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ABSTRACT

We address the issue of estimation bias in deep reinforcement learning (DRL) by
introducing solution mechanisms that include a new, twin TD-regularized actor-
critic (TDR) method. It aims at reducing both over and under estimation errors.
With TDR and by combining good DRL improvements, such as distributional
learning and long N -step surrogate stage reward (LNSS) method, we show that
our new TDR-based actor-critic learning has enabled DRL methods to outper-
form their respective baselines in challenging environments in DeepMind Control
Suite. Furthermore, they elevate TD3 and SAC respectively to a level of perfor-
mance comparable to that of D4PG (the current SOTA), and they also improve the
performance of D4PG to a new SOTA level measured by mean reward, conver-
gence speed, learning success rate, and learning variance.

1 INTRODUCTION

Reinforcement learning (RL) has been developed for decades to provide a mathematical formal-
ism for learning-based control. Recently, significant progress has been made to attain excellent
results for a wide range of high-dimensional and continuous state-action space problems especially
in robotics applications, such as robot manipulation (Andrychowicz et al., 2017), and human-robotic
interaction (Liu et al., 2022; Wu et al., 2022).

However, the fundamental issue of estimation error associated with actor-critic RL (Van Hasselt
et al., 2016; Duan et al., 2021) still poses great challenge. Overestimation due to, for example, using
the max operator in updates has been identified and studied (Thrun & Schwartz, 1993; Duan et al.,
2021). To reduce it, most efforts have focused on attaining more accurate and stable critic networks.
TD3 (Fujimoto et al., 2018) applies clipped double Q-learning by taking the minimum between the
twoQ estimates. SAC (Haarnoja et al., 2018) utilizes the doubleQ network and incorporates entropy
regularization in the critic objective function to ensure more exploratory behavior to help alleviate
the overestimation problem. However, directly taking the minimum value of the target networks
such as that in TD3 and SAC has been reported to result in an underestimation bias (Fujimoto et al.,
2018).

Evaluations have revealed multiple roles of over and under estimation errors in learning. On one
hand, overestimation may not always be harmful (Lan et al., 2020) as it is considered playing a
role of encouraging exploration by overestimated actions. Along this line, underestimation bias
may discourage exploration. If the overestimation bias occurs in a high-value region containing the
optimal policy, then encouraging exploration is a good thing (Hailu & Sommer, 1999). On the other
hand, overestimation bias may also cause an agent to overly explore a low-value region. This may
lead to a suboptimal policy. Accordingly, an underestimation bias may discourage an agent from
exploring high-value regions or avoiding low-value regions. All things considered, if estimation
errors are left unchecked, they may accumulate to negatively impact policy updates as suboptimal
actions may be highly rated by a suboptimal critic, reinforcing the suboptimal action in the next
policy update (Fujimoto et al., 2018). Aside from the anecdotal evidence on the roles of over and
under estimation, how to mitigate both of them in a principled way remains an open issue.

While several methods and evaluations have been performed and shown promising, a major tool has
been mostly left out thus far. That is, it is still not clear how, and if it is possible, to further reduce
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estimation errors by considering the actor given the interplay between the actor and the critic. Only
a handful of approaches have been examined. As shown in (Wu et al., 2023) with demonstrated
performance improvement, PAAC uses a phased actor to account for both a Q value and a TD error
in actor update. A double actor idea was proposed and evaluated in (Lyu et al., 2022). It takes the
minimum value estimate associated with one of the two actor networks. However, directly using the
minimum of the estimated values was shown resulting in an underestimation error, similar to that in
TD3. Other methods, such as Entropy (Haarnoja et al., 2018; Fox et al., 2015), mutual-information
(MI) (Leibfried & Grau-Moya, 2020), and Kullback-Leibler (KL) (Vieillard et al., 2020; Rudner
et al., 2021) regularization, are also used to enhance policy exploration, robustness, and stability.
TD-regularized actor-critic (Parisi et al., 2019) regularizes the actor only aiming to enhance the
stability of the actor learning by applying a TD error (same as that in online critic updates) as a
regularization term in actor updates. However, none of these methods have shown how regularization
in actor may help reduce estimation error in the critic.

In this paper, we propose a new, TD-regularized (TDR) learning mechanism which includes TD-
regularized double critic networks and TD-regularized actor network. This new architecture has
several properties that make it ideal for the enhancements we consider. For the TD-regularized
double critic network, instead of directly selecting the minimum value from twin target networks,
we select the target based on the minimum TD error, which then addresses not only overestimation
but underestimation problems. For the TD-regularized actor network, we formulate a new TD error
to regularize actor updates to avoid a misleading critic. This regularization term helps further reduce
the estimation error in critic updates. Additionally, we apply TDR combined with distributional
RL (Barth-Maron et al., 2018; Bellemare et al., 2017) and LNSS reward estimation method (Zhong
et al., 2022) to further improve learning stability and performance.

2 RELATED WORK

To shed light on the novelty of the TDR method, here we discuss double critic networks and TD
error-based actor learning to provide a backdrop. We include reviews of distributional RL (Barth-
Maron et al., 2018; Bellemare et al., 2017) and long-N -step surrogate stage (LNSS) method (Zhong
et al., 2022) in Appendix A.

Double critic networks have been used in both RL (Hasselt, 2010; Zhang et al., 2017; Weng et al.,
2020) and DRL (Fujimoto et al., 2018; Haarnoja et al., 2018; Van Hasselt et al., 2016). Double Q
learning (Hasselt, 2010; Van Hasselt et al., 2016) was the first to show reduction of overestimation
bias. TD3 (Fujimoto et al., 2018) and SAC (Haarnoja et al., 2018) also were shown effective by
applying clipped double Q-learning by using the minimum between the two Q estimates. However,
these methods have induced an underestimation bias problem. (Hasselt, 2010; Zhang et al., 2017;
Fujimoto et al., 2018). Consequently, weighted doubleQ learning (Zhang et al., 2017) was proposed
to deal with both overestimation and underestimation biases. However, this method has not been
tested in DRL context and therefore, it lacks a systematic approach to designing the weighting
function.

TD error-based actor learning is expected to be effective in reducing overestimation error since it is
a consistent estimate of the advantage function with lower variance, and it discriminates feedback
instead of directly using Q estimates. Some actor-critic variants (Crites & Barto, 1994; Bhatnagar
et al., 2007) update the actor based on the sign of a TD error with a positive error preferred in
policy updates. However, TD error only measures the discrepancy between the predicted value
and the target value, which may not guide exploration effectively, and using TD error alone in actor
update may discourage exploration and cause slow learning, especially in high-dimensional complex
problems. TD-regularized actor-critic (Parisi et al., 2019) enhanced the stability of the actor update
by using the same TD error (as that in online critic update) as a regularization term. However, such
use of TD error may not sufficiently evaluate the critic update because it only uses the temporal
difference between target and online Q estimates. Additionally, the time-varying regularization
coefficient was shown leading to poor convergence (Chen et al., 2017). Note also that the TD-
regularized actor-critic only considered TD-regularized actor but not the critic.

Contributions. 1) We introduce a novel TDR mechanism that includes TD-regularized double critic
networks and TD-regularized actor network. 2) Extensive experiments using DMC benchmarks
show that TDR enables SOTA performance (measureed by learning speed, success rate, variance,
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and converged reward) across a wide variety of control tasks, such as locomotion, classical control,
and tasks with sparse rewards. 3) We also provide qualitative analysis to show that each component
of TDR contributes to mitigating both over and under estimation errors.

3 METHOD

3.1 DOUBLE Q IN ACTOR-CRITIC METHOD

For a general doubleQ actor-critic method (Fujimoto et al., 2018; Haarnoja et al., 2018). The policy
(πϕ) is called an actor and the state-action value function (Qθ(sk, ak)) is called a critic where both
the actor and the critic are estimated by deep neural networks with parameters ϕ and θ, respectively.

First, consider a policy π that is evaluated by the state-action value function below:

Qπ(sk, ak) = E[Rk|sk, ak], (1)

where Rk =
∑∞

t=k γ
t−krt, sk ∼ p (· | sk−1, ak−1), ak = πϕ (sk), and γ ∈ (0, 1). Most actor-

critic methods are based on temporal difference (TD) learning (Sutton & Barto, 2018) that updates
Q estimates by minimizing the TD error, which is obtained from the the difference between a target
and a critic estimated value.

