer’s disease facts and figures. 945
Alzheimer’s & Dementia, 19(4):1598–1695. 946

Koenig Thomas and 1 others. 2011. Ragu: a 947
free tool for the analysis of eeg and meg event- 948
related scalp field data using global randomiza- 949
tion statistics. Computational intelligence and 950
neuroscience, 2011:1–14. 951

11



Pedro A Valdes-Sosa. 2021. The cuban human952
brain mapping project, a young and middle953
age population-based eeg, mri, and cognition954
dataset. Scientific data, 8(1):45.955

Wiesje M van der Flier, Marjolein E de Vugt,956
Ellen MA Smets, Marco Blom, and Char-957
lotte E Teunissen. 2023. Towards a future where958
alzheimer’s disease pathology is stopped before959
the onset of dementia. Nature aging, 3(5):494–960
505.961

Jiaqi Wang, Zhenxi Song, Zhengyu Ma, Xipeng962
Qiu, Min Zhang, and Zhiguo Zhang. 2024a.963
Enhancing eeg-to-text decoding through trans-964
ferable representations from pre-trained con-965
trastive eeg-text masked autoencoder. In Pro-966
ceedings of the 62nd Annual Meeting of the As-967
sociation for Computational Linguistics (ACL),968
pages 7278–7292.969

Liang Wang, Nan Yang, Xiaolong Huang, Lin-970
jun Yang, Rangan Majumder, and Furu Wei.971
2024b. Improving text embeddings with large972
language models. In Proceedings of the 62nd973
Annual Meeting of the Association for Compu-974
tational Linguistics (ACL), pages 11897–11916.975

Zhenhailong Wang and Heng Ji. 2022. Open vo-976
cabulary electroencephalography-to-text decod-977
ing and zero-shot sentiment classification. In978
Proceedings of the AAAI Conference on Artifi-979
cial Intelligence, volume 36, pages 5350–5358.980

World Health Organization. 2023. Dementia.981
World Health Organization. Accessed: 2024-982
08-19. Available at: https://www.who.int/983
news-room/fact-sheets/detail/dementia.984

Xiaoli Yang, Zhipeng Fan, Zhenwei Li, and Jiayi985
Zhou. 2024. Resting-state eeg microstate fea-986
tures for alzheimer’s disease classification. PloS987
one, 19(12):e0311958.988

Zhao Yifan and 1 others. 2019. Imaging of nonlin-989
ear and dynamic functional brain connectivity990
based on eeg recordings with the application on991
the diagnosis of alzheimer’s disease. IEEE trans-992
actions on medical imaging, 39(5):1571–1581.993

Xiyuan Zhang, Ranak Roy Chowdhury, Rajesh K994
Gupta, and Jingbo Shang. 2024. Large language995
models for time series: a survey. In Proceedings996
of the Thirty-Third International Joint Confer-997
ence on Artificial Intelligence (IJCAI), pages998
8335–8343.999

Nicolas Zucchet and Antonio Orvieto. 2024. Re-1000
current neural networks: vanishing and explod-1001
ing gradients are not the end of the story. Ad-1002
vances in Neural Information Processing Sys-1003
tems (NeurIPS), 37:139402–139443.1004

A Additional Dataset Information 1005

Table 3 summarises the datasets used in this 1006

study, comprising a total of 1001 individuals 1007

collected from multiple countries: Republic of 1008

Korea (Kim et al., 2023), Poland (Dzianok 1009

and Kublik, 2024), Greece (Miltiadous et al., 1010

2023b), Cuba (Valdes-Sosa, 2021), Argentina, 1011

Chile, Colombia, Mexico, and Peru (Pavel 1012

et al., 2023), and the USA (Kiessner et al., 1013

2023). 1014

Table 3: Summary of included EEG datasets. NC:
Number of Normal Control individuals. AD: Num-
ber of Alzheimer’s Disease individuals.