Next, consider typical double Q methods which entail twin Q networks denoted as Qθ1 and Qθ2 .
The respective twin target networks are denoted as Qθ′

1
and Qθ′

2
. In the upcoming discussions, we

also use θ to denote parameters in bothQ networks, i.e., θ={θ1, θ2}. The target value yk is the lesser
of the two target values,

yk = rk + γ min
ζ=1,2

Qθ′
ζ
(sk+1, πϕ′(sk+1)), (2)

where by taking the minimum of the two target values, it aims to curtail overestimation of Q value
frequently experienced by using a single target. Thus the critic value Qθ is updated by minimizing
the loss function (L (θ)) with respect to the critic weights θ:

L (θ) = Es∼pπ,a∼π[
∑
ζ=1,2

(yk −Qθζ (sk, ak))
2]. (3)

The actor weights can be updated by the deterministic policy gradient algorithm below (Silver et al.,
2014), where by convention (Fujimoto et al., 2018; Haarnoja et al., 2018), Qθ1 is used to update the
actor weights.

∇ϕJ(ϕ) = Es∼pπϕ

[
∇aQθ1(sk, ak)|a=πϕ(s)

∇ϕπϕ(s)
]
. (4)

Figure 1: Twin TD-regularized Actor-Critic (TDR) Architecture

3.2 TWIN TD-REGULARIZED ACTOR-CRITIC (TDR) ARCHITECTURE

Figure 1 depicts our TDR-based solution mechanisms, which include twin Q networks as in TD3
(Fujimoto et al., 2018) and SAC (Haarnoja et al., 2018), and an actor network. The TDR-based
actor and critic updates are different from currently existing methods. In the following, we show
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how the new TDR selects target value yk different from Equation (2) as used in SAC and TD3, and
how that helps reduce both overestimation and underestimation errors. We also show how the new
TD-regularized actor helps further reduce the estimation bias in the critic. Our TDR-based solutions
in Figure 1 include two additional good improvements: distributional learning as in D4PG and long
N -step surrogate stage (LNSS) method (Zhong et al., 2022) as described in Appendix A.

3.3 TD-REGULARIZED DOUBLE Q NETWORKS

To overcome overestimation, TD3 (Fujimoto et al., 2018) and SAC (Haarnoja et al., 2018) train
their critic networks to minimize the loss function in Equation (3) where the target value yk is from
Equation (2). While this helps reduce overestimation error, it promotes a new problem of underes-
timation, which usually occurs during the early stage of learning, or when subjected to corrupted
reward feedback or inaccurate states.

Our TDR method aims at minimizing the same loss function as in Equation (3), but with a different
target value yk. Instead of directly choosing the lesser from the two target values as in Equation (2),
we use the TD errors of the two target networks to set the target value. First, the two TD errors from
the respective target networks are determined from:

δ′1 = rk + γQθ′
1
(sk+1, πϕ′(sk+1))−Qθ′

1
(sk, ak), (5)

δ′2 = rk + γQθ′
2
(sk+1, πϕ′(sk+1))−Qθ′

2
(sk, ak). (6)

The target value for TDR is then selected from the following:

yk =

{
rk + γQθ′

1
(sk+1, πϕ′(sk+1)) if |δ′1| ≤ |δ′2|,

rk + γQθ′
2
(sk+1, πϕ′(sk+1)) if |δ′1| > |δ′2|.

(7)

Note from Equation (7) that TDR always uses a target value associated with a smaller target TD
value (regardless of the error sign) between the two. As the ultimate objective of a target network is
to converge to Qπ , such choice by TDR pushes the critic via Equation (3) toward reaching the target
no matter the estimation error is from above or below, but with a smaller TD value. Thus, TDR is
naturally positioned to address both overesdiation and underestimation errors.

3.4 TD-REGULARIZED ACTOR NETWORK

Our TD-regularized actor network directly penalizes the actor’s learning objective whenever there
is a critic estimation error. The estimation error ∆i+1 of the first critic (Qθ1 chosen by convention
of double Q-based actor-critic methods) is determined from the following:

∆i+1 = Qθi+1
1

(sk, ak)− (rk + γQθi+1
1

(sk+1, πϕ(sk+1))), (8)

where i + 1 represents the iteration number during critic update. Then the actor can be updated in
the direction of maximizing Q while keeping the TD error small,

∇ϕJ(ϕ) = Es∼pπϕ

[
∇a(Qθi+1

1
(sk, ak)− ρ(∆i+1))

∣∣∣
a=πϕ(s)

∇ϕπϕ(s)

]
. (9)

where ρ ∈ (0, 1) is the regularization coefficient to balance the role of TD error in the actor learning
objective. Thus, we expect the TD-regularized actor to help further reduce estimation error in the
critic. With TDR actor and cirtic working together hand-in-hand, TDR is positioned to help avoid
bad policy updates due to a misleading Q value estimate.

Remark 1. There are a few key differences between TDR and TD-regularized Actor Network
(Parisi et al., 2019). 1) In Equation (8), they use the target critic Qθi′

1
(sk+1, πϕ(sk+1)) to construct

TD error, the same as in critic updates. This TD error evaluates the temporal difference between
target and online Q estimates. To more accurately evaluate critic estimations, we construct the TD
error by only using online critics which directly affects actor updates. 2) Their TD error does not
sufficiently evaluate how the critic updates. Instead in Equation (8), we use the updated critic (θi+1

1 )
to construct the TD error to directly measure critic estimation.

4



Under review as a conference paper at ICLR 2024

4 MITIGATING ESTIMATION BIAS BY TDR

Let Qπ be the true Q value obtained by following the current target policy π, and let Qθ be the
estimated value using neural networks. Let Ψk

θ be a random estimation bias. Then for state-action
pairs (sk, ak). we have,

Qθ(sk, ak) = Qπ(sk, ak) + Ψk
θ . (10)

The same holds for the target networks, i.e., when θ is replaced by θ′ in the above equation. An
overestimation problem refers to when the estimation bias E[Ψk

θ ] > 0, and an underestimation
problem when the estimation bias E[Ψk

θ ] < 0.

4.1 MITIGATING ESTIMATION BIAS USING TD-REGULARIZED DOUBLE CRITIC NETWORKS

Theorem 1. Let Qπ be the true Q value following the current target policy π, and Qθ′
1

and Qθ′
2

be the target network estimates using double Q neural networks. We assume that there exists a
step random estimation bias ψk

θ′
ζ

(i.e., estimation bias at the kth stage), and that it is independent of

(sk, ak) with mean E[ψk
θ′
ζ
] = µ′

ζ , µ
′
ζ < ∞, for all k, and ζ = 1, 2. Additionally, let δYk denote

the target value estimation error. Accordingly, we denote this error for TDR as δY TDR
k , and DQ as

δY DQ
k . We then have the following,

|E[δY TDR
k ]| ≤ |E[δY DQ

k ]|, (11)

Where E[δY TDR
k ] = E[Qπ − yTDR

k ], and E[δY DQ
k ] = E[Qπ − yDQ

k ].

Proof. The proof of Theorem 1 is provided in Appendix B

Remark 2. By selecting a target value with less TD error, our TD-regularized double critic networks
mitigate both overestimation and underestimation errors. However, vanilla double Q methods usu-
ally push the target toward the lower value no matter the estimation error is over or under. Although
this estimation error may not be detrimental as they may be small at each update, the presence of
unchecked underestimation bias raises two concerns. Firstly, if there is no sufficient reward feed-
back from the environment, (e.g., for a noisy reward or sparse reward), underestimation bias may
not get a chance to make corrections and may develop into a more significant bias over several up-
dates. Secondly, this inaccurate value estimate may lead to poor policy updates in which suboptimal
actions might be highly rated by the suboptimal critic, reinforcing the suboptimal action in the next
policy update.

4.2 ADDRESSING A MISGUIDING CRITIC IN POLICY UPDATES USING TD-REGULARIZED
ACTOR

Theorem 2. Let Qπ denote the true Q value following the current target policy π, Qθ1 be the
estimated value. We assume that there exists a step random estimation bias ψk

θ1
that is independent

of (sk, ak) with mean E[ψk
θ1
] = µ1, µ1 < ∞, for all k. We assume the policy is updated based

on critic Qθ1 using the deterministic policy gradient (DPG) as in Equation (4). Let δϕk denote the
change in actor parameter ϕ updates at stage k. Accordingly, we denote this change for TDR as
δϕTDR

k , vanilla DPG as δϕDPG
k , and true change without any approximation error in Q as δϕtruek .

We then have the following,{
E[δϕtruek ] ≥ E[δϕTDR

k ] ≥ E[δϕDPG
k ] if E[Ψk

θ1
] < 0,

E[δϕtruek ] ≤ E[δϕTDR
k ] ≤ E[δϕDPG

k ] if E[Ψk
θ1
] ≥ 0.

(12)

Where δϕtruek , δϕDPG
k , and δϕTDR

k are defined as Equation (55),(56), and (57) respectively in
Appendix B

Proof. The proof of Theorem 2 is provided in Appendix B.

Remark 3. Theorem 2, holds for ρ ∈ (0, 1). If the regularization factor ρ = 1
1−γ , from Equation

(59), we have E[Ψk
θ1
− ρ∆] = 0 which implies that E[δϕtruek ] = E[δϕTDR

k ]. By using TDR,
the actor will always update the same way as using the true value. While this is not realistic, the
following relationship still preserves |E[Ψk

θ1
− ρ∆]| ≤ |E[Ψk

θ1
]| to help ease the negative effect of

critic estimation bias.
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4.3 MITIGATING CRITIC ESTIMATION ERROR BY TD-REGULARIZED ACTOR

Theorem 3. Suboptimal actor updates negatively affect the critic. Specifically, consider actor up-
dates as in Theorem 2, in the overestimation case, we have:

E[Qθ1(sk, πDPG(sk)] ≥ E[Qθ1(sk, πTDR(sk))] ≥ E[Qπ(sk, πTrue(sk))], (13)

and in the underestimation case,

E[Qθ1(sk, πDPG(sk)] ≤ E[Qθ1(sk, πTDR(sk))] ≤ E[Qπ(sk, πTrue(sk))]. (14)

Proof The proof of Theorem 3 is provided in Appendix B.

Remark 4. For both cases, by using TD-regularized actors, it is expected to result in less estimation
bias in the critic.

5 EXPERIMENTS AND RESULTS

In this section, we provide a comprehensive evaluation of our TDR enabled actor-critic learning
methods based on three commonly used, well-behaved baseline algorithms including SAC, TD3
and D4PG. Additional evaluations are also provided for popular DRL algorithms such as DDPG and
PPO to provide a broader perspective on the effectiveness of TDR-based methods. All evaluations
are performed based on several benchmarks in Deepmind Control Suite (Tassa et al., 2018).

In reporting evaluation results, we use the following short-form names:

1) Base: the original DRL algorithms including SAC, TD3, D4PG, DDPG and PPO.

2) TDR-TD3: Applied TD regularized double critic (TD Critic) networks, TD regularized actor (TD
Actor) network, with regularization factor ρ = 0.7, and LNSS with N = 100.

3) TDR-SAC: Applied TD regularized double critic (TD Critic) networks, and LNSS withN = 100.

4) dTDR (TDR-D4PG): Applied TD regularized double critic (TD Critic) network, TD regularized
actor (TD Actor) network, with regularization factor ρ = 0.7, and LNSS with N = 100.

Our evaluations aim to quantitatively address the following questions:
Q1. How does TDR improve over Base and other common methods?
Q2. How does the performance of TDR methods compare to that of SOTA algorithms (D4PG)?
Q3. Is TDR method robust enough to handle both dense stochastic reward and sparse reward?
Q4. How does each component in TDR-based learning mechanisms affect performance?
Q5. How does TD regularized actor make policy updates in situations of misguiding critics?
Q6. How does the regularization coefficient ρ in Equation (9) affect TD Actor performance?

Details of the implementation, training, and evaluation procedures are provided in Appendix C and
D where links to all implementation codes are also provided.

5.1 MAIN EVALUATION

In obtaining comprehensive evaluation results summarized in Table 1, we included a 10% noise
respectively in state, action, and reward in each of the considered DMC environments in order
to make the evaluations more realistic. In “Cheetah Run sparse”, we sparsified the reward in the
environment. All details of the environment setup can be found in Appendix C. In Table 1, “Success”
is shorthand for learning success rate, “Avg. Rwd” for average reward, and “Rank” (%) is the
“percent of reward difference” between the evaluated method and the SOTA D4PG, which is (the
average reward of the evaluated method over that of the D4PG - 1), the more positive the better.
Note that, in computing the success rate, only those trials that have achieved a reward of at least
10 are accounted for as successful learning. The results are based on the last 50 evaluations of 10
different random seeds (same for all compared algorithms). Best performances are boldfaced for
average reward (Avg. Rwd). Note that we did not implement our TD Actor into SAC because SAC
already has a max entropy-regulated actor.

Q1 TDR improves over respective Base methods. The learning curves for six benchmark environ-
ments are shown in Figure 2. Overall, TDR methods (solid lines) outperform their respective Base
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Figure 2: Systematic evaluation of TDR realized in three DRL algorithms (SAC, TD3, D4PG) in
DMC environments with 10% uniform random noise in state, action, and reward. The shaded regions
represent the 95 % confidence range of the evaluations over 10 seeds. The x-axis is the number of
steps.

Envirinoment Finger Turn Hard Quadruped Walk Fish Swim
Success

[%]
Avg. Rwd
[µ± 2σ]

Rank
[%]

Success
[%]

Avg. Rwd
[µ± 2σ]

Rank
[%]

Success
[%]

Avg. Rwd
[µ± 2σ]

Rank
[%]

D4PG 100 400.9 ± 173.4 0 100 858.5 ± 11.4 0 100 153.7 ± 68.1 0
DDPG 100 222.1 ± 160.4 -44.6 100 226.8 ± 133.6 -73.6 100 109.7 ± 27.1 -28.6
PPO 100 85.9 ± 50 -78.6 100 173.1 ± 60.4 -79.8 100 78.67 ± 6.28 -48.8
SAC 90 65.6 ± 30.2 -83.6 100 196.6 ± 73.7 -77.2 100 73.2 ± 9.87 -52.4
TD3 100 205.9 ± 108.5 -48.6 100 334.8 ± 76.4 -61 100 85.3 ± 21.7 -44.5

TDR-SAC 100 601.5 ± 147.4 49.9 100 479.5 ± 126.9 -44.2 100 212.3 ± 51.2 37.9
TDR-TD3 100 569.8 ± 142.1 42.3 100 475.4 ± 45.4 -44.6 100 204.2 ± 41.5 32.7

dTDR 100 841.02 ± 148.3 109.8 100 888.6 ± 15.7 3.46 100 249.9 ± 45.5 62

Envirinoment Acrobot Swingup Cartpole Swingup Sparse Cheetah Run Sparse
Success

[%]
Avg. Rwd
[µ± 2σ]

Rank
[%]

Success
[%]

Avg. Rwd
[µ± 2σ]

Rank
[%]

Success
[%]

Avg. Rwd
[µ± 2σ]

Rank
[%]

D4PG 100 26.8 ± 8.9 0 100 493.5 ± 15.9 0 60 532.8 ± 388.4 0
DDPG 100 17.2 ± 3.8 -35.8 0 3.6 ± 5.8 -99 50 160.7 ± 284.7 -69.8
PPO 20 7.9 ± 7.8 -70.5 80 99.2 ± 172.9 -79.9 0 0 ± 0 -100
SAC 0 4 ± 2.2 -85.1 0 1.7 ± 3.4 -99.7 0 0 ± 0 -100
TD3 0 5.2 ± 4.2 -80.6 0 1.3 ± 2.3 -99.7 50 220.5 ± 354.7 -58.6

TDR-SAC 100 42.9 ± 5.1 60.1 100 774.2 ± 51.1 56.8 100 930.2 ± 18.7 74.6
TDR-TD3 100 50 ± 7.9 86.5 100 790.13 ± 33.0 60.1 100 827.8 ± 62.2 55.4

dTDR 100 62.6 ± 14.4 133.6 100 810.3 ± 34.9 64.2 100 900.1 ± 30.8 68.9

Table 1: Systematic evaluations of TDR respectively augmented Base algorithms. “Rank” (%) is
the “percent of reward difference” between the SOTA D4PG, the more positive the better.

methods TD3, SAC and D4PG (dash lines) in terms of episode reward, learning speed, learning
variance and success rate. In Table 1,among the measures, the Avg. Rwd of TDR methods outper-
formed respective baseline algorithms. Notice from the table that the learning success rates for
all TDR methods are now 100%, a significant improvement over the Base methods. In comparison,
DDPG, SAC and TD3 Base methods struggle with Acrobot Swingup, Cartpole Swingup Sparse,
and Cheetah Run Sparse. Moreover, TDR methods also outperform DDPG and PPO in terms of
averaged reward (Awg.Rwd), learning speed, learning variance, and success rate. Thus, TDR has
helped succesfully address the random initialization challenge caused by random seeds (Henderson
et al., 2018).