Dataset Channels NC AD

CAUEEG (Kim et al., 2023) 19 0 230

PEARL-Neuro (Dzianok and Kublik, 2024) 128 69 0

DS004504 (Miltiadous et al., 2023b) 19 29 29

CHBMP (Valdes-Sosa, 2021) 64 19 0

BrainLat (Pavel et al., 2023) 128 30 27

TUAB (Kiessner et al., 2023) 23 568 0

B Additional Model Results 1015

Figure 4 illustrates the performance of the pro- 1016

posed method across various text embedding 1017

models, embedding sizes, and chunk sizes. Ta- 1018

ble 4 summarises prominent existing studies 1019

on AI-based EEG approaches for AD detec- 1020

tion. 1021

C Model Error Analysis 1022

Figure 3 presents the confusion matrices across 1023

all folds of the proposed model, while Table 5 1024

and Figure 5 provide the corresponding confi- 1025

dence summaries and histograms. 1026

D Details of Pattern Analysis 1027

As the best-performing model was achieved us- 1028

ing embeddings from text-embedding-3-small, 1029

the corresponding data with an embedding 1030

size of 32 was selected for all subsequent anal- 1031

yses. Figure 6 illustrates the feature distri- 1032

bution of NC and AD groups based on raw 1033

absolute differences, while Figure 7 presents 1034

the feature-wise distances between their em- 1035

bedded vector representations. 1036

To evaluate the statistical significance of 1037

feature differences between NC and AD 1038

groups, we employed two non-parametric tests 1039

(Ikegawa et al., 2024): the Mann–Whitney 1040

U test and the Kruskal–Wallis test. These 1041

tests were selected because they do not assume 1042
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Table 4: Performance comparison between the proposed method and prominent research on AI-based
EEG approaches for Alzheimer’s Disease (AD) detection. NC: Normal Control.

Method Channel Participant (NC/AD) Accuracy

Ours 19, 23, 64, 128 715 / 286 0.9431

MNet (Hata et al., 2023) 19 55 / 101 0.8170

LCOWFBs-6 (Puri et al., 2023) 16 11 / 12 0.9860

k-NN (Yifan et al., 2019) 19 20 / 20 0.9000

CNN (Stefanou et al., 2025) 128 29 / 36 0.7945

DEL (Nour et al., 2024) 19 36 / 104 0.9790

DICE-Net (Miltiadous et al., 2023a) 19 29 / 36 0.8328

GNN (Klepl et al., 2022) 128 20 / 20 0.9200

GNB (Si et al., 2023) 128 19 / 36 0.8100

DSL-GN (Cao et al., 2024) 23 20 / 20 0.9400

LEADNet (Puri, 2024) 16 11 / 12 0.9924

LSTM (Alessandrini et al., 2022) 16 15 / 20 0.9790

k-NN (Lal et al., 2024) 19 29 / 36 0.9300

CNN (Sen et al., 2023) 19 11 / 15 0.9860

Table 5: Confidence summary by folds between Normal Control (NC) and Alzheimer’s Disease (AD)
groups with p-values of the Mann-Whitney U test. ✓: Accurately classified, ✗: Inaccurately classified.

Fold
Total Sample ✓ Sample Confidence Score (✓) Confidence Score (✗)
NC AD NC AD NC AD p-value NC AD p-value

1 140 61 131 56 0.957 ± 0.082 0.882 ± 0.122 <0.001 0.759 ± 0.119 0.788 ± 0.178 0.699

2 146 54 145 50 0.971 ± 0.080 0.938 ± 0.095 <0.001 0.743 ± 0.115 0.925 ± 0.063 0.400

3 148 52 144 47 0.977 ± 0.069 0.955 ± 0.080 <0.001 0.796 ± 0.196 0.814 ± 0.136 0.904

4 131 69 124 56 0.953 ± 0.095 0.916 ± 0.089 <0.001 0.707 ± 0.121 0.832 ± 0.158 <0.05

5 150 50 146 45 0.958 ± 0.096 0.898 ± 0.115 <0.001 0.699 ± 0.086 0.718 ± 0.063 0.904

normal distribution of the data, an impor-1043

tant consideration given the complex and po-1044

tentially non-Gaussian nature of EEG-derived1045

features. The Mann–Whitney U test assesses1046

whether the distributions of a single feature1047

differ significantly between two independent1048

groups (NC vs. AD) without assuming nor-1049

mality. It was applied across each embedding1050

feature and time segment, as well as across dif-1051

ferent distance metrics, to detect fine-grained1052

inter-group differences (see Tables 6 and 7).1053

In parallel, the Kruskal–Wallis test, a general-1054

isation of the Mann–Whitney test for compar-1055

ing more than two groups, was used to exam-1056

ine intra-group variability across the five one-1057

minute EEG segments within each class (NC1058

and AD) (see Table 8). These tests enabled1059

robust identification of embedding features1060

that consistently exhibit statistically signifi-1061

cant discriminative power, both across groups1062

and within temporal dynamics.1063
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Figure 3: Confusion matrices across all five folds.
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Figure 4: Visualisation of results of text embedding models for Alzheimer’s Disease (AD) detection using
EEG microstates.
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Table 6: Results with p-values of Mann–Whitney U test by raw feature values and time step between
Normal Control (NC) and Alzheimer’s Disease (AD).