Q2 TDR brings performance of Base methods close to or better than that of the SOTA D4PG.
From Figure 2, and according to the “Rank” measure in Table 1, for all environments but Quadruped
walk, TDR (TDR-SAC and TDR-TD3) helped enhance the performances of the respective Base
methods. Additionally, it even outperformed the SOTA D4PG by around 40% in the “Rank” mea-
sure. For Quadruped walk, even though TDR-SAC and TDR-TD3 did not outperform D4PG, they
still are the two methods, among all evaluated, that provided closest performance to D4PG. It is also
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worth noting that TDR brings the performance of D4PG to a new SOTA level measured by mean
reward, convergence speed, and learning success rate.

Q3 TDR is robust under both dense stochastic reward and sparse reward. From Figure 2 and
Table 2, TDR methods outperformed their respective baselines in both dense stochastic and sparse
reward in terms of average reward, learning variance, success rate, and converge speed. In particular,
baseline algorithms such as TD3 and SAC struggle with sparse reward benchmark environments
(cartpole swingup sparse and cheetah run sparse). However, by using TDR, they not only learned,
but also achieved SOTA performance.

Acrobot Swingup Finger TurnHard Cartpole Swingup Sparse

Methods Avg. Rwd
[µ± 2σ]

Enhancement
[%]

Avg. Rwd
[µ± 2σ]

Enhancement
[%]

Avg. Rwd
[µ± 2σ]

Enhancement
[%]

TD3+TD Critic 24.9 ± 11.7 378.8 556.2 ± 239.8 170.1 766.2 ± 86.1 588.4
TD3+LNSS 24.2 ± 9.2 365.4 547.5 ± 120.5 165.9 766.6 ± 38.3 588.7

TD3+TD Actor 6.9 ± 2.9 32.7 212.3 ± 45.7 3.1 339.6 ± 231.9 260.2
TD3+TDR 42.9 ± 5.1 725 569.8 ± 142.1 176.7 790.1 ± 33.0 606.7

SAC+TD Critic 28.8 ± 12.2 620 588 ± 223.8 796.3 766.7 ± 126.4 449.6
SAC+LNSS 9.7 ± 2.9 142.5 573 ± 156.5 773.5 722.8 ± 162.4 423.7
SAC+TDR 42.9 ± 5.1 972.5 601.5 ± 147.4 816.9 774.2 ± 51.1 454.4

D4PG+TD Critic 32.8 ± 6.9 22.4 835.7 ± 140.9 108.5 678.7 ± 246.2 37.5
D4PG+LNSS 43.9 ± 16.7 63.8 675.1 ± 217.6 68.4 759.1 ± 31.1 53.8

D4PG+TD Actor 29.9 ± 13.8 11.6 532.5 ± 235.7 33.5 600 ± 129.3 21.6
dTDR 62.6 ± 14.4 133.6 841.1 ± 148.3 109.8 810.3 ± 34.9 64.2

Table 2: Systematic evaluations of each component of TDR compared to their respective Base al-
gorithms. “Enhancement” (%) is the “percent of reward difference” between the respective Base
algorithms, the larger the better. Note that TD Actor was not considered for SAC as SAC already
has a max entropy-regularized actor.

Figure 3: Evaluation of TD Actor with different ρ (ρ = 0, 0.1, 0.3, 0.5, 0.7, 0.9) in Equations (9,
21) based on two DRL algorithms (TD3, D4PG) in DMC environments with 10% uniform random
noise in state, action, and reward. The shaded regions represent the 95 % confidence range of the
evaluations over 10 seeds. The x-axis is the number of steps.

5.2 ABLATION STUDY

To perform the ablation study, we examined TDR by removing each of the following three compo-
nents. The respective short-form descriptions are:

1) “TD Critic”: the TD regularized double Q networks.
2) “TD Actor”: the TD regularized actor network.
3) “LNSS”: LNSS method with N = 100.

In Table 2, “Enhancement” (%) is the “percent of reward difference” between the evaluated method
and its Base method, the larger the better.
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Q4 TD Critic, TD Actor, and LNSS effectively improved the Base algorithms. In Table 2, TD
Critic, LNSS, and TD Actor all effectively improved the Base algorithms. From the table, TD Critic
and LNSS have provided comparable and significant enhancement over Base algorithms. As our TD
Critic methods outperform respective Base algorithms, this suggests that mitigating estimation errors
both over and under from vanilla double Q network is an effective way to improve performance
which has also been shown in our theoretical analysis (Theorem 1). The LNSS method helped
improve learning performance by reducing variances in value estimation for noisy rewards as shown
both theoretically and empirically (Zhong et al., 2022). By including LNSS, our TDR is more robust
under noisy and sparse rewards.

The TD Actor element also helped make appreciable improvements on learning performance as
shown in Table 2. More importantly, TD Actor plays an importantly role in TDR since it not only
stabilizes the policy updates as shown theoretically in Theorem 2 but also addresses the estimation
error in critic as shown theoretically in Theorem 3.

5.3 HYPER PARAMETER STUDY

Hyperparameter study results are summarized in Figure 3 where two DRL methods (D4PG and
TD3) with TD Actor are evaluated for different regularization factor ρ (ρ = 0, 0.1, 0.3, 0.5, 0.7, 0.9).
What is reported is the 10-seed averaged performance, i.e., the average of the approximate es-
timation error which is the difference between the true accumulated reward and the critic value:
Ψ = 1

10

∑9
eval=0(

∑999
t=0 γ

trt −Q(s0, a0)).

Q5 TD regularized Actor helps reduce the estimation error in critic.

From Figure 3, with TD regularized Actor (TD Actor), the estimation errors in the critic are re-
duced from those without. For example, in Finger Turn hard, D4PG + TD Actor results in less
overestimation error compared with ρ = 0 at the later stage of training. TD3 + TD Actor has less
underestimation error compared with ρ = 0. Similarly in cartpole swingup sparse, D4PG + TD
Actor results in less overestimation error compared with ρ = 0.

A policy can be evaluated by the “epois reward” where a higher epois reward generally results from a
better policy. From Figure 3, policy updates are improved by selecting a suitable regularization fac-
tor ρ. Especially, in cartpole swingup sparse, TD3 + TD Actor enables successful learning whereas
the Base method struggled and stuck to 0 or no learning for the entire training period.

Q6 A range of ρ (ρ = 0.3, 0.5, 0.7) generally are good choices. From Figure 3, a small regular-
ization factor ρ = 0.1 in TDR will result in less regularization which may not provide sufficient
estimation error reduction in the critic. A larger regularization factor ρ = 0.9 in TDR will result in
more regularization and may have a negative effect on learning. Therefore, ρ = 0.3, 0.5, 0.7 may be
good choices. Therefore in this work, we have consistently used ρ = 0.7 in obtaining all results.

6 CONCLUSION, DISCUSSION, AND LIMITATION OF THE STUDY

1) In this work, we introduce a novel TDR mechanism that includes TD-regularized double critic
networks and TD-regularized actor network. Both components are shown to help mitigate both
over and under estimation errors. TDR has been shown to consistently outperform respective Base
algorithms in solving benchmark tasks in terms of average reward, learning success rate, learning
speed, and most times, learning variance. 2) Our analytical results also show that each component of
TDR helps mitigate both over and under estimation errors. 3) As shown in Figure 2, for five out of
the six environments (except quadruped walk) evaluated, our TDR combined with distributional and
LNSS elements has significantly elevated the current SOTA performance of D4PG to a new level
with an increase of at least 60%.

Even though we have identified a range of generally good regularization coefficient ρ values
(0.3, 0.5, 0.7), as Figure 3 shows, different algorithms in different environments have responded
somewhat differently to ρ. Therefore, how to effectively determine a regularization factor to have
the most improvement remains a question, and thus, it is the limitation of this study. Additionally,
the promising performances of TDR come after extensive training with millions of learning steps.
How TDR performs under limited training time and training steps need to be further investigated.
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A DISTRIBUTIONAL TDR AND LNSS

The distributional RL (Bellemare et al., 2017) represents value function in terms of probability
distribution rather than function estimates. This distribution provides a more comprehensive rep-
resentation of the uncertainty associated with a range of different possible reward returns and state
action pairs which can provide more informative value function estimation. Many distributional RL
algorithms (Bellemare et al., 2017; Dabney et al., 2018b;a) has been achieved great performance im-
provements on many discrete problems such as Atari benchmarks. D4PG (Barth-Maron et al., 2018)
applied distributional RL into continuous control problem by combining the distributional return
function within an actor-critic framework. DSAC (Duan et al., 2021) address overestimation error
by applying distributional RL piggyback on SAC. Although, D4PG and DSAC can provide more
accurate critic, the overestimation of actor still exists since the actor is still updated by maximizing
the expectation of value function distribution. How to regulate actors in distributional RL in solving
overestimations was barely discussed before.
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A.1 DISTRIBUTIONAL TD-REGULARIZED ACTOR-CRITIC (DTDR)

Here we tailor a distributional TDR (dTDR) method based on the original distributional conceptu-
alization developed in D4PG (Barth-Maron et al., 2018; Bellemare et al., 2017). We show a number
of enhancements in the meantime.

Distributional Critic. The distributional critic (Bellemare et al., 2017 )treated the return in Equa-
tion 1 as a random variable Z(sk, ak) whose expectation is used as the Q value estimate, namely,
Q(sk, ak) = E[Z(sk, ak)].

In dTDR however, we use TD errors to evaluate distributional critics. Similar to Equation 5 and 6,
distributional TD errors of the two target networks can be written as:

d′1 = rk + γE[Zθ′
1
(sk+1, πϕ′(sk+1))]− E[Zθ′

1
(sk, ak)], (15)

d′2 = rk + γE[Zθ′
2
(sk+1, πϕ′(sk+1))]− E[Zθ′

2
(sk, ak)]. (16)

The twin TD-regularized target distributional Bellman operator is thus defined as:

T Zk
D
=

{
rk + γZθ′

1
(sk+1, πϕ′(sk+1)) if |d′1| ≤ |d′2|

rk + γZθ′
2
(sk+1, πϕ′(sk+1)) if |d′1| > |d′2|

(17)

where A D
= B denotes that two random variables A and B follow the same probability laws. Al-

though the distributional Bellman operator appears similar to Equation 1, it maps state-action pairs
to distributions. As such, we need to define a new TD error measure for the distribution as in D4PG
(Barth-Maron et al., 2018). We consider using the following distributional loss,

L(θ) = Es∼pπ,a∼π[
∑
ζ=1,2

l(T Zk, Zθζ (sk, ak))], (18)

where l measures the distance between two distributions. Many distributional RL algorithms use
Kullback-Leibler (KL) divergence as the distance metric (Duan et al., 2021; Barth-Maron et al.,
2018. We adopt the same metric.

Distributional Actor. In most distributional methods (Barth-Maron et al., 2018; Bellemare et al.,
2017), policy updates are performed based on the policy gradient below,

∇ϕJ(ϕ) = Es∼pπϕ
[E[∇aZθ(sk, ak)]|a=πϕ(s)∇ϕπϕ(s)]. (19)

In our dTDR, we need to use critic evaluation metrics to evaluate the quality of the current distribu-
tional critic and the regularized distributional actor. We first formulate the following loss metric:

Lz(ϕ) = E[l(rk + γZθi+1
1

(sk+1, πϕ(sk+1)), Zθi+1
1

(sk, πϕ(sk))]. (20)

Similar to TD-regularized actor network, the distributional actor is updated in the direction of max-
imizing the expected critic while keeping the expected distance between the projected critic and the
critic, namely,

∇ϕJ(ϕ) = Es∼pπϕ
[(E[∇aZθi+1

1
(sk, ak)]−∇aρLz(ϕ))|a=πϕ(s)∇ϕπϕ(s)], (21)

where ρ ∈ (0, 1) is a regularization coefficient.

A.2 LONG N-STEP SURROGATE STAGE (LNSS) REWARD

LNSS (Zhong et al., 2022) utilizes a long reward trajectory of N future steps in the estimation
of stage reward rk. Using the LNSS-resulted reward r′k in place of the original rk was shown
to effectively reduce learning variance with significant performance improvements for off-policy
methods. Given a reward trajectory of N steps from time step k, let G(sk:k+N−1, ak:k+N−1) ∈ R
(with shorthand notation Gk) denote the discounted N -step return, i.e.,

Gk =

k+N−1∑
t=k

γt−krt, (22)
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where rt is the tth stage reward and t is from k to k + N − 1. In LNSS, r′k is a surrogate stage
reward in place of rk in Equation (2). To determine r′k, LNSS treat it as a weighted average of the
N -step reward sequence, namely

r′k =

∑k+N−1
t=k γt−krt∑N−1

n=0 γ
n

. (23)

As Figure 1 shows, Once r′k is obtained, it is simply used in place of rk to form a new tuple
(sk, ak, r

′
k, sk+1), which is then stored into the memory buffer D. The TDR method proceeds

as discussed.

B ESTIMATION ANALYSIS

Lemma 1. Let Qπ be the true Q value following the current target policy π, and Qθ′
1

and Qθ′
2

be the
target network estimates using doubleQ neural networks. We assume that there exists a step random
estimation bias ψk

θ′
ζ

(i.e., estimation bias at the kth stage), and that it is independent of (sk, ak) with

mean E[ψk
θ′
ζ
] = µ′

ζ , µ
′
ζ < ∞, for all k, and ζ = 1, 2. Then for δ′1 and δ′2 respectively defined in

Equations (5) and (6), we have,
E[δ′1] = −µ′

1,

E[δ′2] = −µ′
2.

(24)

Proof. With the step random estimation bias ψk
θ′
ζ
, We can rewrite the expectation of Ψk

θ′
ζ

as

E[Ψk+1
θ′
ζ

] =

∞∑
t=k+1

γt−k−1E[ψt
θ′
ζ
] =

1

1− γ
µ′
ζ . (25)

Then the expectation of the target can be written as,

E[yk] = E[rk] + γE[(Qπ(sk+1, ak+1) + Ψk+1
θ′
ζ

)]

= E[rk] + γ(E[
∞∑

t=k+1

γt−k−1rt]) +
γ

1− γ
µ′
ζ

= Qπ(sk, ak) +
γ

1− γ
µ′
ζ .

(26)

By using Equations (10), and (26), the TD errors of the two target critics (Equations 5 and 6),
respectably are:

E[δ′1] = E[rk] + γE[Qθ′
1
(sk+1, πϕ′(sk+1))]− E[Qθ′

1
(sk, ak)]

= Qπ(sk, ak) +
γ

1− γ
µ′
1 −Qπ(sk, ak)−

1

1− γ
µ′
1

= −µ′
1.

Similarly, E[δ′2] = −µ′
2.

(27)

Thus Lemma 1 holds.

With Lemma 1 in place, we are now ready to analyze the estimation errors by using TDR and the
double Q (DQ) method as in TD3 (Fujimoto et al., 2018) and SAC (Haarnoja et al., 2018).

Theorem 1. Let assumptions in Lemma 1 hold, and let δYk denote the target value estimation
error. Accordingly, we denote this error for TDR as δY TDR

k , and DQ as δY DQ
k . We then have the

following,
|E[δY TDR

k ]| ≤ |E[δY DQ
k ]|. (28)

Proof. The proof is based on enumerating a total of 8 possible scenarios of estimation errors which
are determined from the relationships among the two target Q values and the true Qπ value . We
provide proofs for the 4 out of 8 unique scenarios below.
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First note that, E[δY TDR
k ] = E[Qπ − yTDR

k ], and E[δY DQ
k ] = E[Qπ − yDQ

k ].

Case 1: If the target critic values and the true value Qπ have the following relationship:

E[Qθ′
1
] < E[Qθ′

2
] < Qπ, (29)

i.e, Qθ′
1

is more underestimated as

|E[Ψk
θ′
1
]| > |E[Ψk

θ′
2
]|, (30)

that implies
|µ′

1| > |µ′
2|. (31)

Based on Lemma 1 and Equation (7), our TDR will use Qθ′
2

in the target value,

E[yTDR
k ] = E[rk] + γE[Qθ′

2
(sk+1, πϕ′(sk+1))]. (32)

However for a vanilla double Q network, the target value will be Qθ′
1
,

E[yDQ
k ] = E[rk] + γE[Qθ′

1
(sk+1, πϕ′(sk+1))]. (33)

Thus based on Equation (26), the two estimation errors of the respective target values are

|E[δY TDR
k ]| = |E[Qπ − yTDR

k ]| = | γ

1− γ
µ′
2|,

|E[δY DQ
k ]| = |E[Qπ − yDQ

k ]| = | γ

1− γ
µ′
1|.

(34)

Since |µ′
1| > |µ′

2|, we have
|E[δY TDR

k ]| < |E[δY DQ
k ]|. (35)

Thus identity (28) holds.