Embedding Feature Minute 1 Minute 2 Minute 3 Minute 4 Minute 5 All

1 <0.05 0.233 <0.01 0.162 0.713 <0.001

2 <0.001 <0.001 <0.001 <0.001 0.809 <0.001

3 <0.01 <0.01 <0.001 <0.05 <0.001 <0.001

4 0.051 0.665 0.096 <0.05 <0.001 0.15

5 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

6 <0.05 <0.001 <0.001 <0.001 <0.001 <0.001

7 <0.001 <0.01 <0.01 <0.05 <0.001 <0.001

8 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

9 0.450 0.732 0.063 0.374 0.213 0.97

10 <0.01 <0.001 <0.001 <0.001 <0.001 <0.001

11 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

12 0.279 0.119 <0.05 0.150 <0.001 <0.01

13 <0.05 <0.001 <0.001 <0.01 <0.001 <0.001

14 <0.001 <0.01 <0.001 <0.01 <0.001 <0.001

15 <0.01 0.297 0.484 0.165 <0.001 <0.001

16 0.068 0.648 <0.05 0.654 <0.001 <0.001

17 0.140 0.649 0.058 0.765 <0.001 <0.001

18 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

19 0.740 0.108 <0.05 <0.01 <0.001 <0.001

20 <0.01 <0.01 <0.01 <0.001 <0.01 <0.001

21 <0.001 <0.001 <0.001 <0.01 <0.001 <0.001

22 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

23 <0.001 <0.01 <0.001 <0.001 <0.001 <0.001

24 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

25 <0.001 <0.05 <0.01 0.098 <0.001 <0.001

26 <0.001 0.506 0.080 0.691 <0.001 <0.001

27 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

28 0.192 0.104 <0.05 0.237 <0.001 <0.001

29 <0.01 <0.05 0.300 0.566 <0.001 <0.001

30 <0.001 <0.01 <0.001 <0.001 <0.001 <0.001

31 <0.05 0.849 0.995 0.078 <0.001 <0.05

32 0.225 <0.01 <0.001 0.051 <0.01 <0.01
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Figure 5: Confidence histograms of five folds with
accurately and inaccurately classified sample dis-
tribution.

Table 7: Results with p-values of Mann–Whitney
U test by raw feature values with types of distance
for each feature between Normal Control (NC) and
Alzheimer’s Disease (AD).

Embedding Feature Euclidean Cosine Manhattan

1 <0.001 0.39 <0.001

2 <0.001 0.71 <0.001

3 <0.001 <0.001 <0.001

4 <0.05 0.83 <0.01

5 0.38 <0.001 0.31

6 <0.001 <0.01 <0.001

7 <0.01 <0.05 <0.05

8 <0.001 <0.001 <0.001

9 <0.001 0.43 <0.001

10 <0.001 <0.001 <0.001

11 <0.001 0.05 <0.001

12 <0.001 0.87 <0.001

13 <0.001 <0.001 <0.001

14 0.76 <0.01 0.99

15 0.64 0.82 0.24

16 <0.001 <0.001 <0.001

17 0.62 0.07 0.80

18 <0.05 <0.001 <0.01

19 <0.001 <0.001 <0.001

20 <0.001 0.12 <0.001

21 <0.001 <0.001 <0.001

22 <0.001 <0.001 <0.001

23 <0.001 <0.01 <0.001

24 <0.001 <0.01 <0.001

25 <0.001 <0.001 <0.001

26 0.25 <0.001 0.15

27 <0.05 <0.01 <0.01

28 <0.001 0.62 <0.001

29 <0.001 <0.01 <0.001

30 0.43 <0.05 0.36

31 <0.001 <0.001 <0.001

32 <0.001 0.29 <0.001
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Table 8: Results with p-values of Kruskal–Wallis
by raw feature values across all five minutes be-
tween Normal Control (NC) and Alzheimer’s Dis-
ease (AD).

Embedding Feature NC AD

1 0.190 0.961

2 <0.001 0.251

3 <0.001 0.150

4 <0.001 0.284

5 <0.001 <0.01

6 <0.001 <0.01

7 <0.001 <0.01

8 0.265 <0.001

9 0.332 0.051

10 <0.001 0.796

11 <0.05 <0.01

12 <0.001 <0.001

13 <0.001 <0.001

14 0.117 <0.001

15 <0.001 <0.001

16 <0.001 0.266

17 <0.001 <0.001

18 <0.001 <0.001

19 <0.01 0.248

20 0.587 <0.05

21 <0.05 <0.001

22 <0.001 <0.05

23 <0.001 <0.001

24 <0.001 0.079

25 <0.001 0.319

26 <0.001 0.314

27 <0.001 <0.01

28 <0.001 <0.01

29 <0.001 <0.001

30 0.188 <0.001

31 <0.001 <0.001

32 <0.001 <0.001
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Figure 6: Feature distribution of Normal Control (NC) and Alzheimer’s Disease (AD) with raw absolute
difference.
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Figure 7: Feature-wise distance between embedded vectors of Normal Control (NC) and Alzheimer’s
Disease (AD) groups.
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