Case 2: If the target critic values and the true value Qπ have the following relationship:

E[Qθ′
1
] < Qπ < E[Qθ′

2]
,

|E[Qπ −Qθ′
1
]| > |E[Qπ −Qθ′

2
]|,

(36)

then Qθ′
1

is expected to be underestimated and Qθ′
2

is overestimated. Since |E[Qπ − Qθ′
1
]| >

|E[Qπ −Qθ′
2
]| which implies

|E[Ψk
θ′
1
]| > |E[Ψk

θ′
2
]|, (37)

we thus have
|µ′

1| > |µ′
2|. (38)

Based on Lemma 1 and Equation (7), our TDR will use Qθ′
2

in the target value:

E[yTDR
k ] = E[rk] + γE[Qθ′

2
(sk+1, πϕ′(sk+1))]. (39)

However for a vanilla double Q network, the target value will use Qθ′
1
,

E[yDQ
k ] = E[rk] + γE[Qθ′

1
(sk+1, πϕ′(sk+1))]. (40)

Based on Equation (26), the two estimation errors of the respective target values are:

|E[δY TDR
k ]| = |E[Qπ − yTDR

k ]| = | γ

1− γ
µ′
2|,

|E[δY DQ
k ]| = |E[Qπ − yDQ

k ]| = | γ

1− γ
µ′
1|,

(41)

Since |µ′
1| > |µ′

2|, we have
|E[δY TDR

k ]| < |E[δY DQ
k ]|. (42)

Thus identity (28) holds.

Case 3: If the target critic values and the true value Qπ has the following relationship:

E[Qθ′
1
] < Qπ < E[Qθ′

2
],

|E[Qπ −Qθ′
1
]| < |E[Qπ −Qθ′

2
]|,

(43)
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then Qθ′
1

is expected to be underestimated and Qθ′
2

is overestimated. Since |E[Qπ − Qθ′
1
]| <

|E[Qπ −Qθ′
2
]|, it implies

|E[Ψk
θ′
1
]| < |E[Ψk

θ′
2
]|, (44)

thus we have
|µ′

1| < |µ′
2|. (45)

Based on Lemma 1 and Equation (7), both vanilla double Q network and our TDR will pick Qθ′
1

in
the target value:

E[yTDR
k ] = E[yDQ

k ] = E[rk] + γE[Qθ′
1
(sk+1, πϕ′(sk+1))]. (46)

Then based on Equation (26), the two estimation errors of the respective target values are:

|E[δY TDR
k ]| = |E[δY DQ

k ]| = |E[Qπ − yTDR
k ]| = | γ

1− γ
µ′
1|. (47)

We thus have
|E[δY TDR

k ]| = |E[δY DQ
k ]|. (48)

Thus identity (28) holds.

Case 4: If the target critic values and the true value Qπ has the following relationship

Qπ < E[Qθ′
1
] < E[Qθ′

2
], (49)

where E[Qθ′
2
] is expected more overestimated ie |E[Ψk

θ′
1
]| < |E[Ψk

θ′
2
]| that implies

|µ′
1| < |µ′

2|. (50)

Based on Equation (24) and (7), same with vanilla double Q network, our Twin TD-regularized
Critic will pick the target value using Qθ′

1
which both mitigates the larger overestimation bias as:

E[yTDR
k ] = E[yDQ

k ] = E[rk] + γE[Qθ′
1
(sk+1, πϕ′(sk+1))], (51)

which based on Equation (26), the two estimation errors of the target value are

|E[δY TDR
k ]| = |E[δY DQ

k ]| = |E[Qπ − yTDR
k ]| = | γ

1− γ
µ′
1|. (52)

We have
|E[δY TDR

k ]| = |E[δY DQ
k ]|. (53)

Thus identity (28) holds. Both methods can mitigate the overestimation error.

Note, the above cases study the relationship of E[Qθ′
1
] < E[Qθ′

2
] and by applying same procedure

for E[Qθ′
1
] > E[Qθ′

2
], |E[δY TDR

k ]| ≤ |E[δY DQ
k ]| still valid. Thus Theorem 1 holds.

Theorem 2. Let Qπ denote the true Q value following the current target policy π, Qθ1 be the
estimated value. We assume that there exists a step random estimation bias ψk

θ1
that is independent

of (sk, ak) with mean E[ψk
θ1
] = µ1, µ1 < ∞, for all k. We assume the policy is updated based on

criticQθ1 using the deterministic policy gradient (DPG) as in Equation 4. Let δϕk denote the change
in actor parameter ϕ updates at stage k. Accordingly, we denote this change for TDR as δϕTDR

k ,
vanilla DPG as δϕDPG

k , and true change without any approximation error in Q as δϕtruek . We then
have the following,{

E[δϕtruek ] ≥ E[δϕTDR
k ] ≥ E[δϕDPG

k ] if E[Ψk
θ1
] < 0,

E[δϕtruek ] ≤ E[δϕTDR
k ] ≤ E[δϕDPG

k ] if E[Ψk
θ1
] ≥ 0.

(54)

Proof. With learning rate α, the true change of the actor parameters in case without any approxima-
tion error in Q:

E[δϕtruek ] = αEs∼pπ
ϕj

[
∇aQ

π(sk, ak)|a=πϕj (s)
∇ϕjπϕj (s)

]
. (55)
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Consider the estimated critic and the true value follow the relationship in Equation 10. Given the
same current policy parameters ϕj , the updated parameters using DPG are:

ϕj+1
DPG = ϕj + αEs∼pπ

ϕj

[
∇a(Q

π(sk, ak) + Ψk
θ1)

∣∣
a=πϕj (s)

∇ϕjπϕj (s)
]
,

E[δϕDPG
k ] = αEs∼pπ

ϕj

[
∇a(Q

π(sk, ak) + Ψk
θ1)

∣∣
a=πϕj (s)

∇ϕjπϕj (s)
]
.

(56)

With an overestimation bias E[Ψk
θ1
] > 0, the updates encourage more exploration for the overesti-

mated actions, and with an underestimation bias E[Ψk
θ1
] < 0, the updates discourage exploration for

the underestimated actions. Both result in suboptimal policies.

However, by using TD-regularized actor, and given the same current policy parameters ϕj , the actor
updates with Equation (9) are:

ϕj+1
TDR = ϕj + αEs∼pπ

ϕj
[∇a(Q

π(sk, ak) + Ψk
θ1 − ρ(∆))|a=πϕj (s)∇ϕjπϕj (s)],

E[δϕTDR
k ] = αEs∼pπ

ϕj
[∇a(Q

π(sk, ak) + Ψk
θ1 − ρ(∆))|a=πϕj (s)∇ϕjπϕj (s)].

(57)

Similar to Lemma 1, E[Ψk
θ1
] = 1

1−γµ1, and from Equations (8) and (9) we have:

E[∆] = E[Qθi+1
1

(sk, ak)]− E[(rk + γQθi+1
1

(sk+1, πϕ(sk+1)))]

= µ1

(58)

by selecting ρ ≤ 1
1−γ , we have the following:{

0 ≥ E[Ψk
θ1
− ρ∆] > E[Ψk

θ1
] if E[Ψk

θ1
] < 0,

0 ≤ E[Ψk
θ1
− ρ∆] ≤ E[Ψk

θ1
] if E[Ψk

θ1
] ≥ 0.

(59)

Therefore by inspecting Equations (55), (56) and (57), we have:{
E[δϕtruek ] ≥ E[δϕTDR

k ] ≥ E[δϕDPG
k ] if E[Ψk

θ1
] < 0,

E[δϕtruek ] ≤ E[δϕTDR
k ] ≤ E[δϕDPG

k ] if E[Ψk
θ1
] ≥ 0.

(60)

Thus Theorem 2 holds.

Theorem 3. Suboptimal actor updates negatively affect the critic. Specifically, consider actor up-
dates as in Theorem 2, in the overestimation case, we have:

E[Qθ1(sk, πDPG(sk)] ≥ E[Qθ1(sk, πTDR(sk))] ≥ E[Qπ(sk, πTrue(sk))], (61)

and in the underestimation case,

E[Qθ1(sk, πDPG(sk)] ≤ E[Qθ1(sk, πTDR(sk))] ≤ E[Qπ(sk, πTrue(sk))]. (62)

Proof Following the analysis of the TD3 (Fujimoto et al., 2018), consider Equation (12) in Theorem
2, we have {

E[δϕtruek ] ≥ E[δϕTDR
k ] ≥ E[δϕDPG

k ] if E[Ψk
θ1
] < 0 Underestimate,

E[δϕtruek ] ≤ E[δϕTDR
k ] ≤ E[δϕDPG

k ] if E[Ψk
θ1
] ≥ 0 Overestimate. (63)

In the overestimation case, the approximate value using TDR and vanilla DPG must be

E[Qθ1(sk, πDPG(sk)] ≥ E[Qθ1(sk, πTDR(sk))] ≥ E[Qπ(sk, πtrue(sk))]. (64)

Similarly, in the underestimation case, the approximate value using TDR and vanilla DPG must be

E[Qθ1(sk, πDPG(sk)] ≤ E[Qθ1(sk, πTDR(sk))] ≤ E[Qπ(sk, πTrue(sk))]. (65)

Thus Theorem 3 holds.
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C IMPLEMENTATION DETAILS

We use PyTorch for all implementations. All results were obtained using our internal server consist-
ing of AMD Ryzen Threadripper 3970X Processor, a desktop with Intel Core i7-9700K processor,
and two desktops with Intel Core i9-12900K processor.

Training Procedure.

An episode is initialized by resetting the environment, and terminated at max step T = 1000. A trial
is a complete training process that contains a series of consecutive episodes. Each trial is run for a
maximum of 1× 106 time steps with evaluations at every 2× 104 time steps. Each task is reported
over 10 trials where the environment and the network were initialized by 10 random seeds, (0− 9)
in this study.

For each training trial, to remove the dependency on the initial parameters of a policy, we use a
purely exploratory policy for the first 8000 time steps (start timesteps). Afterwards, we use an
off-policy exploration strategy, adding Gaussian noise N (0, 0.1) to each action.

Evaluation Procedure.

Every 1 × 104 time steps training, we have an evaluation section and each evaluation reports the
average reward over 5 evaluation episodes, with no exploration noise and with fixed policy weights.
The random seeds for evaluation are different from those in training which each trial, evaluations
were performed using seeds (seeds+ 100).

Network Structure and optimizer.

TD3.The actor-critic networks in TD3 are implemented by feedforward neural networks with three
layers of weights. Each layer has 256 hidden nodes with rectified linear units (ReLU) for both the
actor and critic. The input layer of actor has the same dimension as observation state. The output
layer of the actor has the same dimension as action requirement with a tanh unit. Critic receives both
state and action as input to THE first layer and the output layer of critic has 1 linear unit to produce
Q value. Network parameters are updated using Adam optimizer with a learning rate of 10−3 for
simple control problems. After each time step k, the networks are trained with a mini-batch of a
256 transitions (s, a, r, s′), (s, a, r′, s′) in case of LNSS, sampled uniformly from a replay buffer D
containing the entire history of the agent.

D4PG. Same with the actor-critic networks in D4PG are implemented by feedforward neural net-
works with three layers of weights. Each layer has 256 hidden nodes with rectified linear units
(ReLU) for both the actor and critic. The input layer of actor has the same dimension as observa-
tion state. The output layer of the actor has the same dimension as action requirement with a tanh
unit. Critic receives both state and action as input to THE first layer and the output layer of critic
has a distribution with hyperparameters for the number of atoms l, and the bounds on the support
(Vmin, Vmax). Network parameters are updated using Adam optimizer with a learning rate of 10−3.
After each time step k, the networks are trained with a mini-batch of 256 transitions (s, a, r, s′),
(s, a, r′, s′) in case of LNSS, sampled uniformly from a replay buffer D containing the entire his-
tory of the agent.

SAC. The actor-critic networks in SAC are implemented by feedforward neural networks with three
layers of weights. Each layer has 256 hidden nodes with rectified linear units (ReLU) for both the
actor and critic. The input layer of actor has the same dimension as observation state. The output
layer of the actor has the same dimension as action requirement with a tanh unit. Critic receives both
state and action as input to the first layer and the output layer of critic has 1 linear unit to produce
Q value. Network parameters are updated using Adam optimizer with a learning rate of 10−3 for
simple control problems. After each time step k, the networks are trained with a mini-batch of a
256 transitions (s, a, r, s′), (s, a, r′, s′) in case of LNSS, sampled uniformly from a replay buffer D
containing the entire history of the agent.

Hyperparameters. To keep comparisons in this work fair, we set all common hyperparameters
(network layers, batch size, learning rate, discount factor, number of agents, etc) to be the same for
comparison within the same methods and different methods.

For TD3, target policy smoothing is implemented by adding ϵ ∼ N (0, 0.2) to the actions chosen
by the target actor-network, clipped to (−0.5, 0.5), delayed policy updates consist of only updating
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the actor and target critic network every d iterations, with d = 2. While a larger d would result in
a larger benefit with respect to accumulating errors, for fair comparison, the critics are only trained
once per time step, and training the actor for too few iterations would cripple learning. Both target
networks are updated with τ = 0.005.

The TD3 and TD3+TDR used in this study are based on the paper (Fujimoto et al., 2018) and the
code from the authors (https://github.com/sfujim/TD3).

Hyperparameter TD3 Value
Start timesteps 8000 steps
Evaluation frequency 20000 steps
Max timesteps 1e6 steps
Exploration noise N (0, 0.1)
Policy noise N (0, 0.2)
Noise clip ±0.5
Policy update frequency 2
Batch size 256
Buffer size 1e6
γ 0.99
τ 0.005
Number of parallel actor 1
LNSS-N 100
Adam Learning rate 1e-3
regularization factor 0.7

Table 3: TD3 + TDR hyper parameters used for DMC benckmark tasks

The SAC used in this study is based on paper (Haarnoja et al., 2018) and the code is from GitHub
(https://github.com/pranz24/pytorch-soft-actor-critic). and the hyperparameter is from Table 4.

Hyperparameter SAC Value
Start timesteps 8000 steps
Evaluation frequency 20000 steps
Max timesteps 1e6 steps
Exploration noise N (0, 0.1)
Policy noise N (0, 0.2)
Noise clip ±0.5
Policy update frequency 2
Batch size 256
Buffer size 1e6
γ 0.99
τ 0.005
Temperature parameter α 0.2
Number of parallel actor 1
LNSS-N 100
Adam Learning rate 1e-3

Table 4: SAC hyper parameters used for the DMC benckmark tasks

The D4PG used in this study is based on paper (Barth-Maron et al., 2018) and the code is modified
from TD3. The hyperparameter is from Table 5.

All Other algorithms are from the same DRL training platform (Tonic RL) (Pardo, 2020) with the
same evaluation as the above algorithms.

Sparse Reward Setup. 1) Cheetah Run Sparse: Cheetah needs to run forward as fast as possible.
The agent gets a reward only after speed exceeds 2.5 m/s, making the reward sparse. r = 1. That
is, if v >= 2.5 else r = 0.
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Hyperparameter D4PG Value
Start timesteps 8000 steps
Evaluation frequency 20000 steps
Max timesteps 1e6 steps
Exploration noise N (0, 0.1)
Noise clip ±0.5
Batch size 256
Buffer size 1e6
γ 0.99
τ 0.005
Number of parallel actor 1
LNSS-N 100
Adam Learning rate 1e-3
Vmax 100
Vmin 0
l 51
regularization factor 0.7

Table 5: D4PG + TDR hyper parameters used for the DMC benckmark tasks
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D TDR ALGORITHMS DETAILS

In this section, we show our TDR-based algorithms. TD3-TDR is shown in Algorithm 1, SAC-
TDR is shown in Algorithm 2, and D4PG-TDR is shown in Algorithm 3. We mainly add LNSS
reward to the sample collection part. In algorithm update part, we mainly modify the target value
selection using Equation 7 for regular DRL and Equation (17) for distributional DRL. Additionally,
if applicable, we modify the actor gradient based on Equation 9 for regular DRL and Equation (21)
for distributional DRL. All codes will be released to GitHub once the paper get accepted.

Algorithm 1 TD3-TDR
Initialize:

• Critic networks Qθ1 ,Qθ2 and actor-network πϕ with random parameters, θ1, θ2, ϕ
• Target networks θ′1 ← θ1, θ′2 ← θ2, ϕ′ ← ϕ,
• an experience buffer D
• a temporary experience buffer D′ with size N
• Total training episode T

1. For episode = 1, T do
2. Reset initialize state s0, D′

3. For k = 0, T do
4. Choose an action ak based on current state sk and learned policy from A.
5. Execute the action ak and observe a new state sk+1 with reward signal rk
6. Store the transition (sk, ak, rk, sk+1) in D′

7. if k +N − 1 ≤ T then
8. Get earliest memory (s′0, a

′
0, r

′
0, s

′
1) in the D′

9. Calculate r′ based on Equation (23)
10. Store the transition (s′0, a

′
0, r

′, s′1) in D
11. Clear original transition (s′0, a

′
0, r

′
0, s

′
1) in the D′

12. else
13. Repeat step 8 to 11 and Calculate r′ based on Equation
14.

r′k =
γ − 1

γT−k+1 − 1

T∑
t=k

γt−krt. (66)

15. end if
16. Sample mini-batch data (st, at, r

′
t, st+1) from D

17. Get next action at+1 ← πϕ′(st+1)

18. Target value yt based on Equation (7)
19. Update Critics based on Equation 3
20. if k mod Policy Update frequency then
21. Update ϕ by Equation 9
22. Update target networks:
23. θ′ζ ← τθζ + (1− τ)θ′ζ
24. ϕ′ ← τϕ+ (1− τ)ϕ′

25. end if
26. end for
27. end for
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Algorithm 2 SAC-TDR
Initialize:

• Soft value function VΞ, target Soft value function V ′
Ξ, Critic networks Qθ1 ,Qθ2 and actor-

network πϕ with random parameters, θ1, θ2, ϕ
• Target networks Ξ′ ← Ξ

• an experience buffer D
• a temporary experience buffer D′ with size N
• Total training episode T

1. For episode = 1, T do
2. Reset initialize state s0, D′

3. For k = 0, T do
4. Choose an action ak based on current state sk and learned policy from A.
5. Execute the action ak and observe a new state sk+1 with reward signal rk
6. Store the transition (sk, ak, rk, sk+1) in D′

7. if k +N − 1 ≤ T then
8. Get earliest memory (s′0, a

′
0, r

′
0, s

′
1) in the D′

9. Calculate r′ based on Equation (23)
10. Store the transition (s′0, a

′
0, r

′, s′1) in D
11. Clear original transition (s′0, a

′
0, r

′
0, s

′
1) in the D′

12. else
13. Repeat step 8 to 11 and Calculate r′ based on Equation
14.

r′k =
γ − 1

γT−k+1 − 1

T∑
t=k

γt−krt. (67)

15. end if
16. Sample mini-batch data (st, at, r

′
t, st+1) from D

17. Get next action at+1 ← πϕ′(st+1)

18. Target value yt based on Equation (7)
19. Update Critics based on Equation 3
20. Update Soft value function based on original SAC formualtion
21. Update ϕ by original SAC formulation
22. Update target networks:
23. Ξ′ ← τΞ + (1− τ)Ξ′

24. end for
25. end for
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Algorithm 3 D4PG-TDR
Initialize:

• Critic networks Zθ1 ,Zθ2 and actor-network πϕ with random parameters, θ1, θ2, ϕ
• Target networks θ′1 ← θ1, θ′2 ← θ2, ϕ′ ← ϕ,
• an experience buffer D
• a temporary experience buffer D′ with size N
• Total training episode T

1. For episode = 1, T do
2. Reset initialize state s0, D′

3. For k = 0, T do
4. Choose an action ak based on current state sk and learned policy from A.
5. Execute the action ak and observe a new state sk+1 with reward signal rk
6. Store the transition (sk, ak, rk, sk+1) in D′

7. if k +N − 1 ≤ T then
8. Get earliest memory (s′0, a

′
0, r

′
0, s

′
1) in the D′

9. Calculate r′ based on Equation (23)
10. Store the transition (s′0, a

′
0, r

′, s′1) in D
11. Clear original transition (s′0, a

′
0, r

′
0, s

′
1) in the D′

12. else
13. Repeat step 8 to 11 and Calculate r′ based on Equation
14.

r′k =
γ − 1

γT−k+1 − 1

T∑
t=k

γt−krt. (68)

15. end if
16. Sample mini-batch data (st, at, r

′
t, st+1) from D

17. Get next action at+1 ← πϕ′(st+1)

18. Target distribution based on Equation (17)
19. Update Critics based on Equation 18
20. if k mod Policy Update frequency then
21. Update ϕ by Equation 21
22. Update target networks:
23. θ′ζ ← τθζ + (1− τ)θ′ζ
24. ϕ′ ← τϕ+ (1− τ)ϕ′

25. end if
26. end for
27. end for
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E NEWLY OBTAINED DATA DURING REBUTTAL TO FURTHER STRENGTHEN
WHY WE SAID THAT TDR IS NOVEL AND OUR RESULTS ARE SOTA

Figure 4: Systematic evaluation of TDR implemented in three SOTA DRL algorithms (SAC, TD3,
D4PG) in DMC environments under NOISE FREE environments. The shaded regions represent the
95 % confidence range of respective evaluation over 5 seeds. The x-axis is the number of steps. The
results show that our baseline performance is comparable to benchmark results such as those in Pardo
(2020) under the SAME hyperparameters. Additionally, TDR continuous to improve performance
over baseline methods under NOISE FREE condition.

Finger Turn Quadruped Walk Fish Swim Acrobot Swingup
Avg.Rwd
[µ± σ]

Noise Effect
[%]

Avg.Rwd
[µ± σ]

Noise Effect
[%]

Avg.Rwd
[µ± σ]

Noise Effect
[%]

Avg.Rwd
[µ± σ]

Noise Effect
[%]

SAC-BASE 515.6 ± 229.1 -87.3 419.1 ± 315.7 -53.1 229.5 ± 56.5 -68.1 15.3 ± 13.8 -73.9
SAC-TDR 856.5 ± 59.3 -29.7 499.4 ± 258.5 -3.9 465.4 ± 136.4 -54.4 212.6 ± 63.2 -79.8
TD3-BASE 304.3 ± 228.3 -32.3 437.9 ± 173.7 -23.5 206.1 ± 70.5 -57.6 4.4 ± 4.1 Fail learn
TD3-TDR 612.1 ± 138.9 -6.9 824.2 ± 85.1 -42.3 372.5 ± 88.8 -45.2 274.5 ± 63.9 -81.8
D4PG-BASE 577.6 ± 204.4 -30.6 888.2 ± 16.1 -3.3 494.1 ± 92.8 -68.9 247.3 ± 62.9 -89.2
D4PG-TDR 719.7 ± 70.6 -14.4 894.1 ± 18.1 -0.7 541.5 ± 155.8 -53.8 373.6 ± 70.3 -83.2

Table 6: Systematic evaluation of TDR implemented in three SOTA DRL algorithms (SAC, TD3,
D4PG) in DMC environments under NOISE FREE environments. Noise Effect (%) measures per-
formance decay due to introducing significant noise onto observations, actions and rewards (10%
each in both directions as in our implementations in this paper). Please note that performance of all
baseline methods decay significantly due to added NOISE. However, TDR has helped mitigate such
significant performance decay.
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Figure 5: Depiction of some key data in Table 6 and Table 1. Here we illustrate 1) a significant per-
formance drop when introducing the level of noise as we used in the paper to the baseline methods,
2) TDR clearly helps improve upon the performance drop of the baseline methods in the presence
of noise. ”Noise” refers to significant noise added to observations, actions, and rewards (10% each
as in our implementations in this paper). ”No noise” refers to implementations in previous works
(SAC, TD3, D4PG). ”Noise Effect” (%) measures performance decay due to introducing noise.
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Figure 6: In addition to our extensive evaluations as reported in the paper, here is a new result of
TDR on Humanoid walk task (as mentioned by Reviewer SnPL). TDR is implemented in two DRL
algorithms (TD3, D4PG) under NOISE FREE condition to be comparable to the literature. The
shaded regions represent the 95 % confidence range of evaluations over 3 seeds. The x-axis is the
number of steps. This result suggests that when provided with sufficient computational resources,
most (good) methods are capable of learning complex humanoid benchmarks. Moreover, please
note that TDR continues to enhance the performance of the baseline under these conditions. Lastly,
it is important to note that we employed 8 parallel actors in obtaining this result, whereas all other
findings presented in Table 6 were obtained from a single actor implementation. In our main paper,
We only include results from using single actor implementation since we want to better study base-
line algorithms under significant noise and under less abundant computation resources, a common
practice that can be found in SOTA publications.
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Figure 7: Comparison of Parisi actor and TDR actor. The shaded regions represent the 95 % confi-
dence range of evaluations over 5 seeds. The x-axis is the number of steps. TDR clearly is a novel
design, not a simple/trivial extension of Parisi’s. Additionally Parisi’s study is empirical in nature
without any estimation error reduction guarantee. Actually, the paper did not even have a discussion
on estimation error. In contrast, in this paper that introduces the new TDR method, our Theorem
2 shows how TD regularized actor can help prevent updates from misleading critics, and Theorem
3 shows how TD regularized actor can mitigate estimation error in critics. Our extensive simula-
tions demonstrate effectiveness of TDR under realistic (and necessary) implementation conditions
to study the issue of estimation error.
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